description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
for _ in range(int(input())): n, q = map(int, input().split()) a = list(map(int, input().split())) b = list(sorted(a)) d = {} dd = {} ddd = {} for i in range(n): d[a[i]] = i dd[b[i]] = i ddd[b[i]] = n - i - 1 for __ in range(q): x = int(input()) pos = d[x] left = 0 right = n - 1 wg = 0 wl = 0 cg = 0 cl = 0 while True: mid = int((left + right) / 2) if mid == pos: break elif mid > pos: if a[mid] < a[pos]: wg += 1 else: cg += 1 right = mid - 1 elif mid < pos: if a[mid] > a[pos]: wl += 1 else: cl += 1 left = mid + 1 if wl <= dd[x] - cl and wg <= ddd[x] - cg: print(max(wl, wg)) else: print("-1")
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR STRING
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
T = int(input()) for i in range(T): N, Q = list(map(int, input().split())) nums = list(map(int, input().split())) sorted_nums = sorted(nums) sorted_index_map = {} index_map = {} for ind in range(N): sorted_index_map[sorted_nums[ind]] = ind index_map[nums[ind]] = ind for j in range(Q): X = int(input()) index_X = index_map[X] low = 0 high = N - 1 count_low_needed = 0 count_high_needed = 0 count_low_minus = 0 count_high_minus = 0 total = 0 while low <= high: mid = int((low + high) / 2) if nums[mid] == X: break elif index_X > mid: if nums[mid] > X: count_low_needed += 1 else: count_low_minus += 1 low = mid + 1 else: if nums[mid] < X: count_high_needed += 1 else: count_high_minus += 1 high = mid - 1 if count_low_needed == 0 and count_high_needed == 0: total = 0 else: total_lows = sorted_index_map[X] - count_low_minus total_highs = N - sorted_index_map[X] - 1 - count_high_minus if count_low_needed - total_lows > 0 or count_high_needed - total_highs > 0: total = -1 else: total = max(count_low_needed, count_high_needed) print(total)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR IF BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def binary(arr, x, check, lowcount, upcount): lcount = 0 ucount = 0 low = 0 high = len(arr) - 1 while low <= high: mid = (low + high) // 2 if arr[mid] == x: break if low == high and arr[mid] != x: break elif arr[mid] < x and mid < check: if lowcount == 0: ucount = -1 break lowcount -= 1 low = mid + 1 elif arr[mid] > x and mid > check: if upcount == 0: lcount = -1 break upcount -= 1 high = mid - 1 elif arr[mid] > x and mid < check: if lowcount == 0: lcount = -1 break else: lowcount -= 1 lcount += 1 low = mid + 1 elif arr[mid] < x and mid > check: if upcount == 0: ucount = -1 break else: upcount -= 1 ucount += 1 high = mid - 1 else: lcount = -1 ucount = -1 break return lcount, ucount total = int(input()) for _ in range(total): mn = list(map(int, input().split())) n = mn[0] q = mn[1] arr = list(map(int, input().split())) arr2 = {} arr_sorted = sorted(arr) arr2_sorted = {} for i in range(len(arr)): arr2_sorted[arr_sorted[i]] = i arr2[arr[i]] = i for _ in range(q): x = int(input()) check = arr2[x] check2 = arr2_sorted[x] lowcount = check2 upcount = len(arr2) - check2 - 1 lowcount2 = lowcount upcount2 = upcount lcount, ucount = binary(arr, x, check, lowcount, upcount) if lcount > lowcount2 or ucount > upcount2: print(-1) elif lcount == -1 or ucount == -1: print(-1) elif lcount + ucount > 0 and (lowcount == 0 or upcount == 0): print(-1) else: print(max(lcount, ucount))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR IF VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER RETURN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def bsearch(arr, size, ind): mid = 0 left = 0 right = size - 1 reqToGrt = 0 reqToLess = 0 changeToGrt = 0 changeToLess = 0 while left <= right: mid = (left + right) // 2 if ind == mid: break if ind < mid: if arr[ind] > arr[mid]: changeToGrt += 1 reqToGrt += 1 right = mid - 1 else: if arr[ind] < arr[mid]: changeToLess += 1 reqToLess += 1 left = mid + 1 return reqToGrt, reqToLess, changeToGrt, changeToLess def main(): t = int(input()) for _ in range(t): n, q = tuple(map(int, input().split())) pos = {} rank = {} arr = list(map(int, input().split())) b = sorted(arr) for i in range(n): pos[arr[i]] = i rank[b[i]] = i for i in range(q): x = int(input()) cnt_less = rank[x] cnt_grt = n - rank[x] - 1 reqToGrt, reqToLess, changeToGrt, changeToLess = bsearch(arr, n, pos[x]) if reqToGrt > cnt_grt or reqToLess > cnt_less: ans = -1 else: ans = min(changeToLess, changeToGrt) + abs(changeToGrt - changeToLess) print(ans) main()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) for _ in range(t): n, q = map(int, input().split()) a = list(map(int, input().split())) b = [] b1 = {} for y in range(q): k = int(input()) b.append(k) b1[k] = [0, 0] for i in range(n): if a[i] in b1: b1[a[i]][0] = i p = a.copy() p.sort() for i in range(n): if p[i] in b1: b1[p[i]][1] = i for i in range(q): s = b1[b[i]][1] pos = b1[b[i]][0] e = n - s - 1 l = 0 r = n - 1 s1 = 0 e1 = 0 s2 = 0 e2 = 0 while l <= r: m = (l + r) // 2 if m == pos: break elif m < pos: s1 += 1 if a[m] > a[pos]: s2 += 1 l = m + 1 else: e1 += 1 if a[m] < a[pos]: e2 += 1 r = m - 1 if s1 <= s and e1 <= e: print(max(s2, e2)) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) while t != 0: t -= 1 n, q = [int(x) for x in input().strip().split()] a = [int(x) for x in input().strip().split()] sorted_a = sorted(a) indexOf = {} index = 0 for ele in a: indexOf[ele] = index index += 1 index = 0 countlessthan = {} countgreaterthan = {} for ele in sorted_a: countlessthan[ele] = index countgreaterthan[ele] = n - 1 - index index += 1 while q != 0: q = q - 1 x = int(input()) low = 0 high = n - 1 swapGreaterYes = 0 swapGreaterNo = 0 swapLesserYes = 0 swapLesserNo = 0 while low <= high: mid = (low + high) // 2 if a[mid] == x: break elif a[mid] < x and indexOf[x] > mid: low = mid + 1 swapLesserNo += 1 elif a[mid] < x and indexOf[x] < mid: high = mid - 1 swapGreaterYes += 1 elif a[mid] > x and indexOf[x] < mid: swapGreaterNo += 1 high = mid - 1 elif a[mid] > x and indexOf[x] > mid: swapLesserYes += 1 low = mid + 1 neededswaps = max(swapLesserYes, swapGreaterYes) ans = neededswaps if ( swapLesserYes > countlessthan[x] - swapLesserNo or swapGreaterYes > countgreaterthan[x] - swapGreaterNo ): ans = -1 else: ans = neededswaps print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR IF VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) for tc in range(t): n, q = map(int, input().split()) a = list(map(int, input().split())) ac = sorted(a) fa = {} indices = {} for i in range(n): indices[a[i]] = i for query in range(q): x = int(input()) if fa.get(x, -2) == -2: realI = indices[x] lo = 0 hi = n - 1 mid = lo + (hi - lo) // 2 while lo <= hi: mid = lo + (hi - lo) // 2 if ac[mid] == x: break elif ac[mid] < x: lo = mid + 1 else: hi = mid - 1 ic = mid ndts = 0 ndtl = 0 bigneed = 0 smallneed = 0 lo = 0 hi = n - 1 while lo <= hi: mid = lo + (hi - lo) // 2 if a[mid] == x: break elif mid < realI: lo = mid + 1 if a[mid] < x: ndts += 1 else: smallneed += 1 elif mid > realI: hi = mid - 1 if a[mid] > x: ndtl += 1 else: bigneed += 1 bigpresent = n - ic - 1 - ndtl smallpresent = ic - ndts if bigneed <= bigpresent and smallneed <= smallpresent: swaps = 0 mn = min(bigneed, smallneed) swaps += mn swaps += bigneed + smallneed - 2 * mn fa[x] = swaps print(swaps) else: fa[x] = -1 print(-1) else: print(fa[x])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def main(): T = int(input()) for t in range(T): inp = input().split() N = int(inp[0]) Q = int(inp[1]) inp = input().split() A = [int(i) for i in inp] d = {} for i in range(N): d[A[i]] = i As = sorted(A) ds = {} for i in range(N): ds[As[i]] = i for q in range(Q): X = int(input()) ind = d[X] low = 0 high = N - 1 gl = 0 gg = 0 lg = 0 ll = 0 while low <= high: mid = int((low + high) / 2) if mid == ind: break if mid > ind: if A[mid] < X: gl += 1 else: gg += 1 high = mid - 1 else: if A[mid] > X: lg += 1 else: ll += 1 low = mid + 1 swaps = min(lg, gl) l = ds[X] g = N - l - 1 if lg > gl: if lg - gl <= l - ll - gl: print(swaps + lg - gl) else: print(-1) elif gl > lg: if gl - lg <= g - lg - gg: print(swaps + gl - lg) else: print(-1) else: print(swaps) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR IF BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def bySearch(arr, l, r, x): if r >= l: mid = (l + r) // 2 if arr[mid][0] == x: return int(mid) elif arr[mid][0] > x: return int(bySearch(arr, l, mid - 1, x)) else: return int(bySearch(arr, mid + 1, r, x)) def merge(arr, l, m, r): n1 = m - l + 1 n2 = r - m L = arr[l : m + 1] R = arr[m + 1 : r + 1] i = 0 j = 0 k = l while i < n1 and j < n2: if L[i][0] <= R[j][0]: arr[k] = L[i] i += 1 else: arr[k] = R[j] j += 1 k += 1 while i < n1: arr[k] = L[i] i += 1 k += 1 while j < n2: arr[k] = R[j] j += 1 k += 1 def mergeSort(arr, l, r): if l < r: m = (l + r) // 2 mergeSort(arr, l, m) mergeSort(arr, m + 1, r) merge(arr, l, m, r) t = int(input()) for e in range(t): n, q = [int(x) for x in input().split()] a = [[int(x), i] for i, x in enumerate(input().split())] b = a[:] mergeSort(a, 0, n - 1) d = {x[0]: i for i, x in enumerate(a)} for p in range(q): x = int(input()) j = d[x] i = a[j][1] l, h, g, s, s1, g1 = 0, n - 1, 0, 0, 0, 0 m = h // 2 while m != i: if i > m: l = m + 1 if b[m][0] > x: s += 1 s1 += 1 else: h = m - 1 if b[m][0] < x: g += 1 g1 += 1 m = (h + l) // 2 if s1 <= j and g1 <= n - 1 - j: print(max(s, g)) else: print(-1)
FUNC_DEF IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR RETURN FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER FUNC_DEF IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) while t > 0: t -= 1 n, q = map(int, input().split()) arr = list(map(int, input().split())) tarr = sorted(arr) d = {} inddir = {} for i in range(len(arr)): inddir[arr[i]] = i tarrlen = len(tarr) for i in range(len(tarr)): d[tarr[i]] = [i, tarrlen - i - 1] for _ in range(q): k = int(input()) find = inddir[k] l, r = 1, tarrlen gs = 0 ls = 0 sw = 0 tempc = d[k].copy() while l <= r: mid = (l + r) // 2 if mid - 1 == find: break elif mid - 1 < find: if arr[mid - 1] < k: if tempc[0] > 0: tempc[0] -= 1 else: sw = -1 break elif tempc[0] > 0: tempc[0] -= 1 sw += 1 ls += 1 else: sw = -1 break l = mid + 1 else: if arr[mid - 1] > k: if tempc[1] > 0: tempc[1] -= 1 else: sw = -1 break elif tempc[1] > 0: tempc[1] -= 1 sw += 1 gs += 1 else: sw = -1 break r = mid - 1 print(max(ls, gs) if sw != -1 else -1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR LIST VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR IF BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def bsc(a, di, dn, x, n): xi = dn[x] c = 0 s1, s2, l1, l2 = 0, 0, 0, 0 l, h = 0, n - 1 while l <= h: m = int((l + h) / 2) if a[m] == x: xj = di[x] if xj - s2 >= s1 and n - xj - 1 - l2 >= l1: return max(s1, l1) else: return -1 elif a[m] < x and xi < m: l1 += 1 elif a[m] > x and xi > m: s1 += 1 elif a[m] > x and xi < m: l2 += 1 elif a[m] < x and xi > m: s2 += 1 if xi > m: l, h = m + 1, h else: l, h = l, m - 1 xj = di[x] if xj - s2 >= s1 and n - xj - 1 - l2 >= l1: return max(s1, l1) else: return -1 t = int(input()) for i in range(t): n = input().split() n, q = int(n[0]), int(n[1]) a = list(map(int, input().split())) l = list(a) l.sort() di, dn = dict(), dict() for i in range(n): di[l[i]] = i dn[a[i]] = i for j in range(q): x = int(input()) print(bsc(a, di, dn, x, n))
FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR RETURN FUNC_CALL VAR VAR VAR RETURN NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR IF BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR RETURN FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) for a0 in range(t): n, q = input().strip().split(" ") n, q = int(n), int(q) arr1 = list(map(int, input().strip().split(" "))) arr = list(arr1) arr1.sort() ltgt = {} ind = {} for i in range(len(arr)): ind[arr[i]] = i for i in range(len(arr1)): ltgt[arr1[i]] = [i, n - 1 - i] for a1 in range(q): x = int(input("")) low = 0 high = n - 1 smallerreplaced = 0 largerreplaced = 0 smallernotreplaced = 0 largernotreplaced = 0 while True: mid = (low + high) // 2 if arr[mid] == x: break elif x < arr[mid] and ind[x] < mid: high = mid - 1 largernotreplaced += 1 elif x < arr[mid] and ind[x] > mid: low = mid + 1 smallerreplaced += 1 elif x > arr[mid] and ind[x] > mid: low = mid + 1 smallernotreplaced += 1 elif x > arr[mid] and ind[x] < mid: high = mid - 1 largerreplaced += 1 anstillnow = max(largerreplaced, smallerreplaced) if ( largerreplaced + largernotreplaced > ltgt[x][1] or smallerreplaced + smallernotreplaced > ltgt[x][0] ): ans = -1 else: ans = anstillnow print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR LIST VAR BIN_OP BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def Bin(arr, lo, hi, x): res = False while lo <= hi: mid = (lo + hi) // 2 if arr[mid] == x: res = True break elif arr[mid] < x: lo = mid + 1 else: hi = mid - 1 return res def Function(arr, new, dict, low, high, x): count = 0 count_1 = 0 count_2 = 0 count_3 = 0 count_4 = 0 while low < high: mid = (low + high) // 2 if arr[mid] > x and mid < new[x]: low = mid + 1 count_1 += 1 elif arr[mid] < x and mid > new[x]: high = mid - 1 count_2 += 1 elif arr[mid] > x and mid > new[x]: high = mid - 1 count_4 += 1 elif arr[mid] < x and mid < new[x]: low = mid + 1 count_3 += 1 else: break ans = max(count_1, count_2) if count_1 > dict[x] - count_3 or count_2 > n - dict[x] - 1 - count_4: ans = -1 return ans t = int(input()) for i1 in range(t): n, q = map(int, input().split()) arr = list(map(int, input().split())) new = {} t1 = 0 for i in arr: new[i] = t1 t1 += 1 dict = {} index = 0 y = arr[:] y = sorted(y) for i in y: dict[i] = index index += 1 for i in range(q): x = int(input()) r1 = Bin(y, 0, n - 1, x) r2 = Bin(arr, 0, n - 1, x) if r1 == r2: print("0") elif r1 == True and r2 == False: print(Function(arr, new, dict, 0, n - 1, x))
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER BIN_OP VAR NUMBER VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def main(): t = int(input()) for _ in range(t): n, q = map(int, input().split()) a = list(map(int, input().split())) A = [*a] mapp = dict() for i in range(n): mapp[a[i]] = [i] a.sort() for i in range(n): mapp[a[i]].append(i) mapp[a[i]].append(n - i - 1) for _ in range(q): x = int(input()) mid, ans, low, high, Xi, g, l, L, G = ( 0, 0, 0, n - 1, mapp[x][0], 0, 0, mapp[x][1], mapp[x][2], ) while low <= high: mid = low + (high - low) // 2 if Xi < mid: if A[mid] < x: if G > 0: g += 1 G -= 1 else: ans = -1 break else: G -= 1 if G < 0: ans = -1 break high = mid - 1 elif Xi > mid: if A[mid] > x: if L > 0: l += 1 L -= 1 else: ans = -1 break else: L -= 1 if L < 0: ans = -1 break low = mid + 1 else: break if ans == -1: print(-1) else: print(g if g > l else l) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR LIST VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER NUMBER NUMBER BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER NUMBER VAR VAR NUMBER VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def fakebfs(orig_array, sorted_array, indices, sorted_indices, x, n, index): index_in_sorted = sorted_indices[x] small = index_in_sorted - 1 large = index_in_sorted + 1 low = 0 high = n - 1 count = 0 num_greater = 0 num_lesser = 0 while low <= high: mid = int((low + high) / 2) elem = orig_array[mid] if elem == x: if small < -1: print(-1) break if large > n: print(-1) break print(max(num_lesser, num_greater)) break if index > mid: low = mid + 1 if elem < x: small -= 1 pass elif small > -1: small -= 1 num_lesser += 1 else: small -= 1 pass else: high = mid - 1 if elem > x: large += 1 pass elif large < n: num_greater += 1 large += 1 else: large += 1 pass test = int(input()) for t in range(test): n, q = map(int, input().split()) orig_array = list(map(int, input().split())) sorted_array = orig_array[:] sorted_array.sort() indices = dict() sorted_indices = dict() for i in range(len(sorted_array)): indices[orig_array[i]] = i sorted_indices[sorted_array[i]] = i for i in range(q): x = int(input()) fakebfs(orig_array, sorted_array, indices, sorted_indices, x, n, indices[x])
FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
for _ in range(int(input())): n, q = list(map(int, input().split())) l = [int(i) for i in input().split()] d = {} ind = {} for i in range(n): ind[l[i]] = i dup = l[:] dup = sorted(dup) for i in range(n): chote = i bade = n - i - 1 d[dup[i]] = [chote, bade] for _ in range(q): chotewale_swap = 0 badewale_swap = 0 x = int(input()) d1 = d[x].copy() f = 1 low = 0 high = n - 1 while low <= high: mid = (low + high) // 2 if ind[x] == mid: break elif ind[x] > mid and x > l[mid]: d1[0] -= 1 low = mid + 1 elif ind[x] > mid and x < l[mid]: if d1[0] == 0: f = -1 break d1[0] -= 1 chotewale_swap += 1 low = mid + 1 elif ind[x] < mid and x < l[mid]: d1[1] -= 1 high = mid - 1 elif ind[x] < mid and x > l[mid]: if d1[1] == 0: f = -1 break d1[1] -= 1 badewale_swap += 1 high = mid - 1 if f == -1: print(-1) else: print(max(chotewale_swap, badewale_swap))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR LIST VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR IF VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR IF VAR NUMBER NUMBER ASSIGN VAR NUMBER VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
for _ in range(int(input())): n, q = map(int, input().split()) hm1 = {} arr = [] brr = [] arr = list(map(int, input().split())) brr = arr[:] brr.sort() for i in range(n): hm1[arr[i]] = [0, 0] for i in range(n): hm1[arr[i]][0] = i hm1[brr[i]][1] = i for i in range(q): inp = int(input()) x = hm1[inp][0] st = 0 en = n - 1 count = 0 al = [] while st <= en: mid = (en + st) // 2 al.append(mid) if mid == x: break elif x > mid: st = mid + 1 else: en = mid - 1 al.sort() val1 = arr[x] ind1 = hm1[val1][1] ind2 = 0 flag = 0 c1 = 0 c2 = 0 for j in range(len(al)): if arr[al[j]] == val1: ind2 = j flag = 1 continue if flag == 0 and arr[al[j]] > val1: c1 += 1 elif flag == 1 and arr[al[j]] < val1: c2 += 1 if c1 > c2: count += c1 else: count += c2 if ind1 >= ind2 and len(arr) - ind1 >= len(al) - ind2: print(count) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR IF VAR VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) def binSearch(data, n, x, pos, avai): low = 0 high = n - 1 replaceLow = 0 replaceHigh = 0 lowUsed = 0 highUsed = 0 while low <= high: mid = (low + high) // 2 if mid < pos: if data[mid] < x: lowUsed += 1 low = mid + 1 else: replaceLow += 1 low = mid + 1 elif mid > pos: if data[mid] > x: highUsed += 1 high = mid - 1 else: replaceHigh += 1 high = mid - 1 else: break if replaceHigh + highUsed > n - avai - 1 or replaceLow + lowUsed > avai: return -1 else: return min(replaceHigh, replaceLow) + abs(replaceLow - replaceHigh) for _ in range(t): temp = input().split() n = int(temp[0]) q = int(temp[1]) data = list(map(int, input().split())) realPos = {} for i in range(0, len(data)): realPos[data[i]] = i newD = sorted(data) posi = {} for i in range(0, len(newD)): posi[newD[i]] = i for __ in range(q): ele = int(input()) print(binSearch(data, n, ele, realPos[ele], posi[ele]))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR RETURN NUMBER RETURN BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def binarySearchMain(sm, value, num): l = 0 r = num - 1 m = 0 while l <= r: m = (l + r) // 2 if sm[m] == value: return m elif sm[m] > value: r = m - 1 elif sm[m] < value: l = m + 1 def binarySearch(value, num): l = 0 r = num - 1 countL = 0 countR = 0 rightL = 0 rightR = 0 while l <= r: m = (l + r) // 2 if m + 1 == value: break elif m + 1 > value: if array[m] > qi: rightL += 1 countL += 1 r = m - 1 elif m + 1 < value: if array[m] < qi: rightR += 1 countR += 1 l = m + 1 return [countL, countR, rightL, rightR] tc = int(input()) while tc > 0: n, q = map(int, input().split()) array = list(map(int, input().split())) d = {} for k in range(n): d[array[k]] = k + 1 array2 = sorted(array) if n <= 10: pos1 = -1 while q > 0: qi = int(input()) pos1 = d[qi] a = binarySearch(pos1, n) flag = 1 i = binarySearchMain(array2, qi, n) if a[0] > n - i - 1 or a[2] > n - i - 1 or a[1] > i or a[3] > i: flag = 0 if flag == 0: print(-1) else: print(max(a[0] - a[2], a[1] - a[3])) q -= 1 else: pos = -1 while q > 0: qi = int(input()) pos1 = d[qi] a = binarySearch(pos1, n) flag = 1 i = binarySearchMain(array2, qi, n) if a[0] > n - i - 1 or a[2] > n - i - 1 or a[1] > i or a[3] > i: flag = 0 if flag == 0: print(-1) else: print(max(a[0] - a[2], a[1] - a[3])) q -= 1 tc -= 1
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR RETURN VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR IF BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN LIST VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def binary_search(a, n, x, d, ls): low = 0 high = n - 1 l = ls[x] h = ls[x] li = 0 lh = 0 while low <= high: mid = (low + high) // 2 if a[mid] == x: break elif a[mid] < x: if d[x] < mid: high = mid - 1 h = h + 1 lh = lh + 1 else: low = mid + 1 l = l - 1 elif d[x] > mid: low = mid + 1 l = l - 1 li = li + 1 else: high = mid - 1 h = h + 1 if h > n - 1 or l < 0: return -1 return max(li, lh) T = int(input()) for t in range(T): n, q = map(int, input().split()) l = list(map(int, input().split())) d = {} for i in range(n): d[l[i]] = i k = sorted(l) ls = {} for i in range(n): ls[k[i]] = i for i in range(q): x = int(input()) s = binary_search(l, n, x, d, ls) print(s)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER RETURN NUMBER RETURN FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
T = int(input()) for t in range(T): N, Q = map(int, input().split()) if N > 10: L1 = list(map(int, input().split())) L1.insert(0, -1) L2 = L1[:] L2.sort() D2 = dict() for i in range(1, N + 1): D2[L2[i]] = i D = dict() for i in range(1, N + 1): D[L1[i]] = i for q in range(Q): ctr = 0 A = int(input()) K = D[A] low = 1 high = N flag = True lr = 0 ld = 0 sr = 0 sd = 0 while low <= high: mid = (high + low) // 2 if L1[mid] == A: flag = False break elif L1[mid] > A and K > mid: ld += 1 sr += 1 low = mid + 1 elif L1[mid] > A and K < mid: ld += 1 high = mid - 1 elif L1[mid] < A and K > mid: sd += 1 low = mid + 1 elif L1[mid] < A and K < mid: sd += 1 lr += 1 high = mid - 1 if flag == True or ld + lr > N - D2[A] or sd + sr >= D2[A]: print(-1) elif lr == sr: print(sr) else: print(max(sr, lr)) else: L1 = list(map(int, input().split())) L1.insert(0, -1) L2 = [] for i in L1: L2.append(i) L2.sort() D2 = dict() for i in range(1, N + 1): D2[L2[i]] = i D = dict() for i in range(1, N + 1): D[L1[i]] = i for q in range(Q): ctr = 0 A = int(input()) K = D[A] low = 1 high = N flag = True lctr = 0 rctr = 0 lctr2 = 0 rctr2 = 0 while low <= high: mid = (high + low) // 2 if L1[mid] == A: flag = False break elif L1[mid] > A and K > mid: ctr += 1 rctr += 1 rctr2 += 1 low = mid + 1 elif L1[mid] > A and K < mid: lctr += 1 high = mid - 1 elif L1[mid] < A and K > mid: low = mid + 1 rctr += 1 elif L1[mid] < A and K < mid: ctr += 1 lctr2 += 1 high = mid - 1 lctr += 1 if flag == True or lctr > N - D2[A] or rctr >= D2[A]: print(-1) elif lctr2 == rctr2: print(lctr2) else: print(abs(lctr2 - rctr2))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
from sys import stdin, stdout t = int(stdin.readline()) while t: n, q = list(map(int, stdin.readline().rstrip().split())) arr = list(map(int, stdin.readline().rstrip().split())) d = {} d1 = {} a = arr.copy() a.sort() for i in range(n): d1[a[i]] = i d[arr[i]] = i while q: v = int(stdin.readline().rstrip()) index = d[v] smaller = d1[v] bigger = n - smaller - 1 low, high = 0, n - 1 c1, c2 = 0, 0 while high >= low: mid = (high + low) // 2 if mid == index: break elif index > mid: if arr[mid] > v: c1 += 1 else: smaller -= 1 low = mid + 1 else: if v > arr[mid]: c2 += 1 else: bigger -= 1 high = mid - 1 if c2 > c1: if bigger >= c2 - c1: print(c2) else: print(-1) elif c1 > c2: if smaller >= c1 - c2: print(c1) else: print(-1) else: print(c1) q -= 1 t -= 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR WHILE VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR IF VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def f(a, y, index, sorted_pos): n = len(a) low = 0 high = n - 1 L, R = 0, 0 l, r = 0, 0 while low <= high: mid = (low + high) // 2 if a[mid] == y: break elif mid > index[y]: high = mid - 1 L += 1 if a[mid] < y: l += 1 else: low = mid + 1 R += 1 if a[mid] > y: r += 1 x = sorted_pos[y] if R > x or L > n - x - 1: print("-1") else: print(max(l, r)) def fun(): test = int(input()) for t in range(test): n, q = list(map(int, input().split())) arr = list(map(int, input().split())) index = dict() for i in range(n): index[arr[i]] = i sorted_pos = dict() a = sorted(arr) for i in range(n): sorted_pos[a[i]] = i for x in range(q): y = int(input()) f(arr, y, index, sorted_pos) fun()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) for m in range(t): n, q = map(int, input().split()) arr = [int(x) for x in input().split()] grap = {} for i in range(n): grap[arr[i]] = i arr2 = sorted(arr) grap2 = {} for i in range(n): grap2[arr2[i]] = i for l in range(q): x = int(input()) low = 0 high = n - 1 left = 0 right = 0 flag = 0 swap = 0 mini_ele = grap2[x] maxi_ele = n - 1 - grap2[x] while low <= high: mid = (low + high) // 2 if arr[mid] == x: break elif grap[x] > mid: if arr[mid] < x: low = mid + 1 else: if right == 0: swap += 1 left += 1 else: right -= 1 low = mid + 1 mini_ele -= 1 if mini_ele < 0: flag = 1 break else: if arr[mid] > x: high = mid - 1 else: if left == 0: swap += 1 right += 1 else: left -= 1 high = mid - 1 maxi_ele -= 1 if maxi_ele < 0: flag = 1 break if flag == 1: print(-1) else: print(swap)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
for t in range(int(input())): n, q = map(int, input().split()) arr = list(map(int, input().split())) brr = [] pos = {} bpos = {} for i in range(n): pos[arr[i]] = i brr.append(arr[i]) brr.sort() for j in range(n): bpos[brr[j]] = j for i in range(q): x = int(input()) low = 0 high = n - 1 il = ir = cl = cr = 0 while low <= high: mid = (low + high) // 2 if arr[mid] == x: break elif x < arr[mid] and pos[x] < mid: cl += 1 high = mid - 1 elif x < arr[mid] and pos[x] > mid: ir += 1 low = mid + 1 elif x > arr[mid] and pos[x] > mid: cr += 1 low = mid + 1 else: il += 1 high = mid - 1 indx = bpos[x] elemLessThan = indx elemMoreThan = n - indx - 1 if cr + ir <= elemLessThan and cl + il <= elemMoreThan: print(max(ir, il)) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def BSearch(array, n, x): low = 0 high = n - 1 while low <= high: mid = (low + high) // 2 if array[mid] == x: break elif array[mid] < x: low = mid + 1 else: high = mid - 1 return mid def indexSearch(array, n, i, less, more): low = 0 high = n - 1 lessbad = 0 morebad = 0 while low <= high: mid = (low + high) // 2 if mid == i: break elif mid < i: if array[mid] < array[i]: less -= 1 else: morebad += 1 low = mid + 1 else: if array[mid] > array[i]: more -= 1 else: lessbad += 1 high = mid - 1 if lessbad == morebad: return lessbad elif lessbad < morebad: if less >= morebad: return morebad else: return -1 elif more >= lessbad: return lessbad else: return -1 T = int(input()) for i in range(T): N, Q = map(int, input().split()) Alist = list(map(int, input().split())) index = [] for j in range(N): index.append(j) Asorted = list(Alist) Asorted, index = (list(x) for x in zip(*sorted(zip(Asorted, index)))) for j in range(Q): X = int(input()) a = BSearch(Asorted, N, X) inda = index[a] less1 = a more1 = N - a - 1 ans = indexSearch(Alist, N, inda, less1, more1) print(ans)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR RETURN VAR IF VAR VAR IF VAR VAR RETURN VAR RETURN NUMBER IF VAR VAR RETURN VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def binarySearch(start, end, xindex, opList): if start <= end: midindex = int((start + end) / 2) opList.append(midindex) if xindex < midindex: return binarySearch(start, midindex - 1, xindex, opList) elif xindex > midindex: return binarySearch(midindex + 1, end, xindex, opList) else: return opList def counter(opList, a, x): small = 0 big = 0 rightSmall = 0 rightBig = 0 for i in range(len(opList) - 1): if opList[i] < opList[i + 1]: if x < a[opList[i]]: small += 1 else: rightSmall += 1 elif x > a[opList[i]]: big += 1 else: rightBig += 1 flag = isBigSmallAvailable(small, big, x, a, rightBig, rightSmall) if flag: total = small + big total = total - min(small, big) return total else: return -1 def isBigSmallAvailable(small, big, x, a, rightBig, rightSmall): s = 0 b = 0 for i in range(len(a)): if a[i] < x: s += 1 if a[i] > x: b += 1 s = s - rightSmall b = b - rightBig if s >= small and b >= big: return True return False t = int(input()) swapCount = 0 swaped = [] visited = [] for z in range(t): l = list(map(int, input().split())) n = int(l[0]) q = int(l[1]) aa = list(map(int, input().split())) for i in range(q): swapCount = 0 swaped.clear() visited.clear() a = aa[:] x = int(input()) xindex = a.index(x) opList = [] result = binarySearch(0, n - 1, xindex, opList) count = counter(opList, a, x) print(count)
FUNC_DEF IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR RETURN FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR IF VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR RETURN VAR RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def binary_search(a, n, x): low = 0 high = n - 1 while low <= high: mid = (low + high) // 2 if a[mid][0] == x: break elif a[mid][0] < x: low = mid + 1 else: high = mid - 1 return mid def fake_binary_search(a, b, n, x): low = 0 high = n - 1 swap = 0 swap1 = 0 swap2 = 0 t2 = binary_search(b, n, x) t1 = t2 t = b[t2][1] while low <= high: mid = (low + high) // 2 if a[mid][0] == x: break elif a[mid][0] < x: if mid > t: if swap2 > 0: swap2 -= 1 else: swap += 1 swap1 += 1 high = mid - 1 else: t2 -= 1 low = mid + 1 elif mid < t: if swap1 > 0: swap1 -= 1 else: swap2 += 1 swap += 1 low = mid + 1 else: t1 += 1 high = mid - 1 if swap > t2 or swap > n - 1 - t1: swap = -1 return swap for _ in range(int(input())): n, q = map(int, input().split()) A = list(map(int, input().split())) for i in range(n): A[i] = [A[i], i] B = sorted(A) for i in range(q): x = int(input()) print(fake_binary_search(A, B, n, x))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR IF VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
from sys import stdin def binary_count(a, dorg, dinc, n, x): low = 0 high = n - 1 smalln = dinc[x] bign = n - 1 - dinc[x] smallu = 0 bigu = 0 pos = dorg[x] while low <= high: mid = (low + high) // 2 if mid == pos: return max(bigu, smallu) elif a[mid] < x: if mid < pos: if smalln > 0: low = mid + 1 smalln -= 1 else: break elif bign > 0: bigu += 1 bign -= 1 high = mid - 1 else: break elif mid > pos: if bign > 0: high = mid - 1 bign -= 1 else: break elif smalln > 0: smallu += 1 smalln -= 1 low = mid + 1 else: break return -1 for _ in range(int(stdin.readline().strip())): n, q = tuple(map(int, stdin.readline().split())) a = list(map(int, stdin.readline().split())) x = [int(stdin.readline().strip()) for i in range(q)] da = {n: i for i, n in enumerate(a)} a2 = sorted(a) d2 = {n: i for i, n in enumerate(a2)} print("\n".join([str(binary_count(a, da, d2, n, c)) for c in x]))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN FUNC_CALL VAR VAR VAR IF VAR VAR VAR IF VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) for a0 in range(t): n, q = map(int, input().split()) a = list(map(int, input().split())) dicta = {} for i in range(n): dicta[a[i]] = i c = [] b = [] for i in range(n): b.append(i) d = [] for i in a: d.append(i) d.sort() dictd = {} for i in range(n): dictd[d[i]] = i for i in range(q): num = int(input()) pos = dicta[num] c = [] low = 0 high = n - 1 while low <= high: mid = (low + high) // 2 c.append(b[mid]) if b[mid] == pos: break elif b[mid] < pos: low = mid + 1 else: high = mid - 1 ct1 = ct2 = ct3 = ct4 = 0 for i in range(len(c) - 1): if c[i] < c[i + 1]: if a[c[i]] > num: ct1 += 1 ct3 += 1 else: if a[c[i]] < num: ct2 += 1 ct4 += 1 if ct3 <= dictd[num] and ct4 <= n - dictd[num] - 1: print(max(ct1, ct2)) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def Query(A, x, index, n, X): y = n - x - 1 stepL = 0 stepH = 0 low = 0 high = n - 1 while low <= high: mid = (low + high) // 2 if mid == index: break elif index > mid: low = mid + 1 if A[mid] > X: if x > 0: stepL += 1 x -= 1 else: return -1 elif x > 0: x -= 1 else: return -1 else: high = mid - 1 if A[mid] < X: if y > 0: stepH += 1 y -= 1 else: return -1 elif y > 0: y -= 1 else: return -1 return max(stepL, stepH) for _ in range(int(input())): n, q = map(int, input().split()) A = list(map(int, input().split())) B = sorted(A) D1 = {} D2 = {} for i in range(n): D1[A[i]] = i D2[B[i]] = i for i in range(q): x = int(input()) print(Query(A, D2[x], D1[x], n, x))
FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER RETURN FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def modified_binary(a, key, l, u): while l <= u: mid = (l + u) // 2 if a[mid][0] == key: break elif a[mid][0] > key: u = mid - 1 else: l = mid + 1 return [a[mid][1], mid] for _ in range(int(input())): n, q = [int(x) for x in input().split()] a1 = input().split() a = [[int(a1[x]), x] for x in range(n)] e = sorted(a, key=lambda x: x[0]) m = [] for x in range(q): m.append(int(input())) for key in m: p = 0 index, left = modified_binary(e, key, 0, n - 1) right = n - 1 - left ini = 0 last = n - 1 l, r, h, u1, u2 = 0, 0, 0, 0, 0 while last >= ini: mid = (ini + last) // 2 if mid == index: break elif mid > index: if a[mid][0] < key: r += 1 else: u2 += 1 last = mid - 1 else: if a[mid][0] > key: l += 1 else: u1 += 1 ini = mid + 1 h += 1 if right - u2 >= r and left - u1 >= l: swap = h - min(l, r) - u1 - u2 p = 1 if p == 1: print(swap) else: print(-1)
FUNC_DEF WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN LIST VAR VAR NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER NUMBER NUMBER NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
for i in range(0, int(input())): lookUp = {} lookUpSorted = {} N, Q = map(int, input().split()) A = [int(i) for i in input().split()] for count, i in enumerate(A): lookUp[int(i)] = count for count, i in enumerate(sorted(A)): lookUpSorted[i] = count B = [int(input()) for _ in range(Q)] for snum in B: ll = 0 ul = len(A) - 1 smallerSwapable = lookUpSorted[snum] largerSwapable = len(A) - (lookUpSorted[snum] + 1) incorrectRight = 0 incorrectLeft = 0 output = None while ul >= ll: mid = int((ul + ll) / 2) if largerSwapable < 0 or smallerSwapable < 0: output = -1 break elif A[mid] == snum: break elif A[mid] > snum and mid > lookUp[snum]: ul = mid - 1 largerSwapable -= 1 elif A[mid] > snum and mid < lookUp[snum]: ll = mid + 1 smallerSwapable -= 1 incorrectLeft += 1 elif A[mid] < snum and mid < lookUp[snum]: ll = mid + 1 smallerSwapable -= 1 elif A[mid] < snum and mid > lookUp[snum]: ul = mid - 1 largerSwapable -= 1 incorrectRight += 1 if output == None: print( abs(incorrectRight - incorrectLeft) + min(incorrectRight, incorrectLeft) ) else: print(output)
FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NONE WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NONE EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def mergeSort(alist, a): b = [] if len(alist) > 1: mid = len(alist) // 2 lefthalf = alist[:mid] righthalf = alist[mid:] la = a[:mid] ra = a[mid:] mergeSort(lefthalf, la) mergeSort(righthalf, ra) i = 0 j = 0 k = 0 while i < len(lefthalf) and j < len(righthalf): if lefthalf[i] < righthalf[j]: alist[k] = lefthalf[i] a[k] = la[i] i = i + 1 else: alist[k] = righthalf[j] a[k] = ra[j] j = j + 1 k = k + 1 while i < len(lefthalf): alist[k] = lefthalf[i] a[k] = la[i] i = i + 1 k = k + 1 while j < len(righthalf): alist[k] = righthalf[j] a[k] = ra[j] j = j + 1 k = k + 1 def index(a, x): for i in range(1, len(a) + 1): if x == a[i]: return i break def cc(a, low, high, x): j = 0 while j < len(a) // 2: mid = (low + high) // 2 if x == a[mid]: return mid break elif x > a[mid]: j += 1 low = mid + 1 else: j += 1 high = mid - 1 def chalega(a, x, i, si, low, high, b, c, j): gx = len(a) - 1 - si lx = si - 1 l = 0 r = 0 while j < len(a): mid = (low + high) // 2 if l > lx or r > gx: c = -1 break elif i == mid: c += 0 break elif i < mid: if x > a[mid]: r += 1 high = mid - 1 j += 1 elif x < a[mid]: gx -= 1 high = mid - 1 j += 1 elif i > mid: if x > a[mid]: low = mid + 1 j += 1 lx -= 1 else: l += 1 low = mid + 1 j += 1 if c != -1: if l >= r: c = l else: c = r return c t = int(input()) for i in range(t): nq = input().split() n = int(nq[0]) + 1 q = int(nq[1]) nn = input().split() a = [0] aa = [0] b = [0] dic = {} for j in range(n - 1): dic[int(nn[j])] = j + 1 a.append(int(nn[j])) b.append(int(nn[j])) b.sort() for k in range(q): x = int(input()) z = cc(b, 1, len(b) - 1, x) y = dic[x] print(chalega(a, x, y, z, 1, len(a) - 1, b, 0, 0))
FUNC_DEF ASSIGN VAR LIST IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR RETURN VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def bs(l, x, i, n, si): low = 1 high = n lc = 0 gc = 0 l1 = 0 g1 = 0 mid = (low + high) // 2 while mid != i: if i > mid: l1 = l1 + 1 low = mid + 1 if l[mid] > x: lc = lc + 1 if i < mid: g1 = g1 + 1 high = mid - 1 if l[mid] < x: gc = gc + 1 mid = (low + high) // 2 g1 = g1 - (n - si - 1) l1 = l1 - si if g1 > 0 or l1 > 0: return -1 else: return max(lc, gc) t = int(input()) for k in range(t): r = input().split() n = int(r[0]) q = int(r[1]) l = [int(x) for x in input().split()] l.insert(0, -1000) d1 = {} for i in range(1, n + 1): d1[l[i]] = i s = l[0 : n + 1] s.sort() d2 = {} for i in range(1, n + 1): d2[s[i]] = i for j in range(q): x = int(input()) index = d1[x] print(bs(l, x, index, n, d2[x] - 1))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER RETURN NUMBER RETURN FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def search(arr, l, r, x, index, small, SMALL, large, LARGE): mid = int((l + r) / 2) if index == mid: return small, SMALL, large, LARGE elif index < mid: if arr[mid] < x: large += 1 else: LARGE += 1 return search(arr, l, mid - 1, x, index, small, SMALL, large, LARGE) else: if arr[mid] < x: SMALL += 1 else: small += 1 return search(arr, mid + 1, r, x, index, small, SMALL, large, LARGE) def SIndex_Index(Sorted, l, r, x): mid = int((l + r) / 2) if Sorted[mid][1] == x: return mid, Sorted[mid][0] elif Sorted[mid][1] < x: return SIndex_Index(Sorted, mid + 1, r, x) else: return SIndex_Index(Sorted, l, mid - 1, x) T = int(input()) for l in range(T): N, Q = input().split(" ") N = int(N) Q = int(Q) arr = input().split(" ") for p in range(N): arr[p] = int(arr[p]) Sorted = sorted(enumerate(arr), key=lambda x: x[1]) for k in range(Q): x = int(input()) SIndex, Index = SIndex_Index(Sorted, 0, N - 1, x) small, SMALL, large, LARGE = search(arr, 0, N - 1, x, Index, 0, 0, 0, 0) leftS = SIndex - SMALL leftL = N - SIndex - 1 - LARGE if leftS >= small and leftL >= large: print(max(small, large)) else: print(-1)
FUNC_DEF ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN VAR VAR VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR RETURN VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def binary(a, n, x): low = 0 high = n - 1 pos = 0 while low <= high: mid = (low + high) // 2 if a[mid] == x: pos = 1 break elif a[mid] < x: low = mid + 1 else: high = mid - 1 return mid, pos def spbinary(a, a1, n, x, x1): low = 0 high = n - 1 small = [] great = [] cs = 0 cg = 0 cis = 0 cig = 0 while low <= high: mid = (low + high) // 2 if a[mid] == x: pos = 1 break elif a[mid] < x: low = mid + 1 if a1[mid] < x1: cis += 1 else: cs += 1 else: high = mid - 1 if a1[mid] > x1: cig += 1 else: cg += 1 return cg, cs, cig, cis for _ in range(int(input())): n, q = map(int, input().split()) s = [] for i in range(1, n + 1): s.append(i) a = list(map(int, input().split())) d = {} index = [] sorte = sorted(a) dsorte = {} for i in range(n): d[a[i]] = i index.append(i) dsorte[sorte[i]] = i for b in range(q): x = int(input()) mid, pos = binary(a, n, x) if pos == 1: print(0) else: ptr = d[x] smaller = [] greater = [] cg, cs, cig, cis = spbinary(index, a, n, ptr, x) big = n - dsorte[x] - 1 less = dsorte[x] big -= cig less -= cis if less >= cs and big >= cg: if max(cs, cg) <= min(less, big): res = max(cs, cg) print(res) else: print("-1") else: print("-1")
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def minswaps(A, A2, D, n, x): g, s, cg, cs = 0, 0, 0, 0 si, li = 0, n - 1 while si <= li: mid = (si + li) // 2 if mid == D[x]: break elif mid < D[x]: if A[mid] < x: cg += 1 g += 1 si = mid + 1 else: if A[mid] > x: cs += 1 s += 1 li = mid - 1 smaller = A2[x] larger = n - A2[x] - 1 if s - cs == g - cg: return s - cs elif s - cs > g - cg: if larger - cs >= s - cs: return s - cs else: return -1 elif smaller - cg >= g - cg: return g - cg else: return -1 def solve(): n, q = map(int, input().split()) A = list(map(int, input().split())) A2 = sorted(A) Dict1 = {} Dict2 = {} for i in range(n): Dict1[A[i]] = i for j in range(n): Dict2[A2[j]] = j for que in range(q): Q = int(input()) ans = minswaps(A, Dict2, Dict1, n, Q) print(ans) t = int(input()) for _ in range(t): solve()
FUNC_DEF ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR RETURN NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR RETURN NUMBER FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
for t in range(int(input())): n, q = [int(x) for x in input().strip().split()] a = [int(x) for x in input().strip().split()] d = {ai: i for i, ai in enumerate(a)} b = {ai: i for i, ai in enumerate(sorted(a))} for query in range(q): x = int(input()) need_above = 0 need_below = 0 used_above = 0 used_below = 0 low = 1 high = n while True: mid = (low + high) // 2 if a[mid - 1] == x: break elif a[mid - 1] < x: if d[x] > mid - 1: low = mid + 1 used_below += 1 else: high = mid - 1 need_above += 1 elif d[x] > mid - 1: low = mid + 1 need_below += 1 else: high = mid - 1 used_above += 1 if need_below + used_below > b[x] or need_above + used_above > n - 1 - b[x]: print(-1) else: print(max(need_below, need_above))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER VAR IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) for _ in range(t): n, q = input().split() n = int(n) q = int(q) a = list(map(int, input().split())) b = list(a) b.sort() d = {} small = {} big = {} for i in range(n): d[a[i]] = i small[b[i]] = i big[b[i]] = n - i - 1 for test in range(q): x = int(input()) low = 0 high = n - 1 count_small = 0 count_big = 0 check_small = 0 check_big = 0 flag = 0 while low <= high: mid = (low + high) // 2 if a[mid] == x: break elif x > a[mid] and d[x] > d[a[mid]]: if small[x] > check_small: check_small += 1 low = mid + 1 else: flag = 1 break elif x < a[mid] and d[x] < d[a[mid]]: if big[x] > check_big: check_big += 1 high = mid - 1 else: flag = 1 break elif x > a[mid] and d[x] < d[a[mid]]: if big[x] > check_big: high = mid - 1 count_big += 1 check_big += 1 else: flag = 1 break elif x < a[mid] and d[x] > d[a[mid]]: if small[x] > check_small: low = mid + 1 count_small += 1 check_small += 1 else: flag = 1 break if flag == 1: print("-1") else: print(max(count_big, count_small))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
for t in range(int(input())): N, Q = [int(x) for x in input().split()] A = [int(x) for x in input().split()] B = sorted(A) D = {} for i in range(len(A)): D[A[i]] = [i] for i in range(len(B)): D[B[i]].append(i) results = [] queries = [int(input()) for q in range(Q)] for q in queries: low, high = 1, N index = D[q][0] + 1 back, forward = [], [] maxswap = N - D[q][1] - 1 minswap = N - maxswap - 1 stop = 0 while low <= high: mid = (low + high) // 2 if mid == index: break elif mid > index: high = mid - 1 if A[mid - 1] < q: forward.append(A[mid - 1]) else: maxswap -= 1 elif mid < index: low = mid + 1 if A[mid - 1] > q: back.append(A[mid - 1]) else: minswap -= 1 lenf, lenb = len(forward), len(back) swap = min(lenf, lenb) rest = max(lenf, lenb) - swap minswap, maxswap = minswap - swap, maxswap - swap swapspace = min(minswap, maxswap) if swapspace < rest: results.append(-1) stop = 1 elif swapspace >= rest: swap += rest if not stop: results.append(swap) for result in results: print(result)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR LIST VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR LIST LIST ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR VAR IF VAR EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def bs(arr, n, x): low = 0 high = n while low <= high: mid = (low + high) // 2 if arr[mid] == x: break elif arr[mid] < x: low = mid + 1 else: high = mid - 1 return mid def mbs(arr, n, x, ltX, oI): low = 0 high = n acG = 0 need2G = 0 needG = 0 needL = 0 mtX = n - ltX swaps = 0 while low <= high: mid = (low + high) // 2 if arr[mid] == x: break elif arr[mid] < x and oI < mid: needG += 1 need2G += 1 high = mid - 1 swaps += 1 elif arr[mid] < x: low = mid + 1 needL += 1 elif arr[mid] > x and oI > mid: acG += 1 needL += 1 low = mid + 1 swaps += 1 else: high = mid - 1 needG += 1 interior_swaps = min(need2G, acG) if needG > mtX or needL > ltX: return -1 else: return swaps - interior_swaps for i in range(int(input())): n, q = list(map(int, input().split())) arr = [] arr2 = [] d = dict() arr = list(map(int, input().split())) arr2 = list(arr) for i1 in range(n): d[arr[i1]] = i1 arr2.sort() for k in range(q): x = int(input()) oI = d[x] nltX = bs(arr2, n - 1, x) print(mbs(arr, n - 1, x, nltX, oI))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR RETURN NUMBER RETURN BIN_OP VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) for _ in range(t): n, q = map(int, input().split()) ls = list(map(int, input().split())) d = {} for i in range(n): d[ls[i]] = i sl = sorted(ls) ds = {} for i in range(n): ds[sl[i]] = i for __ in range(q): x = int(input()) ind = d[x] h = n - 1 l = 0 il = [] while h >= l: m = h + l >> 1 il.append(m) if m == ind: break elif m < ind: l = m + 1 else: h = m - 1 g = 0 l = 0 G = 0 L = 0 for i in range(len(il) - 1): if il[i] > il[i + 1] and ls[il[i]] < x: g += 1 elif il[i] > il[i + 1]: G += 1 elif il[i] < il[i + 1] and ls[il[i]] > x: l += 1 elif il[i] < il[i + 1]: L += 1 ix = ds[x] if ix >= l + L and n - ix - 1 >= g + G: print(max(l, g)) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR IF VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def inde(x, sarr): low, high = 1, len(sarr) while low <= high: mid = (low + high) // 2 if sarr[mid][1] == x: break elif sarr[mid][1] < x: low = mid + 1 else: high = mid - 1 return mid def swapcount(low, high, k, arr, grtmark, lessmark): mid = (low + high) // 2 if mid == k or low > high: return [0, 0, grtmark, lessmark] elif mid > k and arr[mid] > x: return swapcount(low, mid - 1, k, arr, grtmark + 1, lessmark) elif mid > k and arr[mid] < x: temp = swapcount(low, mid - 1, k, arr, grtmark, lessmark) return [temp[0], temp[1] + 1, temp[2], temp[3]] elif mid < k and arr[mid] < x: return swapcount(mid + 1, high, k, arr, grtmark, lessmark + 1) elif mid < k and arr[mid] > x: temp = swapcount(mid + 1, high, k, arr, grtmark, lessmark) return [temp[0] + 1, temp[1], temp[2], temp[3]] t = int(input()) while t: t -= 1 arr = [0] sarr = list() n, q = [int(nag) for nag in input().split()] sat = [int(satish) for satish in input().split()] arr += sat for i2 in range(0, n + 1): ltem = [i2, arr[i2]] sarr.append(ltem) sarr.sort(key=lambda x: x[1]) while q: q -= 1 x = int(input()) pos = inde(x, sarr) k = sarr[pos][0] ans = swapcount(1, n, k, arr, 0, 0) uless = pos - 1 - ans[3] uhigh = n - pos - ans[2] if uless >= ans[0] and uhigh >= ans[1]: print(max(ans[0], ans[1])) else: print("-1")
FUNC_DEF ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR RETURN LIST NUMBER NUMBER VAR VAR IF VAR VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR RETURN LIST VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR RETURN FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR RETURN LIST BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR LIST VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) for i in range(t): a = input() b = a.split() n = int(b[0]) q = int(b[1]) c = input() d = c.split() e = {} ff = [] for j in range(n): d[j] = int(d[j]) ff.append(int(d[j])) e[int(d[j])] = j d.sort() g = {} for l in range(n): g[int(d[l])] = l for k in range(q): f = int(input()) low = 0 high = n - 1 swaps = 0 s1 = 0 s2 = 0 o = 0 big = n - g[f] - 1 small = g[f] p = 0 while low <= high: mid = (low + high) // 2 if mid == e[f]: break elif ff[mid] > f and e[f] < mid: big -= 1 high = mid - 1 elif ff[mid] < f and mid < e[f]: small -= 1 low = mid + 1 elif ff[mid] > f and e[f] > mid: s1 += 1 low = mid + 1 elif ff[mid] < f and e[f] < mid: s2 += 1 high = mid - 1 swaps = min(s1, s2) + (max(s1, s2) - min(s1, s2)) if swaps <= min(small, big): print(swaps) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def bs(a, n, x): low = 0 high = n - 1 while low <= high: mid = (low + high) // 2 if a[mid] == x: break elif a[mid] < x: low = mid + 1 else: high = mid - 1 return mid t = int(input()) for _ in range(t): n, q = input().split() n = int(n) q = int(q) a = list(map(int, input().split())) arr = list() for i in range(n): al = list() al.append(a[i]) al.append(i) arr.append(al) b = list(a) b.sort() barr = list(arr) barr.sort(key=lambda barr: barr[0]) for p in range(q): qu = int(input()) index_sorted = bs(b, n, qu) s = index_sorted os = s l = n - s - 1 ol = l index_unsorted = barr[index_sorted][1] low = 0 high = n - 1 flag = 0 sc = lc = 0 mid = (low + high) // 2 while low <= high: if s == -1 or l == -1: flag = 1 break mid = (low + high) // 2 if mid == index_unsorted: break elif mid < index_unsorted: if a[mid] > qu: sc = sc + 1 s = s - 1 low = mid + 1 else: if a[mid] < qu: lc = lc + 1 l = l - 1 high = mid - 1 if flag == 1: print(-1) elif sc > lc: print(sc) else: print(lc)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def bst2(B, n, number): l = 0 h = n - 1 while l <= h: m = l + h >> 1 if B[m] == number: return m elif B[m] > number: h = m - 1 else: l = m + 1 def BST(A, n, index, i): l, h = 0, n - 1 lm = ln = 0 lm1 = ln1 = 0 while l <= h: m = l + h >> 1 if m == index: break elif m < index: l = m + 1 if A[m] > A[index]: ln += 1 else: ln1 += 1 else: h = m - 1 if A[m] < A[index]: lm += 1 else: lm1 += 1 if ln <= i - ln1 and lm <= n - i - 1 - lm1: return max(lm, ln) return -1 for _ in range(int(input())): memo = {} n, q = list(map(int, input().split())) A = list(map(int, input().split())) B = sorted(A) for i in range(n): memo[A[i]] = i for _ in range(q): x = int(input()) i = bst2(B, n, x) print(BST(A, n, memo[x], i))
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR RETURN VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR RETURN FUNC_CALL VAR VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def fake_bs(inputs, n, dest_idx, elements_before_q, elements_after_q, res): if dest_idx in res: return res[dest_idx] l = 0 h = n - 1 before_swaps = 0 after_swaps = 0 while l <= h: mid = (l + h) // 2 if mid == dest_idx: res[dest_idx] = max(before_swaps, after_swaps) break elif dest_idx > mid and elements_before_q > 0: if inputs[mid] > inputs[dest_idx]: before_swaps += 1 elements_before_q -= 1 l = mid + 1 elif dest_idx < mid and elements_after_q > 0: if inputs[mid] < inputs[dest_idx]: after_swaps += 1 elements_after_q -= 1 h = mid - 1 else: res[dest_idx] = -1 break return res[dest_idx] t = int(input()) while t: t -= 1 inputs = list(map(int, input().split())) n, q = inputs[0], inputs[1] inputs = list(map(int, input().split())) res = {} is_sorted = True index_of = {} for i in range(n): index_of[inputs[i]] = i if is_sorted and i > 0 and inputs[i - 1] > inputs[i]: is_sorted = False sorted_index_of = {} if not is_sorted: sorted_inputs = sorted(inputs) for i in range(n): sorted_index_of[sorted_inputs[i]] = i for i in range(q): num = int(input()) if is_sorted: print(0) continue print( fake_bs( inputs, n, index_of[num], sorted_index_of[num], n - 1 - sorted_index_of[num], res, ) )
FUNC_DEF IF VAR VAR RETURN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER RETURN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR DICT IF VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
for _ in range(int(input())): n, q = map(int, input().split()) a = list(map(int, input().split())) b = [] for i in a: b.append(i) b.sort() les = {} p = 0 for i in b: les[i] = p p += 1 di = {} for i in range(n): di[a[i]] = i for i in range(q): x = int(input()) k1, k2, k3, k4 = 0, 0, 0, 0 actual = di[x] start = 0 end = n - 1 while start < end: mid = (start + end) // 2 if mid == actual: break elif mid < actual: if a[mid] > x: k1 += 1 else: k3 += 1 start = mid + 1 else: if a[mid] < x: k2 += 1 else: k4 += 1 end = mid - 1 k = max(k1, k2) if k1 > les[x] - k3 or k2 > n - les[x] - 1 - k4: k = -1 print(k)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR NUMBER NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input().strip()) def binary_search(a, val): index = dic[val] n_lo_val = dic2[val] n_high_val = n - 1 - dic2[val] mutual_swap1 = [] mutual_swap2 = [] def checktruepath(n_lo_val, n_high_val): low1 = 0 high1 = n - 1 while low1 <= high1: mid = (low1 + high1) // 2 if a[mid] == val: break elif a[mid] < val: if index > mid: n_lo_val -= 1 low1 = mid + 1 else: mutual_swap1.append(a[mid]) high1 = mid - 1 elif index < mid: n_high_val -= 1 high1 = mid - 1 else: mutual_swap2.append(a[mid]) low1 = mid + 1 return n_lo_val, n_high_val n_lo_val, n_high_val = checktruepath(n_lo_val, n_high_val) low = 0 high = n - 1 swaps = 0 while low <= high: mid = (low + high) // 2 if a[mid] == val: break elif a[mid] < val: if index > mid: low = mid + 1 elif n_high_val: swaps += 1 n_high_val -= 1 high = mid - 1 else: swaps = -1 break elif index < mid: high = mid - 1 elif n_lo_val: swaps += 1 n_lo_val -= 1 low = mid + 1 else: swaps = -1 break if swaps == -1: return swaps else: return swaps - min(len(mutual_swap2), len(mutual_swap1)) for i in range(t): n, q = [int(i) for i in input().strip().split(" ")] lis1 = [int(i) for i in input().strip().split(" ")] dic = {} for i in range(n): dic[lis1[i]] = i lis2 = [] for i in lis1: lis2.append(i) dic2 = {} lis2.sort() for i in range(n): dic2[lis2[i]] = i for i in range(q): quer = int(input()) swaps = binary_search(lis1, quer) print(swaps)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER RETURN VAR RETURN BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR DICT EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
T = int(input()) D = [None] * 10000001 while T > 0: D1 = [0] * 10000001 D2 = [0] * 10000001 N, Q = input().strip().split(" ") N, Q = [int(N), int(Q)] A = list() A = list(map(int, input().strip().split(" "))) B = [None] * N E = [None] * N z = 0 C = [None] * Q for i in range(0, N): B[i] = A[i] for i in range(0, Q): C[i] = int(input()) B.sort() t = 0 for i in range(0, N): x = A[i] low = 0 high = N - 1 flag = 0 swapl = 0 swapr = 0 l1 = 0 r1 = 0 while high >= 0: mid = int((low + high) // 2) if A[mid] == x: break if A[mid] < x: if mid > i: if B[N - 1 - l1] > x: swapl = swapl + 1 else: flag = 1 break high = mid - 1 l1 = l1 + 1 else: low = mid + 1 r1 = r1 + 1 elif mid < i: if B[r1] < x: swapr = swapr + 1 else: flag = 1 break low = mid + 1 r1 = r1 + 1 else: high = mid - 1 l1 = l1 + 1 if l1 > 0 and B[N - l1] <= x: flag = 1 if r1 > 0 and B[r1 - 1] >= x: flag = 1 if x >= 10000000: x1 = x x = x % 10000000 x1 = (x1 - x) // 10000000 if D1[x] == 0: D1[x] = t * 100 t = t + 1 if flag == 0: if swapl > swapr: D2[x1 + D1[x]] = swapl else: D2[x1 + D1[x]] = swapr else: D2[x1 + D1[x]] = -1 elif flag == 0: if swapl > swapr: D[x] = swapl else: D[x] = swapr else: D[x] = -1 for i in range(0, Q): x = C[i] if x >= 10000000: x1 = x x = x % 10000000 x1 = (x1 - x) // 10000000 print(D2[x1 + D1[x]]) else: print(D[x]) T = T - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NONE NUMBER WHILE VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR LIST FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NONE VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR IF VAR VAR IF VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def path(arr, n, x): l = 0 h = n - 1 left = [] right = [] while l <= h: m = (l + h) // 2 if arr[m] == x: break elif arr[m] > x: left.append(arr[m]) h = m - 1 else: right.append(arr[m]) l = m + 1 return left, right t = int(input()) for z in range(t): l = [int(a) for a in input().split()] n = l[0] q = l[1] ad = [int(s) for s in input().split()] arr = [-1] * n dict2 = {} b = sorted(ad) for i in range(n): dict2[b[i]] = i arr[i] = i swaps = [-1] * n for i in range(n): x = ad[i] pos = i ps = dict2[x] pl = ps ph = n - 1 - ps l = 0 h = n - 1 kl = 0 kh = 0 can = 1 left, right = path(arr, n, pos) nl = len(left) nr = len(right) if nl > ph or nr > pl: can = 0 while l <= h: m = (l + h) // 2 if pos == m: break if pos > m: if x < ad[m]: kl += 1 l = m + 1 else: if x > ad[m]: kh += 1 h = m - 1 if can == 0: swaps[ps] = -1 else: swaps[ps] = kh + kl - min(kh, kl) for y in range(q): z = int(input()) print(swaps[dict2[z]])
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
T = int(input()) for cases in range(T): N, Q = map(int, input().split()) A = list(map(int, input().split())) Asorted = A[:] Asorted.sort() pos = {} Sortpos = {} for i in range(N): pos[A[i]] = i for i in range(N): Sortpos[Asorted[i]] = i for i in range(Q): X = int(input()) low = 0 high = N - 1 mid = (low + high) // 2 cg = 0 cl = 0 a = 0 b = 0 while low <= high and A[mid] != X: mid = (low + high) // 2 if A[mid] > X: if pos[X] > mid: cg += 1 low = mid + 1 if pos[X] < mid: high = mid - 1 b += 1 elif A[mid] < X: if pos[X] > mid: low = mid + 1 a += 1 if pos[X] < mid: cl += 1 high = mid - 1 p = Sortpos[X] if cg == cl: print(cl) elif cl > cg: if cl + b <= N - p - 1: print(cl) else: print(-1) elif cg + a <= p: print(cg) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR IF BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
indexdict = {} def binsearch(key): low, high = 0, len(temp) - 1 while low <= high: mid = (low + high) // 2 if temp[mid] == key: return mid elif temp[mid] < key: low = mid + 1 else: high = mid - 1 return None def fakebinsearch(key): low = 0 high = len(arr) - 1 ind = indexdict[key] smaller = bigger = 0 t = binsearch(key) sm, lg = t, len(temp) - t - 1 while low <= high: mid = (low + high) // 2 if mid == ind: break elif mid > ind: if arr[mid] < key: smaller += 1 else: lg -= 1 high = mid - 1 else: if arr[mid] > key: bigger += 1 else: sm -= 1 low = mid + 1 mn = min(smaller, bigger) sm -= mn lg -= mn diff = abs(smaller - bigger) if smaller == bigger: return smaller elif smaller > bigger: if lg >= diff: return smaller else: return -1 elif sm >= diff: return bigger else: return -1 for _ in range(int(input())): n, q = map(int, input().split()) arr = list(map(int, input().split())) temp = sorted(arr) for i in range(n): indexdict[arr[i]] = i for _1 in range(q): x = int(input()) print(fakebinsearch(x))
ASSIGN VAR DICT FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR RETURN VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN NONE FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR RETURN VAR IF VAR VAR IF VAR VAR RETURN VAR RETURN NUMBER IF VAR VAR RETURN VAR RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def bin(arr, x, l, r): while l <= r: mid = (r + l) // 2 if arr[mid] == x: return mid elif arr[mid] < x: l = mid + 1 else: r = mid - 1 def sol(index, sindex, arr, l, r, x): count1 = 0 count2 = 0 smr = 0 gtr = 0 smlr = sindex - l grtr = r - sindex while l <= r: mid = (r + l) // 2 if mid == index: break elif mid < index: if arr[mid] > x: count1 += 1 else: smr += 1 l = mid + 1 else: if arr[mid] < x: count2 += 1 else: gtr += 1 r = mid - 1 if count1 + smr <= smlr and count2 + gtr <= grtr: print(max(count2, count1)) else: print(-1) t = int(input()) for i in range(t): N, Q = map(int, input().split()) a = list(map(int, input().split())) k = list(a) index = list(sorted(range(len(a)), key=lambda x: a[x])) list.sort(a) for j in range(Q): x = int(input()) q = bin(a, x, 0, N - 1) z = index[q] sol(z, q, k, 0, N - 1, x)
FUNC_DEF WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR RETURN VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER BIN_OP VAR NUMBER VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
def createParentArray(a, l, r, root, p): if l > r: return mid = (l + r) // 2 p[mid] = root createParentArray(a, l, mid - 1, mid, p) createParentArray(a, mid + 1, r, mid, p) def getAns(a, p, idx, left, right): i = idx base = a[idx] cnt = 0 lt_base = 0 gt_base = 0 while p[i] != -1: if i < p[i]: if base > a[p[i]]: lt_base += 1 left -= 1 else: right -= 1 elif i > p[i]: if base < a[p[i]]: gt_base += 1 right -= 1 else: left -= 1 i = p[i] cnt += min(lt_base, gt_base) lt_base -= cnt gt_base -= cnt if lt_base <= right: cnt += lt_base else: return -1 if gt_base <= left: cnt += gt_base else: return -1 return cnt def solve(): n, q = [int(x) for x in input().strip().split()] a = [int(x) for x in input().strip().split()] p = [(0) for x in range(n)] createParentArray(a, 0, n - 1, -1, p) b = sorted(a) h = dict() for i in range(n): h[a[i]] = i for i in range(n): h[b[i]] = h[b[i]], i, n - 1 - i ans = dict() for i in range(q): x = int(input()) if x in ans: print(ans[x]) continue idx, left, right = h[x] ans[x] = getAns(a, p, idx, left, right) print(ans[x]) def main(): t = int(input()) while t > 0: solve() t -= 1 main()
FUNC_DEF IF VAR VAR RETURN ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR RETURN NUMBER IF VAR VAR VAR VAR RETURN NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
for i in range(int(input())): n, q = map(int, input().split()) l = list(map(int, input().split())) d2 = {} for j in range(n): d2[l[j]] = j arr = list(l) arr.sort() d1 = {} for j in range(n): d1[arr[j]] = j for j in range(q): x = int(input()) g1, g3, l1, l3, start, end, index = 0, 0, 0, 0, 0, n - 1, d2[x] while start <= end: mid = (start + end) // 2 if mid == index: break elif index > mid: if l[mid] > x: l3 += 1 g1 += 1 else: l1 += 1 start = mid + 1 else: if l[mid] > x: g1 += 1 else: l1 += 1 g3 += 1 end = mid - 1 g2 = n - 1 - d1[x] - g1 l2 = d1[x] - l1 ans = 0 f = 0 if g3 > 0 and l3 > 0: x = min(g3, l3) g3 -= x l3 -= x ans += x if g3 > 0: if g3 > g2: f = 1 else: ans += g3 if l3 > 0: if l3 > l2: f = 1 else: ans += l3 if f == 0: print(ans) else: print(-1)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR NUMBER NUMBER NUMBER NUMBER NUMBER BIN_OP VAR NUMBER VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER VAR VAR IF VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
"If you didn't copy assignments during your engineering course, did you even do engineering?" There are $Q$ students in Chef's class. Chef's teacher has given the students a simple assignment: Write a function that takes as arguments an array $A$ containing only unique elements and a number $X$ guaranteed to be present in the array and returns the ($1$-based) index of the element that is equal to $X$. The teacher was expecting a linear search algorithm, but since Chef is such an amazing programmer, he decided to write the following binary search function: integer binary_search(array a, integer n, integer x): integer low, high, mid low := 1 high := n while low ≀ high: mid := (low + high) / 2 if a[mid] == x: break else if a[mid] is less than x: low := mid+1 else: high := mid-1 return mid All of Chef's classmates have copied his code and submitted it to the teacher. Chef later realised that since he forgot to sort the array, the binary search algorithm may not work. Luckily, the teacher is tired today, so she asked Chef to assist her with grading the codes. Each student's code is graded by providing an array $A$ and an integer $X$ to it and checking if the returned index is correct. However, the teacher is lazy and provides the exact same array to all codes. The only thing that varies is the value of $X$. Chef was asked to type in the inputs. He decides that when typing in the input array for each code, he's not going to use the input array he's given, but an array created by swapping some pairs of elements of this original input array. However, he cannot change the position of the element that's equal to $X$ itself, since that would be suspicious. For each of the $Q$ students, Chef would like to know the minimum number of swaps required to make the algorithm find the correct answer. -----Input----- - The first line of the input contains a single integer $T$ denoting the number of test cases. The description of $T$ test cases follows. - The first line of each test case contains two space-separated integers $N$ and $Q$ denoting the number of elements in the array and the number of students. - The second line contains $N$ space-separated integers $A_1, A_2, \dots, A_N$. - The following $Q$ lines describe queries. Each of these lines contains a single integer $X$. -----Output----- For each query, print a single line containing one integer β€” the minimum required number of swaps, or $-1$ if it is impossible to make the algorithm find the correct answer. (Do you really think Chef can fail?) -----Constraints----- - $1 \le T \le 10$ - $1 \le N, Q \le 10^5$ - $1 \le A_i \le 10^9$ for each valid $i$ - $1 \le X \le 10^9$ - all elements of $A$ are pairwise distinct - for each query, $X$ is present in $A$ - sum of $N$ over all test cases $\le 5\cdot10^5$ - sum of $Q$ over all test cases $\le 5\cdot10^5$ -----Subtasks----- Subtask #1 (20 points): $1 \le N \le 10$ Subtask #2 (30 points): - $1 \le A_i \le 10^6$ for each valid $i$ - $1 \le X \le 10^6$ Subtask #3 (50 points): original constraints -----Example Input----- 1 7 7 3 1 6 7 2 5 4 1 2 3 4 5 6 7 -----Example Output----- 0 1 1 2 1 0 0 -----Explanation----- Example case 1: - Query 1: The algorithm works without any swaps. - Query 2: One solution is to swap $A_2$ and $A_4$. - Query 3: One solution is to swap $A_2$ and $A_6$. - Query 4: One solution is to swap $A_2$ with $A_4$ and $A_5$ with $A_6$. - Query 5: One solution is to swap $A_2$ and $A_4$. - Query 6: The algorithm works without any swaps. - Query 7: The algorithm works without any swaps.
t = int(input()) for i in range(t): y = [int(i) for i in input().split()] n = y[0] q = y[1] a = [int(j) for j in input().split()] b = sorted(a) dic = {} dic1 = {} for j in range(n): dic[a[j]] = j for j in range(n): dic1[b[j]] = j for j in range(q): x = int(input()) ind = dic[x] + 1 low = 1 high = n small = 0 sdone = 0 ldone = 0 large = 0 while low <= high: mid = (low + high) // 2 if mid == ind: break elif mid < ind: small += 1 if a[mid - 1] < a[ind - 1]: sdone += 1 low = mid + 1 else: large += 1 if a[mid - 1] > a[ind - 1]: ldone += 1 high = mid - 1 shave = dic1[x] lhave = n - dic1[x] - 1 if small <= shave and large <= lhave: print(max(small - sdone, large - ldone)) else: print(-1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given a sequence of n integers a1, a2, ..., an. Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible. The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence. The poorness of a segment is defined as the absolute value of sum of the elements of segment. Input The first line contains one integer n (1 ≀ n ≀ 200 000), the length of a sequence. The second line contains n integers a1, a2, ..., an (|ai| ≀ 10 000). Output Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6. Examples Input 3 1 2 3 Output 1.000000000000000 Input 4 1 2 3 4 Output 2.000000000000000 Input 10 1 10 2 9 3 8 4 7 5 6 Output 4.500000000000000 Note For the first case, the optimal value of x is 2 so the sequence becomes - 1, 0, 1 and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case. For the second sample the optimal value of x is 2.5 so the sequence becomes - 1.5, - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.
def main(): input() a = list(map(int, input().split())) def f(a): maxend = maxnow = 0 for x in a: maxend = max(0, maxend + x) maxnow = max(maxnow, maxend) return maxnow f1 = lambda x: f(i - x for i in a) f2 = lambda x: f(x - i for i in a) Max = max(abs(i) for i in a) L, R = -Max, Max eps = 10**-8 for i in range(100): m = (L + R) / 2 v1, v2 = f1(m), f2(m) if abs(v1 - v2) < eps: break if v1 > v2: L = m else: R = m print(v1) main()
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a sequence of n integers a1, a2, ..., an. Determine a real number x such that the weakness of the sequence a1 - x, a2 - x, ..., an - x is as small as possible. The weakness of a sequence is defined as the maximum value of the poorness over all segments (contiguous subsequences) of a sequence. The poorness of a segment is defined as the absolute value of sum of the elements of segment. Input The first line contains one integer n (1 ≀ n ≀ 200 000), the length of a sequence. The second line contains n integers a1, a2, ..., an (|ai| ≀ 10 000). Output Output a real number denoting the minimum possible weakness of a1 - x, a2 - x, ..., an - x. Your answer will be considered correct if its relative or absolute error doesn't exceed 10 - 6. Examples Input 3 1 2 3 Output 1.000000000000000 Input 4 1 2 3 4 Output 2.000000000000000 Input 10 1 10 2 9 3 8 4 7 5 6 Output 4.500000000000000 Note For the first case, the optimal value of x is 2 so the sequence becomes - 1, 0, 1 and the max poorness occurs at the segment "-1" or segment "1". The poorness value (answer) equals to 1 in this case. For the second sample the optimal value of x is 2.5 so the sequence becomes - 1.5, - 0.5, 0.5, 1.5 and the max poorness occurs on segment "-1.5 -0.5" or "0.5 1.5". The poorness value (answer) equals to 2 in this case.
def max_sum(nums, shift): res = 0 res_m = 0 cur_sum = 0 cur_m_sum = 0 for i in range(len(nums)): cur_sum += nums[i] + shift cur_m_sum += nums[i] + shift res = max(res, cur_sum) cur_sum = max(0, cur_sum) res_m = min(res_m, cur_m_sum) cur_m_sum = min(0, cur_m_sum) return res, -res_m def weaks(nums, shift): return max_sum(nums, shift) def main(): int(input()) nums = list(map(int, input().split())) l = -10000 r = 10000 ans = max(weaks(nums, 0)) w1 = 1 w2 = -1 PREC = 10**-6 while abs(w1 - w2) >= PREC and abs(w1 - w2) > PREC * max(w1, w2): m = (r + l) / 2 w1, w2 = weaks(nums, m) if w1 > w2: r = m else: l = m print((w1 + w2) / 2) main()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR RETURN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER WHILE FUNC_CALL VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR
You are at your grandparents' house and you are playing an old video game on a strange console. Your controller has only two buttons and each button has a number written on it. Initially, your score is $0$. The game is composed of $n$ rounds. For each $1\le i\le n$, the $i$-th round works as follows. On the screen, a symbol $s_i$ appears, which is either ${+}$ (plus) or ${-}$ (minus). Then you must press one of the two buttons on the controller once. Suppose you press a button with the number $x$ written on it: your score will increase by $x$ if the symbol was ${+}$ and will decrease by $x$ if the symbol was ${-}$. After you press the button, the round ends. After you have played all $n$ rounds, you win if your score is $0$. Over the years, your grandparents bought many different controllers, so you have $q$ of them. The two buttons on the $j$-th controller have the numbers $a_j$ and $b_j$ written on them. For each controller, you must compute whether you can win the game playing with that controller. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2\cdot 10^5$) β€” the number of rounds. The second line contains a string $s$ of length $n$ β€” where $s_i$ is the symbol that will appear on the screen in the $i$-th round. It is guaranteed that $s$ contains only the characters ${+}$ and ${-}$. The third line contains an integer $q$ ($1 \le q \le 10^5$) β€” the number of controllers. The following $q$ lines contain two integers $a_j$ and $b_j$ each ($1 \le a_j, b_j \le 10^9$) β€” the numbers on the buttons of controller $j$. -----Output----- Output $q$ lines. On line $j$ print ${YES}$ if the game is winnable using controller $j$, otherwise print ${NO}$. -----Examples----- Input 8 +-+---+- 5 2 1 10 3 7 9 10 10 5 3 Output YES NO NO NO YES Input 6 +-++-- 2 9 7 1 1 Output YES YES Input 20 +-----+--+--------+- 2 1000000000 99999997 250000000 1000000000 Output NO YES -----Note----- In the first sample, one possible way to get score $0$ using the first controller is by pressing the button with numnber $1$ in rounds $1$, $2$, $4$, $5$, $6$ and $8$, and pressing the button with number $2$ in rounds $3$ and $7$. It is possible to show that there is no way to get a score of $0$ using the second controller.
def fun(num_plus, num_minus, a, b): if a == b: return "YES" if num_plus == num_minus else "NO" else: r = a * (num_minus - num_plus) % (a - b) if r == 0: k = a * (num_minus - num_plus) // (a - b) return "YES" if k in range(-num_plus, num_minus + 1) else "NO" else: return "NO" n = int(input()) s = input() q = int(input()) num_plus = sum([(1) for i in s if i == "+"]) num_minus = n - num_plus for i in range(q): a, b = map(int, input().split()) print(fun(num_plus, num_minus, a, b))
FUNC_DEF IF VAR VAR RETURN VAR VAR STRING STRING ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER STRING STRING RETURN STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR VAR STRING ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
You are at your grandparents' house and you are playing an old video game on a strange console. Your controller has only two buttons and each button has a number written on it. Initially, your score is $0$. The game is composed of $n$ rounds. For each $1\le i\le n$, the $i$-th round works as follows. On the screen, a symbol $s_i$ appears, which is either ${+}$ (plus) or ${-}$ (minus). Then you must press one of the two buttons on the controller once. Suppose you press a button with the number $x$ written on it: your score will increase by $x$ if the symbol was ${+}$ and will decrease by $x$ if the symbol was ${-}$. After you press the button, the round ends. After you have played all $n$ rounds, you win if your score is $0$. Over the years, your grandparents bought many different controllers, so you have $q$ of them. The two buttons on the $j$-th controller have the numbers $a_j$ and $b_j$ written on them. For each controller, you must compute whether you can win the game playing with that controller. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2\cdot 10^5$) β€” the number of rounds. The second line contains a string $s$ of length $n$ β€” where $s_i$ is the symbol that will appear on the screen in the $i$-th round. It is guaranteed that $s$ contains only the characters ${+}$ and ${-}$. The third line contains an integer $q$ ($1 \le q \le 10^5$) β€” the number of controllers. The following $q$ lines contain two integers $a_j$ and $b_j$ each ($1 \le a_j, b_j \le 10^9$) β€” the numbers on the buttons of controller $j$. -----Output----- Output $q$ lines. On line $j$ print ${YES}$ if the game is winnable using controller $j$, otherwise print ${NO}$. -----Examples----- Input 8 +-+---+- 5 2 1 10 3 7 9 10 10 5 3 Output YES NO NO NO YES Input 6 +-++-- 2 9 7 1 1 Output YES YES Input 20 +-----+--+--------+- 2 1000000000 99999997 250000000 1000000000 Output NO YES -----Note----- In the first sample, one possible way to get score $0$ using the first controller is by pressing the button with numnber $1$ in rounds $1$, $2$, $4$, $5$, $6$ and $8$, and pressing the button with number $2$ in rounds $3$ and $7$. It is possible to show that there is no way to get a score of $0$ using the second controller.
n = int(input()) res = [] plus = 0 minus = 0 rounds = [] s = input() q = int(input()) while q > 0: x = input().split(" ") first, second = int(x[0]), int(x[1]) rounds.append(sorted([first, second])) q -= 1 for i in range(len(s)): if s[i] == "+": plus += 1 if s[i] == "-": minus += 1 max1, min1 = max(plus, minus), min(plus, minus) for min2, max2 in rounds: if max1 == min1: res.append("YES") continue if max2 == min2: if max1 == min1: res.append("YES") else: res.append("NO") continue c = max2 * min1 - max1 * min2 cur = c / (max2 - min2) if cur - int(cur) == 0 and cur >= 0: res.append("YES") else: res.append("NO") for x in res: print(x)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR LIST VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING VAR NUMBER IF VAR VAR STRING VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FOR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF BIN_OP VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR VAR
You are at your grandparents' house and you are playing an old video game on a strange console. Your controller has only two buttons and each button has a number written on it. Initially, your score is $0$. The game is composed of $n$ rounds. For each $1\le i\le n$, the $i$-th round works as follows. On the screen, a symbol $s_i$ appears, which is either ${+}$ (plus) or ${-}$ (minus). Then you must press one of the two buttons on the controller once. Suppose you press a button with the number $x$ written on it: your score will increase by $x$ if the symbol was ${+}$ and will decrease by $x$ if the symbol was ${-}$. After you press the button, the round ends. After you have played all $n$ rounds, you win if your score is $0$. Over the years, your grandparents bought many different controllers, so you have $q$ of them. The two buttons on the $j$-th controller have the numbers $a_j$ and $b_j$ written on them. For each controller, you must compute whether you can win the game playing with that controller. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2\cdot 10^5$) β€” the number of rounds. The second line contains a string $s$ of length $n$ β€” where $s_i$ is the symbol that will appear on the screen in the $i$-th round. It is guaranteed that $s$ contains only the characters ${+}$ and ${-}$. The third line contains an integer $q$ ($1 \le q \le 10^5$) β€” the number of controllers. The following $q$ lines contain two integers $a_j$ and $b_j$ each ($1 \le a_j, b_j \le 10^9$) β€” the numbers on the buttons of controller $j$. -----Output----- Output $q$ lines. On line $j$ print ${YES}$ if the game is winnable using controller $j$, otherwise print ${NO}$. -----Examples----- Input 8 +-+---+- 5 2 1 10 3 7 9 10 10 5 3 Output YES NO NO NO YES Input 6 +-++-- 2 9 7 1 1 Output YES YES Input 20 +-----+--+--------+- 2 1000000000 99999997 250000000 1000000000 Output NO YES -----Note----- In the first sample, one possible way to get score $0$ using the first controller is by pressing the button with numnber $1$ in rounds $1$, $2$, $4$, $5$, $6$ and $8$, and pressing the button with number $2$ in rounds $3$ and $7$. It is possible to show that there is no way to get a score of $0$ using the second controller.
n = int(input()) s = input() pl = s.count("+") mn = s.count("-") m = int(input()) for __ in range(m): a, b = map(int, input().split()) abmax = max(a, b) abmin = min(a, b) if pl == mn: print("YES") continue if pl < mn: smax = pl * abmax - mn * abmin diff_plus = abmax - abmin if not diff_plus: print("NO") continue if smax < 0: print("NO") continue if smax == 0: print("YES") continue if smax % diff_plus or smax < diff_plus: print("NO") continue if smax // diff_plus <= n: print("YES") continue else: smax = pl * abmin - mn * abmax diff_plus = abmin - abmax if not diff_plus: print("NO") continue if smax > 0: print("NO") continue if smax == 0: print("YES") continue smax = abs(smax) diff_plus = abs(diff_plus) if smax % diff_plus or smax < diff_plus: print("NO") continue if smax // diff_plus <= n: print("YES") continue
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR STRING IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR STRING
You are at your grandparents' house and you are playing an old video game on a strange console. Your controller has only two buttons and each button has a number written on it. Initially, your score is $0$. The game is composed of $n$ rounds. For each $1\le i\le n$, the $i$-th round works as follows. On the screen, a symbol $s_i$ appears, which is either ${+}$ (plus) or ${-}$ (minus). Then you must press one of the two buttons on the controller once. Suppose you press a button with the number $x$ written on it: your score will increase by $x$ if the symbol was ${+}$ and will decrease by $x$ if the symbol was ${-}$. After you press the button, the round ends. After you have played all $n$ rounds, you win if your score is $0$. Over the years, your grandparents bought many different controllers, so you have $q$ of them. The two buttons on the $j$-th controller have the numbers $a_j$ and $b_j$ written on them. For each controller, you must compute whether you can win the game playing with that controller. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2\cdot 10^5$) β€” the number of rounds. The second line contains a string $s$ of length $n$ β€” where $s_i$ is the symbol that will appear on the screen in the $i$-th round. It is guaranteed that $s$ contains only the characters ${+}$ and ${-}$. The third line contains an integer $q$ ($1 \le q \le 10^5$) β€” the number of controllers. The following $q$ lines contain two integers $a_j$ and $b_j$ each ($1 \le a_j, b_j \le 10^9$) β€” the numbers on the buttons of controller $j$. -----Output----- Output $q$ lines. On line $j$ print ${YES}$ if the game is winnable using controller $j$, otherwise print ${NO}$. -----Examples----- Input 8 +-+---+- 5 2 1 10 3 7 9 10 10 5 3 Output YES NO NO NO YES Input 6 +-++-- 2 9 7 1 1 Output YES YES Input 20 +-----+--+--------+- 2 1000000000 99999997 250000000 1000000000 Output NO YES -----Note----- In the first sample, one possible way to get score $0$ using the first controller is by pressing the button with numnber $1$ in rounds $1$, $2$, $4$, $5$, $6$ and $8$, and pressing the button with number $2$ in rounds $3$ and $7$. It is possible to show that there is no way to get a score of $0$ using the second controller.
n, s, t, pos, neg = int(input()), input(), int(input()), 0, 0 for x in s: if x == "+": pos += 1 else: neg += 1 for i in range(t): c, p = map(int, input().split()) x, y = min(c, p), max(c, p) high, low = y * pos - x * neg, x * pos - y * neg if low > 0 or high < 0: print("NO") elif low == 0 or high == 0: print("YES") elif y - x == 0: print("NO") elif high % (y - x) == 0: print("YES") else: print("NO")
ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER NUMBER FOR VAR VAR IF VAR STRING VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF BIN_OP VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are at your grandparents' house and you are playing an old video game on a strange console. Your controller has only two buttons and each button has a number written on it. Initially, your score is $0$. The game is composed of $n$ rounds. For each $1\le i\le n$, the $i$-th round works as follows. On the screen, a symbol $s_i$ appears, which is either ${+}$ (plus) or ${-}$ (minus). Then you must press one of the two buttons on the controller once. Suppose you press a button with the number $x$ written on it: your score will increase by $x$ if the symbol was ${+}$ and will decrease by $x$ if the symbol was ${-}$. After you press the button, the round ends. After you have played all $n$ rounds, you win if your score is $0$. Over the years, your grandparents bought many different controllers, so you have $q$ of them. The two buttons on the $j$-th controller have the numbers $a_j$ and $b_j$ written on them. For each controller, you must compute whether you can win the game playing with that controller. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2\cdot 10^5$) β€” the number of rounds. The second line contains a string $s$ of length $n$ β€” where $s_i$ is the symbol that will appear on the screen in the $i$-th round. It is guaranteed that $s$ contains only the characters ${+}$ and ${-}$. The third line contains an integer $q$ ($1 \le q \le 10^5$) β€” the number of controllers. The following $q$ lines contain two integers $a_j$ and $b_j$ each ($1 \le a_j, b_j \le 10^9$) β€” the numbers on the buttons of controller $j$. -----Output----- Output $q$ lines. On line $j$ print ${YES}$ if the game is winnable using controller $j$, otherwise print ${NO}$. -----Examples----- Input 8 +-+---+- 5 2 1 10 3 7 9 10 10 5 3 Output YES NO NO NO YES Input 6 +-++-- 2 9 7 1 1 Output YES YES Input 20 +-----+--+--------+- 2 1000000000 99999997 250000000 1000000000 Output NO YES -----Note----- In the first sample, one possible way to get score $0$ using the first controller is by pressing the button with numnber $1$ in rounds $1$, $2$, $4$, $5$, $6$ and $8$, and pressing the button with number $2$ in rounds $3$ and $7$. It is possible to show that there is no way to get a score of $0$ using the second controller.
n = int(input()) s = input() m = s.count("-") p = s.count("+") m, p = max(m, p), min(m, p) q = int(input()) for i in range(q): t1, t2 = m, p b1, b2 = map(int, input().split()) b1, b2 = min(b1, b2), max(b1, b2) r = b1 * t1 - b2 * t2 t = 0 if r < 0: if -r % (b2 - b1) == 0 and -r // (b2 - b1) <= t2: r = 0 if r == 0: print("YES") else: print("NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER IF BIN_OP VAR BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
You are at your grandparents' house and you are playing an old video game on a strange console. Your controller has only two buttons and each button has a number written on it. Initially, your score is $0$. The game is composed of $n$ rounds. For each $1\le i\le n$, the $i$-th round works as follows. On the screen, a symbol $s_i$ appears, which is either ${+}$ (plus) or ${-}$ (minus). Then you must press one of the two buttons on the controller once. Suppose you press a button with the number $x$ written on it: your score will increase by $x$ if the symbol was ${+}$ and will decrease by $x$ if the symbol was ${-}$. After you press the button, the round ends. After you have played all $n$ rounds, you win if your score is $0$. Over the years, your grandparents bought many different controllers, so you have $q$ of them. The two buttons on the $j$-th controller have the numbers $a_j$ and $b_j$ written on them. For each controller, you must compute whether you can win the game playing with that controller. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2\cdot 10^5$) β€” the number of rounds. The second line contains a string $s$ of length $n$ β€” where $s_i$ is the symbol that will appear on the screen in the $i$-th round. It is guaranteed that $s$ contains only the characters ${+}$ and ${-}$. The third line contains an integer $q$ ($1 \le q \le 10^5$) β€” the number of controllers. The following $q$ lines contain two integers $a_j$ and $b_j$ each ($1 \le a_j, b_j \le 10^9$) β€” the numbers on the buttons of controller $j$. -----Output----- Output $q$ lines. On line $j$ print ${YES}$ if the game is winnable using controller $j$, otherwise print ${NO}$. -----Examples----- Input 8 +-+---+- 5 2 1 10 3 7 9 10 10 5 3 Output YES NO NO NO YES Input 6 +-++-- 2 9 7 1 1 Output YES YES Input 20 +-----+--+--------+- 2 1000000000 99999997 250000000 1000000000 Output NO YES -----Note----- In the first sample, one possible way to get score $0$ using the first controller is by pressing the button with numnber $1$ in rounds $1$, $2$, $4$, $5$, $6$ and $8$, and pressing the button with number $2$ in rounds $3$ and $7$. It is possible to show that there is no way to get a score of $0$ using the second controller.
n = int(input()) s = input() q = int(input()) np = s.count("+") nm = s.count("-") for _ in range(q): a, b = map(int, input().split()) numerator = (nm - np) * b denominator = a - b if a == b: r = np == nm elif numerator % denominator != 0: r = False else: r = -nm <= numerator // denominator <= np print("YES" if r else "NO")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR STRING STRING
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
r = range(int(input())) def s(a, b): (c, d, e, f), (g, h, i, j) = a, b return max(c, g), max(d, h), min(e, i), min(f, j) def p(a): b = [a[0]] for i in range(1, len(a)): b += [s(b[i - 1], a[i])] return b H = 9**15 B = -H, -H, H, H a = [B] + [tuple(map(int, input().split())) for i in r] + [B] b = p(a) c = p(a[::-1])[::-1] for i in r: I, J, K, L = s(b[i], c[i + 2]) if I <= K and J <= L: print(I, J) exit()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR LIST FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP LIST VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR VAR LIST VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
N = int(input()) X = [] Y = [] for i in range(N): x1, y1, x2, y2 = map(int, input().split()) X.append((x1, x2)) Y.append((y1, y2)) xl, xr = max([x1 for x1, x2 in X]), min([x2 for x1, x2 in X]) yb, yt = max([y1 for y1, y2 in Y]), min([y2 for y1, y2 in Y]) if xl <= xr and yb <= yt: print("{} {}".format(xl, yb)) else: xlremoves = {i for i in range(N) if X[i][0] == xl} xrmin = min([X[i][1] for i in xlremoves]) xlremoves = {i for i in xlremoves if X[i][1] == xrmin} xrremoves = {i for i in range(N) if X[i][1] == xr} xlmax = max([X[i][0] for i in xrremoves]) xrremoves = {i for i in xrremoves if X[i][0] == xlmax} ybremoves = {i for i in range(N) if Y[i][0] == yb} ytmin = min([Y[i][1] for i in ybremoves]) ybremoves = {i for i in ybremoves if Y[i][1] == ytmin} ytremoves = {i for i in range(N) if Y[i][1] == yt} ybmax = max([Y[i][0] for i in ytremoves]) ytremoves = {i for i in ytremoves if Y[i][0] == ybmax} removes = [] if xl > xr and yb > yt: if xlremoves and xrremoves: if len(xlremoves) < len(xrremoves): removes = xlremoves elif len(xlremoves) > len(xrremoves): removes = xrremoves else: removes = xlremoves | xrremoves else: removes = xlremoves | xrremoves if ybremoves and ytremoves: if len(ybremoves) < len(ytremoves): removes &= ybremoves elif len(ybremoves) > len(ytremoves): removes &= ytremoves else: removes &= ybremoves | ytremoves else: removes &= ybremoves | ytremoves elif xl > xr: if xlremoves and xrremoves: if len(xlremoves) < len(xrremoves): removes = xlremoves elif len(xlremoves) > len(xrremoves): removes = xrremoves else: removes = xlremoves | xrremoves else: removes = xlremoves | xrremoves elif ybremoves and ytremoves: if len(ybremoves) < len(ytremoves): removes = ybremoves elif len(ybremoves) > len(ytremoves): removes = ytremoves else: removes = ybremoves | ytremoves else: removes = ybremoves | ytremoves for i in removes: xl = max([x[0] for j, x in enumerate(X) if j != i]) xr = min([x[1] for j, x in enumerate(X) if j != i]) yb = max([y[0] for j, y in enumerate(Y) if j != i]) yt = min([y[1] for j, y in enumerate(Y) if j != i]) if xl <= xr and yb <= yt: print("{} {}".format(xl, yb)) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR NUMBER VAR ASSIGN VAR LIST IF VAR VAR VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
def FindPoints(x1, y1, x2, y2, x3, y3, x4, y4): x5 = max(x1, x3) y5 = max(y1, y3) x6 = min(x2, x4) y6 = min(y2, y4) if x5 > x6 or y5 > y6: return [-1] else: return [x5, y5, x6, y6] n = int(input()) pre = [] l = [] for i in range(n): l.append(list(map(int, input().split()))) pre.append(l[0]) t = 0 for i in range(1, n): if t == 1: pre.append([-1]) continue x1, y1, x2, y2 = pre[i - 1][0], pre[i - 1][1], pre[i - 1][2], pre[i - 1][3] x3, y3, x4, y4 = l[i][0], l[i][1], l[i][2], l[i][3] yu = FindPoints(x1, y1, x2, y2, x3, y3, x4, y4) if len(yu) == 1: t = 1 pre.append([-1]) else: pre.append(yu) suf = [[] for i in range(n)] suf[n - 1].append(l[n - 1][0]) suf[n - 1].append(l[n - 1][1]) suf[n - 1].append(l[n - 1][2]) suf[n - 1].append(l[n - 1][3]) t = 0 for i in range(n - 2, -1, -1): if t == 1: suf[i].append(-1) continue x1, y1, x2, y2 = suf[i + 1][0], suf[i + 1][1], suf[i + 1][2], suf[i + 1][3] x3, y3, x4, y4 = l[i][0], l[i][1], l[i][2], l[i][3] yu = FindPoints(x1, y1, x2, y2, x3, y3, x4, y4) if len(yu) == 1: t = 1 suf[i].append(-1) else: suf[i].append(yu[0]) suf[i].append(yu[1]) suf[i].append(yu[2]) suf[i].append(yu[3]) f = 0 for i in range(n): if i == 0: if len(suf[i + 1]) != 1: print(suf[i + 1][0], suf[i + 1][1]) f = 1 break elif i == n - 1: if len(pre[i - 1]) != 1: print(pre[i - 1][0], pre[i - 1][1]) f = 1 break elif len(pre[i - 1]) != 1 and len(suf[i + 1]) != 1: x1, y1, x2, y2 = suf[i + 1][0], suf[i + 1][1], suf[i + 1][2], suf[i + 1][3] x3, y3, x4, y4 = pre[i - 1][0], pre[i - 1][1], pre[i - 1][2], pre[i - 1][3] yu = FindPoints(x1, y1, x2, y2, x3, y3, x4, y4) if len(yu) != 1: print(yu[0], yu[1]) f = 1 break
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR RETURN LIST NUMBER RETURN LIST VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR LIST NUMBER ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR LIST NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) rectangles = [] for _ in range(n): a, s, d, f = map(int, input().split()) rectangles.append((a, s, d, f)) while True: minx, miny, maxx, maxy = rectangles[0] for i in range(1, len(rectangles) - 1): x1, y1, x2, y2 = rectangles[i] minx = max(x1, minx) miny = max(y1, miny) maxx = min(x2, maxx) maxy = min(y2, maxy) if minx > maxx or miny > maxy: rectangles = rectangles[i + 1 :] + rectangles[: i + 1] break else: print("{} {}".format(minx, miny)) exit()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR WHILE NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR EXPR FUNC_CALL VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) ox, oy, cx, cy, q = [], [], [], [], [] for i in range(n): x1, y1, x2, y2 = map(int, input().split()) q.append([x1, y1, x2, y2]) ox.append(x1) oy.append(y1) cx.append(x2) cy.append(y2) ox, cx, oy, cy = sorted(ox), sorted(cx), sorted(oy), sorted(cy) e1, e2, e3, e4 = ox[-1], cx[0], oy[-1], cy[0] for i in q: a1, a2, a3, a4 = i[0], i[1], i[2], i[3] if a1 == e1: w = ox[-2] else: w = ox[-1] if a2 == e3: y = oy[-2] else: y = oy[-1] if a3 == e2: x = cx[1] else: x = cx[0] if a4 == e4: z = cy[1] else: z = cy[0] if w <= x and y <= z: print(w, y) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR LIST LIST LIST LIST LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) rect = [None] * n for i in range(n): rect[i] = list(map(int, input().split())) x0 = sorted(rect, key=lambda x: x[0]) x1 = sorted(rect, key=lambda x: x[2]) y0 = sorted(rect, key=lambda x: x[1]) y1 = sorted(rect, key=lambda x: x[3]) Xlist = [x0[: n - 1], x1[1:], y0[: n - 1], y1[1:]] for X in Xlist: if ( max(X, key=lambda x: x[0])[0] <= min(X, key=lambda x: x[2])[2] and max(X, key=lambda x: x[1])[1] <= min(X, key=lambda x: x[3])[3] ): print(max(X, key=lambda x: x[0])[0], max(X, key=lambda x: x[1])[1]) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NONE VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR LIST VAR BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
import sys class retangle: def __init__(self, x1, y1, x2, y2): self.x1 = x1 self.y1 = y1 self.x2 = x2 self.y2 = y2 def __str__(self): return str([self.x1, self.y1, self.x2, self.y2]) def merge(self, another): x1 = max(self.x1, another.x1) y1 = max(self.y1, another.y1) x2 = min(self.x2, another.x2) y2 = min(self.y2, another.y2) return retangle(x1, y1, x2, y2) H = 9**15 B = retangle(-H, -H, H, H) retangles = [B] n = int(input()) for i in range(n): x1, y1, x2, y2 = map(int, input().split()) retangles.append(retangle(x1, y1, x2, y2)) retangles.append(B) def merge_all(inData): out = [inData[0]] for i in range(1, len(inData)): out.append(out[i - 1].merge(inData[i])) return out a = merge_all(retangles) b = merge_all(retangles[::-1])[::-1] for i in range(n): ret = a[i].merge(b[i + 2]) if ret.x1 <= ret.x2 and ret.y1 <= ret.y2: print(ret.x1, ret.y1) exit()
IMPORT CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR LIST VAR VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR LIST VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
from itertools import combinations from sys import stdin def main(): n = int(input()) C = D = 9**10 A = B = -D P = A, B, C, D l = [tuple(map(int, s.split())) for s in stdin.read().splitlines()] ii = { max(range(n), key=lambda i: l[i][0]), max(range(n), key=lambda i: l[i][1]), min(range(n), key=lambda i: l[i][2]), min(range(n), key=lambda i: l[i][3]), } trash = [l[i] for i in ii] for i in ii: l[i] = P for a, b, c, d in l: if A < a: A = a if B < b: B = b if C > c: C = c if D > d: D = d P = A, B, C, D for t in combinations(trash, len(trash) - 1): A, B, C, D = P for a, b, c, d in t: if A < a: A = a if B < b: B = b if C > c: C = c if D > d: D = d if A <= C and B <= D: print(A, B) return main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR FOR VAR VAR ASSIGN VAR VAR VAR FOR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR FOR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN EXPR FUNC_CALL VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = input() n = int(n) v = list() minx, maxx, miny, maxy = [], [], [], [] for i in range(n): t = input() t = list(t.split(" ")) for j in range(4): t[j] = int(t[j]) minx.append(t[0]) miny.append(t[1]) maxx.append(t[2]) maxy.append(t[3]) v.append(t) minx.sort() maxx.sort() miny.sort() maxy.sort() for x in v: nx = minx[-1] ny = miny[-1] cx = maxx[0] cy = maxy[0] if x[0] == nx: nx = minx[-2] if x[1] == ny: ny = miny[-2] if x[2] == cx: cx = maxx[1] if x[3] == cy: cy = maxy[1] if nx <= cx and ny <= cy: print(nx, ny) exit()
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR LIST LIST LIST LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
import sys f = sys.stdin out = sys.stdout n = int(f.readline().rstrip("\r\n")) arr = [] p1, p2, p3, p4 = -float("inf"), -float("inf"), float("inf"), float("inf") pd1, pd2, pd3, pd4 = -float("inf"), -float("inf"), float("inf"), float("inf") for i in range(n): a, b, c, d = map(int, f.readline().rstrip("\r\n").split()) arr.append([a, b, c, d]) if a > p1: pd1 = p1 p1 = a elif a > pd1: pd1 = a if d < p4: pd4 = p4 p4 = d elif d < pd4: pd4 = d for i in range(n): if arr[i][2] >= p1 and arr[i][2] < p3: p3 = arr[i][2] if arr[i][2] >= pd1 and arr[i][2] < pd3: pd3 = arr[i][2] if arr[i][1] <= p4 and arr[i][1] > p2: p2 = arr[i][1] if arr[i][1] <= pd4 and arr[i][1] > pd2: pd2 = arr[i][1] c = 0 p5, p6 = p1, p2 j = 0 while c < n - 1: c = 0 if j == 0: p5, p6 = p1, p2 elif j == 1: p5, p6 = p1, p4 elif j == 2: p5, p6 = p3, p2 elif j == 3: p5, p6 = p3, p4 elif j == 4: p5, p6 = pd1, pd2 elif j == 5: p5, p6 = pd1, pd4 elif j == 6: p5, p6 = pd3, pd2 elif j == 7: p5, p6 = pd3, pd4 elif j == 8: p5, p6 = p1, pd2 elif j == 9: p5, p6 = p1, pd4 elif j == 10: p5, p6 = p3, pd2 elif j == 11: p5, p6 = p3, pd4 elif j == 12: p5, p6 = pd1, p2 elif j == 13: p5, p6 = pd1, p4 elif j == 14: p5, p6 = pd3, p2 elif j == 15: p5, p6 = pd3, p4 else: zzzzzzzz break j += 1 for i in range(n): if arr[i][0] <= p5 <= arr[i][2] and arr[i][1] <= p6 <= arr[i][3]: c += 1 out.write(str(p5) + " " + str(p6) + "\n")
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR VAR VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING FUNC_CALL VAR STRING FUNC_CALL VAR STRING ASSIGN VAR VAR VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING FUNC_CALL VAR STRING FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR EXPR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR STRING FUNC_CALL VAR VAR STRING
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) x1 = [0] * n x2 = [0] * n y1 = [0] * n y2 = [0] * n for i in range(n): x1[i], y1[i], x2[i], y2[i] = [int(j) for j in input().split()] l = -(10**9) - 7 r = 10**9 + 7 d = -(10**9) - 7 u = 10**9 + 7 cnt = 0 for i in range(n): if not (x2[i] < l or x1[i] > r or y2[i] < d or y1[i] > u): cnt += 1 l = max(l, x1[i]) r = min(r, x2[i]) d = max(d, y1[i]) u = min(u, y2[i]) if cnt < n - 1: l = -(10**9) - 7 r = 10**9 + 7 d = -(10**9) - 7 u = 10**9 + 7 for i in range(n - 1, -1, -1): if not (x2[i] < l or x1[i] > r or y2[i] < d or y1[i] > u): cnt += 1 l = max(l, x1[i]) r = min(r, x2[i]) d = max(d, y1[i]) u = min(u, y2[i]) print(l, d)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
N = int(input()) rec = [] for i in range(N): x1, y1, x2, y2 = map(int, input().split()) rec.append((x1, y1, x2, y2)) INF = float("inf") pref = [(-INF, -INF, INF, INF)] suf = [(-INF, -INF, INF, INF)] for j in range(N): pref.append( ( max(pref[-1][0], rec[j][0]), max(pref[-1][1], rec[j][1]), min(pref[-1][2], rec[j][2]), min(pref[-1][3], rec[j][3]), ) ) for j in range(N - 1, -1, -1): s = ( max(suf[-1][0], rec[j][0]), max(suf[-1][1], rec[j][1]), min(suf[-1][2], rec[j][2]), min(suf[-1][3], rec[j][3]), ) suf.append(s) suf = suf[::-1] for i in range(N): a, b, c, d = ( max(pref[i][0], suf[i + 1][0]), max(pref[i][1], suf[i + 1][1]), min(pref[i][2], suf[i + 1][2]), min(pref[i][3], suf[i + 1][3]), ) if c >= a and d >= b: print(a, b) exit()
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR LIST VAR VAR VAR VAR ASSIGN VAR LIST VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
import sys input = sys.stdin.readline def solve(): n = int(input()) x3, y3, x4, y4 = -(10**9) - 5, -(10**9) - 5, 10**9 + 5, 10**9 + 5 a = [None] * n e = [None] * (2 * n) E = [None] * (2 * n) for i in range(n): x1, y1, x2, y2 = map(int, input().split()) a[i] = x1, y1, x2, y2 e[i * 2] = x2, 1 e[i * 2 + 1] = x1, 0 E[i * 2] = y2, 1 E[i * 2 + 1] = y1, 0 e.sort() E.sort() c = 0 xpos = [] ypos = [] for x, t in e: if t == 1: c -= 1 else: c += 1 if c >= n - 1: xpos.append(x) c = 0 for x, t in E: if t == 1: c -= 1 else: c += 1 if c >= n - 1: ypos.append(x) for x in xpos: for y in ypos: failed = 0 for x1, y1, x2, y2 in a: if not (x1 <= x and x <= x2 and y1 <= y and y <= y2): failed += 1 if failed > 1: break if failed <= 1: print(x, y) return solve()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR BIN_OP LIST NONE BIN_OP NUMBER VAR ASSIGN VAR BIN_OP LIST NONE BIN_OP NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR FOR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR RETURN EXPR FUNC_CALL VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) coos = [] pref = [] x1, y1, x2, y2 = map(int, input().split()) coos.append([x1, y1, x2, y2]) pref.append([x1, y1, x2, y2]) def intersect(coo1, coo2): if not coo1 or not coo2: return False x_left = max(coo1[0], coo2[0]) x_right = min(coo1[2], coo2[2]) y_down = max(coo1[1], coo2[1]) y_up = min(coo1[3], coo2[3]) if x_left > x_right or y_down > y_up: return False else: return [x_left, y_down, x_right, y_up] for i in range(n - 1): x1, y1, x2, y2 = map(int, input().split()) coos.append([x1, y1, x2, y2]) pref.append(intersect(coos[-1], pref[-1])) suf = [coos[-1]] for i in range(n - 2, -1, -1): suf.append(intersect(suf[-1], coos[i])) suf = suf[::-1] if suf[1]: print(suf[1][0], suf[1][1]) elif pref[n - 2]: print(pref[n - 2][0], pref[n - 2][1]) else: for i in range(1, n - 1): sth = intersect(pref[i - 1], suf[i + 1]) if sth: print(sth[0], sth[1]) exit(0)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR FUNC_DEF IF VAR VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR RETURN NUMBER RETURN LIST VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
class Rectangle: def __init__(self, leftX, bottomY, rightX, topY): self.leftX = leftX self.bottomY = bottomY self.rightX = rightX self.topY = topY def intersection(self, r): if not r: return None if self.leftX > r.rightX or self.rightX < r.leftX: return None if self.bottomY > r.topY or self.topY < r.bottomY: return None leftX = max(self.leftX, r.leftX) rightX = min(self.rightX, r.rightX) bottomY = max(self.bottomY, r.bottomY) topY = min(self.topY, r.topY) return Rectangle(leftX, bottomY, rightX, topY) def __repr__(self): return "{%d %d %d %d}" % (self.leftX, self.bottomY, self.rightX, self.topY) n = int(input()) r = [Rectangle(*map(int, input().split())) for _ in range(n)] prefix = [r[0]] for i in range(1, n): prefix.append(prefix[-1].intersection(r[i]) if prefix[-1] else None) suffix = [r[-1]] for i in range(n - 2, -1, -1): suffix.append(suffix[-1].intersection(r[i]) if suffix[-1] else None) if prefix[-1]: ret = prefix[-1] elif prefix[-2]: ret = prefix[-2] elif suffix[n - 2]: ret = suffix[n - 2] else: for i in range(1, n - 1): left = prefix[i - 1] right = suffix[n - i - 2] ret = left.intersection(right) if ret: break print("%d %d" % (ret.leftX, ret.bottomY))
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF IF VAR RETURN NONE IF VAR VAR VAR VAR RETURN NONE IF VAR VAR VAR VAR RETURN NONE ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR VAR FUNC_DEF RETURN BIN_OP STRING VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR NUMBER VAR VAR NONE ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR NUMBER VAR VAR NONE IF VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR BIN_OP STRING VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
import sys n = int(input()) l, d, r, u = map(int, input().split()) l1 = d1 = r1 = u1 = 0 rects = [(l, d, r, u)] may = 0, 0 for i in range(n - 1): a, b, c, e = map(int, input().split()) rects.append((a, b, c, e)) for i in range(n): a, b, c, e = rects[i] if a > r: may = r1, i break if b > u: may = u1, i break if c < l: may = l1, i break if e < d: may = d1, i break if a > l: l = a l1 = i if b > d: d = b d1 = i if c < r: r = c r1 = i if e < u: u = e u1 = i for x in may: ind = max(1 - x, 0) l, d, r, u = rects[ind] for i in range(n): if i != x: l = max(l, rects[i][0]) d = max(d, rects[i][1]) r = min(r, rects[i][2]) u = min(u, rects[i][3]) if l <= r and d <= u: print(l, d) exit(0)
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR LIST VAR VAR VAR VAR ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
class Rectangle: def __init__(self, topLeft, bottomRight): self.topLeft = topLeft self.bottomRight = bottomRight def __str__(self): return f"Rec({self.topLeft}, {self.bottomRight})" class Point: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return f"({self.x}, {self.y})" def intersection(r1, r2): if r2 == None: return None x0 = max(r1.topLeft.x, r2.topLeft.x) y0 = max(r1.topLeft.y, r2.topLeft.y) x1 = min(r1.bottomRight.x, r2.bottomRight.x) y1 = min(r1.bottomRight.y, r2.bottomRight.y) if x0 > x1 or y0 > y1: return None return Rectangle(Point(x0, y0), Point(x1, y1)) N = int(input()) rectangles = [0] * N suffix_inter = [None] * (N + 1) prefix_inter = [None] * (N + 1) for i in range(N): X1, Y1, X2, Y2 = [int(x) for x in input().split()] rectangles[i] = Rectangle(Point(X1, Y1), Point(X2, Y2)) prefix_inter[0] = suffix_inter[0] = Rectangle( Point(float("-inf"), float("-inf")), Point(float("inf"), float("inf")) ) for i in range(1, N + 1): prefix_inter[i] = intersection(rectangles[i - 1], prefix_inter[i - 1]) suffix_inter[i] = intersection(rectangles[N - i], suffix_inter[i - 1]) for i in range(N + 1): if prefix_inter[i] != None: intersec = intersection(prefix_inter[i], suffix_inter[N - 1 - i]) if intersec != None: print(intersec.topLeft.x, intersec.topLeft.y) break
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF RETURN STRING VAR STRING VAR STRING CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF RETURN STRING VAR STRING VAR STRING FUNC_DEF IF VAR NONE RETURN NONE ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR RETURN NONE RETURN FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NONE BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NONE BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING FUNC_CALL VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NONE ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR NONE EXPR FUNC_CALL VAR VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
import sys try: sys.stdin = open("input.txt", "r") sys.stdout = open("output.txt", "w") except: pass input = sys.stdin.readline def intersection(rect1, rect2): if not rect1 or not rect2: return () bottom = max(rect1[0], rect2[0]), max(rect1[1], rect2[1]) top = min(rect1[2], rect2[2]), min(rect1[3], rect2[3]) for i in range(2): if bottom[i] > top[i]: return () return *bottom, *top n = int(input()) recs = [] for _ in range(n): recs.append(tuple(map(int, input().split()))) prefix = [recs[0]] for i in range(1, n): prefix.append(intersection(prefix[i - 1], recs[i])) suffix = [recs[-1]] for rec in reversed(recs[:-1]): suffix.append(intersection(suffix[-1], rec)) suffix = suffix[::-1] if suffix[1]: print(suffix[1][0], suffix[1][1]) elif prefix[n - 2]: print(prefix[n - 2][0], prefix[n - 2][1]) else: for i in range(1, n - 1): res = intersection(prefix[i - 1], suffix[i + 1]) if res: print(res[0], res[1]) break
IMPORT ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR VAR FUNC_DEF IF VAR VAR RETURN ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR RETURN RETURN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) maxx1 = [-1 * 10000000000.0, -1 * 10000000000.0] maxxi1 = [[], []] maxy1 = [-1 * 10000000000.0, -1 * 10000000000.0] maxyi1 = [[], []] minx2 = [10000000000.0, 10000000000.0] minxi2 = [[], []] miny2 = [10000000000.0, 10000000000.0] minyi2 = [[], []] for i in range(n): x1, y1, x2, y2 = map(int, input().split()) if x1 > maxx1[1]: if x1 > maxx1[0]: maxx1[1] = maxx1[0] maxxi1[1] = maxxi1[0] maxx1[0] = x1 maxxi1[0] = [i] elif x1 == maxx1[0]: maxxi1[0].append(i) else: maxx1[1] = x1 maxxi1[1] = [i] elif x1 == maxx1[1]: maxxi1[1].append(x1) if y1 > maxy1[1]: if y1 > maxy1[0]: maxy1[1] = maxy1[0] maxyi1[1] = maxyi1[0] maxy1[0] = y1 maxyi1[0] = [i] elif y1 == maxy1[0]: maxyi1[0].append(i) else: maxy1[1] = y1 maxyi1[1] = [i] elif y1 == maxy1[1]: maxyi1[1].append(y1) if y2 < miny2[1]: if y2 < miny2[0]: miny2[1] = miny2[0] minyi2[1] = minyi2[0] miny2[0] = y2 minyi2[0] = [i] elif y2 == miny2[0]: minyi2[0].append(i) else: miny2[1] = y2 minyi2[1] = [i] elif y2 == miny2[1]: minyi2[1].append(y2) if x2 < minx2[1]: if x2 < minx2[0]: minx2[1] = minx2[0] minxi2[1] = minxi2[0] minx2[0] = x2 minxi2[0] = [i] elif x2 == minx2[0]: minxi2[0].append(i) else: minx2[1] = x2 minxi2[1] = [i] elif x2 == minx2[1]: minxi2[1].append(x2) any1 = False pos = [] if maxx1[0] <= minx2[0]: any1 = True pos = [-1, maxx1[0]] else: if len(maxxi1[0]) == 1: if maxx1[1] <= minx2[0]: pos.append([maxxi1[0][0], minx2[0]]) if len(minxi2[0]) == 1: if maxx1[0] <= minx2[1]: pos.append([minxi2[0][0], maxx1[0]]) any2 = False pos1 = [] if maxy1[0] <= miny2[0]: any2 = True pos1 = [-1, maxy1[0]] else: if len(maxyi1[0]) == 1: if maxy1[1] <= miny2[0]: pos1.append([maxyi1[0][0], miny2[0]]) if len(minyi2[0]) == 1: if maxy1[0] <= miny2[1]: pos1.append([minyi2[0][0], maxy1[0]]) if any1 and any2: print(pos[1], pos1[1]) elif any1: print(pos[1], pos1[0][1]) elif any2: print(pos[0][1], pos1[1]) elif pos[0][0] == pos1[0][0]: print(pos[0][1], pos1[0][1]) elif len(pos) == 2 and pos[1][0] == pos1[0][0]: print(pos[1][1], pos1[0][1]) elif len(pos1) == 2 and pos[0][0] == pos1[1][0]: print(pos[0][1], pos1[1][1]) elif len(pos1) < 2 or len(pos) < 2: print("fuck") else: print(pos[1][1], pos1[1][1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR LIST LIST LIST ASSIGN VAR LIST BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR LIST LIST LIST ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR LIST LIST LIST ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR LIST LIST LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER LIST VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER LIST VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER LIST VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER LIST VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER LIST VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER LIST VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER LIST VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER VAR ASSIGN VAR NUMBER LIST VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR LIST IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR LIST VAR NUMBER NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR LIST VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR LIST VAR NUMBER NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR LIST VAR NUMBER NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
mod1 = 1000000007 mod2 = -1000000007 n = int(input()) arr1 = [] arr2 = [] for i in range(n): x1, y1, x2, y2 = map(int, input().split()) arr1.append(((y2 - y1) * (x2 - x1), x1, x2, y1, y2)) arr12 = [] arr12.append((arr1[0][1], arr1[0][2])) xi = arr1[0][1] xj = arr1[0][2] for i in range(1, n): xi = max(arr1[i][1], xi) xj = min(arr1[i][2], xj) arr12.append((xi, xj)) arr13 = [] arr13.append((arr1[n - 1][1], arr1[n - 1][2])) xi = arr1[n - 1][1] xj = arr1[n - 1][2] for i in range(n - 2, -1, -1): xi = max(arr1[i][1], xi) xj = min(arr1[i][2], xj) arr13.append((xi, xj)) arr22 = [] arr22.append((arr1[0][3], arr1[0][4])) yi = arr1[0][3] yj = arr1[0][4] for i in range(1, n): yi = max(arr1[i][3], yi) yj = min(arr1[i][4], yj) arr22.append((yi, yj)) arr23 = [] arr23.append((arr1[n - 1][3], arr1[n - 1][4])) yi = arr1[n - 1][3] yj = arr1[n - 1][4] for i in range(n - 2, -1, -1): yi = max(arr1[i][3], yi) yj = min(arr1[i][4], yj) arr23.append((yi, yj)) if arr22[n - 2][1] >= arr22[n - 2][0] and arr12[n - 2][1] >= arr12[n - 2][0]: print(arr12[n - 2][0], arr22[n - 2][0]) elif arr23[n - 2][1] >= arr23[n - 2][0] and arr13[n - 2][1] >= arr13[n - 2][0]: print(arr13[n - 2][0], arr23[n - 2][0]) else: for i in range(1, n - 1): a1 = max(arr12[i - 1][0], arr13[n - i - 2][0]) a2 = min(arr12[i - 1][1], arr13[n - i - 2][1]) b1 = max(arr22[i - 1][0], arr23[n - i - 2][0]) b2 = min(arr22[i - 1][1], arr23[n - i - 2][1]) if a2 >= a1 and b2 >= b1: print(a1, b1) break
ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
import sys input = sys.stdin.readline def solve(): n = int(input()) x3, y3, x4, y4 = -(10**9) - 5, -(10**9) - 5, 10**9 + 5, 10**9 + 5 p = [None] * (n + 1) p[0] = x3, y3, x4, y4 a = [None] * n for i in range(n): x1, y1, x2, y2 = map(int, input().split()) a[i] = x1, y1, x2, y2 x3 = max(x1, x3) x4 = min(x2, x4) y3 = max(y1, y3) y4 = min(y2, y4) p[i + 1] = x3, y3, x4, y4 s = [None] * (n + 1) x3, y3, x4, y4 = -(10**9) - 5, -(10**9) - 5, 10**9 + 5, 10**9 + 5 s[n] = x3, y3, x4, y4 for i in range(n - 1, -1, -1): x1, y1, x2, y2 = a[i] x3 = max(x1, x3) x4 = min(x2, x4) y3 = max(y1, y3) y4 = min(y2, y4) s[i] = x3, y3, x4, y4 for i in range(n): x1, y1, x2, y2 = p[i] x3, y3, x4, y4 = s[i + 1] x3 = max(x1, x3) x4 = min(x2, x4) y3 = max(y1, y3) y4 = min(y2, y4) if x3 <= x4 and y3 <= y4: print(x3, y3) return return solve()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP LIST NONE BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NONE VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NONE BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN RETURN EXPR FUNC_CALL VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
from sys import stdin def inter(a, b): x1 = [a[0], a[2]] y1 = [a[1], a[3]] x2 = [b[0], b[2]] y2 = [b[1], b[3]] if ( x1[0] == None or x2[0] == None or max(y2) < min(y1) or max(y1) < min(y2) or max(x2) < min(x1) or max(x1) < min(x2) ): return [None] * 4 x = x1 + x2 y = y1 + y2 y.sort() x.sort() return [x[1], y[1], x[2], y[2]] n = int(stdin.readline().strip()) s = [tuple(map(int, stdin.readline().strip().split())) for i in range(n)] acum = [s[0]] for i in range(1, n): acum.append(inter(acum[-1], s[i])) acum1 = [s[-1]] for i in range(n - 2, -1, -1): acum1.append(inter(acum1[-1], s[i])) acum1.reverse() if acum[-2][0] != None: print(acum[-2][0], acum[-2][1]) exit(0) if acum[-2][2] != None: print(acum[-2][2], acum[-2][3]) exit(0) if acum1[1][0] != None: print(acum1[1][0], acum1[1][1]) exit(0) if acum1[1][2] != None: print(acum1[1][2], acum1[1][3]) exit(0) for i in range(1, n - 1): x = inter(acum[i - 1], acum1[i + 1]) if x[0] != None: print(x[0], x[1]) exit(0)
FUNC_DEF ASSIGN VAR LIST VAR NUMBER VAR NUMBER ASSIGN VAR LIST VAR NUMBER VAR NUMBER ASSIGN VAR LIST VAR NUMBER VAR NUMBER ASSIGN VAR LIST VAR NUMBER VAR NUMBER IF VAR NUMBER NONE VAR NUMBER NONE FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR RETURN BIN_OP LIST NONE NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR RETURN LIST VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR IF VAR NUMBER NUMBER NONE EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER NUMBER NONE EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER NUMBER NONE EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER NUMBER NONE EXPR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER NONE EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
def y(x1, y1, x2, y2, i): n = len(x1) if i == 0: return [ int(max(x1[i + 1 :])), int(max(y1[i + 1 :])), int(min(x2[i + 1 :])), int(min(y2[i + 1 :])), ] elif i == n - 1: return [int(max(x1[:i])), int(max(y1[:i])), int(min(x2[:i])), int(min(y2[:i]))] else: return [ int(max(max(x1[:i]), max(x1[i + 1 :]))), int(max(max(y1[:i]), max(y1[i + 1 :]))), int(min(min(x2[:i]), min(x2[i + 1 :]))), int(min(min(y2[:i]), min(y2[i + 1 :]))), ] n = int(input()) x1 = [0] * n y1 = [0] * n x2 = [0] * n y2 = [0] * n for i in range(n): x1[i], y1[i], x2[i], y2[i] = map(int, input().split()) ix1 = y(x1, y1, x2, y2, x1.index(max(x1))) iy1 = y(x1, y1, x2, y2, y1.index(max(y1))) ix2 = y(x1, y1, x2, y2, x2.index(min(x2))) iy2 = y(x1, y1, x2, y2, y2.index(min(y2))) if ix1[2] - ix1[0] >= 0 and ix1[3] - ix1[1] >= 0: print(ix1[0], ix1[1]) elif ix2[2] - ix2[0] >= 0 and ix2[3] - ix2[1] >= 0: print(ix2[0], ix2[1]) elif iy1[2] - iy1[0] >= 0 and iy1[3] - iy1[1] >= 0: print(iy1[0], iy1[1]) elif iy2[2] - iy2[0] >= 0 and iy2[3] - iy2[1] >= 0: print(iy2[0], iy2[1])
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER RETURN LIST FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER RETURN LIST FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN LIST FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
import sys def intersectTwoRectangles(rectangle1, rectangle2): intersection = [ max(rectangle1[0], rectangle2[0]), max(rectangle1[1], rectangle2[1]), min(rectangle1[2], rectangle2[2]), min(rectangle1[3], rectangle2[3]), ] if intersection[0] > intersection[2] or intersection[1] > intersection[3]: return [] return intersection def intersect(rectangles): intersection = rectangles[0] for rectangle in rectangles: intersection = intersectTwoRectangles(intersection, rectangle) if not intersection: return intersection return intersection def main(): input = sys.stdin nRectangles = int(input.readline()) rectangles = [] for i in range(nRectangles): rectangles.append(list(map(int, input.readline().rstrip("\n").split(" ")))) sortedByLeft = rectangles.copy() sortedByLeft.sort(key=lambda rectangle: rectangle[0]) sortedByRight = rectangles.copy() sortedByRight.sort(key=lambda rectangle: rectangle[2]) sortedByBottom = rectangles.copy() sortedByBottom.sort(key=lambda rectangle: rectangle[1]) sortedByTop = rectangles.copy() sortedByTop.sort(key=lambda rectangle: rectangle[3]) intersection = intersect(sortedByLeft[:-1]) if intersection: print(intersection[0], intersection[1]) exit() intersection = intersect(sortedByRight[1:]) if intersection: print(intersection[0], intersection[1]) exit() intersection = intersect(sortedByBottom[:-1]) if intersection: print(intersection[0], intersection[1]) exit() intersection = intersect(sortedByTop[1:]) if intersection: print(intersection[0], intersection[1]) exit() main()
IMPORT FUNC_DEF ASSIGN VAR LIST FUNC_CALL VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN LIST RETURN VAR FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR RETURN VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
def sub(r1, r2): r = [0] * 4 r[0] = max(r1[0], r2[0]) r[1] = max(r1[1], r2[1]) r[2] = min(r1[2], r2[2]) r[3] = min(r1[3], r2[3]) return r def ok(r): if r[0] > r[2] or r[1] > r[3]: return 0 return 1 a = [] n = int(input()) for i in range(n): a.append([int(i) for i in input().split(" ")]) L = [a[0]] for i in range(1, n): L.append(sub(L[-1], a[i])) R = [a[-1]] for i in range(n - 2, -1, -1): R.append(sub(R[-1], a[i])) R.reverse() for i in range(n): if i == 0: ans = R[1] elif i == n - 1: ans = L[i - 1] else: ans = sub(L[i - 1], R[i + 1]) if ok(ans): print(ans[0], ans[1]) break
FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) a = [0] * n b = [0] * n c = [0] * n d = [0] * n cn = 0 for i in range(n): h, g, f, e = map(int, input().split()) a[i] = h b[i] = g c[i] = f d[i] = e p, q, r, s = -(10**9), -(10**9), 10**9, 10**9 for i in range(n): if a[i] <= r and b[i] <= s and c[i] >= p and d[i] >= q: cn += 1 p = max(a[i], p) q = max(b[i], q) r = min(c[i], r) s = min(d[i], s) if cn < n - 1: p, q, r, s = -(10**9), -(10**9), 10**9, 10**9 for i in range(n - 1, -1, -1): if a[i] <= r and b[i] <= s and c[i] >= p and d[i] >= q: p = max(a[i], p) q = max(b[i], q) r = min(c[i], r) s = min(d[i], s) print(p, q)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
def readints(): return list(map(int, input().split(" "))) n = readints()[0] def intersection(A, B, C, D): X_inter_1 = max(A[0], C[0]) X_inter_2 = min(B[0], D[0]) Y_inter_1 = max(A[1], C[1]) Y_inter_2 = min(B[1], D[1]) if X_inter_2 < X_inter_1 or Y_inter_2 < Y_inter_1: return False else: return [(X_inter_1, Y_inter_1), (X_inter_2, Y_inter_2)] rectangle = [] for i in range(0, n): x_1, y_1, x_2, y_2 = readints() rectangle.append([(x_1, y_1), (x_2, y_2)]) prefix = [False] for i in range(n): if i == 1: prefix.append(rectangle[i - 1]) elif i > 1: if prefix[i - 1] != False: prefix.append( intersection( rectangle[i - 1][0], rectangle[i - 1][1], prefix[i - 1][0], prefix[i - 1][1], ) ) else: prefix.append(False) suffix = [(False) for _ in range(n)] for i in range(n - 2, -1, -1): if i == n - 2: suffix[i] = rectangle[n - 1] elif suffix[i + 1] != False: suffix[i] = intersection( rectangle[i + 1][0], rectangle[i + 1][1], suffix[i + 1][0], suffix[i + 1][1] ) else: suffix[i] = False res = 0 for i in range(n): if i == 0 and suffix[i] != False: res = suffix[i][0] break elif i == n - 1 and prefix[i] != False: res = prefix[i][0] break elif ( prefix[i] != False and suffix[i] != False and intersection(prefix[i][0], prefix[i][1], suffix[i][0], suffix[i][1]) != False ): res = intersection(prefix[i][0], prefix[i][1], suffix[i][0], suffix[i][1]) res = res[0] break x, y = res print(str(x) + " " + str(y))
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR RETURN NUMBER RETURN LIST VAR VAR VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR STRING FUNC_CALL VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) arr = [list(map(int, input().split())) for i in range(n)] def find_int(arr): [x1, y1, x2, y2] = arr[0] calc = 0 bad = [] for el in arr[1:]: old = [x1, y1, x2, y2] x2 = min(x2, el[2]) x1 = max(x1, el[0]) y1 = max(y1, el[1]) y2 = min(y2, el[3]) if x2 < x1 or y1 > y2: bad.append(el) calc += 1 [x1, y1, x2, y2] = old ans = [x1, y1, x2, y2] if len(bad) >= 2: [x1, y1, x2, y2] = bad[0] calc1 = 0 for el in arr[::-1]: old = [x1, y1, x2, y2] x2 = min(x2, el[2]) x1 = max(x1, el[0]) y1 = max(y1, el[1]) y2 = min(y2, el[3]) if x2 < x1 or y1 > y2: calc1 += 1 [x1, y1, x2, y2] = old assert calc1 <= 1 return [x1, y1, x2, y2] return [x1, y1, x2, y2] res = find_int(arr) print(res[0], res[1])
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN LIST VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR VAR NUMBER ASSIGN VAR LIST VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN LIST VAR VAR VAR VAR VAR ASSIGN VAR LIST VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN LIST VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR NUMBER ASSIGN VAR LIST VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER ASSIGN LIST VAR VAR VAR VAR VAR VAR NUMBER RETURN LIST VAR VAR VAR VAR RETURN LIST VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
class Rectangle: def __init__(self, l, r, t, b): self.l = l self.r = r self.t = t self.b = b def error_check(self, other_rectangle): if self.l > other_rectangle.r: return False elif self.r < other_rectangle.l: return False elif self.t < other_rectangle.b: return False elif self.b > other_rectangle.t: return False else: return True def merge(self, other_rectangle): l = max(self.l, other_rectangle.l) r = min(self.r, other_rectangle.r) t = min(self.t, other_rectangle.t) b = max(self.b, other_rectangle.b) return Rectangle(l, r, t, b) def out(self): return str(self.l) + " " + str(self.b) n = int(input()) r_list = [] for i in range(0, n): temp = input().split() l = int(temp[0]) r = int(temp[2]) t = int(temp[3]) b = int(temp[1]) r_list.append(Rectangle(l, r, t, b)) pref = [None] * n pref[0] = r_list[0] for i in range(1, n): if pref[i - 1].error_check(r_list[i]): pref[i] = pref[i - 1].merge(r_list[i]) else: pref[i] = None break suf = [None] * n suf[0] = r_list[n - 1] for i in range(1, n): if suf[i - 1].error_check(r_list[n - i - 1]): suf[i] = suf[i - 1].merge(r_list[n - i - 1]) else: suf[i] = None break i = 0 if suf[n - 1 - 1] != None: print(suf[n - 1 - 1].out()) raise SystemExit(0) for i in range(1, n - 1): if pref[i - 1] != None and suf[n - i - 2] != None: if pref[i - 1].error_check(suf[n - i - 2]): print(pref[i - 1].merge(suf[n - i - 2]).out()) raise SystemExit(0) i = n - 1 if pref[n - 1 - 1] != None: print(pref[n - 1 - 1].out()) raise SystemExit(0)
CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR VAR VAR FUNC_DEF RETURN BIN_OP BIN_OP FUNC_CALL VAR VAR STRING FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR NONE ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NONE ASSIGN VAR NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER NONE EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NONE VAR BIN_OP BIN_OP VAR VAR NUMBER NONE IF FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP BIN_OP VAR NUMBER NUMBER NONE EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) u = [] for i in range(n): u.append(list(map(int, input().split()))) l1, l2 = max(u[0][0], u[1][0]), min(u[0][0], u[1][0]) d1, d2 = max(u[0][1], u[1][1]), min(u[0][1], u[1][1]) r1, r2 = min(u[0][2], u[1][2]), max(u[0][2], u[1][2]) u1, u2 = min(u[0][3], u[1][3]), max(u[0][3], u[1][3]) for i in range(2, n): if u[i][0] > l1: l1, l2 = u[i][0], l1 elif u[i][0] > l2: l2 = u[i][0] if u[i][1] > d1: d1, d2 = u[i][1], d1 elif u[i][1] > d2: d2 = u[i][1] if u[i][2] < r1: r1, r2 = u[i][2], r1 elif u[i][2] < r2: r2 = u[i][2] if u[i][3] < u1: u1, u2 = u[i][3], u1 elif u[i][3] < u2: u2 = u[i][3] for i in range(n): if u[i][0] == l1: u[i][0] = l2 else: u[i][0] = l1 if u[i][1] == d1: u[i][1] = d2 else: u[i][1] = d1 if u[i][2] == r1: u[i][2] = r2 else: u[i][2] = r1 if u[i][3] == u1: u[i][3] = u2 else: u[i][3] = u1 if u[i][0] <= u[i][2] and u[i][1] <= u[i][3]: print(u[i][0], u[i][1]) break
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) ox = [] cx = [] l3 = [] oy = [] cy = [] for i in range(n): r, s, a, b = list(map(int, input().strip().split())) l3.append([r, s, a, b]) ox.append(r) oy.append(s) cx.append(a) cy.append(b) ox.sort() cx.sort() oy.sort() cy.sort() e1 = ox[-1] e2 = cx[0] e3 = oy[-1] e4 = cy[0] for i in l3: a1 = i[0] a2 = i[1] a3 = i[2] a4 = i[3] if a1 == e1: w = ox[-2] else: w = ox[-1] if a2 == e3: y = oy[-2] else: y = oy[-1] if a3 == e2: x = cx[1] else: x = cx[0] if a4 == e4: z = cy[1] else: z = cy[0] if w <= x and y <= z: print(w, y) return
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
r1 = r2 = u1 = u2 = 1 << 30 l1 = l2 = d1 = d2 = -r1 for i in range(int(input())): l, d, r, u = map(int, input().split()) if l > l1: il, l1, l2 = i, l, l1 elif l > l2: l2 = l if r < r1: ir, r1, r2 = i, r, r1 elif r < r2: r2 = r if d > d1: idn, d1, d2 = i, d, d1 elif d > d2: d2 = d if u < u1: iu, u1, u2 = i, u, u1 elif u < u2: u2 = u for i in (il, ir, idn, iu): l = (l1, l2)[i == il] r = (r1, r2)[i == ir] d = (d1, d2)[i == idn] u = (u1, u2)[i == iu] if l <= r and d <= u: break print(l, d)
ASSIGN VAR VAR VAR VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR FOR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
n = int(input()) A = [list(map(int, input().split())) for i in range(n)] pr = [[A[0][0], A[0][1], A[0][2], A[0][3]] for i in range(n)] suf = [[A[n - 1][0], A[n - 1][1], A[n - 1][2], A[n - 1][3]] for i in range(n)] for i in range(1, n): pr[i][0] = max(pr[i - 1][0], A[i][0]) pr[i][1] = max(pr[i - 1][1], A[i][1]) pr[i][2] = min(pr[i - 1][2], A[i][2]) pr[i][3] = min(pr[i - 1][3], A[i][3]) for i in range(n - 2, -1, -1): suf[i][0] = max(suf[i + 1][0], A[i][0]) suf[i][1] = max(suf[i + 1][1], A[i][1]) suf[i][2] = min(suf[i + 1][2], A[i][2]) suf[i][3] = min(suf[i + 1][3], A[i][3]) pr.append([-(10**9) - 7, -(10**9) - 7, 10**9 + 7, 10**9 + 7]) suf.append([-(10**9) - 7, -(10**9) - 7, 10**9 + 7, 10**9 + 7]) for i in range(n): a = max(pr[i - 1][0], suf[i + 1][0]) b = max(pr[i - 1][1], suf[i + 1][1]) c = min(pr[i - 1][2], suf[i + 1][2]) d = min(pr[i - 1][3], suf[i + 1][3]) if a <= c and b <= d: ans = [a, b] break print(*ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR LIST BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR LIST BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR LIST VAR VAR EXPR FUNC_CALL VAR VAR
You are given $n$ rectangles on a plane with coordinates of their bottom left and upper right points. Some $(n-1)$ of the given $n$ rectangles have some common point. A point belongs to a rectangle if this point is strictly inside the rectangle or belongs to its boundary. Find any point with integer coordinates that belongs to at least $(n-1)$ given rectangles. -----Input----- The first line contains a single integer $n$ ($2 \le n \le 132\,674$) β€” the number of given rectangles. Each the next $n$ lines contains four integers $x_1$, $y_1$, $x_2$ and $y_2$ ($-10^9 \le x_1 < x_2 \le 10^9$, $-10^9 \le y_1 < y_2 \le 10^9$) β€” the coordinates of the bottom left and upper right corners of a rectangle. -----Output----- Print two integers $x$ and $y$ β€” the coordinates of any point that belongs to at least $(n-1)$ given rectangles. -----Examples----- Input 3 0 0 1 1 1 1 2 2 3 0 4 1 Output 1 1 Input 3 0 0 1 1 0 1 1 2 1 0 2 1 Output 1 1 Input 4 0 0 5 5 0 0 4 4 1 1 4 4 1 1 4 4 Output 1 1 Input 5 0 0 10 8 1 2 6 7 2 3 5 6 3 4 4 5 8 1 9 2 Output 3 4 -----Note----- The picture below shows the rectangles in the first and second samples. The possible answers are highlighted. [Image] The picture below shows the rectangles in the third and fourth samples. [Image]
def main(): n = int(input()) data = [] for i in range(n): a, b, c, d = list(map(int, input().split())) data += [(a, b, c, d)] solve_data(data) def intersect(tup1, tup2): a, b, c, d = tup1 x, y, z, w = tup2 return max(a, x), max(b, y), min(c, z), min(d, w) def solve_data(data): prefix = [data[0]] for i in range(1, len(data)): tup = data[i] prefix += [intersect(tup, prefix[-1])] suffix = [data[len(data) - 1]] for i in range(1, len(data)): tup = data[len(data) - 1 - i] suffix += [intersect(tup, suffix[-1])] intr1 = prefix[-2] intr2 = suffix[-2] prefix = prefix[:-2] suffix = suffix[:-2] suffix.reverse() for pr, su in zip(prefix, suffix): intr = intersect(pr, su) a, b, c, d = intr if c >= a and d >= b: print(a, b) return 0 a, b, c, d = intr1 if c >= a and d >= b: print(a, b) return 0 a, b, c, d = intr2 if c >= a and d >= b: print(a, b) return 0 main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR LIST FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR LIST VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR LIST FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR FOR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR RETURN NUMBER EXPR FUNC_CALL VAR