description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
def getClosest(h, c, st, en, t): if abs(val(h, c, st, t) / (2 * st - 1)) <= abs(val(h, c, en, t) / (2 * en - 1)): return st else: return en def val(h, c, x, t): return x * h + (x - 1) * c - (2 * x - 1) * t def findClosest(h, c, st, en, t): if val(h, c, st, t) <= 0: return st if val(h, c, en, t) >= 0: return en i = st j = en mid = 0 while i < j: mid = (i + j) // 2 if val(h, c, mid, t) == 0: return mid if val(h, c, mid, t) < 0: if mid > st and val(h, c, mid - 1, t) > 0: return getClosest(h, c, mid - 1, mid, t) j = mid else: if mid < en and val(h, c, mid + 1, t) < 0: return getClosest(h, c, mid, mid + 1, t) i = mid + 1 return mid for _ in range(int(input())): h, c, t = map(int, input().split()) if 2 * t <= h + c: print(2) elif t == h: print(1) else: x = 1 while x * h + (x - 1) * c > (2 * x - 1) * t: x = x << 1 st = x >> 1 st = st - 1 en = x + 2 cx = findClosest(h, c, st, en, t) print(2 * cx - 1)
FUNC_DEF IF FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER RETURN VAR RETURN VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR FUNC_DEF IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER RETURN VAR IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER RETURN VAR IF FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR IF VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
t = int(input()) def main(): hot, cold, temp = map(int, input().split()) if temp <= (hot + cold) // 2: return 2 k = (hot - temp) // (2 * temp - hot - cold) l = abs(k * (hot + cold) + hot - temp * (2 * k + 1)) * (2 * k + 3) u = abs((k + 1) * (hot + cold) + hot - temp * (2 * k + 3)) * (2 * k + 1) if l <= u: return 2 * k + 1 return 2 * k + 3 for _ in range(t): print(main())
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR VAR RETURN BIN_OP BIN_OP NUMBER VAR NUMBER RETURN BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
T = int(input()) C = [] for i in range(0, T): h, c, t = [int(x) for x in input().split(" ")] if h + c == 2 * t: C.append(2) elif 2 * t < h + c: if abs((h + c) / 2 - t) < abs(h - t): C.append(2) else: C.append(1) else: m = (h - t) // (2 * t - h - c) if abs( ((m + 2) * h + (m + 1) * c) * (2 * m + 1) - t * (2 * m + 1) * (2 * m + 3) ) >= abs(((m + 1) * h + m * c) * (2 * m + 3) - t * (2 * m + 3) * (2 * m + 1)): C.append(2 * m + 1) else: C.append(2 * m + 3) for i in C: print(i)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING IF BIN_OP VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP NUMBER VAR BIN_OP VAR VAR IF FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR IF FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
def temp(h, c, n): return h * (n + 1) + c * n, 2 * n + 1 for _ in range(int(input())): h, c, t = map(int, input().split()) if t * 2 <= h + c: print(2) continue n = (h - t) // (2 * t - h - c) n1 = n + 1 a, b = temp(h, c, n) a1, b1 = temp(h, c, n1) d, dn = abs(a - b * t), b d1, dn1 = abs(a1 - b1 * t), b1 if d * dn1 > d1 * dn: ans = n1 else: ans = n print(2 * ans + 1)
FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
def cups(x, h, c, t): error = (x + 1) * h + x * c - t * (2 * x + 1) return abs(error) def f(h, c, t): if h + c >= 2 * t: return 2 x = (h - t) // (2 * t - h - c) e1 = cups(x, h, c, t) e2 = cups(x + 1, h, c, t) if e1 * (2 * x + 3) <= e2 * (2 * x + 1): return 2 * x + 1 else: return 2 * x + 3 T = int(input()) for t in range(T): h, c, t = map(int, input().rstrip().split()) print(f(h, c, t))
FUNC_DEF ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER RETURN FUNC_CALL VAR VAR FUNC_DEF IF BIN_OP VAR VAR BIN_OP NUMBER VAR RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR IF BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER RETURN BIN_OP BIN_OP NUMBER VAR NUMBER RETURN BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
printn = lambda x: print(x, end="") inn = lambda: int(input()) inl = lambda: list(map(int, input().split())) inm = lambda: map(int, input().split()) ins = lambda: input().strip() DBG = True BIG = 10**18 R = 10**9 + 7 def ddprint(x): if DBG: print(x) def foo(h, c, n): return (n * h + (n - 1) * c) / (2 * n - 1) def bar(h, c, t, n): return n * h + (n - 1) * c == t * (2 * n - 1) ttt = inn() for tt in range(ttt): h, c, t = inm() if 5 * h + c <= 6 * t: print(1) elif 2 * t <= h + c: print(2) else: mn = 1 mx = 10**16 found = False while mx - mn > 1: mid = (mn + mx) // 2 if bar(h, c, t, mid): found = True break elif foo(h, c, mid) < t: mx = mid else: mn = mid if found: print(2 * mid - 1) continue x = 2 * (2 * mn - 1) * (2 * mx - 1) * t y = (2 * mx - 1) * (mn * h + (mn - 1) * c) + (2 * mn - 1) * ( mx * h + (mx - 1) * c ) if x < y: print(2 * mx - 1) else: print(2 * mn - 1)
ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF IF VAR EXPR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR IF BIN_OP BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
for _ in range(int(input())): h, c, t = map(int, input().split()) h -= c t -= c if h == t: print(1) elif h / 2 >= t: print(2) else: def p(a): return h * (1 + a) def q(a): return 1 + 2 * a a = 0 b = 10**10 while a + 1 != b: mid = (a + b) // 2 val = p(mid) T = t * q(mid) if val == T: print(1 + 2 * mid) break if val < T: b = mid else: a = mid if val != T: if 2 * t * q(a) * q(b) >= p(a) * q(b) + p(b) * q(a): print(1 + 2 * a) else: print(1 + 2 * b)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER FUNC_DEF RETURN BIN_OP VAR BIN_OP NUMBER VAR FUNC_DEF RETURN BIN_OP NUMBER BIN_OP NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP NUMBER BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR IF BIN_OP BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP NUMBER BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP NUMBER BIN_OP NUMBER VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
T = int(input()) for t in range(T): h, c, t = map(int, input().split()) h *= 2 c *= 2 t *= 2 m = (h + c) // 2 if t <= m: print(2) else: hc, tc = h - m, t - m tms = hc // tc apr = [2434841, 1] for i in range(tms - 5, tms + 5): if i % 2 and abs(tc - hc / i) < apr[0]: apr = [abs(tc - hc / i), i] print(apr[1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR LIST FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
for i in range(int(input())): h, c, t = map(int, input().split()) result = float("inf") avg = (h + c) / 2 D = {} if t == h: result = 1 elif t in (c, avg): result = 2 else: D[abs(t - c)] = 2 D[abs(t - h)] = 1 if t - avg > 0: X = (h - avg) / (t - avg) if X < 3: X = (h - avg) / 3 x = 3 elif int(X) & 1 == 0: x = int(X) + 1 X = (h - avg) / (int(X) + 1) else: x = int(X) X = (h - avg) / x X1 = abs(t - avg - (h - avg) / x) X2 = t - avg - (h - avg) / (x + 2) if X1 > X2: X = (h - avg) / (x + 2) x += 2 X = t - avg - X if X != abs(t - h): D[X] = x elif t - avg < 0: X = abs(t - avg) D[X] = 2 result = D[min(D.keys())] print(result)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR DICT IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
q = int(input()) for i in range(q): h, c, t = list(map(int, input().split())) if 2 * t <= h + c: print(2) else: k = (h - t) / (2 * t - h - c) m = int(k) n = m + 1 x = abs((m + 1) * h + m * c - (2 * m + 1) * t) / (2 * m + 1) y = abs((n + 1) * h + n * c - (2 * n + 1) * t) / (2 * n + 1) if x <= y: print(2 * m + 1) else: print(2 * n + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
import sys input = sys.stdin.readline flush = sys.stdout.flush for _ in range(int(input())): h, c, t = list(map(int, input().split())) m = h + c >> 1 if t <= m: print(2) continue a = (h - t) // (2 * t - h - c) b = a + 1 print( 2 * a + 1 if 2 * t * (2 * a + 1) * (2 * b + 1) >= (2 * b + 1) * ((a + 1) * h + a * c) + (2 * a + 1) * ((b + 1) * h + b * c) else 2 * b + 1 )
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
for _ in range(int(input())): h, c, t = map(int, input().split()) if 2 * t <= h + c: print(2) continue x = (h - t) // (2 * t - h - c) k = 2 * x + 1 val1 = abs(k // 2 * c + (k + 1) // 2 * h - t * k) val2 = abs((k + 2) // 2 * c + (k + 3) // 2 * h - t * (k + 2)) print(k if val1 * (k + 2) <= val2 * k else k + 2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
T = int(input()) s = [] for i in range(T): s.append(input()) for i in range(T): h, c, t = map(int, s[i].split()) if t == h: n = 1 elif t <= (h + c) / 2: n = 2 else: k = (c - t) / (h + c - 2 * t) n = int(2 * k - 1) if n % 2 == 0: n = n + 1 k = (n + 1) / 2 tb = (k * h + (k - 1) * c) / n n1 = n - 2 k = (n1 + 1) / 2 tb1 = (k * h + (k - 1) * c) / n1 n2 = n + 2 k = (n2 + 1) / 2 tb2 = (k * h + (k - 1) * c) / n2 if abs(t - tb1) < abs(t - tb) and abs(t - tb1) < abs(t - tb2): n = n1 if abs(t - tb2) < abs(t - tb) and abs(t - tb2) < abs(t - tb1): n = n2 print(n)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
import sys input = sys.stdin.readline T = int(input()) for _ in range(T): h, c, t = list(map(int, input().split())) if h + c >= 2 * t: print(2) else: diff2 = 2 * t - (h + c) hDiff2 = 2 * h - (h + c) kDown = (hDiff2 // diff2 - 1) // 2 kUp = kDown + 1 diffDown = abs(diff2 - hDiff2 / (2 * kDown + 1)) diffUp = abs(diff2 - hDiff2 / (2 * kUp + 1)) if diffDown <= diffUp: print(2 * kDown + 1) else: print(2 * kDown + 3)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
t = int(input()) for test in range(t): inp = input().split() h = int(inp[0]) c = int(inp[1]) t = int(inp[2]) if t + t <= c + h: print(2) continue if t >= h: print(1) continue k = (h - t) // (t + t - c - h) if (h - t) % (t + t - c - h) == 0: print(k + k + 1) continue k += 1 if (k + k + 1) * (k * h + k * c - c) + (k + k - 1) * (k * h + k * c + h) > ( t + t ) * (k + k - 1) * (k + k + 1): print(k + k + 1) else: print(k + k - 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR IF BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
T = int(input().strip()) eps = 1e-20 def diff(n): return abs(((n + 1) * h + n * c) / (2 * n + 1) - t) def better(k, n): return (2 * k + 1) * abs((n + 1) * (h - t) + n * (c - t)) >= (2 * n + 1) * abs( (k + 1) * (h - t) + k * (c - t) ) def strictlybetter(k, n): return (2 * k + 1) * abs((n + 1) * (h - t) + n * (c - t)) > (2 * n + 1) * abs( (k + 1) * (h - t) + k * (c - t) ) for t in range(T): h, c, t = list(map(int, input().split())) if t >= h or h == c: print(1) continue elif 2 * t <= h + c: print(2) continue bestn = (h - t) // (2 * t - h - c) bestn = int(bestn) curdif = diff(bestn) while bestn > 0 and better(bestn - 1, bestn): bestn -= 1 while strictlybetter(bestn + 1, bestn): bestn += 1 curdif = diff(bestn) if abs(h - t) <= curdif: print(1) continue if abs((h + c) / 2 - t) <= curdif: print(2) continue print(2 * bestn + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER WHILE FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
for i in range(int(input())): h, c, t = map(int, input().split()) if h + c >= 2 * t: print(2) elif h == t: print(1) else: x = int((t - c) / (2 * t - h - c)) tb1 = abs((2 * x - 1) * t - ((h + c) * x - c)) * (2 * x + 1) tb2 = abs(t * (2 * x + 1) - ((h + c) * x + h)) * (2 * x - 1) if tb2 < tb1: z = x + 1 + x else: z = x + x - 1 print(z)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
import sys input = sys.stdin.readline def print(val): sys.stdout.write(str(val) + "\n") def val(x, h, c): return (h - c) / (2 * (x * 2 - 1)) def prog(): for _ in range(int(input())): L = 1 R = 10**12 h, c, t = map(int, input().split()) if t <= (h + c) / 2: print(2) else: t -= (h + c) / 2 while R > L: m = (R + L) // 2 temp = val(m, h, c) if temp > t: L = m + 1 else: R = m - 1 left = val(L, h, c) if left > t: right = val(L + 1, h, c) if abs(t - left) <= abs(t - right): print(2 * L - 1) else: print(2 * L + 1) else: right = val(L - 1, h, c) if abs(t - left) >= abs(t - right): print(2 * L - 3) else: print(2 * L - 1) prog()
IMPORT ASSIGN VAR VAR FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR BIN_OP NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
import sys [t] = [int(i) for i in sys.stdin.readline().split()] for _ in range(t): [h, c, t] = [int(i) for i in sys.stdin.readline().split()] h -= c t -= c if 2 * t <= h: print(2) else: k1 = t // (2 * t - h) k2 = k1 + 1 t1 = h * k1 * (2 * k2 - 1) diff1 = abs(t * (2 * k1 - 1) * (2 * k2 - 1) - t1) t2 = h * k2 * (2 * k1 - 1) diff2 = abs(t * (2 * k1 - 1) * (2 * k2 - 1) - t2) if diff1 <= diff2: print(2 * k1 - 1) else: print(2 * k2 - 1)
IMPORT ASSIGN LIST VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
def check(h, c, k, l, t): if l == -1: return abs(((k + 1) * h + k * c) / (2 * k + 1) - t) T = abs((k + 1) * h + k * c - t * (2 * k + 1)) * (2 * l + 1) - abs( (l + 1) * h + l * c - t * (2 * l + 1) ) * (2 * k + 1) return T def solve(h, c, t): m1 = abs((h + c) // 2 - t) if t <= (h + c) // 2: return 2 left = 0 right = int((t - h) / (h + c - 2 * t)) + 2 while left < right: mid = (left + right) // 2 x = check(h, c, mid - 1, mid, t) y = check(h, c, mid, mid + 1, t) if x > 0 and y <= 0: left = mid right = mid elif 0 < y and x > 0: left = mid + 1 else: right = mid - 1 m2 = check(h, c, left, -1, t) if m1 == min(m1, m2): return 2 else: return 2 * left + 1 test = 1 test = int(input()) for t in range(0, test): h, c, t = [int(x) for x in input().split()] print(solve(h, c, t))
FUNC_DEF IF VAR NUMBER RETURN FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR IF VAR FUNC_CALL VAR VAR VAR RETURN NUMBER RETURN BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
import sys input = lambda: sys.stdin.readline().rstrip() T = int(input()) for _ in range(T): h, c, t = map(int, input().split()) a = h - t b = t - c if a <= 0: print(1) elif a >= b: print(2) else: mi = a, 1 mii = 1 if abs((a + b) * mi[1]) < mi[0] * 2: mi = abs(a + b), 2 mii = 2 s = max(b // (b - a), 1) for x in range(s, s + 2): t = abs(a * x - b * (x - 1)) if t * mi[1] < mi[0] * (2 * x - 1): mi = t, 2 * x - 1 mii = x * 2 - 1 print(mii)
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
T = int(input()) for _ in range(T): h, c, t = list(map(int, input().split())) if h + c >= t * 2: print(2) else: l, r = 0, 10**9 while r - l > 1: m = (l + r) // 2 if h * (m + 1) + c * m >= t * (2 * m + 1): l = m else: r = m if (2 * l + 1) * ((2 * r + 1) * t - (h * (r + 1) + c * r)) >= (2 * r + 1) * ( h * (l + 1) + c * l - (2 * l + 1) * t ): print(l * 2 + 1) else: print(r * 2 + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
T = int(input()) for iteration in range(T): [h, c, t] = list(map(int, input().split())) if t <= (h + c) / 2: print(2) else: k = 1 / 2 * (h - c) / (2 * t - h - c) k = k + 1 / (4 * (int(k) + 1)) if k - int(k) <= 10**-8: k = int(k) - 1 else: k = int(k) print(2 * k + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER NUMBER BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR FUNC_CALL VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
_ = int(input()) h = 0 c = 0 t = 0 def fn(cnt): return t * (2 * cnt - 1) - cnt * h - (cnt - 1) * c for __ in range(_): h, c, t = [int(a) for a in input().split()] if h + c >= t * 2: print(2) continue l = 1 r = 1 while fn(r) < 0: r *= 2 l = r // 2 while l < r: mid = (l + r) // 2 if fn(mid) < 0: l = mid + 1 else: r = mid if abs(fn(l)) * (2 * l - 3) < abs(fn(l - 1)) * (2 * l - 1): print(2 * l - 1) else: print(2 * l - 3)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
for i in range(int(input())): a, b, c = map(int, input().split()) d = a - c e = c - b f = e - d if d >= e: print(2) elif d == 0: print(1) elif 2 <= e / d: if c * 3 - (2 * a + b) >= (a - c) * 3: print(1) else: print(3) else: g = round((d + e) / (2 * (e - d))) x1 = abs((g * b + (g + 1) * a) * (2 * g - 1) - (2 * g - 1) * (2 * g + 1) * c) x2 = abs(((g - 1) * b + g * a) * (2 * g + 1) - (2 * g - 1) * (2 * g + 1) * c) if x2 <= x1: print(2 * g - 1) else: print(2 * g + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF NUMBER BIN_OP VAR VAR IF BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP NUMBER VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
def N(): return int(input()) def NM(): return map(int, input().split()) def L(): return list(NM()) def LN(n): return [N() for i in range(n)] def LL(n): return [L() for i in range(n)] T = N() def f(): h, c, t = NM() h -= c t -= c if h == t: print(1) return elif t * 2 <= h: print(2) return lo = 0 hi = 10**6 * 2 while hi >= lo: mi = (hi + lo) // 2 if sa(mi, t, h) > sa(mi + 1, t, h): lo = mi + 1 else: hi = mi - 1 if sa(lo, t, h) <= sa(lo + 1, t, h): print(lo * 2 + 1) else: print((lo + 1) * 2 + 1) return def sa(k, t, h): return abs((h * (k + 1) - t * (2 * k + 1)) / ((2 * k + 1) * h)) for i in range(T): f()
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN IF BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER RETURN FUNC_DEF RETURN FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
def main(h, c, t): lowtmp = (h + c) / 2 if t == h: return 1 if t <= lowtmp: return 2 def tempSum(n): return n * h + (n - 1) * c l = 1 r = 10**7 while l < r: mid = (l + r) // 2 if tempSum(mid) <= t * (2 * mid - 1): r = mid else: l = mid + 1 ltemp = tempSum(l) lltemp = tempSum(l - 1) ln = 2 * l - 1 lln = 2 * l - 3 if abs(ltemp * lln - t * ln * lln) >= abs(lltemp * ln - t * ln * lln): return 2 * (l - 1) - 1 else: return 2 * l - 1 N = int(input()) for _ in range(N): h, c, t = list(map(int, input().split(" "))) print(main(h, c, t))
FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER FUNC_DEF RETURN BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR RETURN BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER RETURN BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
import sys def input(): return sys.stdin.readline().rstrip() testcases = int(input()) answers = [] def loss(two_n_plus_one, hot, cold, desired): n = two_n_plus_one // 2 return abs((desired * (2 * n + 1) - ((n + 1) * hot + n * cold)) / (2 * n + 1)) for _ in range(testcases): hot, cold, desired_temp = [int(i) for i in input().split()] mid_way = (hot + cold) / 2 if hot == cold: answers.append(1) elif desired_temp >= hot: answers.append(1) elif desired_temp <= mid_way: answers.append(2) else: frac = (hot - desired_temp) / (desired_temp - mid_way) frac /= 2 option1 = 2 * int(frac) + 1 option2 = option1 + 2 l1, l2 = loss(option1, hot, cold, desired_temp), loss( option2, hot, cold, desired_temp ) if ( min(l1, l2) >= hot - desired_temp and hot - desired_temp <= desired_temp - mid_way ): answers.append(1) elif min(l1, l2) >= desired_temp - mid_way: answers.append(2) elif l1 <= l2: answers.append(option1) else: answers.append(option2) print(*answers, sep="\n")
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF ASSIGN VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR STRING
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
def count(h, c, t): if h + c >= 2 * t: ans = 2 else: k = int((h - t) / (2 * t - h - c)) if 4 * k * (k + 1) * (h + c) + (6 * k + 5) * h + c * (2 * k + 1) <= 2 * t * ( 2 * k + 1 ) * (2 * k + 3): ans = 2 * k + 1 else: ans = 2 * k + 3 return ans t = int(input()) for _ in range(t): h, c, t = map(int, input().split()) print(count(h, c, t))
FUNC_DEF IF BIN_OP VAR VAR BIN_OP NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR IF BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
T = int(input()) for t_itr in range(T): H, C, T = list(map(int, input().rstrip().split())) if T >= H: print(1) elif 2 * T <= H + C: print(2) else: n = (C - T) // (H + C - 2 * T) n1 = n + 1 d1 = H * n + C * (n - 1) - T * (2 * n - 1) d2 = H * n1 + C * (n1 - 1) - T * (2 * n1 - 1) if abs(d1 / (2 * n - 1)) <= abs(d2 / (2 * n1 - 1)): print(2 * n - 1) else: print(2 * n1 - 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
def i_by_t(h, c, t): return ((h - c) / (t - (h + c) / 2) + 2) / 2 for _ in range(int(input())): h, c, t = map(int, input().split()) mean = (h + c) / 2 def temp(i): half = i // 2 return (h * (i - i // 2) + c * half) / i T = temp(1) if t >= T: print(1) continue best_eps = abs(T - t) T = temp(2) if t <= T: print(2) continue best_i = int(i_by_t(h, c, t)) if best_i % 2 == 0: best_i -= 1 i = best_i best_i = 1 while True: T = temp(i) eps = abs(T - t) if eps < best_eps: best_i = i if eps <= best_eps: best_eps = eps else: print(best_i) break i += 2
FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
def check(h, c, x, t): return abs((x * (h + c - 2 * t) + t - c) / (2 * x - 1)) def answer(h, c, t): avg = (h + c) // 2 if t <= avg: return 2 x = (t - c) // (2 * t - h - c) if check(h, c, x, t) <= check(h, c, x + 1, t): return 2 * x - 1 else: return 2 * x + 1 t = int(input()) for i in range(t): h, c, t = map(int, input().split()) print(answer(h, c, t))
FUNC_DEF RETURN FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN BIN_OP BIN_OP NUMBER VAR NUMBER RETURN BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
t = int(input()) for _ in range(t): h, c, t = map(int, input().split()) if t >= h: print(1) continue if (h + c) % 2 == 0 and t == (h + c) // 2: print(2) continue if t < (h + c) / 2: print(2) continue n = (t - c) // (2 * t - h - c) if (t - c) % (2 * t - h - c) == 0: print(2 * n - 1) continue n0 = n n1 = n + 1 t0 = abs(t * (2 * n0 - 1) * (2 * n1 - 1) - (n0 * h + (n0 - 1) * c) * (2 * n1 - 1)) t1 = abs(t * (2 * n0 - 1) * (2 * n1 - 1) - (n1 * h + (n1 - 1) * c) * (2 * n0 - 1)) if t0 <= t1: print(2 * n0 - 1) else: print(2 * n1 - 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR IF BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
inp = lambda cast=int: [cast(x) for x in input().split()] printf = lambda s="", *args, **kwargs: print(str(s).format(*args), flush=True, **kwargs) (t,) = inp() for _ in range(t): h, c, t = inp() if 2 * t <= h + c: print(2) else: x = (t - c) // (2 * t - h - c) y = x + 1 res1 = (x * h + (x - 1) * c) * (2 * y - 1) - t * (2 * x - 1) * (2 * y - 1) res2 = t * (2 * x - 1) * (2 * y - 1) - (y * h + (y - 1) * c) * (2 * x - 1) if res1 <= res2: print(2 * x - 1) else: print(2 * y - 1)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR IF BIN_OP NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
for case in range(int(input())): a = input().split(" ") h = int(a[0]) c = int(a[1]) t = int(a[2]) avg = (h + c) / 2 if t < avg: ans = 2 elif t == avg: ans = 2 elif t == h: ans = 1 elif h > t > avg: diff = t - avg v = (h - avg) // diff if v % 2 == 0: v1 = (h - avg) / (v + 1) v2 = (h - avg) / (v - 1) d1 = abs(diff - v1) d2 = abs(diff - v2) if d1 >= d2: ans = v - 1 else: ans = v + 1 else: v1 = (h - avg) / (v - 2) v2 = (h - avg) / v v3 = (h - avg) / (v + 2) d1 = abs(diff - v1) d2 = abs(diff - v2) d3 = abs(diff - v3) if d1 <= d2 and d1 <= d3: ans = v - 2 elif d2 <= d1 and d2 <= d3: ans = v else: ans = v + 2 else: ans = 1 print(int(ans))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
There are two infinite sources of water: hot water of temperature $h$; cold water of temperature $c$ ($c < h$). You perform the following procedure of alternating moves: take one cup of the hot water and pour it into an infinitely deep barrel; take one cup of the cold water and pour it into an infinitely deep barrel; take one cup of the hot water $\dots$ and so on $\dots$ Note that you always start with the cup of hot water. The barrel is initially empty. You have to pour at least one cup into the barrel. The water temperature in the barrel is an average of the temperatures of the poured cups. You want to achieve a temperature as close as possible to $t$. So if the temperature in the barrel is $t_b$, then the absolute difference of $t_b$ and $t$ ($|t_b - t|$) should be as small as possible. How many cups should you pour into the barrel, so that the temperature in it is as close as possible to $t$? If there are multiple answers with the minimum absolute difference, then print the smallest of them. -----Input----- The first line contains a single integer $T$ ($1 \le T \le 3 \cdot 10^4$) — the number of testcases. Each of the next $T$ lines contains three integers $h$, $c$ and $t$ ($1 \le c < h \le 10^6$; $c \le t \le h$) — the temperature of the hot water, the temperature of the cold water and the desired temperature in the barrel. -----Output----- For each testcase print a single positive integer — the minimum number of cups required to be poured into the barrel to achieve the closest temperature to $t$. -----Example----- Input 3 30 10 20 41 15 30 18 13 18 Output 2 7 1 -----Note----- In the first testcase the temperature after $2$ poured cups: $1$ hot and $1$ cold is exactly $20$. So that is the closest we can achieve. In the second testcase the temperature after $7$ poured cups: $4$ hot and $3$ cold is about $29.857$. Pouring more water won't get us closer to $t$ than that. In the third testcase the temperature after $1$ poured cup: $1$ hot is $18$. That's exactly equal to $t$.
for T in range(int(input())): h, c, x = list(map(int, input().split())) if h == x: print(1) else: av = (h + c) / 2 if av >= x: print(2) else: n = (h - x) // (2 * x - h - c) p = n + 1 temp = ((h + c) * n + h) * (2 * p + 1) temp1 = ((h + c) * p + h) * (2 * n + 1) if 2 * x * (2 * p + 1) * (2 * n + 1) >= temp + temp1: print(2 * n + 1) else: print(2 * p + 1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR NUMBER IF BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) name = [] for i in range(n): x = input() name.append(x + (101 - len(x)) * "{") G = [[] for i in range(26)] G2 = [[] for i in range(26)] def f(s): return ord(s) - ord("a") flag = True for i in range(1, n): for j in range(100): if name[i][j] != name[i - 1][j]: if "{" == name[i][j]: flag = False break elif "{" == name[i - 1][j]: break G[f(name[i - 1][j])].append(f(name[i][j])) G2[f(name[i][j])].append(f(name[i - 1][j])) break L = [] S = [] for i in range(26): if G2[i] == []: S.append(i) while S != []: node = S.pop(0) L.append(node) for i in G[node]: G2[i].remove(node) if G2[i] == []: S.append(i) if G2 == [[] for i in range(26)] and len(L) == 26 and flag: for i in L: print(chr(ord("a") + i), end="") print() else: print("Impossible")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR STRING ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER FUNC_DEF RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR NUMBER VAR IF STRING VAR VAR VAR ASSIGN VAR NUMBER IF STRING VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR LIST EXPR FUNC_CALL VAR VAR WHILE VAR LIST ASSIGN VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR VAR LIST EXPR FUNC_CALL VAR VAR IF VAR LIST VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR STRING
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
def go_through(given_char): global order global freq global orders if given_char in orders: while orders[given_char]: next_letter = orders[given_char].pop() freq[next_letter] = freq[next_letter] - 1 go_through(next_letter) if given_char not in order: order.append(given_char) num_names = int(input()) names = [] for _ in range(num_names): curr_name = input() names.append(curr_name) prev_name = names[0] possible = True orders = {} freq = {} change_letters = set() freq[prev_name[0]] = 0 for index in range(1, len(names)): name = names[index] char_index = 0 while ( char_index < len(name) and char_index < len(prev_name) and name[char_index] == prev_name[char_index] ): char_index += 1 if char_index < len(name) and char_index < len(prev_name): previous_char = prev_name[char_index] curr_char = name[char_index] if previous_char in orders: orders[previous_char].add(curr_char) else: orders[previous_char] = {curr_char} if curr_char in freq: freq[curr_char] = freq[curr_char] + 1 else: freq[curr_char] = 1 change_letters.add(previous_char) change_letters.add(curr_char) prev_name = name elif len(prev_name) > len(name): possible = False break if not possible: print("Impossible") else: order = [] dependent_chars = list(orders.keys()) for char in dependent_chars: curr_freq = 0 if char in freq: curr_freq = freq[char] if curr_freq <= 0: go_through(char) if len(order) is not len(change_letters): print("Impossible") else: order = list(reversed(order)) for char in range(ord("a"), ord("z") + 1): character = chr(char) if character not in order: order.append(character) for char in order: print(char, end="")
FUNC_DEF IF VAR VAR WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) ss = [input() for i in range(n)] graph = set() def rec(fr=0, to=len(ss) - 1, dep=0): if fr == to: return pos = fr while pos <= to: i = pos while ( 1 + i <= to and len(ss[i]) > dep and len(ss[1 + i]) > dep and ss[i][dep] == ss[1 + i][dep] ): i += 1 for t in range(1 + pos, 1 + i): if len(ss[t - 1]) > 1 + dep and len(ss[t]) > 1 + dep: t1, t2 = ss[t - 1][1 + dep], ss[t][1 + dep] if t1 != t2: t3 = t1, t2 graph.add(t3) rec(pos, i, 1 + dep) pos = 1 + i for t in range(1 + fr, 1 + to): if len(ss[t - 1]) > dep and len(ss[t]) > dep: t1, t2 = ss[t - 1][dep], ss[t][dep] if t1 != t2: t3 = t1, t2 graph.add(t3) for i in range(n): for j in range(1 + i, n): if ss[i].startswith(ss[j]) and ss[i] != ss[j]: print("Impossible") exit() rec() deg = dict() for c1, c2 in graph: if c2 not in deg: deg[c2] = 0 deg[c2] += 1 k = 0 ans = "" for i in range(26): for c in "abcdefghijklmnopqrstuvwxyz": if c not in deg or deg[c] == 0: deg[c] = -1 ans += c k += 1 for c1, c2 in graph: if c1 == c: deg[c2] -= 1 if k != 26: print("Impossible") else: print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR RETURN ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR VAR WHILE BIN_OP NUMBER VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR VAR VAR VAR VAR VAR BIN_OP NUMBER VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP NUMBER VAR FUNC_CALL VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP NUMBER VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER FOR VAR STRING IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
__author__ = "Utena" n = int(input()) e = [] def cmp(a, b): for i in range(min(len(a), len(b))): if a[i] != b[i]: e.append((a[i], b[i])) return 0 if len(a) > len(b): print("Impossible") exit(0) def indegree0(v, e): if v == []: return None tmp = v[:] for i in e: if i[1] in tmp: tmp.remove(i[1]) tmp = tmp[:1] if tmp == []: return -1 for t in tmp: for i in range(len(e)): if t in e[i]: e[i] = 0, 0 if e: eset = set(e) if (0, 0) in eset: eset.remove((0, 0)) e[:] = list(eset) if v: for t in tmp: v.remove(t) return tmp def topoSort(v, e): result = [] while True: nodes = indegree0(v, e) if nodes == None: break if nodes == -1: print("Impossible") return None result.extend(nodes) print("".join(map(str, result))) return result names = [] for i in range(n): names.append(input()) for i in range(n - 1): cmp(names[i], names[i + 1]) afs = [chr(i) for i in range(97, 123)] topoSort(afs, e)
ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER FUNC_DEF IF VAR LIST RETURN NONE ASSIGN VAR VAR FOR VAR VAR IF VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR LIST RETURN NUMBER FOR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR VAR IF NUMBER NUMBER VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR LIST WHILE NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NONE IF VAR NUMBER EXPR FUNC_CALL VAR STRING RETURN NONE EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) s = [input() for i in range(n)] m = [([0] * 26) for i in range(26)] f = lambda x: ord(x) - ord("a") for i in range(n - 1): for ch1, ch2 in zip(s[i], s[i + 1]): if ch1 != ch2: m[f(ch1)][f(ch2)] = 1 break else: if len(s[i]) > len(s[i + 1]): print("Impossible") exit() indeg = [sum(m[j][i] for j in range(26)) for i in range(26)] added = [0] * 26 ans = [] while 1: for i in range(26): if indeg[i] == 0 and not added[i]: ans.append(chr(i + ord("a"))) added[i] = 1 for j in range(26): if m[i][j]: m[i][j] = 0 indeg[j] -= 1 break else: break if any(indeg): print("Impossible") exit() print("".join(ans))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR LIST WHILE NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
imp = False nodes = {} for i in "abcdefghijklmnopqrstuvwxyz": nodes[i] = set() n = int(input()) prev = None for i in range(n): name = input() if prev: for x, y in zip(name, prev): if x != y: nodes[x].add(y) break else: if prev > name: imp = True break prev = name q = [] r = [] for i in "abcdefghijklmnopqrstuvwxyz": if not nodes[i]: q.append(i) else: r.append(i) l = [] while q: e = q.pop() l.append(e) for i in r[:]: if e in nodes[i]: nodes[i].remove(e) if not nodes[i]: q.append(i) r.remove(i) if r or imp: print("Impossible") else: print("".join(l))
ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR STRING ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NONE FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF VAR FOR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR STRING IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST WHILE VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
vis = [0] * 26 ans = [] graph = [[] for _ in range(26)] A = ord("a") def topo(i): s = [i] while s: i = s.pop() if vis[i] == 0: s.append(i) vis[i] = 1 for j in graph[i]: if vis[j] == 1: return False elif vis[j] == 0: s.append(j) elif vis[i] == 1: vis[i] = 2 ans.append(chr(i + A)) return True def topo1(i): vis[i] = 1 for j in graph[i]: if vis[j] == 1: return False elif vis[j] == 0: if not topo(j): return False vis[i] = 2 ans.append(chr(i + A)) return True def solve(): t = int(input()) names = [] for _ in range(t): names.append(input()) exist = True for k in range(t - 1): i = 0 while True: if len(names[k]) == i: break elif len(names[k + 1]) == i: exist = False break elif names[k][i] != names[k + 1][i]: a, b = ord(names[k][i]) - A, ord(names[k + 1][i]) - A graph[a].append(b) break else: i += 1 if exist: for i in range(26): if vis[i] == 0: exist = topo(i) if not exist: break if exist: print("".join(reversed(ans))) if not exist: print("Impossible") solve()
ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR LIST ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR LIST VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR NUMBER RETURN NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR RETURN NUMBER FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR NUMBER RETURN NUMBER IF VAR VAR NUMBER IF FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF FUNC_CALL VAR VAR VAR VAR IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
def do_job(): def order_info(s1, s2): smaller = None larger = None for i in range(min(len(s1), len(s2))): if s1[i] != s2[i]: smaller = s1[i] larger = s2[i] break return smaller, larger n = int(input()) list_of_string = [] for _ in range(n): list_of_string.append(input()) g = {x: set() for x in "abcdefghijklmnopqrstuwvxyz"} for ind in range(0, n - 1): small, big = order_info(list_of_string[ind], list_of_string[ind + 1]) if big is not None: g[big].add(small) if big is None and len(list_of_string[ind]) > len(list_of_string[ind + 1]): return "Impossible" q = {x for x in g if g[x] == set()} order_list = [] while len(q) > 0: elem = q.pop() order_list.append(elem) for x in g: if elem in g[x]: g[x].remove(elem) q = {x for x in g if g[x] == set() and x not in order_list} if len(order_list) == 26: return "".join(order_list) else: return "Impossible" print(do_job())
FUNC_DEF FUNC_DEF ASSIGN VAR NONE ASSIGN VAR NONE FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR STRING FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR NONE EXPR FUNC_CALL VAR VAR VAR IF VAR NONE FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN STRING ASSIGN VAR VAR VAR VAR VAR VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN FUNC_CALL STRING VAR RETURN STRING EXPR FUNC_CALL VAR FUNC_CALL VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
s, n = 1, int(input()) a, b = [], [] t = "" d = [0] * 26 u = input() exit = False for i in range(n - 1): v = input() j = 0 while j < min(len(u), len(v)) and u[j] == v[j]: j += 1 if j == min(len(u), len(v)): if len(u) >= len(v): exit = True break else: q = ord(u[j]) - 97, ord(v[j]) - 97 a.append(q) u = v d[q[1]] = s if not exit: while a: b = [q for q in a if d[q[0]] == s] s += 1 for q in b: d[q[1]] = s if len(a) == len(b): exit = True break else: a, b = b, [] if exit: print("Impossible") else: for x in sorted(enumerate(d), key=lambda x: x[1]): t += chr(x[0] + 97) print(t)
ASSIGN VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR LIST LIST ASSIGN VAR STRING ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR NUMBER VAR IF VAR WHILE VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER FOR VAR VAR ASSIGN VAR VAR NUMBER VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR LIST IF VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = list(map(int, input().split()))[0] name_list = [] for _ in range(0, n): name = input().split()[0] name_list.append(name) dag = dict() def add_edge(char1, char2): if char1 in dag.keys(): dag[char1][1].add(char2) else: dag[char1] = [set(), set([char2])] if char2 in dag.keys(): dag[char2][0].add(char1) else: dag[char2] = [set([char1]), set()] def compare_2_names(name1, name2): for i in range(min(len(name1), len(name2))): if name1[i] != name2[i]: add_edge(name1[i], name2[i]) return True if len(name2) <= len(name1): return False return True def run(): res = [] current_candidate_nodes = [] for k in dag.keys(): if len(dag[k][0]) == 0: current_candidate_nodes.append(k) if len(current_candidate_nodes) == 0: return False num_letters = len(dag) while len(res) < num_letters: new_candidate_nodes = [] for item in current_candidate_nodes: dag.pop(item) for k in dag.keys(): if len(current_candidate_nodes) == 0: return False for c in current_candidate_nodes: if c in dag[k][0]: if len(dag[k][1] & set(res)) > 0: return False dag[k][0].remove(c) if len(dag[k][0]) == 0: new_candidate_nodes.append(k) res += current_candidate_nodes current_candidate_nodes = new_candidate_nodes return res last_name = name_list[0] impossible = False for i in range(1, n): name = name_list[i] if not impossible and compare_2_names(last_name, name) == False: impossible = True last_name = name if impossible: print("Impossible") else: all_chars = set("abcdefghijklmnopqrstuvwxyz") if len(dag.keys()) == 0: print("abcdefghijklmnopqrstuvwxyz") else: no_contraint_chars = all_chars - set(dag.keys()) path = run() if path == False: print("Impossible") else: print("".join(path) + "".join(no_contraint_chars))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF IF VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR LIST FUNC_CALL VAR FUNC_CALL VAR LIST VAR IF VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR LIST FUNC_CALL VAR LIST VAR FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER RETURN NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR RETURN VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR IF VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING IF FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL STRING VAR FUNC_CALL STRING VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) x = input() a = len(x) lex = dict() ALPHA = list("abcdefghijklmnopqrstuvwxyz") for i in ALPHA: for j in ALPHA: lex[i, j] = 0 for i in range(n - 1): y = input() b = len(y) for j in range(min([a, b])): if x[j] != y[j]: if lex[x[j], y[j]] == -1: print("Impossible") raise SystemExit else: lex[x[j], y[j]] = 1 lex[y[j], x[j]] = -1 x = y a = b break if j == min([a, b]) - 1: if a > b: print("Impossible") raise SystemExit x = y a = b def biggest(alphabet): for i in alphabet: t = 0 for j in alphabet: if lex[i, j] < 0: t = 1 break if t == 0: return i return -1 newalpha = [""] * 26 i = 0 while ALPHA != []: BIG = biggest(ALPHA) if biggest(ALPHA) == -1: print("Impossible") raise SystemExit newalpha[i] = BIG i = i + 1 ALPHA.remove(BIG) print("".join(newalpha))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR VAR FOR VAR VAR ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR LIST VAR VAR IF VAR VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING VAR ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF VAR BIN_OP FUNC_CALL VAR LIST VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF FOR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER RETURN VAR RETURN NUMBER ASSIGN VAR BIN_OP LIST STRING NUMBER ASSIGN VAR NUMBER WHILE VAR LIST ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
from sys import stdin, stdout inp = stdin.readline op = stdout.write n = int(inp()) st = [] for i in range(n): temp = list(inp()[:-1]) st.append(temp) alph = list("abcdefghijklmnopqrstuvwxyz") g = {alph[i]: [] for i in range(26)} pos = 0 flag = 1 for i in range(n - 1): x = st[i] y = st[i + 1] pos = 0 while pos < len(x) and pos < len(y) and x[pos] == y[pos]: if pos + 1 < len(x) and pos + 1 >= len(y): break else: pos = pos + 1 else: if pos < len(x) and pos < len(y): if x[pos] in g[y[pos]]: break else: g[x[pos]].append(y[pos]) continue break else: flag = 0 if flag == 0: st = [] vis = {i: (0) for i in list(g.keys())} q = [] indeg = {i: (0) for i in list(g.keys())} for i in alph: for j in g[i]: if not j == 0: indeg[j] += 1 for j in list(indeg.keys()): if indeg[j] == 0: q.append(j) vis[j] = 1 ans = [] while len(q) > 0: temp = q.pop(0) ans.append(temp) for j in g[temp]: if not j == 0 and vis[j] == 0: indeg[j] -= 1 for j in list(indeg.keys()): if indeg[j] == 0 and vis[j] == 0: q.append(j) vis[j] = 1 if len(ans) == 26: op("".join(ans)) else: op("Impossible\n") else: op("Impossible\n")
ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR LIST VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR LIST ASSIGN VAR VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR VAR FOR VAR VAR VAR IF VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR LIST WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR VAR IF VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
from itertools import zip_longest def main(): names = [input() for _ in range(int(input()))] edges = [set() for _ in range(27)] chars = [True] * 27 for na, nb in zip(names, names[1:]): for a, b in zip_longest(na, nb, fillvalue="`"): if a != b: edges[ord(a) - 96].add(ord(b) - 96) break def dfs(u): chars[u] = None for v in edges[u]: if chars[v]: dfs(v) elif chars[v] is None: raise TabError chars[u] = False try: for c, f in enumerate(chars): if f: dfs(c) except TabError: print("Impossible") return chars, i = list(range(27)), 27 while i: i -= 1 a = chars[i] for b in edges[a]: j = chars.index(b) if j < i: chars[i], chars[j] = b, a i += 1 break print("Impossible" if chars[0] else "".join(chr(c + 96) for c in chars[1:])) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF ASSIGN VAR VAR NONE FOR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR NONE VAR ASSIGN VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING RETURN ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER NUMBER WHILE VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER STRING FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) g = [set() for _ in range(26)] t = [0] * 26 a = input() for _ in range(1, n): b = input() j = 0 while j < min(len(a), len(b)) and a[j] == b[j]: j += 1 if j < min(len(a), len(b)) and a[j] != b[j]: g[ord(a[j]) - ord("a")].add(ord(b[j]) - ord("a")) elif len(a) > len(b): print("Impossible") exit() a = b o = [] def dfs(x): t[x] = 1 for j in g[x]: if t[j] == 1: print("Impossible") exit() if t[j] == 0: dfs(j) t[x] = 2 o.append(chr(x + ord("a"))) for i in range(26): if t[i] == 0: dfs(i) print("".join(reversed(o)))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR LIST FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) names = [] for i in range(n): names.append(input()) abc = "abcdefghijklmnopqrstuvwxyz" grafo = {} visited = {} orden = [] flag = True def dfs(s): visited[s] = True if s in grafo.keys(): for i in grafo[s]: if i not in visited.keys(): dfs(i) elif visited[i]: orden.append(-1) visited[s] = False orden.append(s) for i in range(1, n): actual = names[i] anterior = names[i - 1] aux = 0 while len(actual) > aux and len(anterior) > aux and actual[aux] == anterior[aux]: aux += 1 if len(actual) <= aux: print("Impossible") flag = False break if len(anterior) <= aux: continue if anterior[aux] not in grafo.keys(): grafo[anterior[aux]] = [actual[aux]] else: grafo[anterior[aux]].append(actual[aux]) if flag: for i in grafo.keys(): if i not in visited.keys(): dfs(i) orden = orden[::-1] if -1 in orden: print("Impossible") else: solucion = "".join(orden) for letra in abc: if letra not in orden: solucion += letra print(solucion)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR LIST ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR VAR NUMBER IF VAR FUNC_CALL VAR FOR VAR VAR VAR IF VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR IF VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR LIST VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR IF VAR FOR VAR FUNC_CALL VAR IF VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER IF NUMBER VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL STRING VAR FOR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) names = [""] * n l = [0] * n for i in range(n): names[i] = input().strip() l[i] = len(names[i]) relations = [0] * n proc = True res = True rels = [[0] * 26] * 26 for i in range(1, 26): rels[i] = list(rels[0]) j = 0 while proc and res: proc = False for i in range(n - 1): if relations[i] == 0: proc = True if l[i] > l[i + 1] and j == l[i + 1]: res = False elif j == l[i]: relations[i] = 1 elif names[i][j] != names[i + 1][j]: x = ord(names[i][j]) - ord("a") y = ord(names[i + 1][j]) - ord("a") if rels[x][y] + rels[y][x] != 0 and rels[x][y] == 2: res = False else: rels[x][y] = 1 rels[y][x] = 2 relations[i] = 1 j += 1 if res: ans = "" used = [0] * 26 for i in range(26): found = -1 for j in range(26): if used[j]: continue ok = True for x in rels[j]: if x == 1: ok = False break if ok: found = j break if found == -1: res = False else: c = chr(ord("a") + found) ans = c + ans used[found] = 1 for j in range(26): if used[j] == 0 and rels[j][found] == 2: res = False else: rels[j][found] = 0 if res: print(ans) else: print("Impossible")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST STRING VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST BIN_OP LIST NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR STRING IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR ASSIGN VAR STRING ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
import sys def left(c): return ord(c) - ord("a") def right(x): return chr(ord("a") + x) n = int(input()) names = [] for i in range(n): names.append(input()) graph = [[] for i in range(26)] arrowCounter = [(0) for i in range(26)] for i in range(n): for j in range(i): counter = 0 zipped = list(zip(names[i], names[j])) for entry in zipped: if entry[0] != entry[1]: break else: counter += 1 if counter == len(names[i]) or counter == len(names[j]): if len(names[j]) > len(names[i]): print("Impossible") sys.exit(0) else: graph[left(zipped[counter][1])].append(left(zipped[counter][0])) arrowCounter[left(zipped[counter][0])] += 1 noArrows = [] for i in range(26): if arrowCounter[i] == 0: noArrows.append(i) order = [] while len(noArrows) != 0: current = noArrows.pop() order.append(current) for endpoint in graph[current]: arrowCounter[endpoint] -= 1 if arrowCounter[endpoint] == 0: noArrows.append(endpoint) if len(order) != 26: print("Impossible") else: answer = "" for i in range(26): answer += right(order[i]) print(answer)
IMPORT FUNC_DEF RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_DEF RETURN FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
import sys def topo_dfs(adj_dict, visited, stack, topo_list): node = stack[-1] for e in adj_dict[node]: if visited[e] == False: stack.append(e) return topo_list.append(node) visited[node] = True stack.pop() return def cycle_dfs(adj_dict, visited, stack): node = stack[-1] for e in adj_dict[node]: if visited[e] == False and e in stack: return True elif visited[e] == False: stack.append(e) return False visited[node] = True stack.pop() return False def answer(n, s): adj_dict = {chr(i): [] for i in range(97, 123)} for i in range(n - 1): ctr = 0 while s[i][ctr] == s[i + 1][ctr] and ctr < min(len(s[i]), len(s[i + 1])) - 1: ctr += 1 if s[i][ctr] == s[i + 1][ctr]: if len(s[i]) > len(s[i + 1]): return "Impossible" else: continue adj_dict[s[i][ctr]].append(s[i + 1][ctr]) visited = {chr(i): (False) for i in range(97, 123)} for i in range(97, 123): if visited[chr(i)] == False: stack = [chr(i)] while len(stack) > 0: cycle = cycle_dfs(adj_dict, visited, stack) if cycle == True: return "Impossible" visited = {chr(i): (False) for i in range(97, 123)} topo_list = [] for i in range(97, 123): if visited[chr(i)] == False: stack = [chr(i)] while len(stack) > 0: topo_dfs(adj_dict, visited, stack, topo_list) topo_list.reverse() return "".join(topo_list) def main(): n = int(sys.stdin.readline()) s = ["" for _ in range(n)] for i in range(n): s[i] = sys.stdin.readline().rstrip() print(answer(n, s)) return main()
IMPORT FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR RETURN FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR NUMBER VAR VAR RETURN NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR LIST VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN STRING EXPR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER RETURN STRING ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR RETURN FUNC_CALL STRING VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN EXPR FUNC_CALL VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
from itertools import zip_longest def main(): names = [input() for _ in range(int(input()))] edges = [set() for _ in range(27)] for na, nb in zip(names, names[1:]): for a, b in zip_longest(na, nb, fillvalue="`"): if a != b: edges[ord(a) - 96].add(ord(b) - 96) break chars, i, visited = list(range(27)), 27, [False] * (27 * 27) while i: i -= 1 a = chars[i] j = a * 27 + i if visited[j]: chars[0] = 1 break visited[j] = True for b in edges[a]: j = chars.index(b) if j < i: chars[i], chars[j] = b, a i += 1 break print("Impossible" if chars[0] else "".join(chr(c + 96) for c in chars[1:])) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR STRING IF VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER NUMBER BIN_OP LIST NUMBER BIN_OP NUMBER NUMBER WHILE VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER STRING FUNC_CALL STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
import sys input = sys.stdin.readline def toposort(graph): searched, stack = set(), [] for node in graph: if node not in searched: toposort_recurse(graph, node, searched, stack) return stack[::-1] def toposort_recurse(graph, node, searched, stack): searched.add(node) for peer in graph[node]: if peer not in searched: toposort_recurse(graph, peer, searched, stack) stack.append(node) def toposort_check(graph, path): for node in graph: for peer in graph[node]: if path.index(peer) < path.index(node): return False return True graph, n, prev, curr = ( {char: [] for char in "abcdefghijklmnopqrstuvwxyz"}, int(input()), input().strip(), "", ) for i in range(n - 1): old_curr = curr = input().strip() while len(prev) > 0 and len(curr) > 0 and curr[0] == prev[0]: curr, prev = curr[1:], prev[1:] if curr and prev: graph[prev[0]].append(curr[0]) elif prev and not curr: print("Impossible") sys.exit(0) prev = old_curr path = toposort(graph) if toposort_check(graph, path): print("".join(path)) else: print("Impossible")
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR RETURN VAR NUMBER FUNC_DEF EXPR FUNC_CALL VAR VAR FOR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF FOR VAR VAR FOR VAR VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR VAR VAR VAR LIST VAR STRING FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR WHILE FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
def isPrefix(sa, sb): if len(sa) <= len(sb): return False return sa[0 : len(sb)] == sb def getOrder(sa, sb): for i in range(0, min(len(sa), len(sb))): if sa[i] != sb[i]: return sa[i], sb[i] test = False if test: fp = open("in.txt", "r") n = int(fp.readline().strip()) names = [fp.readline().strip() for i in range(0, n)] fp.close() else: n = int(input().strip()) names = [input().strip() for i in range(0, n)] g = [([False] * 26) for i in range(0, 26)] res = True for i in range(1, n): if names[i - 1] == names[i] or isPrefix(names[i], names[i - 1]): continue elif isPrefix(names[i - 1], names[i]): res = False break else: ca, cb = getOrder(names[i - 1], names[i]) if g[ord(cb) - ord("a")][ord(ca) - ord("a")]: res = False break else: g[ord(ca) - ord("a")][ord(cb) - ord("a")] = True def printG(): print(" abcdefghijklmnopqrstuvwxyz") for i in range(0, 26): print(chr(ord("a") + i), "".join([("1" if x else "0") for x in g[i]]), sep="") if not res: print("Impossible") else: def getZeroIndegreeNode(): for i in range(0, 26): if not used[i] and indegree[i] == 0: return i return -1 theOrder = [] indegree = [0] * 26 used = [False] * 26 for i in range(0, 26): ithIndegree = 0 for j in range(0, 26): if g[j][i]: ithIndegree += 1 indegree[i] = ithIndegree for i in range(0, 26): zeroIndegreeNode = getZeroIndegreeNode() if zeroIndegreeNode == -1: res = False break else: used[zeroIndegreeNode] = True theOrder.append(chr(ord("a") + zeroIndegreeNode)) for j in range(0, 26): if g[zeroIndegreeNode][j]: indegree[j] -= 1 if not res: print("Impossible") else: print("".join(theOrder))
FUNC_DEF IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER RETURN VAR NUMBER FUNC_CALL VAR VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR RETURN VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING NUMBER FUNC_DEF EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR FUNC_CALL STRING VAR STRING STRING VAR VAR VAR STRING IF VAR EXPR FUNC_CALL VAR STRING FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER RETURN VAR RETURN NUMBER ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR VAR VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
def ex(): print("Impossible") exit() abc = "abcdefghijklmnopqrstuvwxyz" edges = {i: set() for i in abc} used = set() def fillchar(name, prev_name): for current, prev in zip(name, prev_name): if current != prev: if current in edges[prev]: ex() if prev not in edges[current]: edges[current].add(prev) return True return False n = int(input()) prev_name = input() for i in range(1, n): name = input() if not fillchar(name, prev_name) and len(prev_name) > len(name): ex() prev_name = name def dfs(v, result): used.add(v) for c in edges[v]: if c not in used: dfs(c, result) result.append(v) def topsort(): result = [] for c in abc: if c not in used: dfs(c, result) return result result = topsort() for node in edges: for edge in edges[node]: if result.index(node) < result.index(edge): ex() print("".join(result))
FUNC_DEF EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF FOR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_DEF EXPR FUNC_CALL VAR VAR FOR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR FOR VAR VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) nrLit = ord("z") - ord("a") + 1 v = [[(0) for i in range(nrLit)] for j in range(nrLit)] s0 = input() posibil = True for i in range(1, n): if not posibil: break s = input() mini = min(len(s0), len(s)) for j in range(mini): a = ord(s0[j]) - ord("a") b = ord(s[j]) - ord("a") if s0[j] != s[j]: if v[a][b] <= 0 and v[b][a] >= 0: v[a][b] = -1 v[b][a] = 1 for k in range(nrLit): if v[k][a] == -1: if v[b][k] >= 0: v[k][b] = -1 v[b][k] = 1 else: posibil = False else: posibil = False break else: if s0 > s: posibil = False s0 = s if not posibil: print("Impossible") else: marcat = set() s = "" for lit in range(nrLit): for i in range(nrLit): if i in marcat: continue for j in range(nrLit): if v[i][j] == 1 and j not in marcat: break else: s = s + chr(i + ord("a")) marcat.add(i) break print(s)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR STRING FUNC_CALL VAR STRING NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING IF VAR VAR VAR VAR IF VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR IF VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) cur_line = "" next_line = "" next_line = input() edges = [[(0) for _ in range(27)] for _ in range(27)] for i in range(n - 1): cur_line = next_line next_line = input() first = "" second = "" for j in range(min(len(cur_line), len(next_line))): if cur_line[j].lower() != next_line[j].lower(): first = cur_line[j].lower() second = next_line[j].lower() break if not first or not second: if len(cur_line) > len(next_line): print("Impossible") exit() else: edges[ord(second) - ord("a")][ord(first) - ord("a")] = 1 gray_edges = set() black_edges = [] def dfs(start): global gray_edges global black_edges global edges found_next = False for letter in range(26): if edges[start][letter]: if letter in gray_edges: return "Impossible" elif letter not in black_edges: gray_edges.add(letter) found_next = True if dfs(letter) == "Impossible": return "Impossible" black_edges.append(start) gray_edges.remove(start) if not found_next: return "Proceed with next letter" for i in range(26): if i not in gray_edges and i not in black_edges: gray_edges.add(i) if dfs(i) == "Impossible": print("Impossible") exit() print("".join(list(map(lambda x: chr(x + ord("a")), black_edges))))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR STRING ASSIGN VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR IF VAR VAR RETURN STRING IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR STRING RETURN STRING EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR RETURN STRING FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR STRING VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
def char2num(c): return ord(c) - ord("a") def dfs(v): vis[v] = 0 for w in adj[v]: if vis[w] == 0: return False elif vis[w] == -1: if not dfs(w): return False alf.append(v) vis[v] = 1 return True n, last = int(input()), input() adj = [[] for _ in range(26)] for _ in range(1, n): next_ = input() if last.startswith(next_): print("Impossible") break if not next_.startswith(last): i = 0 while next_[i] == last[i]: i += 1 adj[char2num(last[i])].append(char2num(next_[i])) last = next_[:] else: alf = [] vis = [-1] * 26 for i in range(26): if vis[i] == -1: if not dfs(i): print("Impossible") break else: print(*list([chr(ord("a") + i) for i in reversed(alf)]), sep="")
FUNC_DEF RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR NUMBER RETURN NUMBER IF VAR VAR NUMBER IF FUNC_CALL VAR VAR RETURN NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR VAR FUNC_CALL VAR VAR STRING
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) s = [input() for i in range(n)] f = [[(0) for i in range(26)] for j in range(26)] for i in range(n): for k in range(i + 1, n): if len(s[k]) < len(s[i]) and s[k] == s[i][: len(s[k])]: print("Impossible") exit(0) for j in range(min(len(s[k]), len(s[i]))): if s[k][j] != s[i][j]: if f[ord(s[k][j]) - ord("a")][ord(s[i][j]) - ord("a")] == 1: print("Impossible") exit(0) if f[ord(s[i][j]) - ord("a")][ord(s[k][j]) - ord("a")] == -1: print("Impossible") exit(0) f[ord(s[k][j]) - ord("a")][ord(s[i][j]) - ord("a")] = -1 f[ord(s[i][j]) - ord("a")][ord(s[k][j]) - ord("a")] = 1 break def dfs(k, used, f, res): if used[k] == 1: print("Impossible") exit(0) used[k] = 1 for i in range(26): if used[i] != 2 and f[k][i] == 1: dfs(i, used, f, res) used[k] = 2 res.append(k) used = [(0) for i in range(26)] res = [] for i in range(25, -1, -1): if used[i] == 0: dfs(i, used, f, res) for i in range(26): print(chr(res[25 - i] + ord("a")), end="")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR STRING NUMBER FUNC_DEF IF VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER NUMBER NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP NUMBER VAR FUNC_CALL VAR STRING STRING
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
def f(): s, n = 1, int(input()) a, b = [], [] t, e = "", "Impossible" d = [0] * 26 u = input() for i in range(n - 1): v = input() x, y = len(u), len(v) j, k = 0, min(x, y) while j < k and u[j] == v[j]: j += 1 if j == k: if x >= y: return e else: q = ord(u[j]) - 97, ord(v[j]) - 97 a.append(q) u, d[q[1]] = v, s while a: b = [q for q in a if d[q[0]] == s] s += 1 for q in b: d[q[1]] = s if len(a) == len(b): return e a, b = b, [] for x in sorted(enumerate(d), key=lambda x: x[1]): t += chr(x[0] + 97) return t print(f())
FUNC_DEF ASSIGN VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR LIST LIST ASSIGN VAR VAR STRING STRING ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR VAR WHILE VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR RETURN VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR WHILE VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER FOR VAR VAR ASSIGN VAR VAR NUMBER VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR VAR VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
def found(x, a): for i in range(len(a)): if a[i] == x: return i return None n = int(input()) a = [] L = 0 for i in range(n): x = input() a.append(x) L = max(L, len(x)) d = dict() u = dict() for i in range(97, 123): d[chr(i)] = set() u[chr(i)] = set() for i in range(n - 1): ind = 0 while ind < min(len(a[i]), len(a[i + 1])): if a[i][ind] != a[i + 1][ind]: d[a[i][ind]].add(a[i + 1][ind]) u[a[i + 1][ind]].add(a[i][ind]) ind = 10**10 else: ind += 1 if ind == min(len(a[i]), len(a[i + 1])): if len(a[i]) > len(a[i + 1]): print("Impossible") exit() del_u = set() del_d = set() for i in d: if len(d[i]) == 0: del_d.add(i) for i in u: if len(u[i]) == 0: del_u.add(i) for i in del_d: del d[i] for i in del_u: del u[i] g = dict() for i in u: g[i] = 120 if len(d) == 0: print("abcdefghijklmnopqrstuvwxyz") exit() v = set() for i in d: v.add(i) for i in u: v.discard(i) for i in v: g[i] = 0 posetil = set() for i in v: sosed = d[i] glub = 1 while len(sosed) > 0: sosed2 = set() for j in sosed: if g[j] == 120: g[j] = glub elif g[j] < glub: g[j] = glub if j in d: for k in d[j]: sosed2.add(k) sosed = sosed2.copy() glub += 1 ans = dict() for i in range(40): ans[i] = set() for i in g: if g[i] == 120: print("Impossible") exit() ans[g[i]].add(i) answer = [] for i in range(40): if len(ans[i]) != 0: for j in ans[i]: answer.append(j) lol = set(answer) for i in range(97, 123): if chr(i) not in lol: answer.append(chr(i)) if len(v) == 0: print("Impossible") else: print(*answer, sep="")
FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR RETURN VAR RETURN NONE ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER VAR NUMBER IF VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR VAR VAR FOR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR FOR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER FOR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR STRING
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
def isPrefix(sa, sb): if len(sa) >= len(sb): return False return sa == sb[0 : len(sa)] def getOrder(sa, sb): for i in range(min(len(sa), len(sb))): if sa[i] != sb[i]: return sa[i], sb[i] test = False if test: fp = open("in.txt", "r") n = int(fp.readline().strip()) names = [fp.readline().strip() for _ in range(n)] fp.close() else: n = int(input().strip()) names = [input().strip() for _ in range(n)] res = True g = [([False] * 26) for _ in range(26)] def printG(): print(" abcdefghijklmnopqrstuvwxyz") for i in range(0, 26): print(chr(ord("a") + i), "".join([("1" if x else "0") for x in g[i]]), sep="") for i in range(n - 1): if names[i] == names[i + 1] or isPrefix(names[i], names[i + 1]): continue elif isPrefix(names[i + 1], names[i]): res = False break else: ca, cb = getOrder(names[i], names[i + 1]) if g[ord(cb) - ord("a")][ord(ca) - ord("a")]: res = False break else: a = ord(ca) - ord("a") b = ord(cb) - ord("a") g[a][b] = True if not res: print("Impossible") else: def getZeroIndegreeNode(): for i in range(26): if not vis[i] and Indegree[i] == 0: return i return -1 strOrder = [] vis = [False] * 26 Indegree = [0] * 26 for i in range(26): ithIndegree = 0 for j in range(26): if g[j][i]: ithIndegree += 1 Indegree[i] = ithIndegree for i in range(26): ZeroIndegreeNode = getZeroIndegreeNode() if ZeroIndegreeNode == -1: res = False break else: strOrder.append(chr(ord("a") + ZeroIndegreeNode)) vis[ZeroIndegreeNode] = True for i in range(26): if g[ZeroIndegreeNode][i]: Indegree[i] -= 1 if not res: print("Impossible") else: print("".join(strOrder))
FUNC_DEF IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN NUMBER RETURN VAR VAR NUMBER FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR RETURN VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR NUMBER FUNC_DEF EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR FUNC_CALL STRING VAR STRING STRING VAR VAR VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR STRING ASSIGN VAR VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR NUMBER RETURN VAR RETURN NUMBER ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
from sys import stdin, stdout n = int(stdin.readline().strip()) d = { "a": 0, "b": 1, "c": 2, "d": 3, "e": 4, "f": 5, "g": 6, "h": 7, "i": 8, "j": 9, "k": 10, "l": 11, "m": 12, "n": 13, "o": 14, "p": 15, "q": 16, "r": 17, "s": 18, "t": 19, "u": 20, "v": 21, "w": 22, "x": 23, "y": 24, "z": 25, } arr = [] for i in range(n): arr.append(stdin.readline().strip()) cycle = False edge_matrix = [[(0) for _ in range(26)] for i in range(26)] for i in range(1, len(arr)): word1 = arr[i - 1] word2 = arr[i] ctr = 0 if len(word1) > len(word2) and word1[: len(word2)] == word2: cycle = True break while ctr < min(len(word1), len(word2)) and word1[ctr] == word2[ctr]: ctr += 1 if not ctr == min(len(word1), len(word2)): edge_matrix[d[word1[ctr]]][d[word2[ctr]]] = 1 ansstack = [] visited = [(0) for i in range(26)] def topological_sort(curr): global cycle, visited, ansstack if not cycle: visited[curr] = 1 for i in range(len(edge_matrix[curr])): if edge_matrix[curr][i] == 1: if visited[i] == 0: topological_sort(i) elif visited[i] == 1: cycle = True break visited[curr] = 2 ansstack.insert(0, curr) def doshit(): for i in range(26): if not cycle and visited[i] == 0 and sum(edge_matrix[i]) > 0: topological_sort(i) doshit() if cycle: stdout.write("Impossible\n") else: for i in range(26): if i not in ansstack: stdout.write(chr(ord("a") + i)) for i in ansstack: stdout.write(chr(ord("a") + i))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING STRING NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FUNC_DEF IF VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR STRING VAR
Fox Ciel is going to publish a paper on FOCS (Foxes Operated Computer Systems, pronounce: "Fox"). She heard a rumor: the authors list on the paper is always sorted in the lexicographical order. After checking some examples, she found out that sometimes it wasn't true. On some papers authors' names weren't sorted in lexicographical order in normal sense. But it was always true that after some modification of the order of letters in alphabet, the order of authors becomes lexicographical! She wants to know, if there exists an order of letters in Latin alphabet such that the names on the paper she is submitting are following in the lexicographical order. If so, you should find out any such order. Lexicographical order is defined in following way. When we compare s and t, first we find the leftmost position with differing characters: s_{i} ≠ t_{i}. If there is no such position (i. e. s is a prefix of t or vice versa) the shortest string is less. Otherwise, we compare characters s_{i} and t_{i} according to their order in alphabet. -----Input----- The first line contains an integer n (1 ≤ n ≤ 100): number of names. Each of the following n lines contain one string name_{i} (1 ≤ |name_{i}| ≤ 100), the i-th name. Each name contains only lowercase Latin letters. All names are different. -----Output----- If there exists such order of letters that the given names are sorted lexicographically, output any such order as a permutation of characters 'a'–'z' (i. e. first output the first letter of the modified alphabet, then the second, and so on). Otherwise output a single word "Impossible" (without quotes). -----Examples----- Input 3 rivest shamir adleman Output bcdefghijklmnopqrsatuvwxyz Input 10 tourist petr wjmzbmr yeputons vepifanov scottwu oooooooooooooooo subscriber rowdark tankengineer Output Impossible Input 10 petr egor endagorion feferivan ilovetanyaromanova kostka dmitriyh maratsnowbear bredorjaguarturnik cgyforever Output aghjlnopefikdmbcqrstuvwxyz Input 7 car care careful carefully becarefuldontforgetsomething otherwiseyouwillbehacked goodluck Output acbdefhijklmnogpqrstuvwxyz
n = int(input()) a = [[] for i in range(26)] b = [(0) for i in range(26)] ans = True for i in range(n): t = input() if i > 0: ans = ans and s[: len(t)] != t if not ans: break if t[: len(s)] != s: x, y = next(filter(lambda x: x[0] != x[1], zip(s, t))) a[ord(x) - 97].append(ord(y) - 97) b[ord(y) - 97] += 1 s = t if ans: ans = [] q = [] l = 0 for i in range(26): if not b[i]: q.append(i) while l < len(q): x = q[l] ans.append(chr(x + 97)) l += 1 for y in a[x]: b[y] -= 1 if not b[y]: q.append(y) if ans and len(ans) == 26: print("".join(ans)) else: print("Impossible")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR IF VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR IF VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR STRING
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
a, b = map(int, input().split()) n = int(input()) def gcd(a, b): if b == 0: return a return gcd(b, a % b) def bs(l, r, val, a): l1 = l r1 = r res = 0 while l1 <= r1: mid = (l1 + r1) // 2 if a[mid] <= val: l1 = mid + 1 res = a[mid] else: r1 = mid - 1 return res t = gcd(a, b) wish = [] for i in range(1, t + 1): if t // i < i: break if t % i == 0: wish.append(i) if t // i != i: wish.append(t // i) wish.sort() for i in range(0, n): low, high = map(int, input().split()) temp = bs(0, len(wish) - 1, high, wish) if temp < low: temp = -1 print(temp)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
a, b = map(int, input().split()) arr = [] arr_len = 0 cnt = 0 a, b = min(a, b), max(a, b) for x in range(1, int(a**0.5) + 1): if a % x == 0: arr.append(x) arr.append(a // x) arr_len += 2 for x in range(arr_len): if b % arr[x] != 0: arr[x] = -1 cnt += 1 arr_len -= 1 arr = list(set(sorted(arr)[cnt:])) for i in range(int(input())): res = -1 l, r = map(int, input().split()) for d in arr: if d >= l and d <= r: res = max(res, d) print(res)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
a, b = list(map(int, input().split())) c = [] for i in range(1, int(a**0.5) + 1): if a % i == b % i == 0: c.append(i) if b % (a // i) == a % (a // i) == 0 and i != a // i: c.append(a // i) c.sort() d = len(c) for i in range(int(input())): e, h = list(map(int, input().split())) l, r = -1, d while r - l - 1: m = (l + r) // 2 if c[m] > h: r = m else: l = m print(c[r - 1] if h >= c[r - 1] >= e else -1)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR WHILE BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
from sys import stdin, stdout def __gcd(a, b): if b == 0: return a else: return __gcd(b, a % b) def main(): a, b = map(int, stdin.readline().split()) gcd = __gcd(a, b) i = 1 factor = [] while i * i <= gcd: if gcd % i == 0: factor.append(i) if i * i != gcd: factor.append(gcd // i) i += 1 q = int(stdin.readline()) for i in range(q): res = -1 l, r = map(int, stdin.readline().split()) for j in range(len(factor)): if factor[j] >= l and factor[j] <= r: res = max(res, factor[j]) stdout.write(str(res) + "\n") main()
FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE BIN_OP VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
def main(): A, B = map(int, input().split()) if A > B: A, B = B, A divisors = set() div = 1 while div * div <= A: if A % div == 0: x = div y = A // div if B % x == 0: divisors.add(x) if B % y == 0: divisors.add(y) div = div + 1 Q = int(input()) divs = list(divisors) divs.sort() for i in range(0, Q): low, high = map(int, input().split()) s, e, mid, sol = 0, len(divs) - 1, 0, -1 while s <= e: mid = s + (e - s) // 2 if divs[mid] <= high: sol = mid s = mid + 1 else: e = mid - 1 if divs[sol] < low: print(-1) else: print(divs[sol]) main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
def gcd(num1, num2): if num2 == 0: return num1 return gcd(num2, num1 % num2) a, b = map(int, input().split()) n = int(input()) k = gcd(a, b) res1 = [] i = 1 while i * i <= k: if k % i == 0: res1.append(i) if i != k // i: res1.append(k // i) i += 1 for _ in range(n): l, r = map(int, input().split()) ans = -1 for d in res1: if l <= d <= r: ans = max(ans, d) print(ans)
FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
import sys lines = sys.stdin.readlines() m, n = map(int, lines[0].strip().split(" ")) def gcd(a, b): if a == 0: return b if a > b: return gcd(b, a) return gcd(b % a, a) G = gcd(m, n) tmp = G factors = [] i = 2 while i**2 <= tmp: if tmp % i == 0: factors.append(i) tmp //= i else: i += 1 if tmp != 1: factors.append(tmp) count = {} for f in factors: if f not in count: count[f] = 0 count[f] += 1 primes = list(count.keys()) primes.sort() factors = [1] for p in primes: tmp = [] for f in factors: for i in range(1, count[p] + 1): tmp.append(f * p**i) factors += tmp factors.sort() L = len(factors) Q = int(lines[1].strip()) for q in range(2, Q + 2): lo, hi = map(int, lines[q].strip().split(" ")) l, r = 0, L while l < r - 1: mid = (r - l) // 2 + l if factors[mid] > hi: r = mid else: l = mid if factors[l] >= lo: print(factors[l]) else: print(-1)
IMPORT ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER STRING FUNC_DEF IF VAR NUMBER RETURN VAR IF VAR VAR RETURN FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR VAR ASSIGN VAR LIST FOR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR STRING ASSIGN VAR VAR NUMBER VAR WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
def factors(n): i = 2 res = list() while i * i <= n: if n % i == 0: cnt = 0 while n % i == 0: n //= i cnt += 1 res.append((i, cnt)) i += 1 if not n == 1: res.append((n, 1)) return res def generate_divisors(factors, ind, result, divisors): if ind == len(factors): divisors.append(result) return for i in range(factors[ind][1] + 1): generate_divisors(factors, ind + 1, result, divisors) result *= factors[ind][0] if ind == 0: return divisors def search(s, e, x, y): while s < e: mid = s + (e - s) // 2 if y >= common[mid]: s = mid + 1 else: e = mid + 0 return common[s - 1] a, b = map(int, input().strip().split()) div_a = generate_divisors(factors(a), 0, 1, []) div_b = generate_divisors(factors(b), 0, 1, []) common = list(set(div_a).intersection(set(div_b))) common = sorted(common) c_size = len(common) c_max, c_min = common[c_size - 1], common[0] n = int(input()) for _ in range(n): x, y = map(int, input().strip().split()) if x > c_max or y < c_min: print(-1) else: ans = search(0, c_size, x, y) if ans < x or ans > y: print(-1) else: print(ans)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR WHILE BIN_OP VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN VAR FUNC_DEF IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN FOR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER RETURN VAR FUNC_DEF WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
n, m = [int(i) for i in input().split()] l = [] for i in range(1, int(n**0.5) + 1): if n % i == 0 and m % i == 0: l.append(i) if n % (n // i) == 0 and m % (n // i) == 0: l.append(n // i) l.sort() n = int(input()) for i in range(n): q, w = [int(j) for j in input().split()] mx = -1 for j in range(len(l) - 1, -1, -1): if q <= l[j] <= w: mx = l[j] break print(mx)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR
Well, here is another math class task. In mathematics, GCD is the greatest common divisor, and it's an easy task to calculate the GCD between two positive integers. A common divisor for two positive numbers is a number which both numbers are divisible by. But your teacher wants to give you a harder task, in this task you have to find the greatest common divisor d between two integers a and b that is in a given range from low to high (inclusive), i.e. low ≤ d ≤ high. It is possible that there is no common divisor in the given range. You will be given the two integers a and b, then n queries. Each query is a range from low to high and you have to answer each query. Input The first line contains two integers a and b, the two integers as described above (1 ≤ a, b ≤ 109). The second line contains one integer n, the number of queries (1 ≤ n ≤ 104). Then n lines follow, each line contains one query consisting of two integers, low and high (1 ≤ low ≤ high ≤ 109). Output Print n lines. The i-th of them should contain the result of the i-th query in the input. If there is no common divisor in the given range for any query, you should print -1 as a result for this query. Examples Input 9 27 3 1 5 10 11 9 11 Output 3 -1 9
from sys import stdin, stdout cin = stdin.readline cout = stdout.write mp = lambda: list(map(int, cin().split())) def chars(): s = cin() return list(s[: len(s) - 1]) def pl(a): for val in a: cout(val + "\n") def binSearch(lo, hi): high = len(l) - 1 low = 0 ans = -1 while low <= high: mid = (low + high) // 2 if hi >= l[mid] and l[mid] >= lo: ans = l[mid] low = mid + 1 elif l[mid] < lo: low = mid + 1 elif l[mid] > hi: high = mid - 1 return ans a, b = sorted(mp()) (n,) = mp() s = set() for i in range(1, int(a**0.5) + 1): if not a % i and not b % i: s.add(i) if not a % (a // i) and not b % (a // i): s.add(a // i) l = sorted(s) for _ in range(n): lo, hi = mp() ans = binSearch(lo, hi) cout(str(ans) + "\n")
ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR STRING FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def calSumTransfer(m): global a sum_transfer = 0 for i in range(n): sum_transfer += max(a[i] - m, 0) return sum_transfer n, k = map(int, input().split()) a = list(map(int, input().split())) left = min(a) right = max(a) sum_energy = sum(a) mid = left while right - left > 10**-6: mid = (left + right) / 2 sum_lost = calSumTransfer(mid) * k / 100 if mid * n < sum_energy - sum_lost: left = mid else: right = mid print("%.9f" % mid)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE BIN_OP VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
EPS = 10**-10 n, k = map(int, input().split()) rate = 100 / (100 - k) - 1 a = list(map(int, input().split())) total = 0 for x in a: total += x lo = 0.0 hi = 1000.0 while abs(hi - lo) > EPS: mi = (hi + lo) / 2 need = mi * n for i in range(n): if a[i] < mi: need += (mi - a[i]) * rate if need > total: hi = mi else: lo = mi print("{:.9f}".format(lo))
ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
nk = list(input().split()) n, k = int(nk[0]), float(nk[1]) energy = list(map(float, input().split())) avg = sum(energy) / len(energy) while 1: sum_lf = 0 sum_rg = 0 cnt_lf = 0 cnt_rg = 0 lf = [] flag = False for i in range(n): if energy[i] < avg: cnt_lf += 1 sum_lf += energy[i] lf.append(energy[i]) else: cnt_rg += 1 sum_rg += energy[i] x = (cnt_lf * sum_rg - cnt_rg * sum_lf) / (cnt_rg * (100 - k) / 100 + cnt_lf) avg = (sum_rg - x) / cnt_rg for i in range(len(lf)): if lf[i] > avg: flag = True if not flag: break print("%.9f" % avg)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
n, k = map(int, input().split()) A = list(map(int, input().split())) def f(x): over = 0 need = 0 for a in A: if a > x: over += a - x else: need += x - a return need <= over * (1 - k / 100) left = 0 right = max(A) while right - left > 1e-07: m = (left + right) / 2 if f(m): left = m else: right = m rounded = round(right, 8) if int(rounded) == rounded: rounded = int(rounded) print(rounded)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR RETURN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
(n, k), t = map(int, input().split()), [0] + sorted(list(map(int, input().split()))) i, d, s = 1, t[1], sum(t) while i < n: i += 1 d += t[i] if 100 * (s - t[i] * n) < k * (s - d - t[i] * (n - i)): d -= t[i] i -= 1 break print( t[i] + (100 * (s - t[i] * n) - k * (s - d - t[i] * (n - i))) / (100 * n - k * (n - i)) )
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR WHILE VAR VAR VAR NUMBER VAR VAR VAR IF BIN_OP NUMBER BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def energy(n, k, arr): arr = sorted(arr) max_energy = -1 left = min(arr) right = max(arr) while abs(left - right) > 10**-6: X = (left + right) / 2 a = sum(arr) thua = 0 for i in arr: if i > X: thua += (i - X) * k / 100 if a - thua == n * X: max_energy = X elif a - thua - n * X > 0: left = X else: right = X print(left) n, k = list(map(int, input().strip().split(" "))) arr = list(map(int, input().strip().split(" "))) energy(n, k, arr)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR BIN_OP VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR IF BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
n, k = map(int, input().split()) a = list(map(int, input().split())) left, right = 0.0, 1000.0 while right - left > 1e-07: mid = (right + left) / 2 transfer = 0 for i in range(n): if a[i] > mid: transfer += (a[i] - mid) * (1 - k / 100) else: transfer += a[i] - mid if transfer >= 0: left = mid else: right = mid print("%.9lf" % left)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def isEnough(x): receiving = 0 giving = 0 for acc in accumulators: if acc < x: receiving += x - acc else: giving += (acc - x) * (100 - k) / 100 return receiving <= giving def BinarySreach(l, r): left = l right = r ans = r while left <= right: mid = (left + right) / 2 if isEnough(mid): ans = mid left = mid + 10**-10 else: right = mid - 10**-10 return ans n, k = map(int, input().split()) accumulators = list(map(int, input().split())) print("{:.9f}".format(BinarySreach(0, max(accumulators))))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
n, k = map(int, input().split()) accumulators = list(map(int, input().split())) low = 0 high = 1000 for i in range(100): less = 0 more = 0 mid = low + (high - low) / 2 for i in range(n): if accumulators[i] > mid: more += accumulators[i] - mid else: less += mid - accumulators[i] if more - k * more / 100 >= less: low = mid else: high = mid print("{0:.9f}".format(low))
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR IF BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
n, k = map(int, input().split()) a = sorted(list(map(int, input().split()))) left = 0 right = a[-1] for i in range(100): mid = (left + right) / 2.0 s1 = sum([(x - mid) for x in a if x >= mid]) * (100 - k) / 100.0 s2 = sum([(mid - x) for x in a if x < mid]) if s1 >= s2: left = mid else: right = mid print(left)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def check(a, e, k): need = 0.0 have = 0.0 for x in a: if x > e: have += x - e else: need += e - x if have - have * k / 100 >= need: return True else: return False def bs(a, k): low = 0.0 hight = 1000.0 res = 0.0 while abs(low - hight) >= 1e-09: mid = (low + hight) / 2 if check(a, mid, k): res = mid low = mid else: hight = mid return res n, k = map(int, input().split()) a = list(map(int, input().split())) print("%.6f" % bs(a, k))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP STRING FUNC_CALL VAR VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def isPossibleWithAmount(arr, e, k): total = 0 for number in arr: if number > e: total += number - e else: x = (e - number) * 100 / (100 - k) total -= x return total >= 0 n, k = map(int, input().split()) arr = list(map(int, input().split())) left = min(arr) right = max(arr) while abs(left - right) > 10**-7: mid = (right + left) / 2 test = isPossibleWithAmount(arr, mid, k) if test == True: left = mid else: right = mid print(left)
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP NUMBER VAR VAR VAR RETURN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR BIN_OP VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
n, k = map(int, input().split()) energy = sorted(list(map(int, input().split()))) factor = (100 - k) / 100 low = 0 high = sum(energy) / n while high - low > 1e-06: mid = (low + high) / 2 balance = 0 for x in energy: if x > mid: balance -= factor * (x - mid) else: balance += mid - x if balance < 0: low = mid else: high = mid print(high)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def energy(acc, level, perc_loss): surplus = sum([max(x - level, 0) for x in acc]) en_cost = sum([(abs(min(0, x - level)) * 100 / (100 - perc_loss)) for x in acc]) return surplus >= en_cost class CodeforcesTask68BSolution: def __init__(self): self.result = "" self.n_k = [] self.accumulators = [] def read_input(self): self.n_k = [int(x) for x in input().split(" ")] self.accumulators = [int(x) for x in input().split(" ")] def process_task(self): l = 0 r = sum(self.accumulators) / self.n_k[0] while r - l >= 1e-07: mid = l + (r - l) / 2 if energy(self.accumulators, mid, self.n_k[1]): l = mid else: r = mid self.result = str(r) def get_result(self): return self.result Solution = CodeforcesTask68BSolution() Solution.read_input() Solution.process_task() print(Solution.get_result())
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR NUMBER BIN_OP NUMBER VAR VAR VAR RETURN VAR VAR CLASS_DEF FUNC_DEF ASSIGN VAR STRING ASSIGN VAR LIST ASSIGN VAR LIST FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_DEF RETURN VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def ok(value): low, up = 0, 0 for i in range(n): if a[i] < value: low += value - a[i] else: up += a[i] - value return up - up * k / 100.0 >= low n, k = list(map(int, input().split())) a = list(map(int, input().split())) s = sum(a) low, high = 0, 1000.0 for i in range(100): mid = (low + high) / 2 if ok(mid): low = mid else: high = mid print("%.9lf\n" % low)
FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR RETURN BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
n, k = list(map(int, input().split())) arr = list(map(int, input().split())) def bins(): l = 0 r = 10000000000000 for i in range(100): mid = (l + r) / 2 if f(mid): l = mid else: r = mid print(l) def f(s): sent = 0 sentR = 0 for i in range(n): if arr[i] < s: sentR += (s - arr[i]) * 100 / (100 - k) elif arr[i] > s: sent += arr[i] - s return sent >= sentR bins()
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP NUMBER VAR IF VAR VAR VAR VAR BIN_OP VAR VAR VAR RETURN VAR VAR EXPR FUNC_CALL VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def check(bound): more, less = 0, 0 for x in a: if x > bound: more += x - bound else: less += bound - x return more * (100 - k) / 100 - less >= 0 n, k = map(int, input().split()) a = [int(x) for x in input().split()] res, l, r = 0, 0, 1000 if max(a) == min(a): res = a[0] for loops in range(200): m = (l + r) / 2 if check(m): res = m l = m else: r = m print(f"{res:.8f}")
FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR RETURN BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR STRING
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def get_sum_transfer(accumulators_energy, middle): sum_transfer = 0 for accumulator_energy in accumulators_energy: if accumulator_energy > middle: sum_transfer += accumulator_energy - middle return sum_transfer def solve(): accumulators_count, percent_energy_lost = map(int, input().split()) accumulators_energy = list(map(int, input().split())) sum_energy = sum(accumulators_energy) left = min(accumulators_energy) right = max(accumulators_energy) while right - left > 1e-07: middle = (left + right) / 2 sum_transfer = get_sum_transfer(accumulators_energy, middle) sum_lost = sum_transfer * percent_energy_lost / 100 if middle * accumulators_count < sum_energy - sum_lost: left = middle else: right = middle print("{:.9f}".format(left)) solve()
FUNC_DEF ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def check(a, k, cur): need = 0 have = 0 for x in a: if x < cur: need += cur - x else: have += (x - cur) * (1 - k / 100) return need <= have n, k = [int(x) for x in input().split()] a = [int(x) for x in input().split()] l = 0 r = 1000 for i in range(100): cur = (l + r) / 2 if check(a, k, cur): l = cur else: r = cur print((l + r) / 2)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER BIN_OP VAR NUMBER RETURN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def main(): n, k = map(int, input().split()) k = 1.0 - k / 100 a = list(map(int, input().split())) ans = 0 l, r = 0, 1000 for rep in range(100): mid = (l + r) / 2 need, excess = 0, 0 for energy in a: if energy > mid: excess += (energy - mid) * k else: need += mid - energy if excess >= need: ans = mid l = mid else: r = mid print(ans) main()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
import sys input = sys.stdin.readline rInt = lambda: int(input()) mInt = lambda: map(int, input().split()) rList = lambda: list(map(int, input().split())) m, k = mInt() a = rList() lo = 0 hi = 1000 for _ in range(100): test = (lo + hi) / 2 bar = 0 for v in a: if v > test: bar += (100 - k) * (v - test) else: bar += 100 * (v - test) if bar > 0: lo = test else: hi = test print(test)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR VAR VAR BIN_OP NUMBER BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
def check(x): a = 0 b = 0 up = 0 dn = 0 for i in e: if i < x: b += 1 dn += i elif i > x: a += 1 up += i left = (up - a * x) * (100 - k) / 100.0 right = x * b - dn if abs(left - right) <= 10**-7: return 1 elif left > right: return 2 else: return 3 n, k = list(map(int, input().split())) e = list(map(int, input().split())) st = 0 ed = 1000 test = 0 while st <= ed: x = (st + ed) / 2 checker = check(x) if checker == 1: test = 1 print(x) break elif checker == 2: st = x + 1e-07 elif checker == 3: ed = x - 1e-07 if test == 0: print(x)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER VAR VAR IF VAR VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR BIN_OP NUMBER NUMBER RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR
It is well known that the planet suffers from the energy crisis. Little Petya doesn't like that and wants to save the world. For this purpose he needs every accumulator to contain the same amount of energy. Initially every accumulator has some amount of energy: the i-th accumulator has ai units of energy. Energy can be transferred from one accumulator to the other. Every time x units of energy are transferred (x is not necessarily an integer) k percent of it is lost. That is, if x units were transferred from one accumulator to the other, amount of energy in the first one decreased by x units and in other increased by <image> units. Your task is to help Petya find what maximum equal amount of energy can be stored in each accumulator after the transfers. Input First line of the input contains two integers n and k (1 ≤ n ≤ 10000, 0 ≤ k ≤ 99) — number of accumulators and the percent of energy that is lost during transfers. Next line contains n integers a1, a2, ... , an — amounts of energy in the first, second, .., n-th accumulator respectively (0 ≤ ai ≤ 1000, 1 ≤ i ≤ n). Output Output maximum possible amount of energy that can remain in each of accumulators after the transfers of energy. The absolute or relative error in the answer should not exceed 10 - 6. Examples Input 3 50 4 2 1 Output 2.000000000 Input 2 90 1 11 Output 1.909090909
n, k = map(int, input().split()) a = list(map(int, input().split())) s = sum(a) eps = 1e-10 rem = (100 - k) / 100 left = min(a) right = max(a) guess = left while right - left > eps: guess = left + (right - left) / 2 transferred = 0.0 missing = 0.0 for ai in a: if ai - guess > 0: transferred += rem * (ai - guess) else: missing += guess - ai if missing < transferred: left = guess else: right = guess print(guess)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR