description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
There are $n$ people in a row. The height of the $i$-th person is $a_i$. You can choose any subset of these people and try to arrange them into a balanced circle. A balanced circle is such an order of people that the difference between heights of any adjacent people is no more than $1$. For example, let heights of chosen people be $[a_{i_1}, a_{i_2}, \dots, a_{i_k}]$, where $k$ is the number of people you choose. Then the condition $|a_{i_j} - a_{i_{j + 1}}| \le 1$ should be satisfied for all $j$ from $1$ to $k-1$ and the condition $|a_{i_1} - a_{i_k}| \le 1$ should be also satisfied. $|x|$ means the absolute value of $x$. It is obvious that the circle consisting of one person is balanced. Your task is to choose the maximum number of people and construct a balanced circle consisting of all chosen people. It is obvious that the circle consisting of one person is balanced so the answer always exists. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) β€” the number of people. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the height of the $i$-th person. -----Output----- In the first line of the output print $k$ β€” the number of people in the maximum balanced circle. In the second line print $k$ integers $res_1, res_2, \dots, res_k$, where $res_j$ is the height of the $j$-th person in the maximum balanced circle. The condition $|res_{j} - res_{j + 1}| \le 1$ should be satisfied for all $j$ from $1$ to $k-1$ and the condition $|res_{1} - res_{k}| \le 1$ should be also satisfied. -----Examples----- Input 7 4 3 5 1 2 2 1 Output 5 2 1 1 2 3 Input 5 3 7 5 1 5 Output 2 5 5 Input 3 5 1 4 Output 2 4 5 Input 7 2 2 3 2 1 2 2 Output 7 1 2 2 2 2 3 2
rint = lambda: int(input()) rmint = lambda: map(int, input().split()) rlist = lambda: list(rmint()) n = rint() lst = rlist() cnt = {} for nb in lst: if nb not in cnt: cnt[nb] = 1 else: cnt[nb] += 1 arr = sorted(list(cnt.keys())) N = len(arr) left, right, k = 0, 0, cnt[arr[0]] left_best, right_best, k_best = 0, 0, cnt[arr[0]] while right < N: while right + 1 < N and arr[right + 1] == arr[right] + 1 and cnt[arr[right]] >= 2: right = right + 1 k += cnt[arr[right]] if k_best < k: left_best, right_best, k_best = left, right, k if right + 1 >= N: break elif arr[right + 1] != arr[right] + 1: left = right + 1 right = right + 1 k = cnt[arr[left]] else: left = right right = right + 1 k = cnt[arr[left]] + cnt[arr[right]] print(k_best) for idx in range(left_best, right_best + 1): print((str(arr[idx]) + " ") * (cnt[arr[idx]] - 1), end="") for idx in range(right_best, left_best - 1, -1): print(str(arr[idx]) + " ", end="") print("")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER VAR VAR NUMBER WHILE VAR VAR WHILE BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF BIN_OP VAR NUMBER VAR IF VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR STRING BIN_OP VAR VAR VAR NUMBER STRING FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR STRING STRING EXPR FUNC_CALL VAR STRING
There are $n$ people in a row. The height of the $i$-th person is $a_i$. You can choose any subset of these people and try to arrange them into a balanced circle. A balanced circle is such an order of people that the difference between heights of any adjacent people is no more than $1$. For example, let heights of chosen people be $[a_{i_1}, a_{i_2}, \dots, a_{i_k}]$, where $k$ is the number of people you choose. Then the condition $|a_{i_j} - a_{i_{j + 1}}| \le 1$ should be satisfied for all $j$ from $1$ to $k-1$ and the condition $|a_{i_1} - a_{i_k}| \le 1$ should be also satisfied. $|x|$ means the absolute value of $x$. It is obvious that the circle consisting of one person is balanced. Your task is to choose the maximum number of people and construct a balanced circle consisting of all chosen people. It is obvious that the circle consisting of one person is balanced so the answer always exists. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) β€” the number of people. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the height of the $i$-th person. -----Output----- In the first line of the output print $k$ β€” the number of people in the maximum balanced circle. In the second line print $k$ integers $res_1, res_2, \dots, res_k$, where $res_j$ is the height of the $j$-th person in the maximum balanced circle. The condition $|res_{j} - res_{j + 1}| \le 1$ should be satisfied for all $j$ from $1$ to $k-1$ and the condition $|res_{1} - res_{k}| \le 1$ should be also satisfied. -----Examples----- Input 7 4 3 5 1 2 2 1 Output 5 2 1 1 2 3 Input 5 3 7 5 1 5 Output 2 5 5 Input 3 5 1 4 Output 2 4 5 Input 7 2 2 3 2 1 2 2 Output 7 1 2 2 2 2 3 2
n = int(input()) a = list(map(int, input().split())) cnt = [0] * 200005 for i in range(0, n): cnt[a[i]] += 1 ans = 0 ansl = 0 ansr = 0 l = 1 N = 200001 while l <= N: if cnt[l] == 0: l += 1 else: r = l now = 0 while r <= N: if cnt[r] == 0: r -= 1 break elif cnt[r] == 1 and l != r: now += cnt[r] break else: now += cnt[r] r += 1 if now > ans: ansl = l ansr = r ans = now if l == r: l = r + 1 else: l = r seq = [] for i in range(ansl, ansr + 1): seq.append(i) cnt[i] -= 1 for i in range(ansr, ansl - 1, -1): while cnt[i] > 0: seq.append(i) cnt[i] -= 1 print(len(seq)) for i in seq: print(i, end=" ")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING
There are $n$ people in a row. The height of the $i$-th person is $a_i$. You can choose any subset of these people and try to arrange them into a balanced circle. A balanced circle is such an order of people that the difference between heights of any adjacent people is no more than $1$. For example, let heights of chosen people be $[a_{i_1}, a_{i_2}, \dots, a_{i_k}]$, where $k$ is the number of people you choose. Then the condition $|a_{i_j} - a_{i_{j + 1}}| \le 1$ should be satisfied for all $j$ from $1$ to $k-1$ and the condition $|a_{i_1} - a_{i_k}| \le 1$ should be also satisfied. $|x|$ means the absolute value of $x$. It is obvious that the circle consisting of one person is balanced. Your task is to choose the maximum number of people and construct a balanced circle consisting of all chosen people. It is obvious that the circle consisting of one person is balanced so the answer always exists. -----Input----- The first line of the input contains one integer $n$ ($1 \le n \le 2 \cdot 10^5$) β€” the number of people. The second line of the input contains $n$ integers $a_1, a_2, \dots, a_n$ ($1 \le a_i \le 2 \cdot 10^5$), where $a_i$ is the height of the $i$-th person. -----Output----- In the first line of the output print $k$ β€” the number of people in the maximum balanced circle. In the second line print $k$ integers $res_1, res_2, \dots, res_k$, where $res_j$ is the height of the $j$-th person in the maximum balanced circle. The condition $|res_{j} - res_{j + 1}| \le 1$ should be satisfied for all $j$ from $1$ to $k-1$ and the condition $|res_{1} - res_{k}| \le 1$ should be also satisfied. -----Examples----- Input 7 4 3 5 1 2 2 1 Output 5 2 1 1 2 3 Input 5 3 7 5 1 5 Output 2 5 5 Input 3 5 1 4 Output 2 4 5 Input 7 2 2 3 2 1 2 2 Output 7 1 2 2 2 2 3 2
n = int(input()) a = [int(x) for x in input().split()] if n == 1: print(1) print(a[0]) return a.sort() b = [a[0]] cnt = [0] * (200 * 1000 + 1) cnt[a[0]] += 1 for i in range(1, n): cnt[a[i]] += 1 if a[i - 1] != a[i]: b.append(a[i]) l = 0 r = 1 ans = cnt[a[0]] i = 0 while i < len(b): j = i + 1 su = cnt[b[i]] while j < len(b) and b[j] - b[j - 1] == 1 and cnt[b[j]] >= 2: su += cnt[b[j]] j += 1 tmp = j if j < len(b) and b[j] - b[j - 1] == 1: su += cnt[b[j]] j += 1 if ans < su: ans = su l = i r = j i = tmp print(ans) for i in range(l, r): print(b[i], end=" ") for i in range(r - 1, l - 1, -1): for j in range(0, cnt[b[i]] - 1): print(b[i], end=" ")
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER RETURN EXPR FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP BIN_OP NUMBER NUMBER NUMBER VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR NUMBER VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR STRING
You are given a sequence $a_1, a_2, \dots, a_n$, consisting of integers. You can apply the following operation to this sequence: choose some integer $x$ and move all elements equal to $x$ either to the beginning, or to the end of $a$. Note that you have to move all these elements in one direction in one operation. For example, if $a = [2, 1, 3, 1, 1, 3, 2]$, you can get the following sequences in one operation (for convenience, denote elements equal to $x$ as $x$-elements): $[1, 1, 1, 2, 3, 3, 2]$ if you move all $1$-elements to the beginning; $[2, 3, 3, 2, 1, 1, 1]$ if you move all $1$-elements to the end; $[2, 2, 1, 3, 1, 1, 3]$ if you move all $2$-elements to the beginning; $[1, 3, 1, 1, 3, 2, 2]$ if you move all $2$-elements to the end; $[3, 3, 2, 1, 1, 1, 2]$ if you move all $3$-elements to the beginning; $[2, 1, 1, 1, 2, 3, 3]$ if you move all $3$-elements to the end; You have to determine the minimum number of such operations so that the sequence $a$ becomes sorted in non-descending order. Non-descending order means that for all $i$ from $2$ to $n$, the condition $a_{i-1} \le a_i$ is satisfied. Note that you have to answer $q$ independent queries. -----Input----- The first line contains one integer $q$ ($1 \le q \le 3 \cdot 10^5$)Β β€” the number of the queries. Each query is represented by two consecutive lines. The first line of each query contains one integer $n$ ($1 \le n \le 3 \cdot 10^5$)Β β€” the number of elements. The second line of each query contains $n$ integers $a_1, a_2, \dots , a_n$ ($1 \le a_i \le n$)Β β€” the elements. It is guaranteed that the sum of all $n$ does not exceed $3 \cdot 10^5$. -----Output----- For each query print one integerΒ β€” the minimum number of operation for sorting sequence $a$ in non-descending order. -----Example----- Input 3 7 3 1 6 6 3 1 1 8 1 1 4 4 4 7 8 8 7 4 2 5 2 6 2 7 Output 2 0 1 -----Note----- In the first query, you can move all $1$-elements to the beginning (after that sequence turn into $[1, 1, 1, 3, 6, 6, 3]$) and then move all $6$-elements to the end. In the second query, the sequence is sorted initially, so the answer is zero. In the third query, you have to move all $2$-elements to the beginning.
import sys input = sys.stdin.readline def solve(): n = int(input()) a = list(map(int, input().split())) s = set(a) s = sorted(list(s)) ref = {x: i for i, x in enumerate(list(s))} sz = len(s) L = [1 << 32] * sz R = [-1 << 32] * sz for i in range(n): k = ref[a[i]] L[k] = min(L[k], i) R[k] = max(R[k], i) dp = [0] * sz for k in range(sz): if k == 0 or L[k] < R[k - 1]: dp[k] = 1 else: dp[k] = 1 + dp[k - 1] ans = 1 << 32 for k in range(sz): ans = min(ans, sz - dp[k]) print(ans) return 0 for nt in range(int(input())): solve()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST BIN_OP NUMBER NUMBER VAR ASSIGN VAR BIN_OP LIST BIN_OP NUMBER NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
You are given $n$ elements numbered from $1$ to $n$, the element $i$ has value $a_i$ and color $c_i$, initially, $c_i = 0$ for all $i$. The following operation can be applied: Select three elements $i$, $j$ and $k$ ($1 \leq i < j < k \leq n$), such that $c_i$, $c_j$ and $c_k$ are all equal to $0$ and $a_i = a_k$, then set $c_j = 1$. Find the maximum value of $\sum\limits_{i=1}^n{c_i}$ that can be obtained after applying the given operation any number of times. -----Input----- The first line contains an integer $n$ ($3 \leq n \leq 2 \cdot 10^5$) β€” the number of elements. The second line consists of $n$ integers $a_1, a_2, \dots, a_n$ ($1 \leq a_i \leq n$), where $a_i$ is the value of the $i$-th element. -----Output----- Print a single integer in a line β€” the maximum value of $\sum\limits_{i=1}^n{c_i}$ that can be obtained after applying the given operation any number of times. -----Examples----- Input 7 1 2 1 2 7 4 7 Output 2 Input 13 1 2 3 2 1 3 3 4 5 5 5 4 7 Output 7 -----Note----- In the first test, it is possible to apply the following operations in order:
n = int(input()) a = [int(i) for i in input().split()] last = {x: i for i, x in enumerate(a)} lastest, covered, ans = 0, 0, 0 for i, x in enumerate(a): lastest = max(lastest, last[x]) if covered > i: ans += 1 else: covered = lastest print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
In winter, the inhabitants of the Moscow Zoo are very bored, in particular, it concerns gorillas. You decided to entertain them and brought a permutation $p$ of length $n$ to the zoo. A permutation of length $n$ is an array consisting of $n$ distinct integers from $1$ to $n$ in any order. For example, $[2,3,1,5,4]$ is a permutation, but $[1,2,2]$ is not a permutation ($2$ occurs twice in the array) and $[1,3,4]$ is also not a permutation ($n=3$, but $4$ is present in the array). The gorillas had their own permutation $q$ of length $n$. They suggested that you count the number of pairs of integers $l, r$ ($1 \le l \le r \le n$) such that $\operatorname{MEX}([p_l, p_{l+1}, \ldots, p_r])=\operatorname{MEX}([q_l, q_{l+1}, \ldots, q_r])$. The $\operatorname{MEX}$ of the sequence is the minimum integer positive number missing from this sequence. For example, $\operatorname{MEX}([1, 3]) = 2$, $\operatorname{MEX}([5]) = 1$, $\operatorname{MEX}([3, 1, 2, 6]) = 4$. You do not want to risk your health, so you will not dare to refuse the gorillas. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$) β€” the permutations length. The second line contains $n$ integers $p_1, p_2, \ldots, p_n$ ($1 \le p_i \le n$) β€” the elements of the permutation $p$. The third line contains $n$ integers $q_1, q_2, \ldots, q_n$ ($1 \le q_i \le n$) β€” the elements of the permutation $q$. -----Output----- Print a single integer β€” the number of suitable pairs $l$ and $r$. -----Examples----- Input 3 1 3 2 2 1 3 Output 2 Input 7 7 3 6 2 1 5 4 6 7 2 5 3 1 4 Output 16 Input 6 1 2 3 4 5 6 6 5 4 3 2 1 Output 11 -----Note----- In the first example, two segments are correct – $[1, 3]$ with $\operatorname{MEX}$ equal to $4$ in both arrays and $[3, 3]$ with $\operatorname{MEX}$ equal to $1$ in both of arrays. In the second example, for example, the segment $[1, 4]$ is correct, and the segment $[6, 7]$ isn't correct, because $\operatorname{MEX}(5, 4) \neq \operatorname{MEX}(1, 4)$.
n = int(input()) xs = [(int(a) - 1) for a in input().split()] ys = [(int(a) - 1) for a in input().split()] def invert(xs): ret = [0] * len(xs) for i, x in enumerate(xs): ret[x] = i return ret xs = invert(xs) ys = invert(ys) intervals = [(min(x, y), max(x, y)) for x, y in zip(xs, ys)] i, j = intervals[0] def c2(x): return x * (x - 1) // 2 res = c2(i + 1) + c2(n - j) + c2(abs(xs[0] - ys[0])) def overlap(r1, r2): if r1 > r2: r1, r2 = r2, r1 a, b = r1 c, d = r2 return c <= b cur = intervals[0] for i in range(1, n): a, b = cur c, d = intervals[i] if not overlap(cur, intervals[i]): if cur < intervals[i]: res += (a + 1) * (c - b) else: res += (n - b) * (a - d) elif c < a and b < d: res += (a - c) * (d - b) cur = min(a, c), max(b, d) res += 1 print(res)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER FUNC_DEF RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER FUNC_DEF IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR RETURN VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR VAR IF FUNC_CALL VAR VAR VAR VAR IF VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
In winter, the inhabitants of the Moscow Zoo are very bored, in particular, it concerns gorillas. You decided to entertain them and brought a permutation $p$ of length $n$ to the zoo. A permutation of length $n$ is an array consisting of $n$ distinct integers from $1$ to $n$ in any order. For example, $[2,3,1,5,4]$ is a permutation, but $[1,2,2]$ is not a permutation ($2$ occurs twice in the array) and $[1,3,4]$ is also not a permutation ($n=3$, but $4$ is present in the array). The gorillas had their own permutation $q$ of length $n$. They suggested that you count the number of pairs of integers $l, r$ ($1 \le l \le r \le n$) such that $\operatorname{MEX}([p_l, p_{l+1}, \ldots, p_r])=\operatorname{MEX}([q_l, q_{l+1}, \ldots, q_r])$. The $\operatorname{MEX}$ of the sequence is the minimum integer positive number missing from this sequence. For example, $\operatorname{MEX}([1, 3]) = 2$, $\operatorname{MEX}([5]) = 1$, $\operatorname{MEX}([3, 1, 2, 6]) = 4$. You do not want to risk your health, so you will not dare to refuse the gorillas. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$) β€” the permutations length. The second line contains $n$ integers $p_1, p_2, \ldots, p_n$ ($1 \le p_i \le n$) β€” the elements of the permutation $p$. The third line contains $n$ integers $q_1, q_2, \ldots, q_n$ ($1 \le q_i \le n$) β€” the elements of the permutation $q$. -----Output----- Print a single integer β€” the number of suitable pairs $l$ and $r$. -----Examples----- Input 3 1 3 2 2 1 3 Output 2 Input 7 7 3 6 2 1 5 4 6 7 2 5 3 1 4 Output 16 Input 6 1 2 3 4 5 6 6 5 4 3 2 1 Output 11 -----Note----- In the first example, two segments are correct – $[1, 3]$ with $\operatorname{MEX}$ equal to $4$ in both arrays and $[3, 3]$ with $\operatorname{MEX}$ equal to $1$ in both of arrays. In the second example, for example, the segment $[1, 4]$ is correct, and the segment $[6, 7]$ isn't correct, because $\operatorname{MEX}(5, 4) \neq \operatorname{MEX}(1, 4)$.
n = int(input()) p = [int(x) for x in input().split(" ")] q = [int(x) for x in input().split(" ")] dicp = {} dicq = {} for i in range(n): dicp[p[i]] = i dicq[q[i]] = i ans = 0 for i in range(1, n + 1): if i == 1: left = min(dicp[i], dicq[i]) right = max(dicp[i], dicq[i]) ans += left * (left - 1) // 2 + left ans += (n - 1 - right) * (n - 2 - right) // 2 + (n - 1 - right) if left != right: ans += (right - 1 - left) * (right - 2 - left) // 2 + (right - 1 - left) else: l = min(dicp[i], dicq[i]) r = max(dicp[i], dicq[i]) if l == r: if 0 <= left and right <= l - 1: ans += (left + 1) * (l - right) if r + 1 <= left and right <= n - 1: ans += (left - r) * (n - right) else: if 0 <= left and right <= l - 1: ans += (left + 1) * (l - right) if r + 1 <= left and right <= n - 1: ans += (left - r) * (n - right) if l + 1 <= left and right <= r - 1: ans += (left - l) * (r - right) left = min(l, left) right = max(r, right) print(ans + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR IF VAR VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR IF NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
In winter, the inhabitants of the Moscow Zoo are very bored, in particular, it concerns gorillas. You decided to entertain them and brought a permutation $p$ of length $n$ to the zoo. A permutation of length $n$ is an array consisting of $n$ distinct integers from $1$ to $n$ in any order. For example, $[2,3,1,5,4]$ is a permutation, but $[1,2,2]$ is not a permutation ($2$ occurs twice in the array) and $[1,3,4]$ is also not a permutation ($n=3$, but $4$ is present in the array). The gorillas had their own permutation $q$ of length $n$. They suggested that you count the number of pairs of integers $l, r$ ($1 \le l \le r \le n$) such that $\operatorname{MEX}([p_l, p_{l+1}, \ldots, p_r])=\operatorname{MEX}([q_l, q_{l+1}, \ldots, q_r])$. The $\operatorname{MEX}$ of the sequence is the minimum integer positive number missing from this sequence. For example, $\operatorname{MEX}([1, 3]) = 2$, $\operatorname{MEX}([5]) = 1$, $\operatorname{MEX}([3, 1, 2, 6]) = 4$. You do not want to risk your health, so you will not dare to refuse the gorillas. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$) β€” the permutations length. The second line contains $n$ integers $p_1, p_2, \ldots, p_n$ ($1 \le p_i \le n$) β€” the elements of the permutation $p$. The third line contains $n$ integers $q_1, q_2, \ldots, q_n$ ($1 \le q_i \le n$) β€” the elements of the permutation $q$. -----Output----- Print a single integer β€” the number of suitable pairs $l$ and $r$. -----Examples----- Input 3 1 3 2 2 1 3 Output 2 Input 7 7 3 6 2 1 5 4 6 7 2 5 3 1 4 Output 16 Input 6 1 2 3 4 5 6 6 5 4 3 2 1 Output 11 -----Note----- In the first example, two segments are correct – $[1, 3]$ with $\operatorname{MEX}$ equal to $4$ in both arrays and $[3, 3]$ with $\operatorname{MEX}$ equal to $1$ in both of arrays. In the second example, for example, the segment $[1, 4]$ is correct, and the segment $[6, 7]$ isn't correct, because $\operatorname{MEX}(5, 4) \neq \operatorname{MEX}(1, 4)$.
def f(l, r, x1, x2, n): if x2 < l: return (l - x2) * (n - r) elif x1 > r: return (l + 1) * (x1 - r) elif x1 < l and x2 > r: return (l - x1) * (x2 - r) return 0 def f1(l): res = l * (l + 1) // 2 return res def solve(p, q): n = len(p) p_pos = [0] * n q_pos = [0] * n for ni in range(n): p_pos[p[ni] - 1] = ni q_pos[q[ni] - 1] = ni x1, x2 = sorted([p_pos[0], q_pos[0]]) res = 0 if x1 > 0: res += f1(x1) if x2 > x1 + 1: res += f1(x2 - x1 - 1) if x2 < n - 1: res += f1(n - 1 - x2) l = x1 r = x2 for v in range(2, n - 1): x1, x2 = sorted([p_pos[v - 1], q_pos[v - 1]]) res += f(l, r, x1, x2, n) l = min(x1, x2, l) r = max(x1, x2, r) res += 1 return res n = int(input()) p = [int(x) for x in input().split()] q = [int(x) for x in input().split()] print(solve(p, q))
FUNC_DEF IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR IF VAR VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR RETURN NUMBER FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR LIST VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR LIST VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
In winter, the inhabitants of the Moscow Zoo are very bored, in particular, it concerns gorillas. You decided to entertain them and brought a permutation $p$ of length $n$ to the zoo. A permutation of length $n$ is an array consisting of $n$ distinct integers from $1$ to $n$ in any order. For example, $[2,3,1,5,4]$ is a permutation, but $[1,2,2]$ is not a permutation ($2$ occurs twice in the array) and $[1,3,4]$ is also not a permutation ($n=3$, but $4$ is present in the array). The gorillas had their own permutation $q$ of length $n$. They suggested that you count the number of pairs of integers $l, r$ ($1 \le l \le r \le n$) such that $\operatorname{MEX}([p_l, p_{l+1}, \ldots, p_r])=\operatorname{MEX}([q_l, q_{l+1}, \ldots, q_r])$. The $\operatorname{MEX}$ of the sequence is the minimum integer positive number missing from this sequence. For example, $\operatorname{MEX}([1, 3]) = 2$, $\operatorname{MEX}([5]) = 1$, $\operatorname{MEX}([3, 1, 2, 6]) = 4$. You do not want to risk your health, so you will not dare to refuse the gorillas. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$) β€” the permutations length. The second line contains $n$ integers $p_1, p_2, \ldots, p_n$ ($1 \le p_i \le n$) β€” the elements of the permutation $p$. The third line contains $n$ integers $q_1, q_2, \ldots, q_n$ ($1 \le q_i \le n$) β€” the elements of the permutation $q$. -----Output----- Print a single integer β€” the number of suitable pairs $l$ and $r$. -----Examples----- Input 3 1 3 2 2 1 3 Output 2 Input 7 7 3 6 2 1 5 4 6 7 2 5 3 1 4 Output 16 Input 6 1 2 3 4 5 6 6 5 4 3 2 1 Output 11 -----Note----- In the first example, two segments are correct – $[1, 3]$ with $\operatorname{MEX}$ equal to $4$ in both arrays and $[3, 3]$ with $\operatorname{MEX}$ equal to $1$ in both of arrays. In the second example, for example, the segment $[1, 4]$ is correct, and the segment $[6, 7]$ isn't correct, because $\operatorname{MEX}(5, 4) \neq \operatorname{MEX}(1, 4)$.
from sys import stderr def main(p, q) -> int: result = 1 n = len(p) p_inds = {v: i for i, v in enumerate(p)} q_inds = {v: i for i, v in enumerate(q)} one1, one2 = sorted((p_inds[1], q_inds[1])) a = one1 b = one2 - one1 - 1 c = n - one2 - 1 result += a * (a + 1) // 2 + b * (b + 1) // 2 + c * (c + 1) // 2 left, right = one1, one2 for mex in range(2, n): mex1, mex2 = sorted((p_inds[mex], q_inds[mex])) if mex2 < left: result += (left - mex2) * (n - right) elif mex1 > right: result += (mex1 - right) * (left + 1) elif mex1 < left and mex2 > right: result += (left - mex1) * (mex2 - right) left, right = min(mex1, mex2, left), max(mex1, mex2, right) return result _, p, q = (list(map(int, input().split())) for _ in range(3)) assert len(p) == len(q) and set(p) == set(q) lrs = main(p, q) print(lrs)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR RETURN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
In winter, the inhabitants of the Moscow Zoo are very bored, in particular, it concerns gorillas. You decided to entertain them and brought a permutation $p$ of length $n$ to the zoo. A permutation of length $n$ is an array consisting of $n$ distinct integers from $1$ to $n$ in any order. For example, $[2,3,1,5,4]$ is a permutation, but $[1,2,2]$ is not a permutation ($2$ occurs twice in the array) and $[1,3,4]$ is also not a permutation ($n=3$, but $4$ is present in the array). The gorillas had their own permutation $q$ of length $n$. They suggested that you count the number of pairs of integers $l, r$ ($1 \le l \le r \le n$) such that $\operatorname{MEX}([p_l, p_{l+1}, \ldots, p_r])=\operatorname{MEX}([q_l, q_{l+1}, \ldots, q_r])$. The $\operatorname{MEX}$ of the sequence is the minimum integer positive number missing from this sequence. For example, $\operatorname{MEX}([1, 3]) = 2$, $\operatorname{MEX}([5]) = 1$, $\operatorname{MEX}([3, 1, 2, 6]) = 4$. You do not want to risk your health, so you will not dare to refuse the gorillas. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$) β€” the permutations length. The second line contains $n$ integers $p_1, p_2, \ldots, p_n$ ($1 \le p_i \le n$) β€” the elements of the permutation $p$. The third line contains $n$ integers $q_1, q_2, \ldots, q_n$ ($1 \le q_i \le n$) β€” the elements of the permutation $q$. -----Output----- Print a single integer β€” the number of suitable pairs $l$ and $r$. -----Examples----- Input 3 1 3 2 2 1 3 Output 2 Input 7 7 3 6 2 1 5 4 6 7 2 5 3 1 4 Output 16 Input 6 1 2 3 4 5 6 6 5 4 3 2 1 Output 11 -----Note----- In the first example, two segments are correct – $[1, 3]$ with $\operatorname{MEX}$ equal to $4$ in both arrays and $[3, 3]$ with $\operatorname{MEX}$ equal to $1$ in both of arrays. In the second example, for example, the segment $[1, 4]$ is correct, and the segment $[6, 7]$ isn't correct, because $\operatorname{MEX}(5, 4) \neq \operatorname{MEX}(1, 4)$.
n = int(input()) a = [int(i) for i in input().split()] b = [int(i) for i in input().split()] first, last = [n - 1] * (n + 1), [0] * (n + 1) for j, v in enumerate(a): first[v] = min(first[v], j) last[v] = max(last[v], j) for j, v in enumerate(b): first[v] = min(first[v], j) last[v] = max(last[v], j) firstp = first[:] lastp = last[:] for j in range(1, n + 1): firstp[j] = min(firstp[j - 1], first[j]) lastp[j] = max(lastp[j - 1], last[j]) counts = [0] * (n + 1) counts[0] = ( (first[1] + 1) * first[1] // 2 + (n - last[1] - 1) * (n - last[1]) // 2 + (last[1] - first[1]) * (last[1] - first[1] - 1) // 2 ) for j in range(n, 1, -1): if last[j] < firstp[j - 1]: a = firstp[j - 1] - last[j] b = n - lastp[j - 1] elif first[j] < firstp[j - 1] and last[j] > lastp[j - 1]: a = firstp[j - 1] - first[j] b = last[j] - lastp[j - 1] elif first[j] > lastp[j - 1]: a = firstp[j - 1] + 1 b = first[j] - lastp[j - 1] else: continue counts[j] = a * b print(sum(counts) + 1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP LIST BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER BIN_OP VAR VAR NUMBER NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
In winter, the inhabitants of the Moscow Zoo are very bored, in particular, it concerns gorillas. You decided to entertain them and brought a permutation $p$ of length $n$ to the zoo. A permutation of length $n$ is an array consisting of $n$ distinct integers from $1$ to $n$ in any order. For example, $[2,3,1,5,4]$ is a permutation, but $[1,2,2]$ is not a permutation ($2$ occurs twice in the array) and $[1,3,4]$ is also not a permutation ($n=3$, but $4$ is present in the array). The gorillas had their own permutation $q$ of length $n$. They suggested that you count the number of pairs of integers $l, r$ ($1 \le l \le r \le n$) such that $\operatorname{MEX}([p_l, p_{l+1}, \ldots, p_r])=\operatorname{MEX}([q_l, q_{l+1}, \ldots, q_r])$. The $\operatorname{MEX}$ of the sequence is the minimum integer positive number missing from this sequence. For example, $\operatorname{MEX}([1, 3]) = 2$, $\operatorname{MEX}([5]) = 1$, $\operatorname{MEX}([3, 1, 2, 6]) = 4$. You do not want to risk your health, so you will not dare to refuse the gorillas. -----Input----- The first line contains a single integer $n$ ($1 \le n \le 2 \cdot 10^5$) β€” the permutations length. The second line contains $n$ integers $p_1, p_2, \ldots, p_n$ ($1 \le p_i \le n$) β€” the elements of the permutation $p$. The third line contains $n$ integers $q_1, q_2, \ldots, q_n$ ($1 \le q_i \le n$) β€” the elements of the permutation $q$. -----Output----- Print a single integer β€” the number of suitable pairs $l$ and $r$. -----Examples----- Input 3 1 3 2 2 1 3 Output 2 Input 7 7 3 6 2 1 5 4 6 7 2 5 3 1 4 Output 16 Input 6 1 2 3 4 5 6 6 5 4 3 2 1 Output 11 -----Note----- In the first example, two segments are correct – $[1, 3]$ with $\operatorname{MEX}$ equal to $4$ in both arrays and $[3, 3]$ with $\operatorname{MEX}$ equal to $1$ in both of arrays. In the second example, for example, the segment $[1, 4]$ is correct, and the segment $[6, 7]$ isn't correct, because $\operatorname{MEX}(5, 4) \neq \operatorname{MEX}(1, 4)$.
import sys def solve(): inp = sys.stdin.readline n = int(inp()) p = list(map(int, inp().split())) q = list(map(int, inp().split())) pi = [None] * (n + 1) qi = [None] * (n + 1) for i in range(n): pi[p[i]] = i qi[q[i]] = i x = pi[1] y = qi[1] if x > y: x, y = y, x res = 0 if x >= 1: res += x * (x + 1) // 2 if n - 1 - y >= 1: res += (n - y - 1) * (n - y) // 2 if y - x - 1 >= 1: res += (y - x - 1) * (y - x) // 2 l = x r = y for i in range(2, n): x = pi[i] y = qi[i] if x > y: x, y = y, x if not (x >= l and x <= r or y >= l and y <= r): if y < l: u = l - y elif x < l: u = l - x else: u = l + 1 if x > r: v = x - r elif y > r: v = y - r else: v = n - r res += u * v l = min(l, x) r = max(r, y) print(res + 1) def main(): solve() main()
IMPORT FUNC_DEF ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NONE BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NONE BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_DEF EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from sys import stdin input = stdin.buffer.readline n, d, m = map(int, input().split()) (*a,) = map(int, input().split()) a.sort() c = sum(i <= m for i in a) pref = [a[c - 1]] ans = 0 tmp = 0 for i in range(c - 2, -1, -1): pref.append(pref[-1] + a[i]) for k in range(1, n + 1): tmp += a[n - k] b = (k - 1) * d if n - k - b < 0 or n - k < c: break s = tmp if c and n - k - b: s += pref[min(c - 1, n - k - b - 1)] ans = max(ans, s) print(max(ans, pref[-1]))
ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR LIST VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP VAR VAR VAR ASSIGN VAR VAR IF VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys sys.setrecursionlimit(10**5) int1 = lambda x: int(x) - 1 p2D = lambda x: print(*x, sep="\n") def II(): return int(sys.stdin.readline()) def MI(): return map(int, sys.stdin.readline().split()) def LI(): return list(map(int, sys.stdin.readline().split())) def LLI(rows_number): return [LI() for _ in range(rows_number)] def SI(): return sys.stdin.readline()[:-1] def solve(): pre = [] pos = [] for a in aa: if a > m: pos.append(a) else: pre.append(a) pos.sort(reverse=True) pre.sort(reverse=True) cs = [0] for a in pre: cs.append(cs[-1] + a) pre = cs cs = [0] for a in pos: cs.append(cs[-1] + a) pos = cs ans = 0 for i in range(len(pre)): j = min((n - i - 1) // (d + 1) + 1, len(pos) - 1) cur = pre[i] + pos[j] ans = max(ans, cur) print(ans) n, d, m = MI() aa = MI() solve()
IMPORT EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def mi(): return map(int, input().split()) def ii(): return int(input()) def li(): return list(map(int, input().split())) def si(): return input().split() n, d, m = mi() a = li() a_s = [] a_b = [] for i in range(n): if a[i] > m: a_b.append(a[i]) else: a_s.append(a[i]) a_b.sort(reverse=True) a_s.sort(reverse=True) s = 0 db = [] ds = [] for i in a_b: db.append(s) s += i db.append(s) s = 0 for i in a_s: ds.append(s) s += i ds.append(s) ans = ds[-1] for i in range(1, len(db)): tmp = db[i] days = (i - 1) * (d + 1) + 1 rem = n - days if rem >= len(ds): ans = max(ans, tmp + ds[-1]) elif rem < 1: if days <= n: ans = max(ans, tmp) else: ans = max(ans, tmp + ds[rem]) print(ans)
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER IF VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from itertools import accumulate n, d, m = map(int, input().split()) A = list(map(int, input().split())) L = [] U = [] for a in A: if a <= m: L.append(a) else: U.append(a) L.sort(reverse=True) U.sort(reverse=True) if len(U) <= 1: print(sum(A)) exit() CL = [0] + L CL = list(accumulate(CL)) CU = [0] + U CU = list(accumulate(CU)) ans = 0 for x in range(1, len(U) + 1): m = (x - 1) * (d + 1) + 1 if m > n: break l = n - m temp = CU[x] + CL[min(l, len(CL) - 1)] ans = max(temp, ans) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) ar = list(map(int, input().split())) n1, n2 = [(0) for i in range(d)], [] for i in range(n): if ar[i] > m: n2.append(ar[i]) else: n1.append(ar[i]) n1.sort() n2.sort() out = su = sum(n1) n1.sort() n2.sort() j = 0 for i in range(len(n2) - 1, -1, -1): while j < len(n1) and i + j < d * (len(n2) - i): su -= n1[j] j += 1 su += n2[i] if i + j >= d * (len(n2) - i): out = max(out, su) print(out)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR FUNC_CALL VAR VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = list(map(int, input().split())) small, big = [], [] for i in a: if i > m: big.append(i) else: small.append(i) small.sort(reverse=True) big.sort(reverse=True) res = 0 if len(small) == 0: cnt = int((n + d) / (d + 1)) for i in range(cnt): res += big[i] elif len(big) == 0: res = 0 for i in range(n): res += small[i] else: sum = [small[0]] for i in range(1, len(small)): sum.append(sum[i - 1] + small[i]) tot = 0 for i in range(len(big)): tot += big[i] rem = min(n - (i * (d + 1) + 1), len(sum)) if rem == 0: res = max(res, tot) elif rem > 0: res = max(res, tot + sum[rem - 1]) else: break print(res)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = list(map(int, input().split())) arr = list(map(int, input().split())) arr.sort() sm, bg = [], [] for i in range(n): if arr[i] > m: bg.append(arr[i]) else: sm.append(arr[i]) bg.sort() sm.sort() bg.append(0) sm.append(0) bg = bg[-1::-1] sm = sm[-1::-1] ans = -(10**18) for i in range(1, len(sm)): sm[i] += sm[i - 1] for i in range(1, len(bg)): bg[i] += bg[i - 1] for i in range(len(sm)): s = sm[i] r = n - i c = (r + d) // (d + 1) c = min(c, len(bg) - 1) s += bg[c] ans = max(ans, s) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from itertools import accumulate n, d, m = map(int, input().split()) a = list(map(int, input().split())) lo = [] hi = [] for x in a: if x <= m: lo.append(x) else: hi.append(x) lo.sort(reverse=True) lo_accum = list(accumulate(lo)) hi.sort(reverse=True) hi_accum = list(accumulate(hi)) best = 0 if not hi: print(lo_accum[-1]) exit() for hi_chosen in range(1, len(hi) + 1): rem_hi = len(hi) - hi_chosen can_cover = hi_chosen * d if can_cover < rem_hi: continue must_cover = max((hi_chosen - 1) * d, rem_hi) lo_covered = max(0, must_cover - rem_hi) if lo_covered > len(lo): continue cur = 0 cur += hi_accum[hi_chosen - 1] if lo_covered < len(lo): cur += lo_accum[len(lo) - lo_covered - 1] best = max(best, cur) print(best)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from itertools import accumulate n, d, m = map(int, input().split()) a = list(map(int, input().split())) u, v = [], [] for i in a: if i > m: u.append(i) else: v.append(i) u.sort(reverse=True) v.sort(reverse=True) u = list(accumulate(u)) v = list(accumulate(v)) ans = 0 for i in range(0, len(u) + 1): ms = u[i - 1] if i else 0 av = n - i - max(0, i - 1) * d if av < 0: continue ns = v[min(av - 1, len(v) - 1)] if v and av else 0 ans = max(ans, ms + ns) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def to_int(s): return int(s) ndm = list(map(to_int, input().split(" "))) n = ndm[0] d = ndm[1] m = ndm[2] values = list(map(to_int, input().split(" "))) good = [] bad = [] for v in values: if v <= m: good.append(v) else: bad.append(v) good.sort(reverse=True) bad.sort(reverse=True) goodSums = [0] for i in good: goodSums.append(goodSums[-1] + i) if len(bad) == 0: print(goodSums[-1]) exit() badSums = [0] for i in bad: badSums.append(badSums[-1] + i) sum = 0 minGood = n - ((len(bad) - 1) * (d + 1) + 1) if minGood < 0: minGood = 0 for i in range(minGood, len(goodSums)): nLeft = n - i exceed = nLeft // (d + 1) if not nLeft % (d + 1) == 0: exceed += 1 sum = max(sum, goodSums[i] + badSums[exceed]) print(sum)
FUNC_DEF RETURN FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = [int(inp) for inp in input().split()] aArr = sorted([int(inp) for inp in input().split()], reverse=True) i = sum([(j > m) for j in aArr]) aU = aArr[:i] aL = aArr[i:] aUS = aU for i in range(1, len(aU)): aUS[i] += aUS[i - 1] aUS = [0] + aUS aLS = aL for i in range(1, len(aL)): aLS[i] += aLS[i - 1] aLS = [0] + aLS fromU = min(1 + (n - 1) // (d + 1), len(aU)) maxFun = aUS[0] + aLS[-1] for j in range(1, fromU + 1): newFun = aUS[j] + aLS[min(max(0, n - 1 - (j - 1) * (d + 1)), len(aL))] if newFun > maxFun: maxFun = newFun print(maxFun)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
t = 1 for test in range(t): n, d, m = map(int, input().split()) arr = list(map(int, input().split())) big = [each for each in arr if each > m] small = [each for each in arr if each <= m] big = [0] + sorted(big, reverse=True) small = [0] + sorted(small, reverse=True) for i in range(1, len(big)): big[i] += big[i - 1] for i in range(1, len(small)): small[i] += small[i - 1] ans = small[-1] for i in range(1, len(big)): days = (i - 1) * (d + 1) + 1 if days <= n: ans = max(ans, big[i] + small[min(len(small) - 1, n - days)]) print(ans)
ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys input = sys.stdin.buffer.readline def solution(): n, d, m = map(int, input().split()) a = list(map(int, input().split())) g = [] l = [] for i in range(n): if a[i] > m: g.append(a[i]) else: l.append(a[i]) g.sort(reverse=True) l.sort(reverse=True) if g == []: print(sum(l)) else: for i in range(1, len(l)): l[i] += l[i - 1] for i in range(1, len(g)): g[i] += g[i - 1] l = [0] + l k = len(g) x = l[-1] for i in range(k, 10**5 + 6): g.append(0) for i in range(len(l), 10**5 + 6): l.append(x) ans = 0 for i in range((k + d) // (1 + d), k + 1): x = (i - 1) * (d + 1) + 1 if x <= n: s = g[i - 1] + l[n - x] ans = max(ans, s) print(ans) t = 1 for _ in range(t): solution()
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR LIST EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = tuple(map(int, input().split())) arr = sorted(list(map(int, input().split())), reverse=True) good, bad = [], [] for i in arr: if i <= m: good.append(i) else: bad.append(i) good_pref = [0] for i in range(len(good)): good_pref.append(good_pref[i] + good[i]) bad_pref = [0] for i in range(len(bad)): bad_pref.append(bad_pref[i] + bad[i]) min_bad = (len(bad) - 1) // (d + 1) + 1 max_bad = n // (d + 1) if n % (d + 1) != 0: max_bad += 1 max_bad = min(max_bad, len(bad)) ans = 0 for bad_block in range(min_bad, max_bad + 1): if bad_block == 0: ans = good_pref[-1] continue worst_good = max(0, (d + 1) * bad_block - d - len(bad)) now = bad_pref[bad_block] + good_pref[-worst_good - 1] ans = max(ans, now) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR VAR LIST LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from itertools import accumulate n, d, m = map(int, input().split()) (*a,) = map(int, input().split()) l, r = [], [] a.sort() a.reverse() for i in range(n): if a[i] <= m: l.append(a[i]) else: r.append(a[i]) rs = [0] + list(accumulate(r)) ls = [0] + list(accumulate(l)) ans = 0 for i in range(len(ls)): j = (n - i + d) // (d + 1) if j > len(r): continue ans = max(ans, ls[i] + rs[j]) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) (*arr,) = map(int, input().split()) arr.sort() big = sum(1 for v in arr if v > m) n_large_slots = (n + d) // (d + 1) large = [] small = [] while arr: v = arr.pop() if v > m: large.append(v) else: small.append(v) small_sum = sum(small) nsmall = len(small) small.sort(reverse=True) large.sort(reverse=True) j = 0 if not large: print(small_sum) else: s = small_sum ans = -1 for i in range(1, min(n_large_slots, len(large)) + 1): s += large[i - 1] while len(small) > n - ((i - 1) * (d + 1) + 1): s -= small.pop() ans = max(ans, s) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST WHILE VAR ASSIGN VAR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER WHILE FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = list(map(int, input().split())) e, f = [i for i in a if i <= m], [i for i in a if i > m] e.sort(reverse=True) f.sort(reverse=True) c = len(e) if c == n: print(sum(a)) exit() l = 1 r = min((n - 1) // (d + 1) + 1, len(f)) ans = sum(e) nowe, nowf = 0, 0 for i in range(l, r + 1): if i == l: nowe = sum(e[: n - (1 + (l - 1) * (d + 1))]) nowf = sum(f[:l]) ans = max(nowe + nowf, ans) continue nowe -= sum(e[n - (1 + (i - 1) * (d + 1)) : n - (1 + (i - 1 - 1) * (d + 1))]) nowf += f[i - 1] ans = max(nowe + nowf, ans) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP NUMBER BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP NUMBER BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR BIN_OP NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys readline = sys.stdin.readline N, D, M = map(int, readline().split()) A = list(map(int, readline().split())) Am = [a for a in A if a > M] Ao = [a for a in A if a <= M] Am.sort(reverse=True) Ao.sort(reverse=True) Cam = Am[:] Cao = Ao[:] for i in range(1, len(Cam)): Cam[i] += Cam[i - 1] for i in range(1, len(Cao)): Cao[i] += Cao[i - 1] k = -(-N // (D + 1)) ans = sum(Am[:k]) lcam = len(Cam) Cam = [0] + Cam for i in range(len(Cao)): k = min(lcam, -(-(N - (i + 1)) // (D + 1))) ans = max(ans, Cao[i] + Cam[k]) print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def solve(): input_str = input().split() n, d, m = int(input_str[0]), int(input_str[1]), int(input_str[2]) a = [0] + [int(x) for x in input().split()] a[1:] = sorted(a[1:], reverse=True) muzzle_days_cnt = 0 for i in range(1, n + 1): if a[i] > m: muzzle_days_cnt += 1 a[i] += a[i - 1] ans = 0 if muzzle_days_cnt == 0: print(a[n]) return 0 for i in range(1, muzzle_days_cnt + 1): days_left = n - ((i - 1) * (d + 1) + 1) if days_left >= 0: ans = max( ans, a[min(n, muzzle_days_cnt + days_left)] - a[muzzle_days_cnt] + a[i] ) print(ans) return 0 solve()
FUNC_DEF ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN NUMBER EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys input = sys.stdin.readline n, d, m = map(int, input().split()) a = list(map(int, input().split())) b = [] c = [] for e in a: if e > m: b.append(e) else: c.append(e) b.sort(reverse=True) c.sort(reverse=True) bb = [] cc = [] tmp = 0 for e in b: tmp += e bb.append(tmp) tmp = 0 for e in c: tmp += e cc.append(tmp) big = len(b) if len(b) == 0: print(sum(a)) elif len(c) == 0: q = 0 while n > 0: q += 1 n -= d + 1 print(bb[q - 1]) else: res = 0 for i in range(big): if big - i - 1 <= i * d <= n - i - 1: de = i * d elif i * d <= big - i - 1 <= (i + 1) * d: de = big - i - 1 else: continue plus = de + i + 1 - big if 0 <= n - big - 1 - plus < len(cc): tmp = bb[i] + cc[n - big - 1 - plus] else: tmp = bb[i] res = max(res, tmp) print(res)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def solve(n, d, m, a): a.sort() small = sorted(x for x in a if x <= m) scs = [0] for x in small: scs.append(scs[-1] + x) sol = scs[-1] bn = n - len(small) take, r, sbig, possible = 1, n - 1, 0, True while possible: skip = d * (take - 1) if a[r] > m and skip + take <= n: sbig += a[r] skip = max(skip - (bn - take), 0) ssmall = scs[-1] - scs[skip] if skip < len(scs) else 0 sol = max(sol, sbig + ssmall) r -= 1 take += 1 else: possible = False return sol n, d, m = map(int, input().split()) a = list(map(int, input().split())) print(solve(n, d, m, a))
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER RETURN VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) s = [int(x) for x in input().split()] L1 = [] L2 = [] for i in range(0, len(s)): if s[i] <= m: L2.append(s[i]) else: L1.append(s[i]) L1.sort() L1 = L1[::-1] L2.sort() ans = 0 tt1 = len(L1) // (d + 1) if len(L1) % (d + 1) != 0: tt1 += 1 for i in range(tt1): ans += L1[i] for i in range(0, len(L2)): ans += L2[i] kk = len(L1) % (d + 1) if kk != 0: kk -= 1 else: kk = d ptr = 0 c = 0 for i in range(tt1, len(L1)): ok = d rem = kk if i >= len(L1) - kk: ok = d - 1 rem = kk - 1 if ptr + ok - rem < len(L2): tot = 0 for j in range(ptr, ptr + ok + 1 - rem): tot += L2[j] if tot < L1[i]: ans += L1[i] ans -= tot ptr += ok + 1 - rem kk = 0 else: break else: break print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys input = sys.stdin.readline N, D, M = map(int, input().split()) X = list(map(int, input().split())) Y, Z = [], [] for i in range(N): if X[i] > M: Y.append(X[i]) else: Z.append(X[i]) X.sort() Y.sort() Z.sort() X = X[::-1] Y = Y[::-1] Z = Z[::-1] zs = 0 yk = -(-N // (D + 1)) ys = sum(Y[: min(yk, len(Y))]) R = 0 for zn in range(len(Z) + 1): if zn > 0: zs += Z[zn - 1] yn = N - zn R = max(R, zs + ys) if yn % (D + 1) == 1 and yk > 0: yk -= 1 if yk < len(Y): ys -= Y[yk] print(R)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys from itertools import accumulate def input(): return sys.stdin.readline().strip() def list2d(a, b, c): return [([c] * b) for i in range(a)] def list3d(a, b, c, d): return [[([d] * c) for j in range(b)] for i in range(a)] def list4d(a, b, c, d, e): return [[[([e] * d) for j in range(c)] for j in range(b)] for i in range(a)] def ceil(x, y=1): return int(-(-x // y)) def INT(): return int(input()) def MAP(): return map(int, input().split()) def LIST(N=None): return list(MAP()) if N is None else [INT() for i in range(N)] def Yes(): print("Yes") def No(): print("No") def YES(): print("YES") def NO(): print("NO") INF = 10**19 MOD = 10**9 + 7 N, D, M = MAP() A1 = [] A2 = [] for a in LIST(): if a <= M: A1.append(a) else: A2.append(a) A1.sort(reverse=1) A2.sort(reverse=1) N1 = len(A1) N2 = len(A2) acc1 = [0] + list(accumulate(A1)) acc2 = [0] + list(accumulate(A2)) ans = 0 for i in range(N1 + 1): have = N - i j = ceil(have, D + 1) if j > N2: continue ans = max(ans, acc1[i] + acc2[j]) print(ans)
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN BIN_OP LIST VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR FUNC_DEF NUMBER RETURN FUNC_CALL VAR BIN_OP VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF NONE RETURN VAR NONE FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from itertools import accumulate def main(): n, d, m = map(int, input().split()) A = list(map(int, input().split())) A_low = [] A_high = [] for a in A: if a <= m: A_low.append(a) else: A_high.append(a) Ll = len(A_low) Lh = len(A_high) A_low.sort(reverse=True) A_high.sort(reverse=True) accA_high = [0] + list(accumulate(A_high)) t = (n + d) // (d + 1) if t <= Lh: ans = accA_high[(n + d) // (d + 1)] else: ans = accA_high[-1] low = 0 for i in range(Ll): low += A_low[i] t = (n - i - 1 + d) // (d + 1) if t <= Lh: high = accA_high[(n - i - 1 + d) // (d + 1)] else: high = accA_high[-1] if low + high > ans: ans = low + high print(ans) main()
FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = [*map(int, input().split())] s, b = [], [] for i in a: if i <= m: s.append(i) else: b.append(i) ans = 0 s.sort(reverse=True) b.sort(reverse=True) for i in range(1, len(s)): s[i] += s[i - 1] for i in range(1, len(b)): b[i] += b[i - 1] if len(b) == 0: print(s[-1]) exit(0) for i in range(len(b)): mx = i * (d + 1) + 1 if mx > n: break res = 0 rest = n - mx if rest == 0 or len(s) == 0: res += b[i] ans = max(ans, res) continue else: res = s[min(len(s) - 1, rest - 1)] res += b[i] ans = max(ans, res) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys readline = sys.stdin.buffer.readline ns = lambda: readline().rstrip() ni = lambda: int(readline().rstrip()) nm = lambda: map(int, readline().split()) nl = lambda: list(map(int, readline().split())) def solve(): n, d, m = nm() a = nl() f = list() g = list() for x in a: if x > m: f.append(x) else: g.append(x) f.sort(reverse=True) g.sort(reverse=True) ng = len(g) a = [0] * (ng + 1) for i in range(ng): a[i + 1] = a[i] + g[i] ans = a[ng] cur = 0 for i in range(len(f)): if i + 1 + i * d > n: break cur += f[i] v = n - i * d - i - 1 if v > ng: v = ng if v < 0: v = 0 if ans < cur + a[v]: ans = cur + a[v] print(ans) return solve()
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = list(map(int, input().split())) a = list(map(int, input().split())) if max(a) <= m: print(sum(a)) exit() a.sort() k = 0 s = 0 while k < n and a[k] <= m: s += a[k] k += 1 j = 0 p = 0 while n - 1 - j >= 0 and p + k < n: s += a[n - 1 - j] j += 1 p += d + 1 best = s f = 0 p = p + 1 while p + k - f > n and f < k: s -= a[f] f += 1 if j + k < n and f <= k and p + k - f <= n: s += a[n - 1 - j] j += 1 if s > best: best = s while f < k and j + k < n: for i in range(d + 1): s -= a[f] f += 1 if f > k: break s += a[n - 1 - j] j += 1 if s > best: best = s else: break print(best)
ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys n, d, m = list(map(int, sys.stdin.readline().strip().split())) a = list(map(int, sys.stdin.readline().strip().split())) a.sort() s1 = 0 s2 = 0 j = 0 i = 0 while a[i] <= m: s1 = s1 + a[i] i = i + 1 if i == n: break b = a[0:i] b.reverse() a = b + a[i:] while j * (d + 1) + i < n: s2 = s2 + a[n - 1 - j] j = j + 1 ans = s1 + s2 while j < n / (d + 1): s2 = s2 + a[n - 1 - j] j = j + 1 while j * (d + 1) + i >= n + d + 1: s1 = s1 - a[i - 1] i = i - 1 ans = max(ans, s1 + s2) print(ans)
IMPORT ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR VAR WHILE BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR WHILE VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
N, D, M = map(int, input().split()) A = sorted(map(int, input().split()), reverse=True) L = [a for a in A if a > M] S = [a for a in A if a <= M] cum_S = [0] c = 0 for s in S: c += s cum_S.append(c) d = N - 1 ans = max(A) if len(L) == 0: print(sum(S)) exit() cum_L = 0 for n, l in enumerate(L, 1): cum_L += l if d < 0: break need = (n - 1) * D if not len(L) - n <= need: if len(L) - n <= need + D: need = len(L) - n else: d -= D + 1 continue n_s = need - (len(L) - n) an = cum_S[max(0, len(S) - n_s)] + cum_L ans = max(ans, an) d -= D + 1 print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR NUMBER VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR IF BIN_OP FUNC_CALL VAR VAR VAR VAR IF BIN_OP FUNC_CALL VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) arr = list(map(int, input().split())) arr.sort() cnt = 0 lt = [x for x in arr if x <= m][::-1] gt = [x for x in arr if x > m][::-1] if not gt: print(sum(arr)) exit(0) for i in range(1, len(gt)): gt[i] += gt[i - 1] for i in range(1, len(lt)): lt[i] += lt[i - 1] k = (n + d) // (d + 1) ans = sum(arr[-k:]) for i in range(len(lt)): k = (n + d - i - 1) // (d + 1) if k <= len(gt): ans = max(ans, gt[k - 1] + lt[i]) else: ans = max(ans, gt[-1] + lt[k - len(gt) + i]) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = [int(x) for x in input().split()] a = [int(x) for x in input().split()] a = list(reversed(sorted(a))) nl = [x for x in a if x <= m] ml = [x for x in a if x > m] aml = [0] for x in ml: aml.append(aml[-1] + x) anl = [0] for x in nl: anl.append(anl[-1] + x) if len(ml) == 0: print(sum(nl)) return result = [] best = 0 for i in range(1, len(ml) + 1): if (i - 1) * (d + 1) + 1 > n: continue if i * d < len(ml) - i: continue cur = aml[i] need_nmes = max(0, (i - 1) * (d + 1) + 1 - len(ml)) rem_nmes = len(nl) - need_nmes assert rem_nmes >= 0 cur += anl[rem_nmes] if cur > best: best = cur print(best)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR RETURN ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR IF BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def sol(num_days, pause, m, jokes): nbjokes = [] bjokes = [] for joke in jokes: if joke > m: bjokes.append(joke) else: nbjokes.append(joke) bjokes.sort(reverse=True) nbjokes.sort(reverse=True) nb_prefix = [0] for nb in nbjokes: nb_prefix.append(nb_prefix[-1] + nb) b_prefix = [0] for b in bjokes: b_prefix.append(b_prefix[-1] + b) best = 0 if len(bjokes) == 0: if nb_prefix: print(nb_prefix[min(len(nb_prefix) - 1, num_days)]) return for x in range(1, len(bjokes) + 1): ban_val = b_prefix[x] no_ban_days = num_days - ((x - 1) * (pause + 1) + 1) if no_ban_days < 0: break no_ban_val = nb_prefix[min(no_ban_days, len(nb_prefix) - 1)] best = max(best, ban_val + no_ban_val) print(best) def main(): num_days, pause, m = map(int, input().split()) jokes = list(map(int, input().split())) sol(num_days, pause, m, jokes) main()
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF VAR EXPR FUNC_CALL VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR RETURN FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def gns(): return list(map(int, input().split())) n, d, m = gns() d += 1 ns = gns() a = [x for x in ns if x <= m] b = [x for x in ns if x > m] a.sort(reverse=True) b.sort(reverse=True) def sm(x): for i in range(1, len(x)): x[i] += x[i - 1] sm(a) sm(b) ans = 0 for i in range(len(a) + 1): j = n - i j = j // d + (j % d != 0) if j > len(b): continue s = (a[i - 1] if i > 0 else 0) + (b[j - 1] if j > 0 else 0) ans = max(ans, s) print(ans)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FUNC_DEF FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys input = sys.stdin.readline for _ in range(1): n, d, m = map(int, input().split()) arr = list(map(int, input().split())) a, b = [], [] for i in arr: if i > m: a.append(i) else: b.append(i) a.sort(reverse=True) b.sort(reverse=True) for i in range(1, len(a)): a[i] += a[i - 1] for i in range(1, len(b)): b[i] += b[i - 1] if a and b: ans = max(a[0], b[-1]) elif a: ans = a[0] else: ans = b[-1] for i in range(len(a)): rem = n - ((d + 1) * i + 1) if rem >= 0: ans = max(ans, a[i]) rem -= 1 if rem >= 0 and b: rem = min(rem, len(b) - 1) ans = max(ans, a[i] + b[rem]) print(ans)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER IF VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = [int(c) for c in input().split()] arr = [int(c) for c in input().split()] a = [i for i in arr if i > m] b = [i for i in arr if i <= m] k = len(a) l = len(b) a.sort(reverse=True) b.sort(reverse=True) a.insert(0, 0) b.insert(0, 0) for i in range(1, len(a)): a[i] += a[i - 1] for i in range(1, len(b)): b[i] += b[i - 1] b = b + [b[-1]] * n minmuz = (k + d) // (d + 1) maxmuz = k fans = float("-inf") for i in range(minmuz, maxmuz + 1): l = (d + 1) * (i - 1) + 1 if l > n: continue left = n - l ans = a[i] ans += b[left] fans = max(fans, ans) print(fans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP LIST VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = list(map(int, input().split())) p = [] q = [] for x in a: if x > m: p.append(x) else: q.append(x) p = [0] + sorted(p, reverse=True) q = [0] + sorted(q, reverse=True) for i in range(len(p) - 1): p[i + 1] += p[i] for i in range(len(q) - 1): q[i + 1] += q[i] ans = 0 for t in range(len(p)): v = n + d - t * d - t if 0 <= v < len(q) + d: ans = max(ans, p[t] + q[min(v, len(q) - 1)]) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR IF NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines ns = lambda: readline().rstrip() ni = lambda: int(readline().rstrip()) nm = lambda: map(int, readline().split()) nl = lambda: list(map(int, readline().split())) n, d, m = nm() a = nl() num = 0 for i in range(n): num += a[i] <= m a.sort() a.insert(0, 0) su = [] su.append(0) for i in range(1, n + 1): su.append(su[i - 1] + a[i]) div, ans = n - num, 0 d += 1 for i in range(0, div + 1): if i * d >= div and (i - 1) * d <= n - 1: temp = n - max((i - 1) * d + 1, div) ans = max(ans, su[n] - su[n - i] + su[num] - su[num - temp]) print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) l = list(map(int, input().split())) small = [] big = [] for i in l: if i <= m: small.append(i) else: big.append(i) small.sort(reverse=True) big.sort(reverse=True) curr = 0 pre = [0] for i in range(len(small)): pre.append(pre[-1] + small[i]) ans = pre[-1] for i in range(len(big)): if i + 1 + i * d > n: break curr += big[i] ind = n - i * d - i - 1 if ind > len(small): ind = len(small) if ind < 0: ind = 0 temp = curr + pre[ind] ans = max(ans, temp) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys import time buff_readline = sys.stdin.readline readline = sys.stdin.readline INF = 2**62 - 1 def read_int(): return int(buff_readline()) def read_int_n(): return list(map(int, buff_readline().split())) def read_float(): return float(buff_readline()) def read_float_n(): return list(map(float, buff_readline().split())) def read_str(): return readline().strip() def read_str_n(): return readline().strip().split() def error_print(*args): print(*args, file=sys.stderr) def mt(f): import time def wrap(*args, **kwargs): s = time.time() ret = f(*args, **kwargs) e = time.time() error_print(e - s, "sec") return ret return wrap def slv(N, D, M, A): l = [] s = [] for a in A: if a > M: l.append(a) else: s.append(a) l.sort() s.sort() ss = [] D += 1 n = N - 1 r = n % D ans = 0 for _ in range(r): if s: ans += s.pop() while len(s) >= D: t = 0 tt = [] for _ in range(D): a = s.pop() t += a tt.append(a) ss.append((t, D, tt)) if s: ss.append((sum(s), len(s), s)) ss.reverse() if l: ans += l.pop() else: ans += ss.pop()[0] for i in range(n // D): if l and ss: if l[-1] >= ss[-1][0]: ans += l.pop() else: a, b, c = ss.pop() ans += a elif l: ans += l.pop() else: a, b, c = ss.pop() ans += a return ans def main(): N, D, M = read_int_n() A = read_int_n() print(slv(N, D, M, A)) main()
IMPORT IMPORT ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR VAR VAR FUNC_DEF IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR STRING RETURN VAR RETURN VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR WHILE FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR IF VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR IF VAR NUMBER VAR NUMBER NUMBER VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def gt(): return list(map(int, input().split())) def gtsum(x): ret = x.copy() for i in range(1, len(x)): ret[i] += ret[i - 1] return ret ans = 0 n, d, m = gt() a = gt() a.sort() low = [] high = [] for val in a: if val <= m: low.append(val) else: high.append(val) sum_low = [0] + gtsum(low) sum_high = [0] + gtsum(high) for i in range(len(low) + 1): allow = (n - i + d) // (d + 1) if allow <= len(high): ans = max( ans, sum_high[-1] - sum_high[-1 - allow] + sum_low[-1] - sum_low[-1 - i] ) print(ans)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP NUMBER VAR VAR NUMBER VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = list(map(int, input().split())) not_angry = [] angry = [] for i in range(n): if a[i] <= m: not_angry.append(a[i]) else: angry.append(a[i]) not_angry.sort(reverse=True) angry.sort(reverse=True) not_angry = [0] + not_angry angry = [0] + angry for i in range(1, len(not_angry)): not_angry[i] += not_angry[i - 1] for i in range(1, len(angry)): angry[i] += angry[i - 1] ans = 0 for i in range(len(not_angry)): tmp = not_angry[i] q = min((n - i - 1) // (d + 1) + 1, len(angry) - 1) tmp += angry[q] ans = max(ans, tmp) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from itertools import accumulate def chat(n, d, m, arr): lem = [] gtm = [] for x in arr: if x <= m: lem.append(x) else: gtm.append(x) lem.sort(reverse=True) gtm.sort(reverse=True) prel = [0] + list(accumulate(lem)) preg = [0] + list(accumulate(gtm)) ans = prel[-1] for k in range(1, min(len(gtm), (n - 1) // (d + 1) + 1) + 1): ans = max(ans, preg[k] + prel[min(n - (k - 1) * d - k, len(lem))]) return ans n, d, m = map(int, input().split()) arr = list(map(int, input().split())) print(chat(n, d, m, arr))
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from itertools import accumulate, combinations, groupby, permutations, product def solve(): n, d, m = map(int, input().split()) A = list(map(int, input().split())) over = [] safe = [] for i in range(n): if A[i] > m: over.append(A[i]) else: safe.append(A[i]) X = len(over) Y = len(safe) over.sort(reverse=True) over = [0] + list(accumulate(over)) safe.sort(reverse=True) safe = [0] + list(accumulate(safe)) safe = safe + [safe[-1]] * (n - Y) if X == 0: return sum(A) ans = 0 for x in range(1, X + 1): p = (x - 1) * (d + 1) + 1 if p > n: break y = n - p ans = max(ans, over[x] + safe[y]) return ans print(solve())
FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP LIST VAR NUMBER BIN_OP VAR VAR IF VAR NUMBER RETURN FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = list(map(int, input().split())) bigJoke = [] smallJoke = [] for elem in a: if elem > m: bigJoke.append(elem) else: smallJoke.append(elem) bigJoke.sort(reverse=True) smallJoke.sort(reverse=True) bigJokePartialSum = [0] smallJokePartialSum = [0] for elem in bigJoke: bigJokePartialSum.append(bigJokePartialSum[-1] + elem) for elem in smallJoke: smallJokePartialSum.append(smallJokePartialSum[-1] + elem) maxSum = 0 for i in range(len(bigJokePartialSum)): if n - (d + 1) * (i - 1) - 1 < 0: break if i == 0: currentSum = smallJokePartialSum[-1] else: currentSum = bigJokePartialSum[i] currentSum += smallJokePartialSum[ min(len(smallJokePartialSum) - 1, n - (d + 1) * (i - 1) - 1) ] if currentSum > maxSum: maxSum = currentSum print(maxSum)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def main(): n, day, mood = map(int, input().split()) a = list(map(int, input().split())) out = [] safe = [] for v in a: if v <= mood: safe.append(v) else: out.append(v) safe.sort(reverse=True) out.sort(reverse=True) if not out: print(sum(safe)) return safe.insert(0, 0) out.insert(0, 0) for i in range(1, len(safe)): safe[i] += safe[i - 1] for i in range(1, len(out)): out[i] += out[i - 1] ans = 0 for l in range(len(out)): if l == 0: ans = max(ans, safe[min(n, len(safe) - 1)]) else: possible = n - 1 - (day + 1) * (l - 1) if possible >= 0: ans = max(ans, safe[min(possible, len(safe) - 1)] + out[l]) print(ans) return main()
FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) arr = list(map(int, input().split())) dp = [0] * (n + 1) arr.sort() count = 0 for i in range(n): dp[i + 1] = arr[i] + dp[i] if arr[i] <= m: count += 1 res = dp[count] for i in range(1, n - count + 1): if (i - 1) * d + i > n: break res = max( res, dp[n] - dp[n - i] + dp[count] - dp[max(0, (i - 1) * d - (n - count - i))] ) print(res)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
arr = [int(i) for i in input().split()] a = [int(i) for i in input().split()] n = arr[0] d = arr[1] m = arr[2] big = [] small = [] for i in a: if i > m: big.append(i) else: small.append(i) big = sorted(big)[::-1] n1 = len(big) ans = 0 n2 = len(small) small = sorted(small)[::-1] for i in range(1, n1): big[i] += big[i - 1] for i in range(1, n2): small[i] += small[i - 1] if n2 > n: ans = small[n - 1] elif n2 >= 1: ans = small[n2 - 1] for i in range(n1): no_of_big_considered = i + 1 no = (no_of_big_considered - 1) * (d + 1) + 1 if no > n: break temp = big[i] ele = n - no if ele > 0 and n2 >= 1: temp += small[min(ele - 1, n2 - 1)] else: pass ans = max(ans, temp) print(ans)
ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def solve(a, n): a = [a[0]] + sorted(a[1:], reverse=True) for i in range(1, n + 1): a[i] += a[i - 1] return a def main(): n, d, m = map(int, input().split()) cons = list(map(int, input().split())) k = 0 l = 0 a = [(0) for _ in range(n + 1)] b = [(0) for _ in range(n + 1)] for el in cons: if el > m: k += 1 a[k] = el else: l += 1 b[l] = el s = 0 if k == 0: for i in range(n + 1): s += b[i] print(s) return a = solve(a, k) b = solve(b, l) for i in range(l + 1, n + 1): b[i] = b[l] res = 0 for i in range((k + d) // (d + 1), k + 1): if (i - 1) * (d + 1) + 1 <= n: res = max(res, a[i] + b[n - (i - 1) * (d + 1) - 1]) print(res) main()
FUNC_DEF ASSIGN VAR BIN_OP LIST VAR NUMBER FUNC_CALL VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def solve(n, m, d, nums): if not nums: return 0 nums.sort(key=lambda x: x * -1) smalls = [0] bigs = [0] for num in nums: if num <= m: smalls.append(smalls[-1] + num) else: bigs.append(bigs[-1] + num) ans = 0 for x, big in enumerate(bigs): y = n if not x else n - (x - 1) * (d + 1) - 1 y = min(y, len(smalls) - 1) if y < 0: break ans = max(ans, smalls[y] + big) return ans n, d, m = list(map(int, input().split(" "))) nums = list(map(int, input().split(" "))) print(solve(n, m, d, nums))
FUNC_DEF IF VAR RETURN NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR RETURN VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) arr = list(map(int, input().split())) a = [] b = [] for i in arr: if i > m: a.append(i) else: b.append(i) a.sort(reverse=True) b.sort(reverse=True) pref_a = [0] * (len(a) + 1) pref_b = [0] * (len(b) + 1) for i in range(len(a)): pref_a[i + 1] = pref_a[i] + a[i] for i in range(len(b)): pref_b[i + 1] = pref_b[i] + b[i] ans = sum(b) for i in range(1, len(a) + 1): if (d + 1) * (i - 1) + 1 > n: break temp = pref_a[i] kk = n - (d + 1) * (i - 1) - 1 kk = min(len(b), kk) temp += pref_b[kk] ans = max(temp, ans) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys input = sys.stdin.readline n, d, m = map(int, input().split()) a = [int(item) for item in input().split()] muzzle = [] no_muzzle = [] for item in a: if item <= m: no_muzzle.append(item) else: muzzle.append(item) no_muzzle.sort(reverse=True) muzzle.sort(reverse=True) max_mnum = (n + d) // (d + 1) ans = 0 for cnt in range(min(len(muzzle), max_mnum) + 1): max_nom = n - (cnt + (cnt - 1) * d) min_nom = max(0, n - (d + 1) * cnt) if len(no_muzzle) < min_nom: continue nom_num = min(max_nom, len(no_muzzle)) ret = sum(muzzle[:cnt]) + sum(no_muzzle[:nom_num]) ans = max(ans, ret) print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys input = sys.stdin.readline n, d, m = list(map(int, input().split())) a = list(map(int, input().split())) small = [] big = [] for num in a: if num > m: big.append(num) else: small.append(num) big.sort() big.reverse() small.sort() small.reverse() ans = 0 small = [0] + small big = [0] + big for i in range(1, len(small)): small[i] = small[i - 1] + small[i] for i in range(1, len(big)): big[i] = big[i - 1] + big[i] for i in range(len(small)): tmp = small[i] ind = (n - i - 1) // (d + 1) + 1 ind = min(ind, len(big) - 1) tmp += big[ind] ans = max(ans, tmp) print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) n1, n2 = [(0) for i in range(d)], [] for i in map(int, input().split()): if i > m: n2.append(i) else: n1.append(i) out = su = sum(n1) n1.sort(reverse=True) n2.sort(reverse=True) count = 0 for i in range(len(n2)): while n1 and count + len(n2) - i - 1 < (i + 1) * d: su -= n1.pop() count += 1 su += n2[i] if count + len(n2) - i - 1 >= d * (i + 1): out = max(out, su) print(out)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR FUNC_CALL VAR VAR LIST FOR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR VAR FUNC_CALL VAR VAR NUMBER VAR VAR VAR IF BIN_OP BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = [int(v) for v in input().split()] a.sort() dp = [0] c = 0 for j in range(n): dp.append(dp[-1] + a[j]) if a[j] > m: c = c + 1 res = dp[n - c] if a[-1] > m: res = res + a[-1] s = res q = 0 for j in range(1, c): p = c - 1 - j q = q + a[-j - 1] nd = max(0, j * d - p) if nd > n - c: break else: s = max(s, res + q - dp[nd]) print(s)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR VAR IF VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) ln = list(map(int, input().split())) la = [u for u in ln if u <= m] lb = [u for u in ln if u > m] la.sort() lb.sort() na, nb = len(la), len(lb) sma, smb = [0] * (na + 1), [0] * (nb + 1) for i in range(1, na + 1): sma[i] += sma[i - 1] + la[i - 1] for i in range(1, nb + 1): smb[i] += smb[i - 1] + lb[i - 1] mx = 0 for u in range(nb + 1): mxvc, mnvc = u * d, max(0, u - 1) * d if nb - u > mxvc: continue sm = smb[nb] - smb[nb - u] cc = max(0, mnvc - (nb - u)) if cc > na: continue sm += sma[na] - sma[cc] mx = max(mx, sm) print(mx)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys from sys import stdin n, d, m = map(int, stdin.readline().split()) a = list(map(int, stdin.readline().split())) a.sort() a.reverse() over = [0] below = [0] nuse = 0 for i in range(n): if a[i] > m: over.append(over[-1] + a[i]) else: below.append(below[-1] + a[i]) ans = 0 if len(over) == 1: print(below[-1]) sys.exit() for l in range(n + 1): r = n - l if l > len(below) - 1: continue if r < len(over) - 1 or (len(over) - 1) * (d + 1) < r: continue ans = max(ans, below[l] + over[(r + d) // (d + 1)]) print(ans)
IMPORT ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = [int(i) for i in input().split()] days = [int(i) for i in input().split()] days.sort(reverse=True) smaller = [i for i in days if i <= m] larger = [i for i in days if i > m] highest = 0 current = 0 prefix_sums = [0] * (1 + len(larger)) for i in range(0, len(larger)): prefix_sums[i + 1] = prefix_sums[i] + larger[i] prefix_sums2 = [0] * (1 + len(smaller)) for i in range(0, len(smaller)): prefix_sums2[i + 1] = prefix_sums2[i] + smaller[i] if n == len(smaller): print(sum(smaller)) else: for x in range(1, len(prefix_sums)): small_remaining = n - (x - 1) * (d + 1) - 1 if small_remaining < 0: break if small_remaining >= len(prefix_sums2): if small_remaining - len(prefix_sums2) > d: continue else: highest = max(highest, prefix_sums[x] + prefix_sums2[-1]) continue current = prefix_sums[x] + prefix_sums2[small_remaining] highest = max(current, highest) print(highest)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR NUMBER IF VAR FUNC_CALL VAR VAR IF BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def main(): n, d, m = map(int, input().split()) a = list(map(int, input().split())) l1 = [] l2 = [] for i in a: if i > m: l1.append(i) else: l2.append(i) if len(l1) < 2: print(sum(a)) return l1.sort(reverse=True) l2.sort(reverse=True) l1.append(-1) total = l1.pop(0) n -= 1 q, r = n // (d + 1), n % (d + 1) z1 = 0 z2 = r for i in range(min(r, len(l2))): total += l2[i] for i in range(q): nice = sum(l2[z2 : z2 + d + 1]) if l1[z1] >= nice: total += l1[z1] z1 += 1 else: z2 += d + 1 total += nice print(total) main()
FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
data = [*open(0)] di = lambda x: map(int, data[x].split()) n, d, m = (*di(0),) a = (*di(1),) l1 = [] l2 = [] for ai in a: if ai > m: l1.append(-ai) else: l2.append(-ai) l1.sort() l2.sort() ans = 0 l1.insert(0, 0) l2.insert(0, 0) m1 = len(l1) m2 = len(l2) for i in range(1, m1): l1[i] = l1[i] + l1[i - 1] for i in range(1, m2): l2[i] = l2[i] + l2[i - 1] for i in range(m2): k = (m2 + m1 - i + d - 2) // (d + 1) if k < m1: ans = max(ans, -l1[k] - l2[i]) print(ans)
ASSIGN VAR LIST FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from itertools import accumulate n, d, m = map(int, input().split()) a = [*map(int, input().split())] ba, sa = [*filter(lambda x: x > m, a)], [*filter(lambda x: x <= m, a)] ba.sort(reverse=True) sa.sort() aba = [*accumulate(ba)] asa = [0] + [*accumulate(sa)] ans = asa[-1] for i in range(len(aba)): j = max(0, i * d - (len(aba) - i - 1)) if j < len(asa): ans = max(ans, aba[i] + (asa[-1] - asa[j])) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST FUNC_CALL VAR VAR VAR VAR LIST FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER LIST FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = list(map(int, input().split())) less = [] more = [] for i in a: if i > m: more.append(i) else: less.append(i) less.sort(reverse=True) more.sort(reverse=True) lessp = [] if len(less) > 0: lessp = [less[0]] for i in less[1:]: lessp.append(lessp[-1] + i) morep = [] if len(more) > 0: morep = [more[0]] for i in more[1:]: morep.append(morep[-1] + i) ans = 0 for i in range(-1, len(more)): high = 0 if len(morep) > 0 and i >= 0: high = morep[i] if i * (d + 1) + 1 > n: break sec = n - i * (d + 1) - 1 if i + 1 == 0: sec = n high = 0 if sec > len(lessp): sec = len(lessp) low = 0 if len(lessp) > 0 and sec > 0: low = lessp[sec - 1] ans = max(ans, high + low) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST VAR NUMBER FOR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR LIST IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST VAR NUMBER FOR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR IF BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) an = list(map(int, input().split())) safe = [] muzz = [] for i in an: if i <= m: safe.append(i) else: muzz.append(i) muzz = list(sorted(muzz))[::-1] safe = list(sorted(safe)) spots = len(muzz) - 1 if len(muzz) > 0: ans = sum(safe) + muzz[0] muzz.pop(0) else: ans = sum(safe) for i in muzz: if spots >= d + 1: ans += i spots -= d + 1 else: takeaway = d + 1 - spots spots = 0 if takeaway > len(safe): break else: pot = safe[:takeaway] rem = safe[takeaway:] if i > sum(pot): safe = rem ans += i - sum(pot) else: break print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR IF VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys def rs(): return sys.stdin.readline().rstrip() def ri(): return int(sys.stdin.readline()) def ria(): return list(map(int, sys.stdin.readline().split())) def ws(s): sys.stdout.write(s) sys.stdout.write("\n") def wi(n): sys.stdout.write(str(n)) sys.stdout.write("\n") def wia(a, sep=" "): sys.stdout.write(sep.join([str(x) for x in a])) sys.stdout.write("\n") def solve(n, d, m, a): big = sorted([ai for ai in a if ai > m], reverse=True) small = sorted([ai for ai in a if ai <= m], reverse=True) bn = len(big) sn = len(small) ans = 0 for x in range(bn + 1): taken = (x - 1) * (d + 1) + 1 score = sum(a[:x]) if taken > n: break rem = n - taken ans = max(ans, sum(big[:x]) + sum(small[:rem])) return ans def main(): n, d, m = ria() a = ria() wi(solve(n, d, m, a)) main()
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING FUNC_DEF STRING EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys input = sys.stdin.buffer.readline n, d, m = [int(x) for x in input().split()] arr = [int(x) for x in input().split()] smaller = [] larger = [] for x in arr: if x > m: larger.append(x) else: smaller.append(x) larger.sort(reverse=True) smaller.sort(reverse=True) psL = [0] psS = [0] for x in larger: psL.append(x + psL[-1]) for x in smaller: psS.append(x + psS[-1]) maxx = -float("inf") for xL in range(len(larger) + 1): xLT = (xL - 1) * (d + 1) + 1 xST = n - xLT xST = min(xST, len(smaller)) if xST < 0: break total = psL[xL] + psS[xST] maxx = max(maxx, total) print(maxx)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys n, d, m = map(int, input().split()) a = list(map(int, input().split())) S = sum(a) a1 = [] a2 = [] for ai in a: if ai > m: a2.append(ai) else: a1.append(ai) a1.sort() a2.sort() c1 = [0] c2 = [0] for ai in a1: c1.append(c1[-1] + ai) for ai in a2: c2.append(c2[-1] + ai) if len(a2) == 0: print(S) sys.exit() ans = 0 for angry_day in range(0, len(a2) + 1): nokori = (angry_day - 1) * d - (len(a2) - angry_day) if nokori < 0 and nokori > -d: nokori = 0 if nokori >= 0 and nokori <= len(a1): ans = max(ans, S - c2[len(a2) - angry_day] - c1[nokori]) print(ans)
IMPORT ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = list(map(int, input().split())) b, c = [], [] for i in range(n): if a[i] <= m: b.append(a[i]) else: c.append(a[i]) c.sort(reverse=True) b.sort() if len(b) == 0: j = len(c) - 1 ans = 0 for i in range(n): if i > j: break ans += c[i] j -= d print(ans) exit() pref = [b[0]] for i in range(1, len(b)): pref.append(pref[-1] + b[i]) ans = 0 maxx = sum(b) for i in range(len(c)): ans += c[i] skip = i * d left = max(0, skip - (len(c) - i - 1)) if left > len(pref): break if not left: maxx = max(maxx, ans + pref[-1]) else: maxx = max(maxx, ans + pref[-1] - pref[left - 1]) print(maxx)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
from sys import stdin, stdout def Boboniu_Chats_with_Du(n, d, m, a_a): b_a = [] c_a = [] res = 0 for a in a_a: if a > m: b_a.append(a) else: c_a.append(a) res += a if not b_a: return res b_a.sort(reverse=True) c_a.sort() d += 1 blen = len(b_a) bidx = blen // d + (1 if blen % d > 0 else 0) cidx = 0 for i in range(bidx): res += b_a[i] while bidx < len(b_a): if blen % d == 0: blen2 = blen + 1 else: blen2 = (blen // d + 1) * d + 1 if cidx + blen2 - blen > len(c_a): break csum = 0 for i in range(cidx, cidx + blen2 - blen): csum += c_a[i] cidx += 1 if csum >= b_a[bidx]: break res += b_a[bidx] - csum bidx += 1 blen = blen2 return res n, d, m = map(int, stdin.readline().split()) a_a = list(map(int, stdin.readline().split())) stdout.write(str(Boboniu_Chats_with_Du(n, d, m, a_a)) + "\n")
FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR IF VAR RETURN VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR RETURN VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR STRING
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
l = input().split() n = int(l[0]) d = int(l[1]) m = int(l[2]) l = input().split() li = [int(i) for i in l] great = [] less = [] for i in li: if i > m: great.append(i) else: less.append(i) great.sort() less.sort() prefg = [0] prefl = [0] gr = len(great) le = len(less) for i in great: prefg.append(prefg[-1] + i) for i in less: prefl.append(prefl[-1] + i) maxa = 10**18 z = sum(li) if gr == 0: print(z) quit() for i in range(1, n // d + 2): for j in range(d): maxas = i rest = (i - 1) * d + j if maxas + (i - 1) * d + j > n: continue if gr < maxas: continue ans = prefg[gr - maxas] rest = rest - (gr - maxas) if rest > le or rest < 0: continue ans = ans + prefl[rest] maxa = min(maxa, ans) print(z - maxa)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR VAR IF BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) u = list(map(int, input().split())) a = [] b = [] for i in range(n): if u[i] > m: a.append(u[i]) else: b.append(u[i]) if len(a) == 0: print(sum(b)) exit() La = len(a) Lb = len(b) a.sort(reverse=1) b.sort(reverse=1) a.append(0) b.append(0) for i in range(La): a[i] += a[i - 1] for i in range(Lb): b[i] += b[i - 1] cnt = min(La, (n - 1) // (d + 1) + 1) ans = 0 for i in range(cnt, 0, -1): free = n - i - d * (i - 1) if free - d > Lb: continue cur = a[i - 1] + b[min(free, Lb) - 1] ans = max(ans, cur) print(ans)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
n, d, m = map(int, input().split()) a = [int(o) for o in input().split()] bada = [] chota = [] for i in a: if i > m: bada.append(i) else: chota.append(i) bada.sort() chota.sort() bada = bada[::-1] lb = len(bada) lc = len(chota) pb = [0] * (lb + 1) pc = [0] * (lc + 1) for i in range(lb): pb[i + 1] = pb[i] + bada[i] for i in range(lc): pc[i + 1] = pc[i] + chota[i] aa = [] lcp = len(pc) for i in range(len(pb)): days = (i - 1) * (d + 1) + 1 if days <= n: ans = pb[i] rd = n - days ans += pc[-1] - pc[max(lcp - rd - 1, 0)] aa.append(ans) print(max(aa))
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
def main(): n, d, m = map(int, input().split()) a = list(map(int, input().split())) b = list(filter(lambda i: i > m, a)) c = list(filter(lambda i: i <= m, a)) del a b.sort(reverse=True) c.sort(reverse=True) for idx, i in enumerate(b): if idx: b[idx] += b[idx - 1] for idx, i in enumerate(c): if idx: c[idx] += c[idx - 1] mx = 0 k = (n + d) // (d + 1) if len(b) >= k: mx = b[k - 1] for idx, i in enumerate(c): bcnt = (n - idx - 1 + d) // (d + 1) if len(b) >= bcnt: if bcnt: mx = max(mx, b[bcnt - 1] + c[idx]) elif len(c) == n: mx = max(mx, c[idx]) print(mx) return main()
FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR IF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR IF FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for $n$ days. On the $i$-th day: If Du can speak, he'll make fun of Boboniu with fun factor $a_i$. But after that, he may be muzzled depending on Boboniu's mood. Otherwise, Du won't do anything. Boboniu's mood is a constant $m$. On the $i$-th day: If Du can speak and $a_i>m$, then Boboniu will be angry and muzzle him for $d$ days, which means that Du won't be able to speak on the $i+1, i+2, \cdots, \min(i+d,n)$-th days. Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of $a$. -----Input----- The first line contains three integers $n$, $d$ and $m$ ($1\le d\le n\le 10^5,0\le m\le 10^9$). The next line contains $n$ integers $a_1, a_2, \ldots,a_n$ ($0\le a_i\le 10^9$). -----Output----- Print one integer: the maximum total fun factor among all permutations of $a$. -----Examples----- Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 -----Note----- In the first example, you can set $a'=[15, 5, 8, 10, 23]$. Then Du's chatting record will be: Make fun of Boboniu with fun factor $15$. Be muzzled. Be muzzled. Make fun of Boboniu with fun factor $10$. Make fun of Boboniu with fun factor $23$. Thus the total fun factor is $48$.
import sys input = sys.stdin.readline n, d, m = map(int, input().split()) a = list(map(int, input().split())) up = [] down = [] for i in range(n): if a[i] > m: up.append(a[i]) else: down.append(a[i]) up = sorted(up) down = sorted(down) if not up: print(sum(down)) exit() ans = 0 ans += up.pop() lap, rem = divmod(n - 1, d + 1) for i in range(rem): if not down: break else: ans += down.pop() matome = [] while down: tmp = 0 for _ in range(d + 1): if down: tmp += down.pop() matome.append(tmp) matome = sorted(matome + up, reverse=True) ans += sum(matome[0 : min(lap, len(matome))]) print(ans)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR FUNC_CALL VAR ASSIGN VAR LIST WHILE VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for n days. On the i-th day: * If Du can speak, he'll make fun of Boboniu with fun factor a_i. But after that, he may be muzzled depending on Boboniu's mood. * Otherwise, Du won't do anything. Boboniu's mood is a constant m. On the i-th day: * If Du can speak and a_i>m, then Boboniu will be angry and muzzle him for d days, which means that Du won't be able to speak on the i+1, i+2, β‹…β‹…β‹…, min(i+d,n)-th days. * Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of a. Input The first line contains three integers n, d and m (1≀ d≀ n≀ 10^5,0≀ m≀ 10^9). The next line contains n integers a_1, a_2, …,a_n (0≀ a_i≀ 10^9). Output Print one integer: the maximum total fun factor among all permutations of a. Examples Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 Note In the first example, you can set a'=[15, 5, 8, 10, 23]. Then Du's chatting record will be: 1. Make fun of Boboniu with fun factor 15. 2. Be muzzled. 3. Be muzzled. 4. Make fun of Boboniu with fun factor 10. 5. Make fun of Boboniu with fun factor 23. Thus the total fun factor is 48.
import sys input = sys.stdin.readline n, d, m = map(int, input().split()) A = list(map(int, input().split())) P = [] M = [] for a in A: if a > m: P.append(a) else: M.append(a) P.sort(reverse=True) M.sort(reverse=True) if P == []: print(sum(M)) sys.exit() ANS = sum(M) + P[0] useP = 1 useM = len(M) SUM = ANS while 0 <= useP <= len(P) and 0 <= useM <= len(M): if n - (useP + useM + 1) >= useP * d: useP += 1 if useP > len(P): break SUM += P[useP - 1] else: if useM == 0: break SUM -= M[useM - 1] useM -= 1 ANS = max(ANS, SUM) print(ANS)
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF VAR LIST EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE NUMBER VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for n days. On the i-th day: * If Du can speak, he'll make fun of Boboniu with fun factor a_i. But after that, he may be muzzled depending on Boboniu's mood. * Otherwise, Du won't do anything. Boboniu's mood is a constant m. On the i-th day: * If Du can speak and a_i>m, then Boboniu will be angry and muzzle him for d days, which means that Du won't be able to speak on the i+1, i+2, β‹…β‹…β‹…, min(i+d,n)-th days. * Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of a. Input The first line contains three integers n, d and m (1≀ d≀ n≀ 10^5,0≀ m≀ 10^9). The next line contains n integers a_1, a_2, …,a_n (0≀ a_i≀ 10^9). Output Print one integer: the maximum total fun factor among all permutations of a. Examples Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 Note In the first example, you can set a'=[15, 5, 8, 10, 23]. Then Du's chatting record will be: 1. Make fun of Boboniu with fun factor 15. 2. Be muzzled. 3. Be muzzled. 4. Make fun of Boboniu with fun factor 10. 5. Make fun of Boboniu with fun factor 23. Thus the total fun factor is 48.
n, d, m = map(int, input().split()) ln = list(map(int, input().split())) la = [u for u in ln if u <= m] lb = [u for u in ln if u > m] la.sort() lb.sort() na, nb = len(la), len(lb) sma, smb = [0] * (na + 1), [0] * (nb + 1) for i in range(1, na + 1): sma[i] += sma[i - 1] + la[i - 1] for i in range(1, nb + 1): smb[i] += smb[i - 1] + lb[i - 1] mx = 0 for u in range(nb + 1): rmb, mxvc, mnvc = nb - u, u * d, max(0, u - 1) * d sumb = smb[nb] - smb[nb - u] if rmb <= mnvc: cc = max(0, mnvc - rmb) if cc <= na: mx = max(mx, sumb + sma[na] - sma[cc]) elif rmb <= mxvc: mx = max(mx, sumb + sma[na]) print(mx)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for n days. On the i-th day: * If Du can speak, he'll make fun of Boboniu with fun factor a_i. But after that, he may be muzzled depending on Boboniu's mood. * Otherwise, Du won't do anything. Boboniu's mood is a constant m. On the i-th day: * If Du can speak and a_i>m, then Boboniu will be angry and muzzle him for d days, which means that Du won't be able to speak on the i+1, i+2, β‹…β‹…β‹…, min(i+d,n)-th days. * Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of a. Input The first line contains three integers n, d and m (1≀ d≀ n≀ 10^5,0≀ m≀ 10^9). The next line contains n integers a_1, a_2, …,a_n (0≀ a_i≀ 10^9). Output Print one integer: the maximum total fun factor among all permutations of a. Examples Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 Note In the first example, you can set a'=[15, 5, 8, 10, 23]. Then Du's chatting record will be: 1. Make fun of Boboniu with fun factor 15. 2. Be muzzled. 3. Be muzzled. 4. Make fun of Boboniu with fun factor 10. 5. Make fun of Boboniu with fun factor 23. Thus the total fun factor is 48.
n, d, m = map(int, input().split()) n1, n2 = [(0) for i in range(d)], [] for i in map(int, input().split()): if i > m: n2.append(i) else: n1.append(i) out = su = sum(n1) n1.sort() n2.sort() j = 0 for i in range(len(n2) - 1, -1, -1): while j < len(n1) and i + j < d * (len(n2) - i): su -= n1[j] j += 1 su += n2[i] if i + j >= d * (len(n2) - i): out = max(out, su) print(out)
ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR FUNC_CALL VAR VAR LIST FOR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR BIN_OP VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for n days. On the i-th day: * If Du can speak, he'll make fun of Boboniu with fun factor a_i. But after that, he may be muzzled depending on Boboniu's mood. * Otherwise, Du won't do anything. Boboniu's mood is a constant m. On the i-th day: * If Du can speak and a_i>m, then Boboniu will be angry and muzzle him for d days, which means that Du won't be able to speak on the i+1, i+2, β‹…β‹…β‹…, min(i+d,n)-th days. * Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of a. Input The first line contains three integers n, d and m (1≀ d≀ n≀ 10^5,0≀ m≀ 10^9). The next line contains n integers a_1, a_2, …,a_n (0≀ a_i≀ 10^9). Output Print one integer: the maximum total fun factor among all permutations of a. Examples Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 Note In the first example, you can set a'=[15, 5, 8, 10, 23]. Then Du's chatting record will be: 1. Make fun of Boboniu with fun factor 15. 2. Be muzzled. 3. Be muzzled. 4. Make fun of Boboniu with fun factor 10. 5. Make fun of Boboniu with fun factor 23. Thus the total fun factor is 48.
import sys input = sys.stdin.readline n, d, m = map(int, input().split()) vals = sorted([int(i) for i in input().split()], reverse=True) over, under, over_psa, under_psa, ans = ( [i for i in vals if i > m], [i for i in vals if i <= m], [0], [0], 0, ) for i in range(len(over)): over_psa.append(over_psa[i] + over[i]) for i in range(n - len(over)): over_psa.append(over_psa[-1]) for i in range(len(under)): under_psa.append(under_psa[i] + under[i]) for i in range(n - len(under)): under_psa.append(under_psa[-1]) print( max( [ ( over_psa[i] + under_psa[n - max((i - 1) * (d + 1) + 1, 0)] if (i - 1) * (d + 1) + 1 <= n else 0 ) for i in range(len(over) + 1) ] ) )
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR LIST NUMBER LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR VAR BIN_OP VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER
Have you ever used the chat application QQ? Well, in a chat group of QQ, administrators can muzzle a user for days. In Boboniu's chat group, there's a person called Du Yi who likes to make fun of Boboniu every day. Du will chat in the group for n days. On the i-th day: * If Du can speak, he'll make fun of Boboniu with fun factor a_i. But after that, he may be muzzled depending on Boboniu's mood. * Otherwise, Du won't do anything. Boboniu's mood is a constant m. On the i-th day: * If Du can speak and a_i>m, then Boboniu will be angry and muzzle him for d days, which means that Du won't be able to speak on the i+1, i+2, β‹…β‹…β‹…, min(i+d,n)-th days. * Otherwise, Boboniu won't do anything. The total fun factor is the sum of the fun factors on the days when Du can speak. Du asked you to find the maximum total fun factor among all possible permutations of a. Input The first line contains three integers n, d and m (1≀ d≀ n≀ 10^5,0≀ m≀ 10^9). The next line contains n integers a_1, a_2, …,a_n (0≀ a_i≀ 10^9). Output Print one integer: the maximum total fun factor among all permutations of a. Examples Input 5 2 11 8 10 15 23 5 Output 48 Input 20 2 16 20 5 8 2 18 16 2 16 16 1 5 16 2 13 6 16 4 17 21 7 Output 195 Note In the first example, you can set a'=[15, 5, 8, 10, 23]. Then Du's chatting record will be: 1. Make fun of Boboniu with fun factor 15. 2. Be muzzled. 3. Be muzzled. 4. Make fun of Boboniu with fun factor 10. 5. Make fun of Boboniu with fun factor 23. Thus the total fun factor is 48.
import sys from sys import stdin n, d, m = map(int, stdin.readline().split()) a = list(map(int, stdin.readline().split())) a.sort() a.reverse() over = [0] below = [0] nuse = 0 for i in range(n): if a[i] > m: over.append(over[-1] + a[i]) else: below.append(below[-1] + a[i]) ans = 0 if len(over) == 1: print(below[-1]) sys.exit() for l in range(n + 1): r = n - l if l > len(below) - 1: break if r < len(over) - 1 or (len(over) - 1) * (d + 1) < r: continue ans = max(ans, below[l] + over[(r + d) // (d + 1)]) print(ans)
IMPORT ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
try: while True: n, k = map(int, input().split()) a = list(map(int, input().split())) left = 0 result = -1 cur = 0 for i in range(n): if not a[i]: if k: k -= 1 else: if i - left > result: res_left = left res_right = i result = i - left while left < i and a[left]: left += 1 left += 1 if i + 1 - left > result: res_left = left res_right = i + 1 result = i + 1 - left print(result) for i in range(res_left): print(a[i], end=" ") for i in range(result): print(end="1 ") for i in range(res_right, n): print(a[i], end=" ") print() except EOFError: pass
WHILE NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR WHILE VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
from sys import stdin, stdout nmbr = lambda: int(stdin.readline()) lst = lambda: list(map(int, stdin.readline().split())) PI = float("inf") def fn(wl, st): l = 0 r = wl - 1 mn = PI p1 = p2 = -1 while r < n: zeros = ps[r] - (ps[l - 1] if l >= 1 else 0) if zeros <= k and zeros < mn: mn = zeros p1, p2 = l, r l += 1 r += 1 if mn == PI: return False if st: for i in range(p1, p2 + 1): a[i] = 1 return True for _ in range(1): n, k = lst() ps = [0] * n a = lst() for i in range(n): if a[i] == 0: ps[i] = ps[max(0, i - 1)] + 1 else: ps[i] = ps[max(0, i - 1)] l = 1 r = n + 1 while l <= r: mid = l + r >> 1 if fn(mid, 0): l = mid + 1 else: r = mid - 1 print(r) fn(r, 1) print(*a)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR RETURN NUMBER IF VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
def main(): a = [int(x) for x in input().split()] legtobb = 0 b = 0 c = 0 sorozat = [int(x) for x in input().split()] helyek = [] helyek.append(-1) for x in range(len(sorozat)): if sorozat[x] == 0: helyek.append(x) helyek.append(a[0]) mo = [0, 0] if a[1] >= len(helyek) - 2: for x in range(len(sorozat)): sorozat[x] = 1 c = a[0] else: for x in range(len(helyek)): if b + a[1] + 1 < len(helyek) and helyek[b + a[1] + 1] - helyek[b] - 1 > c: c = helyek[b + a[1] + 1] - helyek[b] - 1 mo = [helyek[b], helyek[b + a[1] + 1]] b = b + 1 for x in range(len(sorozat)): if mo[0] < x and x < mo[1]: sorozat[x] = 1 print(c) for x in range(len(sorozat)): print(sorozat[x], end=" ") main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER IF VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR LIST VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
def nikita_och_ploh(a): ans = 0 b = 0 for i in a: if i == 1: b += 1 else: if b > ans: ans = b b = 0 if b > ans: ans = b return ans def nikita_plohoy(n, b, la, k): r = n + k i = n while k > 0 and r < la - 1: k = b[r - 1] - b[i] i = r r = r + k return n, r, k > 0 def nikita_zloy(n, b, la, k): r = n + k i = n while k > 0 and r < la - 1: k = b[r] - b[i] i = r r = r + k return n, r, k > 0 n, k = map(int, input().split()) a = list(map(int, input().split())) b = [] q = 0 c = [] g = [] nol = 0 if a[0] == 1: c.append(0) g.append(0) for i in range(n): if a[i] == 1: q += 1 b.append(q) if a[i] == 0: nol += 1 if i == 0: continue if a[i] == 1 and a[i - 1] == 0: c.append(i) if i == n - 1: continue if a[i] == 0 and a[i + 1] == 1: g.append(i) if nol <= k: print(n) a = [1] * n print(*a) exit() mx = -1 mxm = () if k != 0: for i in c: d, e, f = nikita_zloy(i, b, n, k) while e < n - 1 and a[e + 1] == 1: e += 1 if e >= n: e = n - 1 if e - d > mx: mx = e - d mxm = [d, e] if f: break for i in g: d, e, f = nikita_plohoy(i, b, n, k) while e < n and a[e] == 1: e += 1 if e - d > mx: mx = e - d - 1 mxm = [d, e] if f: break if k == 0: print(nikita_och_ploh(a)) else: print(mx + 1) if k > 0: if nikita_och_ploh(a) == 0: a = min(k, n) * [1] + (n - min(n, k)) * [0] else: a = a[: mxm[0]] + [1] * (mx + 1) + a[mxm[1] + 1 :] print(*a)
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR VAR VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER IF VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR IF VAR NUMBER FOR VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR LIST VAR VAR IF VAR FOR VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR WHILE VAR VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST VAR VAR IF VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR NUMBER IF FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR LIST NUMBER BIN_OP BIN_OP VAR FUNC_CALL VAR VAR VAR LIST NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
n, k = list(map(int, input().split())) a = list(map(int, input().split())) i, j, l = 0, -1, 0 z1, z2 = 0, -1 while i < n and j < n: if l <= k: if j - i + 1 > z2 - z1 + 1: z1, z2 = i, j j += 1 if j < n: l += 1 - a[j] else: break else: l -= 1 - a[i] i += 1 print(z2 - z1 + 1) for i in range(z1, z2 + 1): a[i] = 1 print(*a)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR VAR VAR VAR IF VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR BIN_OP NUMBER VAR VAR VAR BIN_OP NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
n, k = map(int, input().split()) a = list(map(int, input().split())) l, r = 0, 0 ans_idx, ans_len = 0, 0 zeros = 0 while r < n: if r < n: zeros += a[r] == 0 r += 1 if zeros > k: zeros -= a[l] == 0 l += 1 if r - l > ans_len: ans_len = r - l ans_idx = l print(ans_len) zeros = 0 for i in range(n): if i < ans_idx: print(a[i], end=" ") elif i >= ans_idx and zeros < k: zeros += a[i] == 0 print(1, end=" ") else: print(a[i], end=" ")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING IF VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER STRING EXPR FUNC_CALL VAR VAR VAR STRING
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
s = list(map(int, input().split())) s1 = list(map(int, input().split())) start = 0 end = 0 c = 0 s2 = 0 x = 0 y = 0 while end < s[0]: if s1[end] == 0: c += 1 while c > s[1]: c += s1[start] - 1 start += 1 if end - start + 1 > s2: s2 = end - start + 1 x = start y = end end += 1 print(s2) for i in range(x, y + 1): if s2 > 0: if s1[i] == 0: s1[i] = 1 s2 -= 1 print(*s1)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR NUMBER IF VAR VAR NUMBER VAR NUMBER WHILE VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
n, k = map(int, input().split()) ara = list(map(int, input().split())) max = 0 zero = 0 value = 0 end = 0 for i in range(n): if ara[i] == 0: zero += 1 if zero <= k: max += 1 end = i else: if ara[value] == 0: zero -= 1 value += 1 print(max) for i in range(end - max + 1, end + 1): ara[i] = 1 ch = "" for i in range(n): ch += str(ara[i]) + " " print(ch[:-1])
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR STRING FOR VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR STRING EXPR FUNC_CALL VAR VAR NUMBER
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
n, k = map(int, input().split()) l = list(map(int, input().split())) ki = 1 p0 = 0 i = 0 s = 0 for j in range(n): if l[j] == 0: s += 1 while s > k: if l[i] == 0: s -= 1 i += 1 if j - i > p0 - ki: p0 = j ki = i print(p0 - ki + 1) for h in range(ki, p0 + 1): l[h] = 1 print(*l, sep=" ")
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER WHILE VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR STRING
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
def fu(r, a, n): e = 0 while r < n - 1: if a[r + 1] == 0: e += 1 r += 1 if e == 2: r -= 1 break return r n, k = list(map(int, input().split())) a = list(map(int, input().split())) l = 0 r = -1 c = 0 for i in range(n): if a[i] == 0: c = c + 1 if c <= k: r = i else: break b = [[r - l + 1, l, r]] for i in range(n): if a[i] == 0: r = fu(r, a, n) l = i + 1 b.append([r - l + 1, l, r]) else: l = i + 1 b.append([r - l + 1, l, r]) c = max(b) for i in range(n): if c[1] <= i <= c[2]: a[i] = 1 print(c[0]) print(*a)
FUNC_DEF ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST LIST BIN_OP BIN_OP VAR VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR LIST BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR LIST BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given an array a with n elements. Each element of a is either 0 or 1. Let's denote the length of the longest subsegment of consecutive elements in a, consisting of only numbers one, as f(a). You can change no more than k zeroes to ones to maximize f(a). -----Input----- The first line contains two integers n and k (1 ≀ n ≀ 3Β·10^5, 0 ≀ k ≀ n) β€” the number of elements in a and the parameter k. The second line contains n integers a_{i} (0 ≀ a_{i} ≀ 1) β€” the elements of a. -----Output----- On the first line print a non-negative integer z β€” the maximal value of f(a) after no more than k changes of zeroes to ones. On the second line print n integers a_{j} β€” the elements of the array a after the changes. If there are multiple answers, you can print any one of them. -----Examples----- Input 7 1 1 0 0 1 1 0 1 Output 4 1 0 0 1 1 1 1 Input 10 2 1 0 0 1 0 1 0 1 0 1 Output 5 1 0 0 1 1 1 1 1 0 1
n, k = map(int, input().split()) a = list(map(int, input().split())) ans = 0 b = [0, 0] t = 0 tt = n o = [] temp = 0 s = [] for i in range(n): temp += a[i] s.append(temp) o.append(tt) if a[n - i - 1] == 0: tt = n - i - 1 o.reverse() l = 0 r = -1 for i in range(n): if a[i] == 1: b[a[i]] += 1 elif b[0] < k: b[0] += 1 elif a[t] == 0: t += 1 else: temp = 1 + s[o[t]] - s[t] b[1] -= temp t = o[t] + 1 if ans < b[0] + b[1]: l = t r = i ans = b[0] + b[1] for i in range(l, r + 1): a[i] = 1 print(ans) print(*a)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR IF VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR NUMBER VAR VAR NUMBER NUMBER IF VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR VAR VAR VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR