description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = list(map(int, input().strip().split()))
a.sort()
poss = True
diff = [None] * 2
places = [[] for x in range(2)]
for x in range(n - 1):
curr = a[x + 1] - a[x]
if diff[0] is None:
diff[0] = curr
places[0].append(x)
elif curr != diff[0] and diff[1] is None:
diff[1] = curr
places[1].append(x)
elif curr == diff[0]:
places[0].append(x)
elif curr == diff[1]:
places[1].append(x)
else:
poss = False
break
if len(places[0]) > 1 and len(places[1]) > 1:
poss = False
break
if poss == True:
if diff[1] is None:
if len(places[0]) == 0:
print(-1)
elif len(places[0]) == 1:
if diff[0] % 2 == 0 and diff[0] != 0:
print(3)
print(a[0] - diff[0], a[0] + diff[0] // 2, a[1] + diff[0])
elif diff[0] == 0:
print(1)
print(a[0])
else:
print(2)
print(a[0] - diff[0], a[1] + diff[0])
elif diff[0] != 0:
print(2)
print(a[0] - diff[0], a[-1] + diff[0])
else:
print(1)
print(a[0])
elif len(places[0]) > 1:
if diff[0] * 2 == diff[1]:
print(1)
print(a[places[1][0]] + diff[0])
else:
print(0)
elif len(places[1]) > 1:
if diff[1] * 2 == diff[0]:
print(1)
print(a[places[0][0]] + diff[1])
else:
print(0)
elif diff[0] * 2 == diff[1]:
print(1)
print(a[places[1][0]] + diff[0])
elif diff[1] * 2 == diff[0]:
print(1)
print(a[places[0][0]] + diff[1])
else:
print(0)
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NONE NUMBER ASSIGN VAR LIST VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR NUMBER NONE ASSIGN VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER VAR NUMBER NONE ASSIGN VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER NONE IF FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = sorted(map(int, input().split()))
if n == 1:
print(-1)
else:
if a[0] == a[-1]:
p = [a[0]]
else:
p = []
d = list(set(a[i + 1] - a[i] for i in range(n - 1)))
if len(d) == 1:
p = [a[0] - d[0], a[-1] + d[0]]
if n == 2 and (a[1] - a[0]) % 2 == 0:
p += [(a[1] + a[0]) // 2]
elif len(d) == 2:
if max(d) == 2 * min(d):
for i in range(n - 1):
if a[i + 1] - a[i] == max(d):
if len(p) == 0:
p = [(a[i + 1] + a[i]) // 2]
else:
p = []
break
print(len(p))
print(" ".join(map(str, sorted(p))))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR LIST VAR NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER VAR LIST BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER IF FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
def sequence_check(m, delta):
count = 0
for i in range(1, len(m)):
if m[i] - m[i - 1] != delta:
if delta == 0:
return -2
mistake = i
count += 1
if count == 2 or m[i] == m[i - 1] and delta != 0:
return -2
if delta == 0 and count == 0:
return -3
elif delta == 0 and count > 0:
return -2
elif count > 0:
return mistake
return -1
n = int(input())
m = list(map(int, input().split()))
m.sort()
if n == 1:
print(-1)
else:
if len(m) >= 4:
if m[1] - m[0] == m[2] - m[1]:
delta = m[1] - m[0]
elif m[1] - m[0] != m[2] - m[1] and m[1] - m[0] == m[3] - m[2]:
delta = m[1] - m[0]
else:
delta = m[2] - m[1]
else:
delta = m[1] - m[0]
for i in range(1, len(m)):
if m[i] - m[i - 1] < delta:
delta = m[i] - m[i - 1]
result = sequence_check(m, delta)
if result == -3:
print(1)
print(m[0])
elif result == -2:
print(0)
elif result == -1 and n == 2 and m[0] % 2 == m[1] % 2:
print(3)
print(m[0] - delta, (m[0] + m[1]) // 2, m[-1] + delta)
elif result == -1:
print(2)
print(m[0] - delta, m[-1] + delta)
elif (m[result - 1] + m[result]) % 2 == 0 and (m[result - 1] + m[result]) // 2 == m[
result
] - delta:
print(1)
print(m[result] - delta)
else:
print(0)
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER RETURN NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR NUMBER VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR IF BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
import sys
input = sys.stdin.readline
I = lambda: list(map(int, input().split()))
(n,) = I()
l = sorted(I())
df = [0] * (n - 1)
r = c = -1
x = 0
for i in range(1, n):
df[i - 1] = l[i] - l[i - 1]
s = set(df)
if len(s) > 2:
print(0)
elif len(s) == 2:
r, c = list(s)
if df.count(r) == 1 and r == 2 * c:
print(1)
k = df.index(r)
print(l[k] + c)
elif df.count(c) == 1 and c == 2 * r:
print(1)
k = df.index(c)
print(l[k] + r)
else:
print(0)
else:
r = list(s)[0] if len(s) == 1 else 0
if n == 1:
print(-1)
elif r == 0:
print(1, "\n" + str(l[0]))
elif n == 2 and r % 2 == 0:
print(3)
print(l[0] - r, l[0] + r // 2, l[n - 1] + r)
else:
print(2)
print(l[0] - r, l[n - 1] + r)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP STRING FUNC_CALL VAR VAR NUMBER IF VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
def main():
n = int(input())
if n == 1:
print(-1)
return
elif n == 2:
a, b = list(map(int, input().split()))
res = {a * 2 - b, b * 2 - a}
if not a + b & 1:
res.add((a + b) // 2)
else:
l = sorted(map(int, input().split()))
d, a = {}, -l[-1]
for i, b in enumerate(l):
x, a = b - a, b
cnt, _ = d.get(x, (0, 0))
d[x] = cnt + 1, b
t = sorted(d.items())
if len(t) == 2:
y, (_, b) = t[0]
res = {l[0] - y, b + y}
elif len(t) == 3:
(x, _), (y, (c2, b)), _ = t
if not x or c2 > 1 or x * 2 != y:
res = ()
else:
res = (b - x,)
else:
res = ()
print(len(res))
if res:
print(*sorted(res))
def __starting_point():
main()
__starting_point()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR IF BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR DICT VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR VAR IF VAR VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
array = sorted(list(map(int, input().split())))
def all_same(items):
return all(x == items[0] for x in items)
if n == 1:
print(-1)
elif n == 2:
t = max(array) - min(array)
if t == 0:
print(1)
print(array[0])
elif t % 2 == 0:
print(3)
print(min(array) - t, int(min(array) + t / 2), max(array) + t)
else:
print(2)
print(min(array) - t, max(array) + t)
else:
diff = [(array[i + 1] - array[i]) for i in range(n - 1)]
if all_same(diff):
t = array[1] - array[0]
if t == 0:
print(1)
print(array[0])
else:
print(2)
print(min(array) - t, max(array) + t)
elif max(diff) == 2 * min(diff) and diff.count(max(diff)) == 1:
print(1)
print(array[diff.index(max(diff))] + min(diff))
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = [int(i) for i in input().split()]
a = sorted(a)
if len(a) == 1:
print(-1)
elif len(a) == 2:
d = a[1] - a[0]
if d == 0:
print(1)
print(a[0])
return
elif d % 2 == 0:
print(3)
print(a[0] - d, int(a[0] + d / 2), a[1] + d)
return
else:
print(2)
print(a[0] - d, a[1] + d)
return
else:
d = a[1] - a[0]
d2 = a[2] - a[1]
if d != d2:
if len(a) > 3:
d = a[3] - a[2]
else:
d = min(d, d2)
c = 0
e = 0
f = 0
for i in range(len(a) - 1):
if a[i + 1] - a[i] != d:
e = a[i + 1] - a[i]
f = i
c += 1
if c == 2:
print(0)
return
if c == 0:
if d == 0:
print(1)
print(a[0])
return
else:
print(2)
print(a[0] - d, a[len(a) - 1] + d)
return
elif e == 2 * d:
print(1)
print(a[f] + d)
return
else:
print(0)
return
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR RETURN EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR RETURN ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR RETURN IF VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR RETURN EXPR FUNC_CALL VAR NUMBER RETURN
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = list(map(int, input().split()))
if n == 1:
print(-1)
else:
k = 0
res = []
a.sort()
b1 = {i for i in a}
if len(b1) == 1:
print(1)
print(a[0])
else:
c = []
b = set()
for i in range(n - 1):
c.append(a[i + 1] - a[i])
b.add(a[i + 1] - a[i])
if len(b) != 1 and len(b) != 2 or 0 in b:
print(0)
elif len(b) == 1:
k = 2
x = list(b)[0]
res.append(a[0] - x)
res.append(a[n - 1] + x)
if n == 2:
if x / 2 % 1 == 0:
k += 1
res.append(int(a[0] + x / 2))
res.sort()
print(k)
print(" ".join(map(str, res)))
elif len(b) == 2:
d = [i for i in b]
ma = max(d)
mi = min(d)
if ma / 2 == mi and c.count(ma) == 1:
k = 1
res.append(a[c.index(ma)] + mi)
print(k)
print(" ".join(map(str, res)))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
def isProgression():
nonlocal N, A, d, error
ans = True
for i in range(N - 1):
if d != A[i + 1] - A[i]:
ans = False
error += 1
return ans
N = int(input())
A = list(int(i) for i in input().split())
error = 0
A.sort()
d = (A[N - 1] - A[0]) // N
res = isProgression()
if error == N - 1 and N != 1 and (A[N - 1] - A[0]) % (N - 1) == 0:
d = (A[N - 1] - A[0]) // (N - 1)
error = 0
res = isProgression()
if N == 1:
print(-1)
elif N == 2 and (A[0] + A[1]) % 2 == 0 and A[0] != A[1]:
print(3)
d = A[1] - A[0]
print(A[0] - d, (A[0] + A[1]) // 2, A[1] + d)
elif res == True and d != 0:
print(2)
print(A[0] - d, A[N - 1] + d)
elif res == True:
print(1)
print(A[0])
elif error > 1:
print(0)
else:
for i in range(N - 1):
if d != A[i + 1] - A[i]:
if A[i + 1] - A[i] < d:
print(0)
elif A[i + 1] - A[i] == 2 * d:
print(1)
print((A[i] + A[i + 1]) // 2)
else:
print(0)
break
|
FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR IF VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = sorted(list(map(int, input().split())))
how = sum([(1) for i in range(n) if a[0] == a[i]])
if n >= 2:
d = min([(a[i] - a[i - 1]) for i in range(1, len(a))])
else:
d = 0
is_ok = True
for i in range(1, len(a)):
if a[i] - a[i - 1] != d:
is_ok = False
if n == 1:
print(-1)
exit(0)
elif how == n:
print(1)
print(a[0])
elif is_ok:
L = []
if n == 2:
if (a[0] + a[1]) % 2 == 0:
L.append((a[0] + a[1]) // 2)
L.append(min(a) - d)
L.append(max(a) + d)
L = sorted(L)
print(len(L))
if len(L) > 0:
for i in L:
print(i, end=" ")
print()
else:
L = []
if n == 2:
if (a[0] + a[1]) % 2 == 0:
L.append((a[0] + a[1]) // 2)
for i in range(1, n):
if 2 * d == a[i] - a[i - 1] and d != 0:
L.append(a[i - 1] + d)
if len(L) <= 1:
valid = True
for i in L:
a.append(i)
a = sorted(a)
tmp = a[1] - a[0]
for i in range(1, len(a)):
if a[i] - a[i - 1] != tmp:
valid = False
break
if valid == False:
print(0)
exit(0)
print(len(L))
for i in L:
print(i, end=" ")
print()
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF VAR ASSIGN VAR LIST IF VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR LIST IF VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
def main():
n = int(input())
l = sorted(map(int, input().split()))
if n == 1:
print(-1)
return
elif n == 2:
a, b = l
res = {a * 2 - b, b * 2 - a}
if not a + b & 1:
res.add((a + b) // 2)
else:
q = min(l[1] - l[0], l[-1] - l[-2])
a, res = l[0] - q, ()
for b in l:
if q != b - a:
if res or q * 2 != b - a:
res = ()
break
else:
res = (b - q,)
a = b
else:
if not res:
res = {l[0] - q, b + q}
print(len(res))
if res:
print(*sorted(res))
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR IF BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR FOR VAR VAR IF VAR BIN_OP VAR VAR IF VAR BIN_OP VAR NUMBER BIN_OP VAR VAR ASSIGN VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR IF VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = list(map(int, input().split()))
a.sort()
if n == 1:
print(-1)
elif n == 2:
d = a[1] - a[0]
if (a[0] + a[1]) % 2 == 0:
if d == 0:
print(1)
print(a[0])
else:
print(3)
print(a[0] - d, (a[0] + a[1]) // 2, a[1] + d)
else:
print(2)
print(a[0] - d, a[1] + d)
else:
diff = [(a[i + 1] - a[i]) for i in range(n - 1)]
maxval = minval = a[1] - a[0]
maxi = 0
for i in range(1, n - 1):
val = a[i + 1] - a[i]
if val > maxval:
maxval = val
maxi = i
if val < minval:
minval = val
n1 = diff.count(minval)
n2 = diff.count(maxval)
if n1 == n - 1:
if minval == 0:
print(1)
print(a[0])
else:
print(2)
print(a[0] - minval, a[-1] + minval)
elif n2 == 1 and n1 == n - 2 and 2 * minval == maxval:
print(1)
print(a[maxi] + minval)
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
arr = [int(x) for x in input().split()]
arr.sort()
if n == 1:
print(-1)
else:
ans = []
if n == 2:
if (arr[1] - arr[0]) % 2 == 0:
d = arr[1] - arr[0]
if d != 0:
ans.append(arr[0] - d)
ans.append(arr[0] + d // 2)
ans.append(arr[1] + d)
else:
ans.append(arr[0] + d // 2)
else:
d = arr[1] - arr[0]
ans.append(arr[0] - d)
ans.append(arr[1] + d)
else:
dic = {}
for i in range(n - 1):
d = arr[i + 1] - arr[i]
if d in dic:
dic[d] += 1
else:
dic[d] = 1
if len(dic) == 1:
for ele in dic:
d = ele
num = dic[ele]
if d == 0:
ans.append(arr[0] - d)
else:
ans.append(arr[0] - d)
ans.append(arr[-1] + d)
elif len(dic) == 2:
m = float("inf")
d = -1
m1, d2 = -float("inf"), -1
for ele in dic:
if dic[ele] < m:
m = dic[ele]
d = ele
elif dic[ele] == m:
if ele > d:
m = dic[ele]
d = ele
if dic[ele] > m1:
m1 = dic[ele]
d1 = ele
elif dic[ele] == m1:
if ele < d:
m1 = dic[ele]
d1 = ele
if dic[d] == 1:
if d % 2 == 0 and d // 2 == d1:
for i in range(n - 1):
if arr[i + 1] - arr[i] == d:
ans.append(arr[i] + d // 2)
break
if len(ans) == 0:
print(0)
else:
print(len(ans))
print(*ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST IF VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FOR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR STRING NUMBER FOR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
def main():
lst = sorted(list(map(int, input().split(" "))))
dct = set()
for i in range(len(lst) - 1):
dct.add(lst[i + 1] - lst[i])
if len(dct) > 2:
print(0)
elif len(dct) == 2 and 0 in dct:
print(0)
elif len(dct) == 2:
if 2 * min(dct) == max(dct):
cnt = 0
for i in range(len(lst) - 1):
if lst[i + 1] - lst[i] == max(dct):
ans = (lst[i] + lst[i + 1]) // 2
cnt += 1
if cnt >= 2:
print(0)
return
print(1)
print(ans)
else:
print(0)
elif len(lst) == 1:
print(-1)
elif len(dct) == 1 and len(lst) > 2:
if list(dct)[0] == 0:
print(1)
print(lst[0])
else:
print(2)
print(lst[0] - lst[1] + lst[0], end=" ")
print(lst[-1] + lst[1] - lst[0])
elif len(dct) == 1 and len(lst) == 2:
if list(dct)[0] == 0:
print(1)
print(lst[0])
else:
ans = []
ans.append(lst[0] - lst[1] + lst[0])
ans.append(lst[-1] + lst[1] - lst[0])
t = 1.0 * (lst[0] + lst[1]) / 2
if t % 1 == 0:
print(3)
ans.append(int(t))
else:
print(2)
print(" ".join(map(str, sorted(ans))))
main()
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF BIN_OP NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER STRING EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
from sys import stdin
def solve(tc):
n = int(stdin.readline().strip())
seq = sorted(list(map(int, stdin.readline().split())))
ans = []
if n == 1:
print(-1)
return
if n == 2:
diff = seq[1] - seq[0]
if diff == 0:
print(1)
print(seq[0])
return
ans.append(seq[0] - diff)
if diff % 2 == 0:
ans.append(seq[0] + diff // 2)
ans.append(seq[1] + diff)
print(len(ans))
print(" ".join(map(lambda x: str(x), ans)))
return
mindiff = int(1e18)
for i in range(1, n):
mindiff = min(mindiff, seq[i] - seq[i - 1])
for i in range(1, n):
diff = seq[i] - seq[i - 1]
if diff > mindiff:
if diff != mindiff * 2:
print(0)
return
if len(ans) > 0:
print(0)
return
ans.append(seq[i - 1] + mindiff)
if len(ans) == 0:
if mindiff == 0:
print(1)
print(seq[0])
return
ans.append(seq[0] - mindiff)
ans.append(seq[-1] + mindiff)
print(len(ans))
print(" ".join(map(lambda x: str(x), ans)))
tcs = 1
for tc in range(tcs):
solve(tc)
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR RETURN ASSIGN VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
num = [int(k) for k in input().split()]
num.sort()
diff = [0] * (n - 1)
for i in range(n - 1):
diff[i] = num[i + 1] - num[i]
if n == 1:
print(-1)
elif len(diff) > 1:
same = True
for i in range(len(diff) - 1):
if diff[i] != diff[i + 1]:
same = False
if same == True:
if diff[0] == 0:
print(1)
print(num[0])
else:
print(2)
print(num[0] - diff[0], num[n - 1] + diff[0])
elif diff.count(diff[diff.index(min(diff))]) != len(diff) - 1:
print(0)
elif 2 * diff[diff.index(min(diff))] != diff[diff.index(max(diff))]:
print(0)
else:
print(1)
print(num[diff.index(max(diff))] + diff[diff.index(min(diff))])
elif len(diff) == 1:
if diff[0] == 0:
print(1)
print(num[0])
elif (num[0] + num[1]) / 2 % 1 == 0:
print(3)
print(num[0] - diff[0], int((num[0] + num[1]) / 2), num[1] + diff[0])
else:
print(2)
print(num[0] - diff[0], num[1] + diff[0])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
for _ in range(1):
n = int(input())
arr = [int(i) for i in input().split()]
arr.sort()
l = []
if n == 1:
print(-1)
elif n == 2:
if arr[1] - arr[0] == 0:
print(1)
print(arr[0])
elif (arr[1] - arr[0]) % 2 == 0:
print(3)
print(2 * arr[0] - arr[1], (arr[0] + arr[1]) // 2, 2 * arr[1] - arr[0])
else:
print(2)
print(2 * arr[0] - arr[1], 2 * arr[1] - arr[0])
else:
for i in range(n - 1):
l.append(arr[i + 1] - arr[i])
if len(set(l)) == 1 and l[0] == 0:
print(1)
print(arr[0])
elif len(set(l)) == 1:
print(2)
print(2 * arr[0] - arr[1], 2 * arr[n - 1] - arr[n - 2])
elif len(set(l)) == 2:
l = list(set(l))
l.sort()
if l[0] * 2 == l[1]:
count = 0
for i in range(n - 1):
if arr[i + 1] - arr[i] == l[1]:
count += 1
index = i
if count == 1:
print(1)
print(arr[index] + l[0])
else:
print(0)
else:
print(0)
else:
print(0)
|
FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = list(map(int, input().split()))
a.sort()
diff, s, i, val = set(), set(), 0, 0
while i < n - 1:
diff.add(a[i + 1] - a[i])
i += 1
diff = list(diff)
diff.sort()
if n == 1:
print(-1)
elif n == 2:
s.add(a[0] - diff[0])
s.add(a[1] + diff[0])
if diff[0] % 2 == 0:
s.add(a[0] + diff[0] // 2)
print(len(s))
s = list(s)
s.sort()
for ele in s:
print(ele, end=" ")
else:
if len(diff) == 1:
s.add(a[0] - diff[0])
s.add(a[n - 1] + diff[0])
elif len(diff) == 2:
if diff[0] == diff[1] / 2:
i = 0
while i < n - 1:
if a[i + 1] - a[i] == diff[1]:
s.add(a[i] + diff[0])
val += 1
i += 1
if val > 1:
print(0)
else:
print(len(s))
s = list(s)
s.sort()
for ele in s:
print(ele, end=" ")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
arr = [int(x) for x in input().split()]
arr.sort()
if n == 1:
print("-1")
elif n == 2:
diff = arr[1] - arr[0]
if diff % 2 == 0 and diff != 0:
print("3")
print(arr[0] - diff, (arr[0] + arr[1]) // 2, arr[1] + diff)
elif diff == 0:
print("1")
print(arr[0])
else:
print("2")
print(arr[0] - diff, arr[1] + diff)
elif n == 3:
diff1 = arr[1] - arr[0]
diff2 = arr[2] - arr[1]
if diff1 == diff2 and diff1 != 0:
print("2")
print(arr[0] - diff1, arr[2] + diff1)
elif diff1 == diff2 and diff1 == 0:
print("1")
print(arr[1])
elif diff1 == 2 * diff2:
print("1")
print(arr[0] + diff2)
elif diff2 == 2 * diff1:
print("1")
print(arr[1] + diff1)
else:
print("0")
else:
diff = dict()
keys = 0
for i in range(1, len(arr)):
cdiff = arr[i] - arr[i - 1]
if cdiff in diff:
diff[cdiff] += 1
else:
keys += 1
diff[cdiff] = 1
if keys > 2:
break
if keys > 2:
print("0")
elif keys == 1:
cdiff = list(diff)[0]
if cdiff == 0:
print("1")
print(arr[0])
else:
print("2")
print(arr[0] - cdiff, arr[n - 1] + cdiff)
elif keys == 2:
diff1 = list(diff)[0]
diff2 = list(diff)[1]
if diff[diff1] > diff[diff2]:
maxd = diff1
mind = diff2
else:
maxd = diff2
mind = diff1
if mind == 2 * maxd and diff[mind] == 1:
print("1")
pos = 0
for i in range(0, len(arr) - 1):
d = arr[i + 1] - arr[i]
if d == mind:
pos = i
break
print(arr[pos] + maxd)
else:
print("0")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR BIN_OP NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR STRING
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = list(map(int, input().split()))
if n == 1:
print(-1)
return
a.sort()
d = a[1] - a[0]
if n == 2:
if d == 0:
print(1)
print(a[0])
elif d % 2 == 1:
print(2)
print(a[0] - d, a[1] + d)
else:
print(3)
print(a[0] - d, sum(a) // 2, a[1] + d)
return
d_list = [(a[i] - a[i - 1]) for i in range(1, n)]
d2c = {}
for d in d_list:
if d not in d2c:
d2c[d] = 1
else:
d2c[d] += 1
if len(d2c) == 1:
d1, c1 = d2c.popitem()
if d1 == 0:
print(1)
print(a[0])
else:
print(2)
print(a[0] - d, a[-1] + d)
return
if len(d2c) == 2:
d1, c1 = d2c.popitem()
d2, c2 = d2c.popitem()
if c1 == 1 and d1 == d2 * 2:
print(1)
print(a[d_list.index(d1)] + d2)
elif c2 == 1 and d2 == d1 * 2:
print(1)
print(a[d_list.index(d2)] + d1)
else:
print(0)
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR RETURN ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR RETURN IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
import sys
t = 1
mod = 10**9 + 7
for __ in range(t):
n = int(input())
l = list(map(int, input().split()))
l.sort()
diff = {}
d = {}
for i in range(n - 1):
diff[l[i + 1] - l[i]] = diff.get(l[i + 1] - l[i], 0) + 1
if d.get(l[i + 1] - l[i], -1) == -1:
d[l[i + 1] - l[i]] = []
d[l[i + 1] - l[i]].append(l[i + 1])
if len(diff) >= 3:
print(0)
elif len(diff) == 2:
ch = 0
o, t = 0, 0
for i in diff:
if ch == 0:
o = i
else:
t = i
ch += 1
ch = 0
f, s = 0, 0
cnt = 0
a1 = []
if diff[o] == 1 and o % 2 == 0 and o // 2 == t:
f = i
ch1 = 0
ind1 = 0
for i in range(n - 1):
if l[i + 1] - l[i] == o:
a1.append(l[i] + t)
cnt += 1
if diff[t] == 1 and t % 2 == 0 and t // 2 == o:
s = o
ch1 = 0
ind1 = 0
for i in range(n - 1):
if l[i + 1] - l[i] == t:
a1.append(l[i] + o)
cnt += 1
print(len(a1))
if len(a1) > 0:
a1.sort()
print(*a1)
elif len(diff) == 1:
a1 = []
f = 0
for i in diff:
f = i
if diff[f] == 1 and f % 2 == 0:
a1.append(d[f][-1] - f // 2)
a1.append(l[0] - f)
a1.append(l[-1] + f)
a1.sort()
if f == 0:
a1 = []
a1.append(f + l[0])
print(len(a1))
print(*a1)
else:
print(-1)
|
IMPORT ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER IF FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR LIST EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST IF VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR VAR IF VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
temparr = input()
temparr = temparr.split()
arr = []
for i in temparr:
arr.append(int(i))
arr = sorted(arr)
if n == 1:
print(-1)
elif n == 2:
diff = arr[1] - arr[0]
if diff & 1:
print(2)
ans = str(arr[0] - diff) + " " + str(arr[1] + diff)
print(ans)
elif diff == 0:
print(1)
print(arr[0])
else:
print(3)
half = diff // 2
midd = arr[0] + half
ans = str(arr[0] - diff) + " " + str(midd) + " " + str(arr[1] + diff)
print(ans)
else:
dicts = {}
for i in range(1, n):
diff = arr[i] - arr[i - 1]
if diff not in dicts:
dicts[diff] = 1
else:
dicts[diff] += 1
if len(dicts) >= 3:
print("0")
elif len(dicts) >= 2 and 0 in dicts:
print("0")
elif len(dicts) == 1:
if arr[1] - arr[0] == 0:
print("1")
print(arr[0])
else:
print("2")
first = arr[0] - diff
last = arr[-1] + diff
strsans = str(first) + " " + str(last)
print(strsans)
else:
flag = 0
firstkey = 0
firstval = 0
seckey = 0
secval = 0
for key, value in dicts.items():
if flag == 0:
firstval = value
firstkey = key
flag = 1
else:
secval = value
seckey = key
lowerkey = min(firstkey, seckey)
higherkey = max(firstkey, seckey)
firstkey = lowerkey
seckey = higherkey
secval = dicts[higherkey]
firstval = dicts[lowerkey]
if firstval >= 1 and secval >= 2:
print("0")
else:
minskey = min(firstkey, seckey)
maxskey = max(firstkey, seckey)
if minskey * 2 != maxskey:
print(0)
else:
ans = 0
for i in range(1, n):
if arr[i] - arr[i - 1] == maxskey:
ans = arr[i - 1] + minskey
break
print(1)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR STRING FUNC_CALL VAR VAR STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR NUMBER NUMBER VAR EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR STRING FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
if n == 1:
print(-1)
exit(0)
b = [*map(int, input().split())]
a = sorted(b)
l = set()
if n == 2 and a[1] - a[0] != 0 and (a[1] - a[0]) % 2 == 0:
print(3)
print(a[0] - (a[1] - a[0]), a[0] + (a[1] - a[0]) // 2, a[-1] + (a[1] - a[0]))
exit(0)
elif n == 2 and (a[1] - a[0]) % 2 != 0:
print(2)
print(a[0] - (a[1] - a[0]), a[-1] + (a[1] - a[0]))
exit(0)
d = min(a[i + 1] - a[i] for i in range(n - 1))
c = 0
s = set()
for i in range(n - 1):
if a[i + 1] - a[i] == d:
continue
elif a[i + 1] - a[i] == 2 * d:
s.add(a[i] + d)
else:
print(0)
exit(0)
if s:
if len(s) > 1:
print(0)
exit(0)
print(len(s))
print(*s)
else:
l = {a[0] - d, a[-1] + d}
print(len(l))
print(*sorted(l))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
import sys
mod, MOD = 1000000007, 998244353
def get_array():
return list(map(int, sys.stdin.readline().strip().split()))
def get_ints():
return map(int, sys.stdin.readline().strip().split())
def input():
return sys.stdin.readline().strip()
def check_sequence(D):
mydict = dict()
for i in D:
mydict[i] = mydict.get(i, 0) + 1
maxi = max(D)
mini = min(D)
if mydict[maxi] != 1 or maxi != 2 * mini:
return True
return False
n = int(input())
Arr = get_array()
Arr.sort()
if n == 1:
print(-1)
exit()
if n == 2:
if Arr[1] - Arr[0] == 0:
print(1)
print(Arr[0])
elif Arr[1] - Arr[0] & 1:
print(2)
print(Arr[0] - (Arr[1] - Arr[0]), Arr[1] + (Arr[1] - Arr[0]))
else:
print(3)
print(
Arr[0] - (Arr[1] - Arr[0]),
Arr[0] + (Arr[1] - Arr[0]) // 2,
Arr[1] + (Arr[1] - Arr[0]),
)
exit()
D = []
for i in range(1, n):
D.append(Arr[i] - Arr[i - 1])
if len(set(D)) == 1:
if D[0] == 0:
print(1)
print(Arr[0])
else:
print(2)
print(Arr[0] - (Arr[1] - Arr[0]), Arr[-1] + (Arr[1] - Arr[0]))
exit()
if len(set(D)) >= 3 or check_sequence(D):
print(0)
exit()
d = Arr[1] - Arr[0]
ans = Arr[0] + (Arr[1] - Arr[0]) // 2
for i in range(1, n):
if Arr[i] - Arr[i - 1] > d:
ans = Arr[i - 1] + (Arr[i] - Arr[i - 1]) // 2
print(1)
print(ans)
|
IMPORT ASSIGN VAR VAR NUMBER NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR BIN_OP NUMBER VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR IF VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
__author__ = "asmn"
n = int(input())
a = sorted(map(int, input().split()))
def checked(a, d):
for i in range(1, len(a)):
if a[i] - a[i - 1] != d:
return False
return True
td = None
def canfix(a):
a = sorted(a[i] - a[i - 1] for i in range(1, len(a)))
if a[-1] != a[0] * 2:
return False
elif sum(a) != a[0] * (len(a) + 1):
return False
else:
global td
td = a[0]
return True
def fix(a, d):
for i in range(1, len(a)):
if a[i] - a[i - 1] != d:
return a[i] - d
if n == 1:
print(-1)
elif n == 2:
if sum(a) % 2 == 0:
if a[0] == a[1]:
print(1)
print(a[0])
else:
print(3)
print(*(2 * a[0] - a[1], sum(a) // 2, 2 * a[1] - a[0]))
else:
print(2)
print(*(2 * a[0] - a[1], 2 * a[1] - a[0]))
else:
d = a[1] - a[0]
if checked(a, d):
if d == 0:
print(1)
print(a[0])
else:
print(2)
print(a[0] - d, a[-1] + d)
elif canfix(a):
print(1)
print(fix(a, td))
else:
print(0)
|
ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR NONE FUNC_DEF ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR NUMBER BIN_OP VAR NUMBER NUMBER RETURN NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER RETURN NUMBER ASSIGN VAR VAR NUMBER RETURN NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN BIN_OP VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
t = list(map(int, input().split()))
if n == 1:
q = "-1"
else:
t.sort()
d = min(t[1] - t[0], t[-1] - t[-2])
q = "2\n" + str(t[0] - d) + " " + str(t[-1] + d) if d else "1\n" + str(t[0])
if n == 2:
if d and d % 2 == 0:
q = "3\n" + str(t[0] - d) + " " + str(t[0] + d // 2) + " " + str(t[-1] + d)
else:
for i in range(1, n):
if t[i] - t[i - 1] != d:
if t[i] - t[i - 1] == 2 * d and q[0] == "2":
q = "1\n" + str(t[i] - d)
else:
q = "0"
break
print(q)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP STRING FUNC_CALL VAR VAR NUMBER IF VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR STRING FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER STRING FUNC_CALL VAR BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR NUMBER STRING ASSIGN VAR BIN_OP STRING FUNC_CALL VAR BIN_OP VAR VAR VAR ASSIGN VAR STRING EXPR FUNC_CALL VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = list(map(int, input().split()))
a.sort()
if n == 1:
print(-1)
elif n == 2:
if (a[1] - a[0]) % 2 == 1 or a[1] == a[0]:
df = a[1] - a[0]
if df == 0:
print(1)
print(a[0])
else:
print(2)
print(a[0] - df, a[1] + df)
else:
print(3)
df = a[1] - a[0]
print(a[0] - df, (a[0] + a[1]) // 2, a[1] + df)
else:
d = {}
for i in range(1, n):
try:
k = d[a[i] - a[i - 1]]
d[a[i] - a[i - 1]] += 1
except:
d[a[i] - a[i - 1]] = 1
k = min(d.keys())
c = 0
b = -1
for i in d.keys():
if i != k:
c += d[i]
b = i
if c > 1:
print(0)
elif c == 1 and k == 0:
print(0)
elif c == 0 and k == 0:
print(1)
print(a[0])
elif c == 0:
print(2)
k1 = min(a[0], a[len(a) - 1])
k2 = max(a[0], a[len(a) - 1])
print(k1 - k, k2 + k)
elif b % 2 == 1 or b // 2 != k:
print(0)
else:
u = -1
for i in range(1, n):
if a[i] - a[i - 1] == b:
u = a[i - 1]
break
print(1)
print(u + k)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR VAR VAR VAR VAR ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
def discos():
n = int(input())
space = list()
inserts = list()
pos = int()
posn = int()
count = int()
jump = int()
numbers = [int(x) for x in input().split()]
numbers.sort()
if n == 1:
print(-1)
return
elif n == 2:
if numbers[0] == numbers[1]:
print(1)
print(numbers[0])
return
dif = numbers[1] - numbers[0]
inserts.append(numbers[0] - dif)
inserts.append(numbers[1] + dif)
if dif % 2 == 0:
inserts.insert(1, numbers[0] + dif // 2)
print(3)
print(" ".join(str(x) for x in inserts))
return
print(2)
print(" ".join(str(x) for x in inserts))
return
else:
for i in range(0, n - 1):
space.append(numbers[i + 1] - numbers[i])
for i in range(0, len(space) - 1):
if space[i] != space[i + 1] or (i + 1 == len(space) - 1) & (
i != 1 & (count > 0 & (space[i + 1] != space[i - 1]))
):
count += 1
posn = i + 1
if count > 0:
if (space[i - 1] == space[i + 1]) & (i != 0):
count -= 1
posn = pos
if len(space) == 2:
if space[1] == space[0] * 2:
print(1)
print(numbers[i + 1] + space[0])
return
elif space[0] == space[1] * 2:
print(1)
print(numbers[i] + space[1])
return
elif i == 0:
if space[i] != space[i + 2]:
posn = i
elif jump == 0:
jump = space[i]
pos = posn
if count == 0:
if jump == 0:
print(1)
print(numbers[0])
return
inserts.append(numbers[0] - space[0])
inserts.append(numbers[n - 1] + space[0])
print(2)
print(" ".join(str(x) for x in inserts))
return
elif count == 1:
if space[pos] == 0 or space[pos - 1] == 0:
print(0)
return
if numbers[pos + 1] - numbers[pos] == jump * 2:
print(1)
print(numbers[pos] + jump)
return
print(0)
return
discos()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF VAR NUMBER IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR RETURN EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR RETURN FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP NUMBER VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR IF FUNC_CALL VAR VAR NUMBER IF VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER RETURN IF VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER RETURN IF VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR RETURN IF VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER RETURN IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR RETURN EXPR FUNC_CALL VAR NUMBER RETURN EXPR FUNC_CALL VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = sorted(map(int, input().split()))
if n < 2:
print(-1)
else:
count = {}
I = range(n - 1)
for i in I:
d = a[i + 1] - a[i]
count[d] = count.get(d, 0) + 1
d = min(count)
if count[d] < n - 2:
print(0)
else:
b = set()
if count[d] + 1 == n:
b.add(int(a[0] * 2 - a[1]))
b.add(int(a[-1] * 2 - a[-2]))
for i in I:
e = a[i + 1] - a[i]
if not e % 2:
f = e / 2
count[f] = count.get(f, 0) + 2
count[e] -= 1
if count[min(d, f)] == n:
b.add(int(a[i] + f))
count[e] += 1
count[f] -= 2
print(len(b))
print(" ".join(map(str, sorted(b))))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR DICT ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR IF BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
n = int(input())
a = list(map(int, input().split()))
a.sort()
r = 0
res = []
def isAri(a):
diff = a[1] - a[0]
for i in range(len(a) - 1):
if not a[i + 1] - a[i] == diff:
return False
return True
if n == 1:
print(-1)
elif isAri(a) and a[1] - a[0] == 0:
r += 1
print(r)
print(a[0])
elif isAri(a):
r += 1
res.append(a[0] - (a[1] - a[0]))
r += 1
res.append(a[len(a) - 1] + (a[1] - a[0]))
if n == 2 and (a[0] + a[1]) % 2 == 0:
r += 1
res.append(int((a[0] + a[1]) / 2))
res.sort()
print(r)
for i in range(0, len(res)):
print(res[i], end=" ")
else:
diff = a[1] - a[0]
if a[1] - a[0] == 2 * (a[2] - a[1]):
diff = a[2] - a[1]
errorIndex = -1
errors = 0
for i in range(0, len(a) - 1):
curr = a[i + 1] - a[i]
if curr != diff:
errors += 1
if curr == 2 * diff:
errorIndex = i
if errors == 1 and errorIndex != -1:
print(1)
print(a[errorIndex] + diff)
else:
print(0)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FUNC_DEF ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR RETURN NUMBER RETURN NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR NUMBER IF VAR BIN_OP NUMBER VAR ASSIGN VAR VAR IF VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER
|
Everybody knows what an arithmetic progression is. Let us remind you just in case that an arithmetic progression is such sequence of numbers a_1, a_2, ..., a_{n} of length n, that the following condition fulfills: a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = ... = a_{i} + 1 - a_{i} = ... = a_{n} - a_{n} - 1.
For example, sequences [1, 5], [10], [5, 4, 3] are arithmetic progressions and sequences [1, 3, 2], [1, 2, 4] are not.
Alexander has n cards containing integers. Arthur wants to give Alexander exactly one more card with a number so that he could use the resulting n + 1 cards to make an arithmetic progression (Alexander has to use all of his cards).
Arthur has already bought a card but he hasn't written a number on it. Help him, print all integers that you can write on a card so that the described condition fulfilled.
-----Input-----
The first line contains integer n (1 β€ n β€ 10^5) β the number of cards. The next line contains the sequence of integers β the numbers on Alexander's cards. The numbers are positive integers, each of them doesn't exceed 10^8.
-----Output-----
If Arthur can write infinitely many distinct integers on the card, print on a single line -1.
Otherwise, print on the first line the number of integers that suit you. In the second line, print the numbers in the increasing order. Note that the numbers in the answer can exceed 10^8 or even be negative (see test samples).
-----Examples-----
Input
3
4 1 7
Output
2
-2 10
Input
1
10
Output
-1
Input
4
1 3 5 9
Output
1
7
Input
4
4 3 4 5
Output
0
Input
2
2 4
Output
3
0 3 6
|
def func(n, l1):
if n == 1:
print(-1)
return 0
s = set(l1)
if len(s) == 1:
print(1)
print(l1[0])
return 0
l1.sort()
diff = min(l1[-1] - l1[-2], l1[1] - l1[0])
l = []
if n == 2:
if diff == 0:
print(1)
print(l1[0])
return 0
l.append(l1[0] - diff)
if diff & 1 == 0:
l.append(l1[0] + diff // 2)
l.append(l1[1] + diff)
print(len(l))
print(*l)
return 0
for i in range(1, n):
d = l1[i] - l1[i - 1]
if d < diff:
print(0)
return 0
elif d == diff:
continue
else:
if d == 2 * diff:
l.append(l1[i] - diff)
else:
print(0)
return 0
if len(l) > 1:
print(0)
return 0
if len(l) == 1:
print(1)
print(l[0])
return 0
print(2)
print(l1[0] - diff, l1[-1] + diff)
n = int(input())
l1 = list(map(int, input().split()))
func(n, l1)
|
FUNC_DEF IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR LIST IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN NUMBER IF VAR VAR IF VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
def ask(x):
s = {}
s[0] = 1
sum, cnt, res = 0, 0, 0
for i in range(n):
if a[i] < x:
sum -= 1
cnt -= s.get(sum, 0)
else:
cnt += s.get(sum, 0)
sum += 1
s[sum] = s.get(sum, 0) + 1
res += cnt
return res
n, m = map(int, input().split())
a = list(map(int, input().split()))
print(ask(m) - ask(m + 1))
|
FUNC_DEF ASSIGN VAR DICT ASSIGN VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
class BinaryIndexedTree:
def __init__(self, n):
self.bit = [0] * n
def add(self, i, x):
i += 1
while i <= len(self.bit):
self.bit[i - 1] += x
i += i & -i
def sum_sub(self, i):
a = 0
i += 1
while i:
a += self.bit[i - 1]
i -= i & -i
return a
def sum(self, i, j):
a = 0
if j != 0:
a += self.sum_sub(j - 1)
if i != 0:
a -= self.sum_sub(i - 1)
return a
def f(m):
ans = 0
bit = BinaryIndexedTree(2 * n + 7)
f = 0
for i in range(n):
bit.add(n + f, 1)
if a[i] > m:
f -= 1
else:
f += 1
ans += bit.sum_sub(n + f)
return ans
n, m = map(int, input().split())
a = list(map(int, input().split()))
print(f(m) - f(m - 1))
|
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER VAR FUNC_DEF VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR FUNC_DEF ASSIGN VAR NUMBER VAR NUMBER WHILE VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER IF VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
def Yeee(x, v, n):
re = 0
pre = 0
sum = 1
cnt = [0] * n + [1] + [0] * n
for i in v:
if i < x:
pre += 1
sum += cnt[pre + n]
else:
sum -= cnt[pre + n]
pre -= 1
cnt[pre + n] += 1
re += sum
return re
n, x = list(map(int, input().split()))
v = [int(i) for i in input().split()]
print(Yeee(x + 1, v, n) - Yeee(x, v, n))
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP LIST NUMBER VAR LIST NUMBER BIN_OP LIST NUMBER VAR FOR VAR VAR IF VAR VAR VAR NUMBER VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR VAR VAR
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
MAXN = 200001
def less_sum(s, m):
n = len(s)
a = 0
b = 0
res = 0
last = 0
count = [(0) for i in range(-MAXN, MAXN + 1)]
count[0] = 1
x = 0
last = 1
for i in range(n):
if s[i] > m:
b += 1
else:
a += 1
x = a - b
if s[i] > m:
last -= count[x + 1]
else:
last += count[x]
res += last
count[x] += 1
last += 1
return res
n, m = map(int, input().split(" "))
s = list(map(int, input().split(" ")))[0:n]
print(less_sum(s, m) - less_sum(s, m - 1))
|
ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
n, m = map(int, input().split())
a = list(map(int, input().split()))
class BIT:
def __init__(self, n):
self.n = n
self.data = [0] * (n + 1)
def to_sum(self, i):
s = 0
while i > 0:
s += self.data[i]
i -= i & -i
return s
def add(self, i, x):
while i <= self.n:
self.data[i] += x
i += i & -i
def get(self, i, j):
return self.to_sum(j) - self.to_sum(i - 1)
def f(x, V):
if x < V:
return -1
return 1
def calc_median(M):
b = [f(v, M) for v in a]
res = 0
c = [0]
for x in b:
c.append(c[-1] + x)
d = [(c[i], i) for i in range(n + 1)]
bit = BIT(2 * n + 10)
for value, index in d:
if index == 0:
bit.add(value + n + 1, 1)
continue
res += bit.get(1, value + n)
bit.add(value + n + 1, 1)
return res
print(calc_median(m) - calc_median(m + 1))
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR CLASS_DEF FUNC_DEF ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF WHILE VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR FUNC_DEF RETURN BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_DEF IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
L1 = list(map(int, input().split()))
numList = list(map(int, input().split()))
length = L1[0]
m = L1[1]
def greaterCount(numList, m):
countDic = {(0): 1}
sum = 0
total = 0
rem = 0
for number in numList:
if number >= m:
sum += 1
rem += countDic[sum - 1]
total += rem
else:
sum -= 1
if sum in countDic:
rem -= countDic[sum]
total += rem
if sum in countDic:
countDic[sum] += 1
else:
countDic[sum] = 1
return total
print(greaterCount(numList, m) - greaterCount(numList, m + 1))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_DEF ASSIGN VAR DICT NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
n, m = map(int, input().split())
a = [int(x) for x in input().split()]
def gC(m, a):
s = [(0) for x in range(2 * n + 1)]
sum = n
res = 0
s[sum] = 1
ad = 0
for i in range(n):
if a[i] < m:
sum -= 1
ad -= s[sum]
else:
ad += s[sum]
sum += 1
res += ad
s[sum] += 1
return res
print(gC(m, a) - gC(m + 1, a))
|
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
def main():
n, m = map(int, input().split())
l = list(map(int, input().split()))
res = []
for m in (m, m - 1):
r = c = 0
cnt = [0] * 400002
cnt[0] = last = 1
for a in l:
if a > m:
c -= 1
last -= cnt[c + 1]
else:
c += 1
last += cnt[c]
r += last
cnt[c] += 1
last += 1
res.append(r)
print(res[0] - res[1])
main()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER NUMBER ASSIGN VAR NUMBER VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
def grCount(m, n, a):
s = [0] * (2 * n + 1)
sx = n
result = 0
s[sx] = 1
add = 0
for i in range(n):
if a[i] < m:
sx -= 1
add -= s[sx]
else:
add += s[sx]
sx += 1
result += add
s[sx] += 1
return result
n, m = map(int, input().split())
a = list(map(int, input().split()))
print(grCount(m, n, a) - grCount(m + 1, n, a))
|
FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR
|
You are given an integer sequence $a_1, a_2, \dots, a_n$.
Find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
The median of a sequence is the value of an element which is in the middle of the sequence after sorting it in non-decreasing order. If the length of the sequence is even, the left of two middle elements is used.
For example, if $a=[4, 2, 7, 5]$ then its median is $4$ since after sorting the sequence, it will look like $[2, 4, 5, 7]$ and the left of two middle elements is equal to $4$. The median of $[7, 1, 2, 9, 6]$ equals $6$ since after sorting, the value $6$ will be in the middle of the sequence.
Write a program to find the number of pairs of indices $(l, r)$ ($1 \le l \le r \le n$) such that the value of median of $a_l, a_{l+1}, \dots, a_r$ is exactly the given number $m$.
-----Input-----
The first line contains integers $n$ and $m$ ($1 \le n,m \le 2\cdot10^5$) β the length of the given sequence and the required value of the median.
The second line contains an integer sequence $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2\cdot10^5$).
-----Output-----
Print the required number.
-----Examples-----
Input
5 4
1 4 5 60 4
Output
8
Input
3 1
1 1 1
Output
6
Input
15 2
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Output
97
-----Note-----
In the first example, the suitable pairs of indices are: $(1, 3)$, $(1, 4)$, $(1, 5)$, $(2, 2)$, $(2, 3)$, $(2, 5)$, $(4, 5)$ and $(5, 5)$.
|
class BIT:
def __init__(self, n):
self.BIT = [0] * (n + 1)
self.num = n
def query(self, idx):
res_sum = 0
while idx > 0:
res_sum += self.BIT[idx]
idx -= idx & -idx
return res_sum
def update(self, idx, x):
while idx <= self.num:
self.BIT[idx] += x
idx += idx & -idx
return
n, m = map(int, input().split())
a = list(map(int, input().split()))
def solve(x):
tmp = [(0) for i in range(n)]
for i in range(n):
if a[i] > x:
tmp[i] = -1
else:
tmp[i] = 1
tmp[i] += tmp[i - 1]
tmp = [0] + tmp
val = list(set([tmp[j] for j in range(n + 1)]))
val.sort()
comp = {i: (e + 1) for e, i in enumerate(val)}
bit = BIT(n + 1)
res = 0
for i in range(n + 1):
res += bit.query(comp[tmp[i]])
bit.update(comp[tmp[i]], 1)
return res
print(solve(m) - solve(m - 1))
|
CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF WHILE VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR RETURN ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
res = 0
low = 1
high = stalls[n - 1] - stalls[0]
while low <= high:
mid = low + high >> 1
if self.can_place_cow(stalls, n, k, mid):
res = mid
low = mid + 1
else:
high = mid - 1
return res
def can_place_cow(self, stalls, n, k, mid):
first = stalls[0]
count = 1
for i in range(1, n):
if stalls[i] - first >= mid:
count += 1
first = stalls[i]
if count == k:
return True
return False
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def correct(self, n, k, stalls, dis):
c = 1
cor = stalls[0]
for i in range(1, n):
if abs(stalls[i] - cor) >= dis:
cor = stalls[i]
c += 1
return c >= k
def solve(self, n, k, stalls):
stalls.sort()
low = 1
high = stalls[n - 1] - stalls[0]
res = low
while low <= high:
mid = low + high >> 1
if self.correct(n, k, stalls, mid):
res = mid
low = mid + 1
else:
high = mid - 1
return high
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER RETURN VAR VAR FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
def isPossible(n, k, stalls, maxi):
cow, cur = 1, stalls[0]
for i in range(n):
if stalls[i] - cur >= maxi:
cow += 1
if cow == k:
return True
cur = stalls[i]
return False
ans = -1
l, r = 0, max(stalls)
stalls.sort()
while l <= r:
mid = l + (r - l) // 2
if isPossible(n, k, stalls, mid):
ans = mid
l = mid + 1
else:
r = mid - 1
return ans
|
CLASS_DEF FUNC_DEF FUNC_DEF ASSIGN VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, arr):
arr.sort()
low = 0
high = arr[n - 1] - arr[0]
res = []
while low <= high:
mid = low + (high - low) // 2
if self.cow_Place(arr, n, k, mid):
res.append(mid)
low = mid + 1
else:
high = mid - 1
return max(res)
def cow_Place(self, arr, n, k, mid):
i = 0
j = 1
count = 1
while j < n:
if arr[j] - arr[i] >= mid:
count += 1
i = j
if count == k:
return True
j += 1
return False
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR RETURN NUMBER VAR NUMBER RETURN NUMBER
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
def isPossible(stalls, n, cows, minDist):
count = 1
lastPlacedCow = stalls[0]
for i in range(1, n):
if stalls[i] - lastPlacedCow >= minDist:
count += 1
lastPlacedCow = stalls[i]
if count >= cows:
return 1
return 0
stalls.sort()
low = 1
high = stalls[n - 1] - stalls[0]
while low <= high:
mid = (low + high) // 2
if isPossible(stalls, n, k, mid):
low = mid + 1
else:
high = mid - 1
return high
|
CLASS_DEF FUNC_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def valid(self, n, k, stalls, mid):
pos = stalls[0]
cc = 1
for i in range(1, n):
if stalls[i] - pos >= mid:
cc += 1
pos = stalls[i]
if cc == k:
return True
return False
def solve(self, n, k, stalls):
stalls = sorted(stalls)
mindist = stalls[0]
maxdist = stalls[n - 1]
low = 0
high = maxdist - mindist
ans = 1
while low <= high:
mid = (low + high) // 2
if self.valid(n, k, stalls, mid):
ans = mid
low = mid + 1
else:
high = mid - 1
return ans
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
def helper(mid, k):
last = stalls[0]
k -= 1
for i in range(1, n):
curr = stalls[i]
if curr - last >= mid:
last = curr
k -= 1
if k == 0:
return True
return False
l = 0
r = stalls[n - 1] - stalls[0]
ans = 0
while l <= r:
mid = l + (r - l) // 2
if helper(mid, k):
ans = max(ans, mid)
l = mid + 1
else:
r = mid - 1
return ans
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def ispossible(self, stalls, mid, k):
cow = 1
lastcow = stalls[0]
for i in range(1, len(stalls)):
if stalls[i] >= lastcow + mid:
cow += 1
lastcow = stalls[i]
if cow == k:
return True
return False
def solve(self, n, k, stalls):
stalls = sorted(stalls)
left = 1
right = max(stalls) - min(stalls)
while left < right:
mid = (left + right) // 2
if self.ispossible(stalls, mid, k):
left = mid + 1
else:
right = mid
return left - 1
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR RETURN BIN_OP VAR NUMBER
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def AllocateCows(self, arr, count_cows, gap_limit):
count_cows -= 1
position = arr[0]
for i in range(1, len(arr)):
if arr[i] - position >= gap_limit:
count_cows -= 1
position = arr[i]
if count_cows == 0:
return True
else:
return False
def solve(self, n, k, stalls):
if k > len(stalls):
return -1
feasible_ans = -1
stalls.sort()
l = 1
h = stalls[-1] - stalls[0]
while l <= h:
mid = l + (h - l) // 2
if self.AllocateCows(stalls, k, mid):
feasible_ans = mid
l = mid + 1
else:
h = mid - 1
return feasible_ans
|
CLASS_DEF FUNC_DEF VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR NUMBER RETURN NUMBER RETURN NUMBER FUNC_DEF IF VAR FUNC_CALL VAR VAR RETURN NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
low, high = 1, max(stalls) - min(stalls)
res = 0
stalls.sort()
while low <= high:
mid = (low + high) // 2
if self.helper_func(mid, k, stalls):
res = mid
low = mid + 1
else:
high = mid - 1
return res
def helper_func(self, mid, k, stalls):
curr_idx = 0
count = 1
for i in range(len(stalls)):
if stalls[i] - stalls[curr_idx] >= mid:
count += 1
curr_idx = i
if count == k:
return True
return False
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def check(self, mid, stalls, k):
temp = stalls[0]
count = 1
for i in stalls:
if i - temp >= mid:
temp = i
count += 1
if count == k:
return 1
return 0
def solve(self, n, k, stalls):
stalls.sort()
ans = 1
min_diff = 1
max_diff = stalls[-1] - stalls[0]
while min_diff <= max_diff:
mid = (min_diff + max_diff) // 2
if self.check(mid, stalls, k):
min_diff = mid + 1
ans = max(ans, mid)
else:
max_diff = mid - 1
return ans
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
if k > n:
return -1
low, high = 0, stalls[-1] - stalls[0]
res = 1
def canPlace(val):
count = 1
cow = stalls[0]
for i in range(1, n):
if stalls[i] - cow >= val:
count += 1
cow = stalls[i]
if count >= k:
return True
return False
while low <= high:
mid = (low + high) // 2
if canPlace(mid):
res = max(res, mid)
low = mid + 1
else:
high = mid - 1
return res
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR IF VAR VAR RETURN NUMBER ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
pass
stalls.sort()
def feasible(sep):
prev = stalls[0]
yes = 1
for i in range(1, len(stalls)):
if stalls[i] - prev >= sep:
yes += 1
prev = stalls[i]
return yes >= k
l = 1
h = stalls[n - 1] - stalls[0]
while l <= h:
mid = (l + h) // 2
if feasible(mid):
l = mid + 1
else:
h = mid - 1
return h
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def ispossible(self, arr, cows, gap):
curr_stall = arr[0]
cows -= 1
for num in arr[1:]:
if cows == 0:
break
if num - curr_stall >= gap:
cows -= 1
curr_stall = num
return -1 if cows != 0 else gap
def solve(self, n, k, stalls):
stalls.sort()
min_gap = 1
max_gap = max(stalls)
while min_gap <= max_gap:
curr_gap = (min_gap + max_gap) // 2
canbeplaced = self.ispossible(stalls, k, curr_gap)
if canbeplaced != -1:
candidate = curr_gap
min_gap = curr_gap + 1
else:
max_gap = curr_gap - 1
return candidate
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER VAR NUMBER FOR VAR VAR NUMBER IF VAR NUMBER IF BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR RETURN VAR NUMBER NUMBER VAR FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def allocation(self, stalls, mid, k):
count = 1
start = 0
for i in range(len(stalls)):
if stalls[i] - stalls[start] >= mid:
count += 1
start = i
if count < k:
return False
return True
def solve(self, n, k, stalls):
start = 1
end = max(stalls) - min(stalls)
stalls.sort()
res = -1
while start <= end:
mid = start + (end - start) // 2
if self.allocation(stalls, mid, k):
res = mid
start = mid + 1
else:
end = mid - 1
return res
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
def can_place_cows(stalls, n, k, distance):
pos = stalls[0]
cnt = 1
for i in range(1, n):
if stalls[i] - pos >= distance:
pos = stalls[i]
cnt += 1
if cnt == k:
return True
return False
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
high = stalls[n - 1] - stalls[0]
low = 1
res = 0
while low <= high:
mid = (low + high) // 2
if can_place_cows(stalls, n, k, mid):
res = mid
low = mid + 1
else:
high = mid - 1
return res
|
FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def bn(self, k, mid, arr):
pos = arr[0]
cow = 1
for i in arr:
if i - pos >= mid:
cow += 1
if cow == k:
return True
pos = i
return False
def solve(self, n, k, stalls):
stalls.sort()
s = 0
e = max(stalls)
mid = (s + e) // 2
ans = -1
while s <= e:
if self.bn(k, mid, stalls):
ans = mid
s = mid + 1
else:
e = mid - 1
mid = (s + e) // 2
return ans
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR VAR RETURN NUMBER FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
pass
stalls.sort()
left, right, ans = 0, stalls[-1] - stalls[0], -1
while left <= right:
mid = left + (right - left) // 2
cows, last_pos = 1, stalls[0]
for i in range(1, n):
if stalls[i] - last_pos >= mid:
cows += 1
last_pos = stalls[i]
if cows >= k:
ans = mid
left = mid + 1
else:
right = mid - 1
return ans
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
import sys
class Solution:
def solve(self, n, k, stalls):
l = 1
stalls.sort()
r = stalls[-1] - stalls[0]
mindiff = -sys.maxsize
while l <= r:
mid = (l + r) // 2
last = -sys.maxsize
diff = sys.maxsize
c = 0
for i in range(n):
if stalls[i] - last >= mid:
diff = min(diff, stalls[i] - last)
last = stalls[i]
c += 1
if c == k:
break
if c == k:
mindiff = max(mindiff, diff)
l = mid + 1
else:
r = mid - 1
return mindiff
|
IMPORT CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
i, j = 1, stalls[-1] - stalls[0]
if k == 2:
return j
while i <= j:
m = i + j >> 1
c = 1
curr = 0
for x in range(1, n):
dst = stalls[x] - stalls[curr]
if dst >= m:
c += 1
curr = x
if c >= k:
i = m + 1
else:
j = m - 1
return i - 1
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER RETURN VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN BIN_OP VAR NUMBER
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def isPossible(self, n, k, stalls, mid):
cowcount = 1
position = stalls[0]
for i in range(1, len(stalls)):
if stalls[i] - position >= mid:
cowcount += 1
if cowcount == k:
return True
position = stalls[i]
return False
def solve(self, n, k, stalls):
stalls.sort()
start = 0
end = stalls[n - 1]
mid = start + (end - start) // 2
ans = -1
while start <= end:
if self.isPossible(n, k, stalls, mid):
ans = mid
start = mid + 1
else:
end = mid - 1
mid = start + (end - start) // 2
return ans
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR RETURN NUMBER FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
if k > n:
return -1
stalls.sort()
st_min = 0
st_max = -1
for el in stalls:
if st_max < el:
st_max = el
def possible(mid, stalls):
cnt = 1
prev = stalls[0]
for i in range(1, len(stalls)):
if stalls[i] - prev >= mid:
cnt += 1
prev = stalls[i]
if cnt >= k:
return True
return False
ans = -1
while st_min <= st_max:
mid = (st_min + st_max) // 2
if possible(mid, stalls):
ans = mid
st_min = mid + 1
else:
st_max = mid - 1
return ans
|
CLASS_DEF FUNC_DEF IF VAR VAR RETURN NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution(object):
def solve(self, n, cows, stalls):
def canPlaceAllCows(stalls, minDistance):
lastCowIndex, cowsPlaced = 0, 1
for index in range(1, n):
if stalls[index] - stalls[lastCowIndex] >= minDistance:
lastCowIndex = index
cowsPlaced += 1
if cowsPlaced == cows:
break
return cowsPlaced == cows
stalls.sort()
left, right = 1, stalls[-1] - stalls[0]
result = -1
while left <= right:
minDistance = (left + right) // 2
if canPlaceAllCows(stalls, minDistance):
result = minDistance
left = minDistance + 1
else:
right = minDistance - 1
return result
|
CLASS_DEF VAR FUNC_DEF FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR RETURN VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
def fun(stalls, d, n, k):
ans = 1
prev = stalls[0]
for i in range(1, n):
if stalls[i] - prev >= d:
ans += 1
prev = stalls[i]
return ans >= k
l = 1
h = max(stalls) + 1
curr_ans = -1
while l <= h:
mid = (l + h) // 2
temp = fun(stalls, mid, n, k)
if temp:
curr_ans = mid
l = mid + 1
else:
h = mid - 1
return curr_ans
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
min_dis = float("-inf")
stalls.sort()
low = 1
high = stalls[-1] - stalls[0]
while low <= high:
mid = low + (high - low) // 2
if possible(stalls, k, mid):
min_dis = max(mid, min_dis)
low = mid + 1
else:
high = mid - 1
return min_dis
def possible(stalls, k: int, d: int) -> bool:
a = stalls[0]
k -= 1
if k == 0:
return True
for i in range(1, len(stalls)):
if stalls[i] - a >= d:
a = stalls[i]
k -= 1
if k == 0:
return True
return False
|
CLASS_DEF FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
def check(mid):
no = 1
initial = stalls[0]
for i in stalls:
if no >= k:
return True
elif i - initial >= mid:
no += 1
initial = i
else:
continue
else:
if no >= k:
return True
return False
left = 0
right = stalls[-1] - stalls[0]
while left <= right:
mid = (left + right) // 2
if check(mid):
left = mid + 1
else:
right = mid - 1
return right
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR RETURN NUMBER IF BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, nums):
pass
nums.sort()
low = 1
high = nums[-1] - nums[0]
def canPlace(ch):
cnt = 1
pos = nums[0]
for i in nums:
if i - pos >= ch:
pos = i
cnt += 1
if cnt == k:
return True
return False
while low <= high:
mid = low + (high - low) // 2
if canPlace(mid) == True:
low = mid + 1
else:
high = mid - 1
return high
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
l = 0
r = max(stalls) - min(stalls)
stalls.sort()
prev = -99999999999
while l <= r:
count = 0
mid = (l + r) // 2
for i in range(n):
if abs(stalls[i] - prev) >= mid:
count += 1
prev = stalls[i]
if count < k:
r = mid - 1
else:
l = mid + 1
return r
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def isPossible(self, stalls, n, k, mid):
cows = 1
last = stalls[0]
for i in range(n):
if stalls[i] - last >= mid:
cows += 1
last = stalls[i]
if cows == k:
return True
return False
def solve(self, n, k, stalls):
stalls.sort()
s = 0
ans = -1
maxi = -1
for i in range(n):
maxi = max(maxi, stalls[i])
e = maxi
mid = s + (e - s) // 2
while s <= e:
if self.isPossible(stalls, n, k, mid):
ans = mid
s = mid + 1
else:
e = mid - 1
mid = s + (e - s) // 2
return ans
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, N, k, stalls):
stalls.sort()
low = 0
high = max(stalls) - min(stalls)
res = -1
while low <= high:
mid = (low + high) // 2
if self.allocation_ispossible(mid, stalls, k, N):
res = mid
low = mid + 1
else:
high = mid - 1
return res
def allocation_ispossible(self, mid, stalls, k, N):
cow_count = 1
last_pos = stalls[0]
for i in range(N):
if stalls[i] - last_pos >= mid:
cow_count += 1
if cow_count == k:
return True
last_pos = stalls[i]
return False
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR RETURN NUMBER
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def ispossible(self, stalls, mid, k):
count = 1
last = stalls[0]
for ele in stalls[1:]:
if ele - last >= mid:
count += 1
if count == k:
return True
last = ele
return False
def solve(self, n, k, stalls):
stalls.sort()
low = 1
high = stalls[-1] - stalls[0]
maxdist = 1
while low <= high:
mid = (low + high) // 2
if self.ispossible(stalls, mid, k):
maxdist = mid
low = mid + 1
else:
high = mid - 1
return maxdist
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR VAR RETURN NUMBER FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def canAssignCows(self, cows, stalls, mid):
j = 1
lastStall = 0
for i in range(1, cows):
while j < len(stalls):
distanceCovered = stalls[j] - stalls[lastStall]
if distanceCovered >= mid:
lastStall = j
break
j += 1
if i >= cows:
return True
elif j >= len(stalls) and i < cows:
return False
return True
def aggressiveCows(self, cows, stalls):
start = 1
stalls.sort()
end = stalls[-1] - stalls[0]
ans = end
while start <= end:
mid = start + (end - start) // 2
if self.canAssignCows(cows, stalls, mid):
ans = mid
start = mid + 1
else:
end = mid - 1
return ans
def solve(self, n, k, stalls):
return self.aggressiveCows(k, stalls)
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
def can(dist_bw_cows):
bef = 0
cnt = 1
for i in range(1, n):
if stalls[i] - stalls[bef] >= dist_bw_cows:
bef = i
cnt += 1
if cnt >= k:
return True
return False
L, R = 1, 10**9
ans = None
while L <= R:
M = L + (R - L) // 2
if can(M):
ans = M
L = M + 1
else:
R = M - 1
return ans
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR NONE WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
res = -1
stalls.sort()
s = 1
e = stalls[n - 1] - stalls[0]
def isValid(arr, n, k, mid):
c = 1
p = 0
cors = arr[0]
for i in range(1, n):
p = arr[i] - cors
if p >= mid:
c += 1
cors = arr[i]
if c == k:
return True
return False
while s <= e:
mid = s + (e - s) // 2
if isValid(stalls, n, k, mid):
res = mid
s = mid + 1
else:
e = mid - 1
return res
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def can_assign_cows(self, stalls, k, dist):
prev_cow_pos = stalls[0]
n = 1
for i in range(1, len(stalls)):
if stalls[i] - prev_cow_pos >= dist:
prev_cow_pos = stalls[i]
n += 1
if n == k:
return True
return False
def solve(self, n, k, stalls):
l = 0
r = 10**9
max_dist = -float("inf")
stalls.sort()
while l <= r:
dist = l + (r - l) // 2
if self.can_assign_cows(stalls, k, dist):
max_dist = max(max_dist, dist)
l = dist + 1
else:
r = dist - 1
return max_dist
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
start = 0
end = 10**9
ans = -1
while start <= end:
middle = start + (end - start) // 2
prev = stalls[0]
c = 1
for i in stalls:
if i - prev >= middle:
prev = i
c += 1
if c >= k:
ans = middle
start = middle + 1
else:
end = middle - 1
return ans
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
dist = stalls[-1] - stalls[0]
lb = 1
ub = dist
def isCompatible(dist):
lastcow = stalls[0]
cows_placed = 1
for i in range(1, n):
if cows_placed == k:
break
if stalls[i] - lastcow >= dist:
cows_placed += 1
lastcow = stalls[i]
if cows_placed == k:
return True
return False
while lb <= ub:
mid = lb + ub >> 1
if isCompatible(mid):
lb = mid + 1
else:
ub = mid - 1
return ub
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
s = 0
e = max(stalls)
ans = 0
mid = s + (e - s) // 2
stalls.sort()
def isPossible(stalls, k, mid):
cowCount = 1
lastPos = stalls[0]
for i in range(len(stalls)):
if stalls[i] - lastPos >= mid:
cowCount += 1
if cowCount == k:
return True
lastPos = stalls[i]
return False
while s <= e:
if isPossible(stalls, k, mid):
ans = mid
s = mid + 1
else:
e = mid - 1
mid = s + (e - s) // 2
return ans
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR RETURN NUMBER WHILE VAR VAR IF FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
ans = 0
l = 1
r = max(stalls) - min(stalls)
while l <= r:
mid = (l + r) // 2
count = 1
last = 0
for i in range(1, len(stalls)):
if abs(stalls[i] - stalls[last]) >= mid:
count += 1
last = i
if count < k:
r = mid - 1
elif count >= k:
ans = mid
l = mid + 1
return ans
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
l = []
def find(arr, left, right, cows):
if left <= right:
mid = (left + right) // 2
a = arr[0]
k = cows - 1
for i in range(1, n):
b = arr[i]
if b - a >= mid:
k = k - 1
a = b
if k <= 0:
l.append(mid)
if left == right:
return max(l)
return find(arr, mid + 1, right, cows)
else:
return find(arr, left, mid - 1, cows)
else:
return max(l)
return find(stalls, 0, max(stalls), k)
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR LIST FUNC_DEF IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR RETURN FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR RETURN FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER VAR RETURN FUNC_CALL VAR VAR RETURN FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
low = 0
high = 10**9
mid = (low + high) // 2
ans = -1
while low <= high:
if self.ispossible(stalls, n, k, mid):
ans = mid
low = mid + 1
else:
high = mid - 1
mid = (low + high) // 2
return ans
def ispossible(self, stalls, n, k, mid):
cc = 1
lp = stalls[0]
for i in range(len(stalls)):
if stalls[i] - lp >= mid:
cc += 1
if cc == k:
return True
lp = stalls[i]
return False
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR RETURN NUMBER
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
low = 1
high = stalls[n - 1] - stalls[0] + 1
def isTrue(mid):
left = 0
total = 1
for i in range(1, n):
if stalls[i] - stalls[left] >= mid:
left = i
total += 1
if total == k:
return True
return False
res = 1
while low <= high:
mid = (low + high) // 2
if isTrue(mid):
res = mid
low = mid + 1
else:
high = mid - 1
return res
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
if len(stalls) < k:
return -1
def cows(mid):
count = 1
latest_put_cow = 0
for i in range(1, len(stalls)):
if stalls[i] - stalls[latest_put_cow] >= mid:
count += 1
latest_put_cow = i
return count
stalls.sort()
left, right = 1, stalls[-1] - stalls[0]
ans = left
while left <= right:
mid = left + (right - left) // 2
if cows(mid) >= k:
ans = mid
left = mid + 1
else:
right = mid - 1
return ans
|
CLASS_DEF FUNC_DEF IF FUNC_CALL VAR VAR VAR RETURN NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR RETURN VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def num_cows(self, arr, min_dist):
cows = 1
curr = arr[0]
for i in range(1, len(arr)):
if arr[i] - curr >= min_dist:
cows += 1
curr = arr[i]
return cows
def solve(self, n, k, stalls):
start = 1
end = max(stalls) - min(stalls)
ans = 1
stalls.sort()
while start <= end:
mid = (start + end) // 2
curr_cows = self.num_cows(stalls, mid)
if curr_cows < k:
end = mid - 1
else:
ans = max(ans, mid)
start = mid + 1
return ans
|
CLASS_DEF FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def solve(self, n, k, stalls):
stalls.sort()
left = 1
right = stalls[n - 1] - stalls[0]
ans = -1
while left <= right:
mid = (left + right) // 2
cows = k - 1
i, j = 0, 1
while j < n:
if abs(stalls[j] - stalls[i]) < mid:
j += 1
else:
cows -= 1
i = j
j += 1
if cows > 0:
right = mid - 1
else:
ans = max(mid, ans)
left = mid + 1
return ans
|
CLASS_DEF FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def count(self, stalls, mid, n):
prev = stalls[0]
temp = 1
for i in range(n):
if stalls[i] - prev >= mid:
temp += 1
prev = stalls[i]
return temp
def solve(self, n, k, stalls):
stalls.sort()
low = 1
high = stalls[n - 1] - stalls[0]
ans = 0
while low <= high:
mid = (low + high) // 2
temp = self.count(stalls, mid, n)
if temp < k:
high = mid - 1
else:
low = mid + 1
ans = mid
return ans
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR RETURN VAR FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR RETURN VAR
|
You are given an array consisting of n integers which denote the position of a stall. You are also given an integer k which denotes the number of aggressive cows. You are given the task of assigning stalls to k cows such that the minimum distance between any two of them is the maximum possible.
The first line of input contains two space-separated integers n and k.
The second line contains n space-separated integers denoting the position of the stalls.
Example 1:
Input:
n=5
k=3
stalls = [1 2 4 8 9]
Output:
3
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[2] and
the third cow can be placed at stalls[3].
The minimum distance between cows, in this case, is 3,
which also is the largest among all possible ways.
Example 2:
Input:
n=5
k=3
stalls = [10 1 2 7 5]
Output:
4
Explanation:
The first cow can be placed at stalls[0],
the second cow can be placed at stalls[1] and
the third cow can be placed at stalls[4].
The minimum distance between cows, in this case, is 4,
which also is the largest among all possible ways.
Your Task:
Complete the function int solve(), which takes integer n, k, and a vector stalls with n integers as input and returns the largest possible minimum distance between cows.
Expected Time Complexity: O(n*log(10^9)).
Expected Auxiliary Space: O(1).
Constraints:
2 <= n <= 10^5
2 <= k <= n
0 <= stalls[i] <= 10^9
|
class Solution:
def isPlace(stalls, cows, dist):
coord = stalls[0]
cnt = 1
for i in range(1, len(stalls)):
if stalls[i] - coord >= dist:
cnt += 1
coord = stalls[i]
if cnt >= cows:
return True
else:
return False
def solve(self, n, k, stalls):
stalls.sort()
low = 1
high = stalls[-1] - stalls[0]
res = []
while low <= high:
mid = (low + high) // 2
if Solution.isPlace(stalls, k, mid) == 1:
low = mid + 1
res.append(mid)
else:
high = mid - 1
if res:
return max(res)
return -1
|
CLASS_DEF FUNC_DEF ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR IF VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR RETURN FUNC_CALL VAR VAR RETURN NUMBER
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
def sort(a):
res = []
n = len(a)
for i in range(n // 2):
res.append([min(a[i], a[-i - 1]), max(a[i], a[-i - 1])])
res.sort()
return res
for tc in range(int(input())):
n = int(input())
a = list(map(int, input().split(" ")))
b = list(map(int, input().split(" ")))
r1 = sort(a)
r2 = sort(b)
if n % 2:
if a[n // 2] != b[n // 2]:
print("No")
continue
if r1 == r2:
print("yes")
continue
print("No")
|
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
for _ in range(int(input())):
n, a, b = (
int(input()),
list(map(int, input().split())),
list(map(int, input().split())),
)
a1, b1 = [], []
for i in range((n + 1) // 2):
a1.append([min(a[i], a[n - i - 1]), max(a[i], a[n - i - 1])])
b1.append([min(b[i], b[n - i - 1]), max(b[i], b[n - i - 1])])
a.sort()
b.sort()
if n % 2 and a[n // 2] != b[n // 2]:
print("No")
continue
a1.sort()
b1.sort()
print("Yes" if a1 == b1 else "No")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR STRING STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
from sys import stdin, stdout
R = lambda: stdin.readline().strip()
RL = lambda: list(map(int, R().split(" ")))
output = lambda x: stdout.write(str(x) + "\n")
def sort(a):
res = []
for i in range(len(a) // 2):
res.append([min(a[i], a[-i - 1]), max(a[i], a[-i - 1])])
res.sort()
return res
for tc in range(int(R())):
n = int(R())
a = RL()
b = RL()
if n % 2 and a[n // 2] != b[n // 2]:
output("No")
continue
if sort(a) == sort(b):
output("yes")
continue
output("No")
|
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING FUNC_DEF ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
import sys
input = sys.stdin.readline
t = int(input())
for i in range(t):
l = int(input())
n = list(map(int, input().split()))
m = list(map(int, input().split()))
if l % 2 == 1 and m[l // 2] != n[l // 2]:
print("no")
else:
n_pair = []
m_pair = []
for j in range(l // 2):
n_pair.append([n[j], n[l - 1 - j]])
m_pair.append([m[j], m[l - 1 - j]])
for j in range(len(n_pair)):
n_pair[j] = [min(n_pair[j]), max(n_pair[j])]
m_pair[j] = [min(m_pair[j]), max(m_pair[j])]
n_pair.sort()
m_pair.sort()
if n_pair == m_pair:
print("yes")
else:
print("no")
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR LIST VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR LIST FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
for _ in range(int(input())):
n = int(input())
arr1 = list(map(int, input().split(" ")))
arr2 = list(map(int, input().split(" ")))
res = "yes"
if sorted(arr1) != sorted(arr2):
print("no")
continue
if n % 2 == 1 and arr1[n // 2] != arr2[n // 2]:
print("no")
continue
pos_map = {}
set1 = []
set2 = []
for idx, i in enumerate(arr1[: n // 2]):
set1.append(
[max(arr1[idx], arr1[n - 1 - idx]), min(arr1[idx], arr1[n - 1 - idx])]
)
set2.append(
[max(arr2[idx], arr2[n - 1 - idx]), min(arr2[idx], arr2[n - 1 - idx])]
)
if sorted(set1) == sorted(set2):
print("yes")
else:
print("no")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING ASSIGN VAR DICT ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
for _ in range(int(input())):
n = int(input())
a = tuple(map(int, input().split()))
b = tuple(map(int, input().split()))
if sorted(zip(a, reversed(a))) == sorted(zip(b, reversed(b))):
print("Yes")
else:
print("No")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
for t in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
ans = "YES"
if sorted(b) != sorted(a):
ans = "NO"
if n % 2 == 1:
if a[n // 2] != b[n // 2]:
ans = "NO"
x, y = [], []
for i in range(n // 2):
j = n - i - 1
x.append(sorted([a[i], a[j]]))
y.append(sorted([b[i], b[j]]))
if sorted(x) != sorted(y):
ans = "NO"
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR STRING IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR STRING IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR STRING ASSIGN VAR VAR LIST LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR LIST VAR VAR VAR VAR IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR STRING EXPR FUNC_CALL VAR VAR
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
q = int(input())
for _ in range(q):
n = int(input())
l1 = list(map(int, input().split()))
l2 = list(map(int, input().split()))
x1 = 0
x2 = 0
if n % 2 == 1:
x1 = l1.pop(n // 2)
x2 = l2.pop(n // 2)
if x1 != x2:
print("No")
else:
if n % 2 == 1:
n -= 1
d1 = []
d2 = []
for i in range(n // 2):
d1.append([min(l1[i], l1[n - i - 1]), max(l1[i], l1[n - i - 1])])
d2.append([min(l2[i], l2[n - i - 1]), max(l2[i], l2[n - i - 1])])
d1.sort()
d2.sort()
if d1 == d2:
print("Yes")
else:
print("No")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING IF BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR LIST FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
for _ in range(int(input())):
n = int(input())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
s1 = []
s2 = []
if n % 2 == 1 and a[n // 2] != b[n // 2]:
print("No")
continue
for i in range(n // 2):
s1.append((min(a[i], a[n - i - 1]), max(a[i], a[n - i - 1])))
s2.append((min(b[i], b[n - i - 1]), max(b[i], b[n - i - 1])))
if sorted(s1) == sorted(s2):
print("Yes")
else:
print("No")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
import sys
from sys import stdin, stdout
t = int(stdin.readline().strip())
for _ in range(t):
n = int(stdin.readline().strip())
a = list(map(int, stdin.readline().strip().split(" ")))
b = list(map(int, stdin.readline().strip().split(" ")))
d = {}
for i in range(n // 2):
t1 = b[i]
t2 = b[n - 1 - i]
if t1 > t2:
t1, t2 = t2, t1
if t1 in d:
d[t1].append(t2)
else:
d[t1] = [t2]
ans = True
if n % 2 == 1:
if a[n // 2] != b[n // 2]:
ans = False
for i in range(n // 2):
t1 = a[i]
t2 = a[n - 1 - i]
if t1 > t2:
t1, t2 = t2, t1
if t1 in d:
if t2 in d[t1]:
d[t1].remove(t2)
else:
ans = False
break
else:
ans = False
break
if ans:
stdout.write("Yes\n")
else:
stdout.write("No\n")
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR DICT FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR LIST VAR ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
for _ in range(int(input())):
n = int(input())
a = [int(X) for X in input().split()]
b = [int(x) for x in input().split()]
an = 1
if n % 2:
if a[n // 2] != b[n // 2]:
an = 0
x = []
y = []
for i in range(n // 2):
x.append(a[i] + a[n - 1 - i])
y.append(b[i] + b[n - 1 - i])
x.sort()
y.sort()
for i in range(len(x)):
if x[i] != y[i]:
an = 0
break
print("Yes" if an else "No")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR STRING STRING
|
Ayush, Ashish and Vivek are busy preparing a new problem for the next Codeforces round and need help checking if their test cases are valid.
Each test case consists of an integer $n$ and two arrays $a$ and $b$, of size $n$. If after some (possibly zero) operations described below, array $a$ can be transformed into array $b$, the input is said to be valid. Otherwise, it is invalid.
An operation on array $a$ is: select an integer $k$ $(1 \le k \le \lfloor\frac{n}{2}\rfloor)$ swap the prefix of length $k$ with the suffix of length $k$
For example, if array $a$ initially is $\{1, 2, 3, 4, 5, 6\}$, after performing an operation with $k = 2$, it is transformed into $\{5, 6, 3, 4, 1, 2\}$.
Given the set of test cases, help them determine if each one is valid or invalid.
-----Input-----
The first line contains one integer $t$ $(1 \le t \le 500)$Β β the number of test cases. The description of each test case is as follows.
The first line of each test case contains a single integer $n$ $(1 \le n \le 500)$Β β the size of the arrays.
The second line of each test case contains $n$ integers $a_1$, $a_2$, ..., $a_n$ $(1 \le a_i \le 10^9)$ β elements of array $a$.
The third line of each test case contains $n$ integers $b_1$, $b_2$, ..., $b_n$ $(1 \le b_i \le 10^9)$ β elements of array $b$.
-----Output-----
For each test case, print "Yes" if the given input is valid. Otherwise print "No".
You may print the answer in any case.
-----Example-----
Input
5
2
1 2
2 1
3
1 2 3
1 2 3
3
1 2 4
1 3 4
4
1 2 3 2
3 1 2 2
3
1 2 3
1 3 2
Output
yes
yes
No
yes
No
-----Note-----
For the first test case, we can swap prefix $a[1:1]$ with suffix $a[2:2]$ to get $a=[2, 1]$.
For the second test case, $a$ is already equal to $b$.
For the third test case, it is impossible since we cannot obtain $3$ in $a$.
For the fourth test case, we can first swap prefix $a[1:1]$ with suffix $a[4:4]$ to obtain $a=[2, 2, 3, 1]$. Now we can swap prefix $a[1:2]$ with suffix $a[3:4]$ to obtain $a=[3, 1, 2, 2]$.
For the fifth test case, it is impossible to convert $a$ to $b$.
|
t = int(input())
for case in range(t):
n = int(input())
a = list(map(int, input().split()))
aCompressed = []
b = list(map(int, input().split()))
bCompressed = []
validity = True
if n % 2 != 0:
if a[int(n / 2)] != b[int(n / 2)]:
validity = False
for i in range(int(n / 2)):
aCompressed.append(min(a[i], a[-i - 1]) * 1000000001 + max(a[i], a[-i - 1]))
bCompressed.append(min(b[i], b[-i - 1]) * 1000000001 + max(b[i], b[-i - 1]))
aCompressed.sort()
bCompressed.sort()
for i in range(int(n / 2)):
if aCompressed[i] != bCompressed[i]:
validity = False
break
if validity:
print("Yes")
else:
print("No")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER IF BIN_OP VAR NUMBER NUMBER IF VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR STRING
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.