description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) ab = [(0, 0)] * n for i in range(n): ab[i] = tuple(map(int, input().split())) ab[i] = ab[i][0], ab[i][1], ab[i][0] - ab[i][1] ab = sorted(ab, key=lambda x: x[2], reverse=True) sm = 0 for i in range(n): sm += -ab[i][0] + n * ab[i][1] + (i + 1) * ab[i][2] print(sm)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
from sys import setcheckinterval, setrecursionlimit, stdin setcheckinterval(1000) setrecursionlimit(10**6) iin = lambda: int(stdin.readline()) lin = lambda: list(map(int, stdin.readline().split())) n = iin() a = [lin() for i in range(n)] a1 = sorted(a, key=lambda x: x[1] - x[0]) ans = 0 for i in range(n): ans += a1[i][0] * i + a1[i][1] * (n - i - 1) print(ans)
EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = list(map(int, input().split()))[0] la = list() lb = list() for i in range(0, n): a, b = map(int, input().split()) la += [(abs(a - b), a, b, i)] la.sort() lb.sort(reverse=True) sa = set() left = 0 right = n - 1 sums = 0 while len(la) > 0: g = la.pop() if int(g[1]) > int(g[2]): sums += int(g[1]) * left + int(g[2]) * (n - left - 1) left += 1 else: sums += int(g[1]) * right + int(g[2]) * (n - right - 1) right -= 1 print(sums)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR LIST FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
def compute(s, n): s_new = sorted(s, reverse=True) ret = 0 for i in range(1, n + 1): ret = ret + i * s_new[i - 1] return ret def main(): n = int(input()) s = [] b_sum = 0 a_sum = 0 for i in range(n): a, b = input().split(" ") a = int(a) b = int(b) a_sum = a + a_sum b_sum = b + b_sum s.append(a - b) ret = compute(s, n) print(ret + b_sum * n - a_sum) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) p1 = 0 p2 = 0 l = [] s = 0 for k in range(1, n + 1): x = str(input()) x = x.split(" ") x = [int(y) for y in x if y != ""] p1 = x[0] + p1 p2 = p2 + x[1] l.append(x[0] - x[1]) l.sort(reverse=True) for k in range(1, n + 1): s = s + k * l[k - 1] print(s + n * p2 - p1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) a = [] b = [] c = [] for i in range(n): d = list(map(int, input().split())) a.append(d[0]) b.append(d[1]) c.append(d[0] - d[1]) w = sum(a) z = sum(b) c.sort(reverse=True) summ = 0 for i in range(len(c)): summ += c[i] * (i + 1) t = summ + n * z - w print(t)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) sb, sa = 0, 0 c = [] for i in range(n): i, j = map(int, input().split()) sb += j sa += i c.append(i - j) c.sort() c = c[::-1] ans = sb * n - sa for i in range(n): ans += c[i] * (i + 1) print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) a = [0] * n b = [0] * n c = [0] * n for i in range(0, n): a[i], b[i] = map(int, input().split()) c[i] = b[i] - a[i] c = sorted(c) s = 0 for i in range(0, n): s += c[i] * (n - 1 - i) print(s + (n - 1) * sum(a))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
from sys import stdin inp = stdin.readline n, s = int(inp()), 0 arr = sorted( [ [a[0] - a[1], a[0], a[1]] for i in range(n) for a in [[int(i) for i in inp().split()]] ] ) for i in range(n): s += arr[i][2] * i + arr[i][1] * (n - i - 1) print(s)
ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR LIST BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR VAR VAR LIST FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) ans = 0 suma = 0 sumb = 0 h = [] for i in range(1, n + 1): a, b = map(int, input().split()) suma += a sumb += b h.append(a - b) h.sort() for i in range(n): p = h.pop() ans += p * (i + 1) ans += -suma + sumb * n print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) a = [] b = [] for _ in range(n): x, y = map(int, input().split()) a.append(x) b.append(y) s = 0 s -= sum(a) s += sum(b) * n array = [(a[i] - b[i]) for i in range(n)] array.sort(reverse=True) for j in range(1, n + 1): s += array[j - 1] * j print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) a = [] s = 0 for _ in range(n): t = list(map(int, input().split())) s += t[1] * n - t[0] a.append(t[0] - t[1]) a.sort() for i in range(n): s += a[i] * (n - i) print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
from sys import stdin input = stdin.readline n = int(input()) arr = [tuple(map(int, input().split())) for _ in range(n)] arr = [(a, b, a - b) for a, b in arr] arr.sort(key=lambda x: (x[2], x[0]), reverse=True) cnt = 0 for i, t in enumerate(arr): a, b, _ = t cnt += i * a cnt += (n - i - 1) * b print(cnt)
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
import sys input = sys.stdin.readline n = int(input()) l = sorted( [list(map(int, input().rstrip("\n").split(" "))) for i in range(n)], key=lambda x: x[1] - x[0], ) print(sum(l[i][0] * i + l[i][1] * (n - i - 1) for i in range(n)))
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING STRING VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) l = [] a1 = 0 b1 = 0 for i in range(n): a, b = map(int, input().split()) a1 = a1 + a b1 = b1 + b l.append(a - b) l.sort(reverse=True) s = 0 x = [i for i in range(1, n + 1)] i = 0 while len(l) > 0: if l[-1] <= 0: s = s + l.pop() * x.pop() else: break for i in range(len(l)): s = s + l[i] * x[i] print(n * b1 - a1 + s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER IF VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
from sys import stdin input = stdin.readline ans = 0 k = [] n = int(input()) for i in range(n): a, b = map(int, input().split()) ans += b * n - a k.append(a - b) k.sort(reverse=True) for i in range(n): ans += k[i] * (i + 1) print(ans)
ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
import sys input = sys.stdin.readline MOD = 1000000007 MOD2 = 998244353 ii = lambda: int(input().strip("\n")) si = lambda: input().strip("\n") dgl = lambda: list(map(int, input().strip("\n"))) f = lambda: map(int, input().strip("\n").split()) il = lambda: list(map(int, input().strip("\n").split())) ls = lambda: list(input().strip("\n")) let = "abcdefghijklmnopqrstuvwxyz" for _ in range(1): n = ii() l = [il() for i in range(n)] l.sort(reverse=True, key=lambda x: x[0] - x[1]) ans = 0 for i in range(n): ans += l[i][0] * i + l[i][1] * (n - i - 1) print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
def main(): n = int(input()) a = [(0) for i in range(n)] b = [(0) for i in range(n)] for i in range(n): p, q = input().split() a[i] = int(p) b[i] = int(q) q = [] for i in range(n): q.append([a[i] - b[i], i]) q.sort(reverse=True) val = 0 for i in range(n): val += a[q[i][1]] * i + b[q[i][1]] * (n - i - 1) print(val) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) l1 = [] l2 = [] l3 = [] for i in range(n): a, b = [int(i) for i in input().split()] l1.append(a) l2.append(b) l3.append(a - b) l3.sort() l3.reverse() min1 = 0 for i in range(n): min1 += l3[i] * (i + 1) + l2[i] * n - l1[i] print(min1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) vec = [] for i in range(n): ab = list(map(int, input().split())) ac = [ab[1] - ab[0]] + ab vec.append(ac) vec.sort() res = 0 for i in range(n): res += vec[i][1] * i + vec[i][2] * (n - 1 - i) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST BIN_OP VAR NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
from sys import stdin, stdout def sortOdd(val): return val[0] - val[1] n, dis = int(stdin.readline()), 0 a = [list(map(int, stdin.readline().split())) for i in range(n)] a.sort(reverse=True, key=sortOdd) for i in range(n): dis += a[i][0] * i + a[i][1] * (n - 1 - i) print(dis)
FUNC_DEF RETURN BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) l = [] for i in range(n): k = [int(x) for x in input().split()] l.append([k[0], k[1], k[0] - k[1]]) l = sorted(l, key=lambda r: r[2], reverse=True) s = 0 for i in range(n): s += l[i][0] * i + l[i][1] * (n - 1 - i) print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
from sys import stdin n = int(input()) ab = [] lines = stdin.readlines() for line in lines: a, b = map(int, line.split()) ab.append((a, b)) ab.sort(key=lambda x: max(x[0], x[1]) - min(x[0], x[1]), reverse=True) l = 0 r = n - 1 ans = 0 for a, b in ab: if a > b: ans += a * l + b * (n - l - 1) l += 1 else: ans += a * r + b * (n - r - 1) r -= 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) v = [[int(x) for x in input().split()] for _ in range(n)] ax_c = [(a - b, b * n - a) for a, b in v] ax_c.sort(reverse=True) s = sum(x[0] * (i + 1) + x[1] for i, x in enumerate(ax_c)) print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) a = [] b = [] ans = 0 for i in range(n): t1, t2 = map(int, input().split()) a.append(t1) b.append(t2) ans += t2 * n - t1 c = [(a[i] - b[i]) for i in range(n)] d = [i for i in range(n, 0, -1)] c.sort() for i in range(n): ans += c[i] * d[i] print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) a = [] for i in range(n): b = list(map(int, input().split())) a.append(b) y = 0 x = 0 c = [] for i in a: x += i[0] y += i[1] c.append(i[0] - i[1]) c.sort(reverse=True) p = n * y - x s = 0 for j in range(n): s += c[j] * (j + 1) print(s + p)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
def check(a, i, j, n): return a[i][0] * (j - 1) + a[i][1] * (n - j) n = int(input()) a = [0] b = [] for i in range(1, n + 1): a.append(list(map(int, input().split()))) b.append([a[-1][0] - a[-1][1], i]) b.sort(reverse=True) ans = 0 for j in range(1, n + 1): ans += check(a, b[j - 1][1], j, n) print(ans)
FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST BIN_OP VAR NUMBER NUMBER VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
import sys input = iter(sys.stdin.read().splitlines()).__next__ n = int(input()) A = [[int(x) for x in input().split()] for _ in range(n)] L = [] R = [] cost = 0 for i in range(n): mn = min(A[i]) cost += mn * (n - 1) A[i][0] -= mn A[i][1] -= mn if A[i][0] == 0: R.append(A[i][1]) elif A[i][1] == 0: L.append(A[i][0]) cost += sum(i * e for i, e in enumerate(sorted(L, reverse=True))) cost += sum(i * e for i, e in enumerate(sorted(R, reverse=True))) print(cost)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR VAR VAR NUMBER VAR IF VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) l = [] ans = 0 for _ in range(n): x, y = map(int, input().split()) ans += y * n - x l += [x - y] l = sorted(l) j = n for each in l: ans += each * j j -= 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR LIST BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
from sys import stdin input = stdin.readline n = int(input()) l = [] for i in range(n): a, b = map(int, input().split()) l.append([a - b, a, b]) l.sort(reverse=True) x = 0 for i in range(n, 0, -1): j, a, b = l[i - 1] x += i * j - a + b * n print(x)
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) v = [] d = [] for _ in range(n): v.append([int(item) for item in input().split()]) d.append(v[-1][0] - v[-1][1]) d.sort() j = n i = 0 ans = 0 while j >= 1: ans += d[i] * j i += 1 j -= 1 for i in range(n): ans += n * v[i][1] - v[i][0] print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
import sys sys.setrecursionlimit(10**5 + 1) inf = int(10**20) max_val = inf min_val = -inf RW = lambda: sys.stdin.readline().strip() RI = lambda: int(RW()) RMI = lambda: [int(x) for x in sys.stdin.readline().strip().split()] RWI = lambda: [x for x in sys.stdin.readline().strip().split()] nb_students = RI() line = [] for i in range(nb_students): a, b = RMI() line.append([b - a, a, b]) line.sort() ans = 0 for i in range(nb_students): ans += i * line[i][1] + (nb_students - i - 1) * line[i][2] print(ans)
IMPORT EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR LIST BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) pos = [] neg = [] res = 0 for i in range(n): a, b = map(int, input().split()) if a > b: pos.append([a, b]) elif a < b: neg.append([a, b]) else: res += (n - 1) * a pos.sort(key=lambda l: -abs(l[0] - l[1])) neg.sort(key=lambda l: -abs(l[0] - l[1])) def f(i, l): return l[0] * (i - 1) + l[1] * (n - i) for i in range(len(pos)): res += f(i + 1, pos[i]) for i in range(len(neg)): res += f(n - i, neg[i]) print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR IF VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER FUNC_DEF RETURN BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) l = [] a = 0 b = 0 for i in range(n): l += [list(map(int, input().split()))] a += l[i][0] b += l[i][1] l1 = [(l[i][0] - l[i][1]) for i in range(n)] l1.sort(reverse=True) s = 0 for i in range(1, n + 1): s += i * l1[i - 1] s += n * b - a print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR LIST FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) a = [] k = 0 for i in range(n): h, m = list(map(int, input().split())) a.append(h - m) k += m k *= n - 1 a.sort(reverse=True) for i in range(n): k += i * a[i] print(k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input().strip()) l = [] def p(ll): return ll[1] - ll[0] for k in range(n): l.append(tuple(map(int, input().strip().split()))) l.sort(key=p) s1 = 0 s2 = n - 1 s = 0 for tt in range(n): s = s + l[tt][0] * s1 + l[tt][1] * s2 s2 -= 1 s1 += 1 print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF RETURN BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
import sys input = sys.stdin.readline def ceil(x): if x != int(x): x = int(x) + 1 return x def swaparr(arr, a, b): temp = arr[a] arr[a] = arr[b] arr[b] = temp def gcd(a, b): if b == 0: return a return gcd(b, a % b) def nCr(n, k): if k > n - k: k = n - k res = 1 for i in range(k): res = res * (n - i) res = res / (i + 1) return int(res) def upper_bound(a, x, lo=0, hi=None): if hi == None: hi = len(a) while lo < hi: mid = (lo + hi) // 2 if a[mid] < x: lo = mid + 1 else: hi = mid return lo def primefs(n): primes = {} while n % 2 == 0 and n > 0: primes[2] = primes.get(2, 0) + 1 n = n // 2 for i in range(3, int(n**0.5) + 2, 2): while n % i == 0 and n > 0: primes[i] = primes.get(i, 0) + 1 n = n // i if n > 2: primes[n] = primes.get(n, 0) + 1 return primes def power(x, y, p): res = 1 x = x % p if x == 0: return 0 while y > 0: if y & 1 == 1: res = res * x % p y = y >> 1 x = x * x % p return res def swap(a, b): temp = a a = b b = temp return a, b def find(x, link): p = x while p != link[p]: p = link[p] while x != p: nex = link[x] link[x] = p x = nex return p def union(x, y, link, size): x = find(x, link) y = find(y, link) if size[x] < size[y]: x, y = swap(x, y) if x != y: size[x] += size[y] link[y] = x def sieve(n): prime = [(True) for i in range(n + 1)] p = 2 while p * p <= n: if prime[p] == True: for i in range(p * p, n + 1, p): prime[i] = False p += 1 return prime MAXN = int(100000.0 + 5) def spf_sieve(): spf[1] = 1 for i in range(2, MAXN): spf[i] = i for i in range(4, MAXN, 2): spf[i] = 2 for i in range(3, ceil(MAXN**0.5), 2): if spf[i] == i: for j in range(i * i, MAXN, i): if spf[j] == j: spf[j] = i def factoriazation(x): ret = {} while x != 1: ret[spf[x]] = ret.get(spf[x], 0) + 1 x = x // spf[x] return ret def int_array(): return list(map(int, input().strip().split())) def float_array(): return list(map(float, input().strip().split())) def str_array(): return input().strip().split() MOD = int(1000000000.0) + 7 CMOD = 998244353 INF = float("inf") NINF = -float("inf") n = int(input()) a = [] ans = 0 for _ in range(n): x, y = int_array() ans += y * n - x a.append(x - y) a.sort(reverse=1) for x, i in enumerate(a, 1): ans += i * x print(ans)
IMPORT ASSIGN VAR VAR FUNC_DEF IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR FUNC_DEF NUMBER NONE IF VAR NONE ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR DICT WHILE BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN NUMBER WHILE VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR WHILE VAR VAR VAR ASSIGN VAR VAR VAR WHILE VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR IF VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR FUNC_DEF ASSIGN VAR DICT WHILE VAR NUMBER ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
import sys input = sys.stdin.readline n = int(input()) a = [None] * n b = [None] * n res = 0 for i in range(n): a[i] = list(map(int, input().split())) b[i] = a[i][0] - a[i][1] rank = [index for index, value in sorted(list(enumerate(b)), key=lambda x: -x[1])] for i, index in enumerate(rank): res += a[index][0] * i + a[index][1] * (n - i - 1) print(res)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
class sol: def __init__(self, a, b): self.a = a self.b = b self.sub = a - b n = int(input()) arr = [] for i in range(n): a, b = map(int, input().split()) arr.append(sol(a, b)) arr = sorted(arr, key=lambda x: x.sub, reverse=True) val = 0 for i in range(n): dis = arr[i].a * i + arr[i].b * (n - (i + 1)) val += dis print(val)
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) l = [] m = [] su = 0 for i in range(n): a, b = list(map(int, input().split())) l.append((b - a, i)) m.append((a, b)) l.sort(key=lambda x: x[0]) print(sum([(m[l[i][1]][0] * i + m[l[i][1]][1] * (n - 1 - i)) for i in range(n)]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) a = [tuple(map(int, input().split())) for _ in range(n)] a.sort(key=lambda x: x[0] - x[1], reverse=True) ret = 0 for i in range(1, n + 1): ret += a[i - 1][0] * (i - 1) + a[i - 1][1] * (n - i) print(ret)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
N = int(input()) items = [] for i in range(N): items.append(tuple(map(int, input().split()))) m = {} for i, item in enumerate(items): a, b = item m[i] = a - b m = sorted(m.items(), key=lambda x: -x[1]) ans = 0 i = 0 for k, _ in m: a, b = items[k] ans += a * i + b * (N - i - 1) i += 1 print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n, arr, ans = int(input()), list(), 0 for i in range(n): [a, b] = [int(i) for i in input().split()] arr += [[b - a, a, b]] arr = sorted(arr) for i in range(n): ans += i * arr[i][1] + (n - i - 1) * arr[i][2] print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR LIST LIST BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) data = [list(map(int, input().split())) for _ in range(n)] data.sort(key=lambda x: x[0] - x[1]) print(sum(v[1] * i + v[0] * (n - i - 1) for i, v in enumerate(data)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) suma = 0 dif = [] for i in range(n): a, b = map(int, input().split()) suma += b * (n - 1) dif.append(a - b) dif = sorted(dif, reverse=True) for j in range(n): suma += j * dif[j] print(suma)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
def solve(a): return a[0] - a[1] n = int(input()) arr = [] for i in range(n): lista = list(map(int, input().split())) arr.append(lista) ans = 0 for i in range(n): ans += arr[i][1] * n - arr[i][0] arr.sort(reverse=True, key=solve) for i in range(n): ans += (arr[i][0] - arr[i][1]) * (i + 1) print(ans)
FUNC_DEF RETURN BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
def main(): n = int(input()) arr = [] for i in range(n): x, y = map(int, input().split()) arr.append((x, y)) ans = 0 arr.sort(key=lambda a: a[1] - a[0]) for i in range(n): x, y = arr[i] ans += x * i + (n - 1 - i) * y print(ans) return 0 main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER EXPR FUNC_CALL VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
import sys def input(): return sys.stdin.readline() n = int(input()) arr = [] for i in range(n): a, b = map(int, input().split()) arr.append((a, b)) arr.sort(key=lambda x: x[1] - x[0]) answer = 0 for i in range(n): a, b = arr[i] answer += a * i + b * (n - i - 1) print(answer)
IMPORT FUNC_DEF RETURN FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) people = [] for i in range(n): people.append(tuple(int(x) for x in input().split())) diss = sum(n * p[1] - p[0] for p in people) a_b = list([(p[0] - p[1]) for p in people]) a_b.sort(reverse=True) diss += sum((idx + 1) * val for idx, val in enumerate(a_b)) print(diss)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) m = [] for i in range(n): a, b = map(int, str.split(input(), " ")) m.append((a - b, a, b)) m.sort(reverse=True) score = 0 for i in range(n): _, a, b = m[i] score += (i + 1) * (a - b) + b * n - a print(score)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
import sys input = sys.stdin.readline N = int(input()) X = [] for _ in range(N): a, b = map(int, input().split()) c = b - a X.append([a, b, c]) X = sorted(X, key=lambda x: x[2]) s = 0 for i in range(N): s += X[i][0] * i + X[i][1] * (N - i - 1) print(s)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) x = [] y = [] d = [] for _ in range(n): xi, yi = list(map(int, input().strip().split())) x.append(xi) y.append(yi) d.append(xi - yi) constant_sum_x = -sum(x) constant_sum_y = n * sum(y) d.sort() sm = 0 for i in range(n): sm += d[i] * (n - i) print(constant_sum_x + constant_sum_y + sm)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
n = int(input()) li = [] li_p = [] for i in range(n): ly = input().split() ly.append(int(ly[0]) - int(ly[1])) li.append(ly) li.sort(key=lambda x: x[2], reverse=True) cost = 0 for i in range(n): cost += int(li[i][0]) * i + int(li[i][1]) * (n - i - 1) print(cost)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
During a break in the buffet of the scientific lyceum of the Kingdom of Kremland, there was formed a queue of $n$ high school students numbered from $1$ to $n$. Initially, each student $i$ is on position $i$. Each student $i$ is characterized by two numbers — $a_i$ and $b_i$. Dissatisfaction of the person $i$ equals the product of $a_i$ by the number of people standing to the left of his position, add the product $b_i$ by the number of people standing to the right of his position. Formally, the dissatisfaction of the student $i$, which is on the position $j$, equals $a_i \cdot (j-1) + b_i \cdot (n-j)$. The director entrusted Stas with the task: rearrange the people in the queue so that minimize the total dissatisfaction. Although Stas is able to solve such problems, this was not given to him. He turned for help to you. -----Input----- The first line contains a single integer $n$ ($1 \leq n \leq 10^5$) — the number of people in the queue. Each of the following $n$ lines contains two integers $a_i$ and $b_i$ ($1 \leq a_i, b_i \leq 10^8$) — the characteristic of the student $i$, initially on the position $i$. -----Output----- Output one integer — minimum total dissatisfaction which can be achieved by rearranging people in the queue. -----Examples----- Input 3 4 2 2 3 6 1 Output 12 Input 4 2 4 3 3 7 1 2 3 Output 25 Input 10 5 10 12 4 31 45 20 55 30 17 29 30 41 32 7 1 5 5 3 15 Output 1423 -----Note----- In the first example it is optimal to put people in this order: ($3, 1, 2$). The first person is in the position of $2$, then his dissatisfaction will be equal to $4 \cdot 1+2 \cdot 1=6$. The second person is in the position of $3$, his dissatisfaction will be equal to $2 \cdot 2+3 \cdot 0=4$. The third person is in the position of $1$, his dissatisfaction will be equal to $6 \cdot 0+1 \cdot 2=2$. The total dissatisfaction will be $12$. In the second example, you need to put people in this order: ($3, 2, 4, 1$). The total dissatisfaction will be $25$.
def mp(): return map(int, input().split()) n = int(input()) a = [0] * n b = [0] * n for i in range(n): a[i], b[i] = mp() q = [0] * n for i in range(n): q[i] = [b[i] - a[i], i] q.sort() e = 0 for i in range(n): j = q[i][1] e += a[j] * i + b[j] * (n - i - 1) print(e)
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
import sys input = sys.stdin.readline t = int(input()) for _ in range(t): n = int(input()) a = [int(item) for item in input().split()] max_val = 0 min_val = 10**12 max_diff = 0 for a1, a2 in zip(a, a[1:]): if a1 == -1: if a2 == -1: continue else: max_val = max(max_val, a2) min_val = min(min_val, a2) elif a2 == -1: max_val = max(max_val, a1) min_val = min(min_val, a1) else: max_diff = max(max_diff, abs(a1 - a2)) k = (max_val + min_val) // 2 if min_val == 10**12: k = 0 m = max(max_diff, max_val - k, k - min_val) print(m, k)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for _ in range(int(input())): n = int(input()) L = [int(x) for x in input().strip().split(" ")] mini, maxi = float("inf"), 0 for i in range(n): if L[i] == -1: if i > 0 and L[i - 1] != -1: mini = min(mini, L[i - 1]) maxi = max(maxi, L[i - 1]) if i < n - 1 and L[i + 1] != -1: mini = min(mini, L[i + 1]) maxi = max(maxi, L[i + 1]) if mini == float("inf"): mini = 0 k = (maxi + mini) // 2 L = [(k if x == -1 else x) for x in L] m = 0 for i in range(1, n): m = max(m, abs(L[i] - L[i - 1])) print(m, k)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR STRING NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
num_t = int(input()) for _ in range(num_t): input() arr = [int(i) for i in input().split()] min_p = float("inf") max_p = float("-inf") found = False for i in range(len(arr)): if arr[i] == -1 and i - 1 >= 0 and arr[i - 1] != -1: min_p = min(arr[i - 1], min_p) max_p = max(arr[i - 1], max_p) found = True if arr[i] == -1 and i + 1 < len(arr) and arr[i + 1] != -1: min_p = min(arr[i + 1], min_p) max_p = max(arr[i + 1], max_p) found = True if not found: print(0, 0) continue k = (max_p + min_p) // 2 m = float("-inf") for i in range(1, len(arr)): if arr[i] != -1 and arr[i - 1] != -1: m = max(abs(arr[i] - arr[i - 1]), m) print(max(m, max_p - k, k - min_p), k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for i in range(t): n = int(input()) a = list(map(int, input().split())) mi = float("INF") ma = -float("INF") value = 0 for i in range(n): if i > 0 and a[i] == -1 and a[i - 1] != -1: mi = min(a[i - 1], mi) ma = max(ma, a[i - 1]) if i < n - 1 and a[i] == -1 and a[i + 1] != -1: mi = min(a[i + 1], mi) ma = max(ma, a[i + 1]) value = (mi + ma) // 2 if a.count(-1) == len(a): value = 0 m = 0 for i, item in enumerate(a): if a[i] == -1: a[i] = value if i: m = max(m, abs(a[i] - a[i - 1])) print(m, value)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for z in range(t): n = int(input()) a = list(map(int, input().split())) ma = 0 mi = 10**9 maM = 0 i = 0 j = 1 f = 0 while j < n: if a[j] == -1 and a[i] != -1: f = 1 if a[i] > ma: ma = a[i] if a[i] < mi: mi = a[i] if a[i] == -1 and a[j] != -1: f = 1 if a[j] > ma: ma = a[j] if a[j] < mi: mi = a[j] if a[i] != -1 and a[j] != -1: if abs(a[i] - a[j]) > maM: maM = abs(a[i] - a[j]) i += 1 j += 1 k = (ma + mi) // 2 m1 = max(abs(ma - k), abs(mi - k)) m = max(m1, maM) if f == 0 and maM == 0: print(0, k) else: print(m, k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for _ in range(t): n = int(input()) a = list(map(int, input().split())) ns = [] for i in range(len(a)): if a[i] == -1: if i > 0 and a[i - 1] != -1: ns.append(a[i - 1]) if i < n - 1 and a[i + 1] != -1: ns.append(a[i + 1]) if len(ns) == 0: mini = 1 maxi = 1 else: mini = min(ns) maxi = max(ns) k = (mini + maxi) // 2 m = 0 for i in range(1, len(a)): if a[i - 1] == -1: a[i - 1] = k if a[i] == -1: a[i] = k m = max(m, abs(a[i] - a[i - 1])) print(m, k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for i in range(t): n = int(input()) a = list(map(int, input().split())) l = [] for j in range(len(a)): if j == 0: if a[j + 1] == -1 and a[j] != -1: l.append(a[j]) elif j == len(a) - 1: if a[j - 1] == -1 and a[j] != -1: l.append(a[j]) elif (a[j - 1] == -1 or a[j + 1] == -1) and a[j] != -1: l.append(a[j]) if len(l) == 0: k = 0 else: k = (max(l) + min(l)) // 2 for j in range(len(a)): if a[j] == -1: a[j] = k m = 0 for j in range(len(a) - 1): if abs(a[j] - a[j + 1]) > m: m = abs(a[j] - a[j + 1]) print(m, k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
tc = int(input()) for T in range(tc): n = int(input()) arr = list(map(int, input().split())) temp = [] for i in range(n): if arr[i] != -1: if i == 0: if arr[i + 1] == -1: temp.append(arr[i]) elif i == n - 1: if arr[i - 1] == -1: temp.append(arr[i]) elif arr[i + 1] == -1 or arr[i - 1] == -1: temp.append(arr[i]) siz = len(temp) if siz >= 2: temp.sort() snd = (temp[0] + temp[siz - 1]) // 2 elif siz == 0: snd = 0 else: snd = temp[0] for i in range(n): if arr[i] == -1: arr[i] = snd fst = -1 for i in range(n - 1): dif = abs(arr[i] - arr[i + 1]) fst = max(fst, dif) print(fst, snd)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) inf, minf = 10**18, -(10**18) for _ in range(t): n = int(input()) a = list(map(int, input().split())) min_n, max_n = inf, minf ans = 0 for i in range(n): if a[i] == -1: if i + 1 < n and a[i + 1] > -1: min_n = min(min_n, a[i + 1]) max_n = max(max_n, a[i + 1]) if 0 <= i - 1 and a[i - 1] > -1: min_n = min(min_n, a[i - 1]) max_n = max(max_n, a[i - 1]) elif i + 1 < n and a[i + 1] != -1: ans = max(ans, abs(a[i] - a[i + 1])) if max_n == minf: print(0, 0) else: x = (max_n + min_n) // 2 print(max(max_n - x, x - min_n, ans), x)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = input() t = int(t) while t: t -= 1 n = input() a = input() a = [int(str) for str in a.split()] minn = 10000000000.0 dist = -1 maxx = -1 for i in range(len(a)): cur = a[i] if cur == -1: if i == 0: if a[i + 1] != -1: minn = min(a[i + 1], minn) maxx = max(a[i + 1], maxx) elif i == len(a) - 1: if a[i - 1] != -1: minn = min(a[i - 1], minn) maxx = max(a[i - 1], maxx) else: if a[i + 1] != -1: minn = min(a[i + 1], minn) maxx = max(a[i + 1], maxx) if a[i - 1] != -1: minn = min(a[i - 1], minn) maxx = max(a[i - 1], maxx) elif i != 0 and a[i - 1] != -1: dist = max(dist, abs(a[i] - a[i - 1])) if maxx == -1: maxx = minn = 0 k = (maxx + minn) // 2 dist = max(dist, abs(k - maxx)) print(dist, k)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) while t != 0: n = int(input()) list1 = list(map(int, input().split())) u = [] for i in range(len(list1)): if list1[i] != -1: if i > 0 and list1[i - 1] == -1 or i < n - 1 and list1[i + 1] == -1: u.append(list1[i]) p, q = 0, 0 if len(u) > 0: p = max(u) q = min(u) else: p = 0 q = 0 ans = (p + q) // 2 maxi = 0 if list1[0] == -1: list1[0] = ans for i in range(1, len(list1)): if list1[i] == -1: list1[i] = ans maxi = max(maxi, abs(list1[i] - list1[i - 1])) else: maxi = max(maxi, abs(list1[i] - list1[i - 1])) print(maxi, ans) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for s in range(t): n = int(input()) a = list(map(int, input().split())) i = 1 maxi, maxu, mini, d = 0, 0, 999999999, 0 while i < n: if a[i] != -1 and a[i - 1] != -1: d = a[i] - a[i - 1] if d < 0: d = d * -1 maxi = max(maxi, d) else: maxu = max(maxu, a[i], a[i - 1]) if a[i] != -1: mini = min(mini, a[i]) elif a[i - 1] != -1: mini = min(mini, a[i - 1]) i += 1 if mini == 999999999: mini = 0 dif = maxu - mini if dif > 2 * maxi: print(dif - dif // 2, end=" ") print((maxu + mini) // 2) else: print(maxi, end=" ") print((maxu + mini) // 2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for a in range(t): menor = 1000000000 maior = 0 max_diff = 0 tam = int(input()) valores = [int(c) for c in input().split()] for i in range(tam): if valores[i] == -1: if i > 0: if valores[i - 1] != -1: menor = min(valores[i - 1], menor) maior = max(valores[i - 1], maior) if i < tam - 1: if valores[i + 1] != -1: menor = min(valores[i + 1], menor) maior = max(valores[i + 1], maior) media = (maior + menor) // 2 for i in range(tam): if valores[i] == -1: valores[i] = media for i in range(0, tam - 1): max_diff = max(max_diff, abs(valores[i + 1] - valores[i])) print(max_diff, media)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for i in range(t): n = int(input()) m = int(1000000000.0) + 1 M = -1 max_dif = 0 a = list(map(int, input().split())) for j in range(len(a)): if a[j] == -1: if j + 1 < len(a): if a[j + 1] < m and a[j + 1] != -1: m = a[j + 1] if a[j + 1] > M: M = a[j + 1] if j - 1 >= 0: if a[j - 1] < m and a[j - 1] != -1: m = a[j - 1] if a[j - 1] > M: M = a[j - 1] else: if j + 1 < len(a): if abs(a[j] - a[j + 1]) > max_dif and a[j + 1] != -1: max_dif = abs(a[j] - a[j + 1]) if j - 1 >= 0: if abs(a[j] - a[j - 1]) > max_dif and a[j - 1] != -1: max_dif = abs(a[j] - a[j - 1]) if m == int(1000000000.0) + 1 and M == -1: print("0 0") else: l = max((M - m) // 2 + (M - m) % 2, max_dif) k = m + (M - m) // 2 print(l, k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for _ in range(t): n = int(input()) a = list(map(int, input().split())) c = [] for i in range(1, n - 1): if a[i] == -1: if a[i - 1] != -1: c.append(a[i - 1]) if a[i + 1] != -1: c.append(a[i + 1]) if a[-1] == -1 and a[-2] != -1: c.append(a[-2]) if a[0] == -1 and a[1] != -1: c.append(a[1]) if len(c) == 0: print(0, 1) continue else: d = (max(c) + min(c)) // 2 b = [] for i in range(n): if a[i] == -1: a[i] = d for i in range(n - 1): b.append(abs(a[i + 1] - a[i])) print(max(b), d)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for t in range(int(input())): n = int(input()) a = list(map(int, input().split())) if a.count(-1) == n: print(0, 0) else: arr = [] for i in range(1, n): if a[i] != -1 and a[i - 1] == -1: arr.append(a[i]) elif a[i] == -1 and a[i - 1] != -1: arr.append(a[i - 1]) avg = (max(arr) + min(arr)) // 2 for i in range(n): if a[i] == -1: a[i] = avg maxi = abs(a[1] - a[0]) for i in range(2, n): diff = abs(a[i] - a[i - 1]) if diff > maxi: maxi = diff print(maxi, avg)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) deal = {} for i in range(n): if i < n - 1 and a[i] == -1 and a[i + 1] != -1: deal[a[i + 1]] = True if i > 0 and a[i] == -1 and a[i - 1] != -1: deal[a[i - 1]] = True dealers = deal.keys() if len(dealers) > 0: mine, maxe = min(dealers), max(dealers) k = (mine + maxe) // 2 m = max(abs(mine - k), abs(maxe - k)) a = list(map(lambda x: x if x != -1 else k, a)) for i in range(n - 1): m = max(m, abs(a[i] - a[i + 1])) print(m, k) else: print(0, 0)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for t in range(int(input())): n = int(input()) l = [int(j) for j in input().split()] ls = [] for i in range(n): if l[i] == -1: nb = [max(i - 1, 0), min(i + 1, n - 1)] for j in nb: if l[j] != -1: ls.append(l[j]) lf = 1 k = 0 try: mx = max(ls) mn = min(ls) k = (mx + mn) // 2 except: pass ans = 0 if l[0] == -1: l[0] = k for i in range(1, n): if l[i] == -1: l[i] = k ans = max(ans, abs(l[i] - l[i - 1])) print(ans, k)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR LIST FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) while t: t -= 1 n = int(input()) a = list(map(int, input().split())) num = [] for i in range(n): if a[i] != -1: if i: if a[i - 1] == -1: num.append(a[i]) if i != n - 1: if a[i + 1] == -1: num.append(a[i]) if num: up = max(num) down = min(num) ans = (up + down) // 2 else: ans = 0 dif = 0 for i in range(n): if a[i] == -1: a[i] = ans if i: dif = max(dif, abs(a[i] - a[i - 1])) print(dif, ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
a = int(input()) for i in range(a): r = input() z = list(map(int, input().split())) t = [] for i in range(len(z)): if z[i] == -1: if i > 0: if z[i - 1] != -1: t.append(z[i - 1]) if i < len(z) - 1: if z[i + 1] != -1: t.append(z[i + 1]) if len(t) == 0: k = 0 else: k = (max(t) + min(t)) // 2 for i in range(len(z)): if z[i] == -1: z[i] = k mini = 0 for i in range(1, len(z)): if abs(z[i] - z[i - 1]) > mini: mini = abs(z[i] - z[i - 1]) print(mini, k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for i in range(t): n = int(input()) data = list(map(int, input().strip().split())) arr = [] for j in range(len(data)): if data[j] != -1 and ( j - 1 >= 0 and data[j - 1] == -1 or j + 1 < len(data) and data[j + 1] == -1 ): arr.append(data[j]) arr.sort() if len(arr) == 0: x = 0 else: x = (arr[-1] + arr[0]) // 2 ans = 0 for j in range(len(data)): if data[j] == -1: data[j] = x if j >= 1: ans = max(abs(data[j] - data[j - 1]), ans) print("%d %d" % (ans, x))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
I = input for _ in [0] * int(I()): I() a = (*map(int, I().split()),) b = [i for i, x in enumerate(a) if x < 0] c = [a[i + 1 : j] for i, j in zip([-1] + b, b + [len(a)]) if j > i + 1] b = [] for d in c: b += d[0], d[-1] for i in (0, -1): if a[i] + 1: b.pop(i) b = b or [0] m = min(b) z = (max(b) - m + 1) // 2 print(max(z, z, *(abs(x - y) for d in c for x, y in zip(d, d[1:]))), m + z)
ASSIGN VAR VAR FOR VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP LIST NUMBER VAR BIN_OP VAR LIST FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR VAR VAR VAR NUMBER VAR NUMBER FOR VAR NUMBER NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for i in range(t): n = int(input()) mx = 0 mn = 991000000000 sred = 0 m = list(map(int, input().split())) for i in range(n): if m[i] == -1: continue if i != 0: if m[i - 1] == -1: if mx < m[i]: mx = m[i] if mn > m[i]: mn = m[i] elif abs(m[i - 1] - m[i]) > sred: sred = abs(m[i - 1] - m[i]) if i != n - 1: if m[i + 1] == -1: if mx < m[i]: mx = m[i] if mn > m[i]: mn = m[i] elif abs(m[i + 1] - m[i]) > sred: sred = abs(m[i + 1] - m[i]) elif m[i + 1] == -1: if mx < m[i]: mx = m[i] if mn > m[i]: mn = m[i] elif abs(m[i + 1] - m[i]) > sred: sred = abs(m[i + 1] - m[i]) r = mx + mn if mn > 1000000000: print(0, 0) continue if sred > max(mx - r // 2, r // 2 - mn): print(sred, r // 2) else: print(max(mx - r // 2, r // 2 - mn), r // 2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER IF VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
import sys input = sys.stdin.readline for nt in range(int(input())): n = int(input()) a = list(map(int, input().split())) c = a.count(-1) if c == n: print(0, 1) continue elif c == n - 1: print(0, sum(a) + n - 1) continue minn = max(a) maxx = 0 for i in range(1, n): if a[i] == -1 and a[i - 1] != -1: minn = min(minn, a[i - 1]) maxx = max(maxx, a[i - 1]) for i in range(n - 1): if a[i] == -1 and a[i + 1] != -1: minn = min(minn, a[i + 1]) maxx = max(maxx, a[i + 1]) ans = (minn + maxx) // 2 for i in range(n): if a[i] == -1: a[i] = ans maxx = 0 for i in range(1, n): maxx = max(maxx, abs(a[i] - a[i - 1])) print(maxx, ans)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) def gag(a, k): ans = 0 for x in range(len(a) - 1): a1, b1 = a[x], a[x + 1] if a1 == -1: a1 = k if b1 == -1: b1 = k m = abs(a1 - b1) if m > ans: ans = m return ans round = lambda x: int(x + 0.5) for x in range(t): n = int(input()) a = list(map(int, input().split())) l, r = 0, 10**9 while r - l >= 0.1: m = (l + r) / 2 q, w = gag(a, (l + m) / 2), gag(a, (m + r) / 2) if w > q: r = m else: l = m k1 = round(l) k2 = round(r) if gag(a, k1) > gag(a, k2): print(gag(a, k1), k1) else: print(gag(a, k2), k2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
def solve(n, l): l.append(-2) i = 0 while l[i] == -1: i += 1 if l[i] == -2: return [0, 0] l.insert(0, l[i]) l.pop() j = len(l) - 1 while l[j] == -1: j -= 1 l.append(l[j]) n = len(l) i = 0 j = 0 mmax = -1 mmin = 10**9 + 1 while j < n: while i < n and l[i] == -1: i += 1 j = i + 1 while j < n and l[j] == -1: j += 1 if j >= n: break if j == i + 1: i = j continue mmin = min(mmin, min(l[i], l[j])) mmax = max(mmax, max(l[i], l[j])) i = j res = 0 k = (mmin + mmax) // 2 for i in range(1, n): if l[i] == -1: l[i] = k res = max(res, abs(l[i] - l[i - 1])) return [res, k] for t in range(int(input())): n = int(input()) l = [int(i) for i in input().split()] res = solve(n, l) print(res[0], res[1])
FUNC_DEF EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER RETURN LIST NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR WHILE VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN LIST VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for t in range(int(input())): n = int(input()) a = list(map(int, input().split())) ma = 0 b = [] for i in range(n - 1): if a[i] != -1 and a[i + 1] != -1: if ma < abs(a[i] - a[i + 1]): ma = abs(a[i] - a[i + 1]) elif a[i] == -1 and a[i + 1] != -1: b.append(a[i + 1]) elif a[i] != -1 and a[i + 1] == -1: b.append(a[i]) if b == []: print("0", "1") else: mu = int((max(b) - min(b) + 1) / 2) k = min(b) + mu m = max(mu, ma) print(m, k)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR LIST EXPR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for _ in range(int(input(""))): n = int(input("")) arr = list(map(int, input().split())) dorkar = [] if n == 2: arr.sort() if arr[1] == -1: print(0, 1) elif arr[0] == -1: print(0, arr[1]) continue for i in range(n): if arr[i] != -1: if i == 0: if arr[i + 1] == -1: dorkar.append(arr[i]) elif i == n - 1: if arr[i - 1] == -1: dorkar.append(arr[i]) elif arr[i - 1] == -1 or arr[i + 1] == -1: dorkar.append(arr[i]) if len(dorkar) == 0: print(0, 0) continue k = (min(dorkar) + max(dorkar)) // 2 for i in range(n): if arr[i] == -1: arr[i] = k m = 0 for i in range(n - 1): m = max(m, abs(arr[i] - arr[i + 1])) print(m, k)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST IF VAR NUMBER EXPR FUNC_CALL VAR IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for t in range(int(input())): n = int(input()) a = list(map(int, input().split())) if a.count(-1) == n: print(0, 0) else: b = [] if a[0] == -1 and a[1] != -1 or a[0] != -1 and a[1] == -1: b.append(a[1] if a[1] != -1 else a[0]) if a[-1] == -1 and a[-2] != -1 or a[-2] == -1 and a[-1] != -1: b.append(a[-2] if a[-2] != -1 else a[-1]) for i in range(1, n - 1): if a[i] != -1: if a[i + 1] == -1 or a[i - 1] == -1: b.append(a[i]) k = (max(b) + min(b)) // 2 m = abs(k - max(b, key=lambda x: abs(x - k))) for i in range(n - 1): if a[i] != -1 and a[i + 1] != -1: m = max(m, abs(a[i] - a[i + 1])) print(m, k)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR LIST IF VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
from sys import stdin, stdout cin = stdin.readline cout = stdout.write mp = lambda: list(map(int, cin().split())) def chars(): s = cin() return list(s[: len(s) - 1]) def pl(a): for val in a: cout(str(val) + " ") cout("\n") (t,) = mp() for _ in range(t): (n,) = mp() a = mp() maxi = -(10**9) mini = 10**9 for i in range(n): if a[i] != -1: if i > 0 and a[i - 1] == -1: mini = min(mini, a[i]) maxi = max(maxi, a[i]) elif i < n - 1 and a[i + 1] == -1: maxi = max(maxi, a[i]) mini = min(mini, a[i]) m = 0 k = (maxi + mini) // 2 for i in range(n): if a[i] == -1: a[i] = k if i: m = max(m, abs(a[i] - a[i - 1])) pl([m, k])
ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for ti in range(t): n = int(input()) li = [int(i) for i in input().split(" ")] ss = 0 cc = 0 sep = 0 _min = 1919810114514 _max = 0 for idx, i in enumerate(li): if i == -1: if idx and li[idx - 1] != -1: _min = min(_min, li[idx - 1]) _max = max(_max, li[idx - 1]) else: if idx and li[idx - 1] != -1: sep = max(sep, abs(li[idx - 1] - i)) elif idx and li[idx - 1] == -1: _min = min(_min, i) _max = max(_max, i) ss += i cc += 1 if cc: r = (_min + _max) // 2 sep = max(sep, r - _min, _max - r) print(sep, r) else: print(0, 0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) b = [] m = 0 for i in range(n): if a[i] == -1: if i > 0 and a[i - 1] != -1: b.append(a[i - 1]) if i < n - 1 and a[i + 1] != -1: b.append(a[i + 1]) if len(b) != 0: m = (max(b) + min(b)) // 2 c = [(m if j == -1 else j) for j in a] k = 0 for t in range(n - 1): k = max(k, abs(c[t + 1] - c[t])) print(k, m)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
def one(): return int(input()) def two(): return map(int, input().split()) def lis(): return list(map(int, input().split())) def st(): return input() for _ in range(one()): input() l = lis() m = 10**9 M = 0 for ind, i in enumerate(l): if i == -1: if ind == 0: if l[ind + 1] == -1: continue if m > l[ind + 1]: m = l[ind + 1] if M < l[ind + 1]: M = l[ind + 1] elif ind == len(l) - 1: if l[ind - 1] == -1: continue if m > l[ind - 1]: m = l[ind - 1] if M < l[ind - 1]: M = l[ind - 1] else: if l[ind - 1] != -1: if m > l[ind - 1]: m = l[ind - 1] if M < l[ind - 1]: M = l[ind - 1] if l[ind + 1] != -1: if m > l[ind + 1]: m = l[ind + 1] if M < l[ind + 1]: M = l[ind + 1] k = (M + m) // 2 if k == -1: k = 1 maxabs = 0 for i in range(len(l) - 1): if l[i] == -1: l[i] = k if l[i + 1] == -1: l[i + 1] = k if maxabs < abs(l[i] - l[i + 1]): maxabs = abs(l[i] - l[i + 1]) print(maxabs, k)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR IF VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) while t: n = int(input()) a = list(map(int, input().split())) dif = 0 for i in range(n - 1): if a[i] != -1 and a[i + 1] != -1: if abs(a[i] - a[i + 1]) > dif: dif = abs(a[i] - a[i + 1]) b = [] for i in range(n): if i == 0: if a[i] != -1 and a[i + 1] == -1: b.append(a[i]) elif i == n - 1: if a[i] != -1 and a[i - 1] == -1: b.append(a[i]) elif a[i] != -1: if a[i - 1] == -1 or a[i + 1] == -1: b.append(a[i]) b.sort() if len(b) != 0: k = (b[0] + b[len(b) - 1]) // 2 ans = max(dif, k - b[0], b[len(b) - 1] - k) print(ans, k) else: print(0, 0) t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER VAR NUMBER
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
from sys import stdin, stdout def solution(): from sys import stdin, stdout _input, _print, _range, _int, _zip, _set, _len = ( stdin.readline, stdout.write, range, int, zip, set, len, ) _min, _max, _str, _abs = min, max, str, abs n = _int(_input()) for _ in _range(n): l = _int(_input()) arr = [_int(i) for i in _input().split()] maximum = -1 minimum = 1000000000 m = 0 old = arr[0] f = True if arr[0] == -1 else False for i in arr[1:]: if i >= 0: f = False if i == -1 and old == -1: old = i continue if i == -1 and old != -1: if old > maximum: maximum = old if old < minimum: minimum = old old = i continue if i != -1 and old == -1: if i > maximum: maximum = i if i < minimum: minimum = i old = i continue _m = _abs(old - i) if m < _m: m = _m old = i if minimum != 1000000000 and maximum != -1: average = (maximum + minimum) // 2 _m = _max(maximum - average, average - minimum) if m < _m: m = _m if f: _print("0 42\n") else: _print(_str(m) + " ") _print(_str(average) + "\n") solution()
FUNC_DEF ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER NUMBER NUMBER FOR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
import sys def run_length_compress(string): string.append("@") n = len(string) begin = 0 end = 1 cnt = 1 ans = [] while True: if end >= n: break if string[begin] == string[end]: end += 1 cnt += 1 else: ans.append(string[begin]) begin = end end = begin + 1 cnt = 1 return ans input = sys.stdin.readline t = int(input()) INF = 10**18 for _ in range(t): n = int(input()) a = list(map(int, input().split())) max_a = 0 min_a = INF adj = 0 b = run_length_compress(a) for i, num in enumerate(b): if b[i] == -1: if i - 1 >= 0: if b[i - 1] != -1: min_a = min(min_a, b[i - 1]) max_a = max(max_a, b[i - 1]) if i + 1 < len(b): if b[i + 1] != -1: min_a = min(min_a, b[i + 1]) max_a = max(max_a, b[i + 1]) else: if i - 1 >= 0: if b[i - 1] != -1: adj = max(adj, abs(b[i - 1] - b[i])) if i + 1 < len(b): if b[i + 1] != -1: adj = max(adj, abs(b[i + 1] - b[i])) if min_a == INF: print(0, 0) else: print(max(adj, (max_a + 1 - min_a) // 2), min_a + (max_a + 1 - min_a) // 2)
IMPORT FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE NUMBER IF VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER RETURN VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
import sys reader = (line.rstrip() for line in sys.stdin) input = reader.__next__ t = int(input()) for _ in range(t): n = int(input()) a = list(map(int, input().split())) minVal = float("inf") maxVal = -float("inf") for i, val in enumerate(a): if val >= 0 and (i > 0 and a[i - 1] < 0 or i < n - 1 and a[i + 1] < 0): minVal = min(minVal, val) maxVal = max(maxVal, val) if minVal == float("inf"): print(0, 0) continue k = maxVal + minVal >> 1 if a[0] < 0: a[0] = k maxDelta = 0 for i in range(1, n): if a[i] < 0: a[i] = k maxDelta = max(maxDelta, abs(a[i] - a[i - 1])) print(maxDelta, k)
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
n = int(input()) for v in range(n): l = int(input()) a = list(map(int, input().split())) t = [] for i in range(l): if a[i] != -1: if i > 0 and a[i - 1] == -1 or i < l - 1 and a[i + 1] == -1: t.append(a[i]) if not t: print(0, 0) else: mi = min(t) ma = max(t) k = (mi + ma) // 2 max_diff = 0 for e in range(l - 1): if a[e] == -1: a[e] = k if a[e + 1] == -1: a[e + 1] = k max_diff = max(max_diff, abs(a[e] - a[e + 1])) print(max_diff, k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
T = int(input()) for _ in range(0, T): N = int(input()) s = [int(x) for x in input().split()] L = [] for i in range(0, len(s)): if s[i] == -1: if i - 1 >= 0 and i - 1 < len(s): if s[i - 1] != -1: L.append(s[i - 1]) if i + 1 >= 0 and i + 1 < len(s): if s[i + 1] != -1: L.append(s[i + 1]) if len(L) == 0: print(0, 0) else: L = list(set(L)) tot = min(L) + max(L) ele1 = tot // 2 ele2 = tot // 2 if tot % 2 != 0: ele2 += 1 L1 = [] L2 = [] for i in range(0, len(s)): if s[i] == -1: L1.append(ele1) L2.append(ele2) else: L1.append(s[i]) L2.append(s[i]) mx1 = 0 mx2 = 0 for i in range(0, len(s) - 1): mx1 = max(mx1, abs(L1[i] - L1[i + 1])) mx2 = max(mx2, abs(L2[i] - L2[i + 1])) if mx1 <= mx2: print(mx1, ele1) else: print(mx2, ele2)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for i in range(int(input())): n = int(input()) l = list(map(int, input().split())) t1 = -1 t2 = 100000000000 m = 0 for i in range(n - 1): if l[i] == -1 and l[i + 1] != -1: if l[i + 1] > t1: t1 = l[i + 1] if l[i + 1] < t2: t2 = l[i + 1] elif l[i] != -1 and l[i + 1] == -1: if l[i] > t1: t1 = l[i] if l[i] < t2: t2 = l[i] elif l[i] != -1 and l[i + 1] != -1: if abs(l[i + 1] - l[i]) > m: m = abs(l[i + 1] - l[i]) if t1 == -1: if t2 == 100000000000: print(max(m, 0), 0) else: print(max(m, 0), t2) elif t2 == 100000000000: print(max(m, 0), t1) else: k = (t1 + t2) // 2 print(max(m, t1 - k, k - t2), k)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) arr = [] for i in range(n): if a[i] == -1: if i == 0: if a[i + 1] >= 0: arr.append(a[i + 1]) elif i == n - 1: if a[i - 1] >= 0: arr.append(a[i - 1]) else: if a[i - 1] >= 0: arr.append(a[i - 1]) if a[i + 1] >= 0: arr.append(a[i + 1]) if len(arr) == 0: print("0 3") else: mn = min(arr) m = max(arr) x = (mn + m) // 2 ans = [] for i in range(0, n): if a[i] == -1: a[i] = x for i in range(1, n): ans.append(abs(a[i] - a[i - 1])) print(max(ans), x)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
t = int(input()) for _ in range(t): n = int(input()) a = list(map(int, input().split())) ans = [] f2 = True for i in range(n): if a[i] != -1: f2 = False break if f2: print(0, 0) continue for i in range(n - 1): if a[i] == -1 and a[i + 1] == -1: pass elif a[i] == -1: ans.append(a[i + 1]) elif a[i + 1] == -1: ans.append(a[i]) mi = min(ans) mx = max(ans) k = (mi + mx) // 2 m = abs(mi - k) x = 0 for i in range(n): if a[i] == -1: a[i] = k for i in range(n - 1): x = max(x, abs(a[i] - a[i + 1])) print(max(x, m), k)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
def solve(A, N): adj = set() m = 0 for i in range(N - 1): if A[i] != -1 and A[i + 1] != -1: m = max(m, abs(A[i + 1] - A[i])) if A[i] == -1 and A[i + 1] != -1: adj.add(A[i + 1]) if A[i] != -1 and A[i + 1] == -1: adj.add(A[i]) if not adj: return "0 0" maxVal = max(adj) minVal = min(adj) k = (maxVal + minVal) // 2 m = max(m, abs(maxVal - k), abs(minVal - k)) return str(m) + " " + str(k) (T,) = map(int, input().split()) for t in range(T): (N,) = map(int, input().split()) A = [int(x) for x in input().split()] ans = solve(A, N) print(ans)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR RETURN STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR RETURN BIN_OP BIN_OP FUNC_CALL VAR VAR STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
import sys t = int(sys.stdin.readline()) for _ in range(t): n = int(sys.stdin.readline()) arr = list(map(int, sys.stdin.readline().split())) a = set() for i in range(n): if arr[i] == -1: if i + 1 < n and arr[i + 1] != -1: a.add(arr[i + 1]) if i - 1 >= 0 and arr[i - 1] != -1: a.add(arr[i - 1]) if len(a) < 1: print(0, 0) else: low, high = min(a), max(a) k = (low + high) // 2 for i in range(n): if arr[i] == -1: arr[i] = k dif = 0 for i in range(n - 1): dif = max(dif, abs(arr[i] - arr[i + 1])) print(dif, k)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
for _ in range(int(input())): n = int(input()) a = list(map(int, input().split())) ma = -1 k = [] for j in range(len(a) - 1): if a[j] == -1 and a[j + 1] != -1: k.append(a[j + 1]) elif a[j] != -1 and a[j + 1] == -1: k.append(a[j]) else: ma = max(ma, abs(a[j] - a[j + 1])) if len(k) == 0: print(0, 0) else: mini = min(k) nmaximum = max(k) print( max(ma, max(k) - (mini + (nmaximum - mini) // 2)), mini + (nmaximum - mini) // 2, )
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER
Dark is going to attend Motarack's birthday. Dark decided that the gift he is going to give to Motarack is an array $a$ of $n$ non-negative integers. Dark created that array $1000$ years ago, so some elements in that array disappeared. Dark knows that Motarack hates to see an array that has two adjacent elements with a high absolute difference between them. He doesn't have much time so he wants to choose an integer $k$ ($0 \leq k \leq 10^{9}$) and replaces all missing elements in the array $a$ with $k$. Let $m$ be the maximum absolute difference between all adjacent elements (i.e. the maximum value of $|a_i - a_{i+1}|$ for all $1 \leq i \leq n - 1$) in the array $a$ after Dark replaces all missing elements with $k$. Dark should choose an integer $k$ so that $m$ is minimized. Can you help him? -----Input----- The input consists of multiple test cases. The first line contains a single integer $t$ ($1 \leq t \leq 10^4$)  — the number of test cases. The description of the test cases follows. The first line of each test case contains one integer $n$ ($2 \leq n \leq 10^{5}$) — the size of the array $a$. The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($-1 \leq a_i \leq 10 ^ {9}$). If $a_i = -1$, then the $i$-th integer is missing. It is guaranteed that at least one integer is missing in every test case. It is guaranteed, that the sum of $n$ for all test cases does not exceed $4 \cdot 10 ^ {5}$. -----Output----- Print the answers for each test case in the following format: You should print two integers, the minimum possible value of $m$ and an integer $k$ ($0 \leq k \leq 10^{9}$) that makes the maximum absolute difference between adjacent elements in the array $a$ equal to $m$. Make sure that after replacing all the missing elements with $k$, the maximum absolute difference between adjacent elements becomes $m$. If there is more than one possible $k$, you can print any of them. -----Example----- Input 7 5 -1 10 -1 12 -1 5 -1 40 35 -1 35 6 -1 -1 9 -1 3 -1 2 -1 -1 2 0 -1 4 1 -1 3 -1 7 1 -1 7 5 2 -1 5 Output 1 11 5 35 3 6 0 42 0 0 1 2 3 4 -----Note----- In the first test case after replacing all missing elements with $11$ the array becomes $[11, 10, 11, 12, 11]$. The absolute difference between any adjacent elements is $1$. It is impossible to choose a value of $k$, such that the absolute difference between any adjacent element will be $\leq 0$. So, the answer is $1$. In the third test case after replacing all missing elements with $6$ the array becomes $[6, 6, 9, 6, 3, 6]$. $|a_1 - a_2| = |6 - 6| = 0$; $|a_2 - a_3| = |6 - 9| = 3$; $|a_3 - a_4| = |9 - 6| = 3$; $|a_4 - a_5| = |6 - 3| = 3$; $|a_5 - a_6| = |3 - 6| = 3$. So, the maximum difference between any adjacent elements is $3$.
import sys reader = (s.rstrip() for s in sys.stdin) input = reader.__next__ def birth(): for _ in range(t): n = int(input()) a = list(map(int, input().split())) inamo = [] maxdis = 0 for i in range(n): if i < n - 1: if a[i] != -1 and a[i + 1] != -1: maxdis = max(maxdis, abs(a[i + 1] - a[i])) if a[i] == -1: if i == 0: if a[i + 1] != -1: if a[i + 1] not in inamo: inamo.append(a[i + 1]) elif i == n - 1: if a[i - 1] != -1: if a[i - 1] not in inamo: inamo.append(a[i - 1]) else: if a[i + 1] != -1: if a[i + 1] not in inamo: inamo.append(a[i + 1]) if a[i - 1] != -1: if a[i - 1] not in inamo: inamo.append(a[i - 1]) if inamo: res = (max(inamo) + min(inamo)) // 2 maxlen = max(max(max(inamo) - res, res - min(inamo)), maxdis) yield str(maxlen) + " " + str(res) else: yield "0 0" t = int(input()) ans = birth() print(*ans, sep="\n")
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR BIN_OP BIN_OP FUNC_CALL VAR VAR STRING FUNC_CALL VAR VAR EXPR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR STRING