description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input()) - 1
l = 1
c = 9
while k >= c * l:
k -= c * l
l += 1
c *= 10
c = 10 ** (l - 1) + k // l
print(str(c)[k % l])
|
ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
if k <= 9:
print(k)
else:
num_arr = [(9 * (i + 1) * 10**i) for i in range(11)]
index = 0
while True:
if k <= num_arr[index]:
break
else:
k -= num_arr[index]
index += 1
digit = index + 1
k += digit - 1
num = k // digit
offset = k % digit
string_num = str(10 ** (digit - 1) + num - 1)
print(string_num[offset])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
digit = int(input())
if int(digit) <= 9:
print(digit)
exit()
start_range = 1
end_range = 9
power = 1
digit_count = 2
while not (start_range <= digit and digit <= end_range):
start_range = end_range + 1
end_range = 9 * 10**power * digit_count + start_range - 1
power += 1
digit_count += 1
offset_number = (digit - start_range) // (digit_count - 1)
number = str(10 ** (power - 1) + offset_number)
offset_digit = (digit - start_range) % (digit_count - 1)
print(f"{number[offset_digit]}")
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER BIN_OP NUMBER VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
check = True
t = 0
tnext = 9
count = 1
i = 1
j = 1
res = 0
while check:
if n <= tnext:
res = n - t
check = False
else:
count = count + 1
if t != 0:
t = t + 9 * i * j
else:
t = 9
tnext = tnext + 9 * (i + 1) * (j * 10)
i = i + 1
j = j * 10
num1 = int(res / count)
num2 = res % count
des = pow(10, count - 1)
despac = des + num1
if num2 == 0:
despac = str(despac - 1)
print(despac[-1])
else:
despac = str(despac)
print(despac[num2 - 1])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
nc = [(0) for i in range(14)]
for i in range(1, 14):
nc[i] += nc[i - 1] + 9 * 10 ** (i - 1) * i
for i in range(13):
if nc[i] < k <= nc[i + 1]:
cif = i + 1
if cif == 1:
print(k)
quit()
c = k - nc[cif - 1]
if c % cif == 0:
nnr = c // cif
ncif = cif
else:
nnr = 1 + c // cif
ncif = c % cif
number = nnr + 10 ** (cif - 1) - 1
while cif != ncif:
number //= 10
cif -= 1
print(number % 10)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input()) - 1
i = 0
while n >= 9 * (i + 1) * 10**i:
n -= 9 * (i + 1) * 10**i
i += 1
a = int(pow(10, i)) + int(n / (i + 1))
print(str(a)[n % (i + 1)])
|
ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
k_ = k
ca = 9
di = 1
tem = 9
while k_ > 0:
k_ -= ca * di
ca *= 10
di += 1
tem += ca * di
if k_ == 0:
break
tem -= ca * di
ca = int(ca / 10)
di -= 1
tem -= ca * di
ca = int(ca / 10)
ca_ = 0
while ca > 0:
ca_ += ca
ca = int(ca / 10)
k -= tem
re = int((k + di - 1) // di) + ca_
re_ = k % di
if re_ == 0:
l = 1
else:
l = 10 ** (di - re_)
re = int(re // l)
print(re % 10)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR IF VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
total_digit = 0
digit = 1
while k > total_digit + digit * (pow(10, digit) - pow(10, digit - 1)):
total_digit += digit * (pow(10, digit) - pow(10, digit - 1))
digit += 1
remaining = k - total_digit - 1
corr_num = str(pow(10, digit - 1) + remaining // digit)
print(corr_num[remaining % digit])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR BIN_OP VAR BIN_OP FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
def mp():
return map(int, input().split())
def f(i):
return (10**i - 10 ** (i - 1)) * i
n = int(input())
i = 1
sum = 0
while n - f(i) >= 0:
n -= f(i)
sum += f(i) // i
i += 1
print(str(sum + (n + i - 1) // i)[n % i - 1])
|
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
import sys
k = int(input())
if type(k) != int or k <= 0 or k > pow(10, 12):
print("wrong input. try again")
sys.exit()
lim_init = lim = decimal = 9
c = 0
while True:
c += 1
if k <= lim:
diff = lim - k
pos = diff % c
diff = int(diff / c)
diff = decimal - diff
print("".join(list(reversed(str(diff))))[pos])
break
else:
decimal = int(str(lim_init) * (c + 1))
lim += int(str(lim_init) + "0" * c) * (c + 1)
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP STRING VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
N = int(input())
beg = 0
end = 9
i = 0
while N > end:
i += 1
beg, end = end, end + (i + 1) * 9 * 10**i
n = N - beg - 1
lvl = i - n % (i + 1)
period = (i + 1) * 10**lvl
res = n // period % 10
if lvl == i:
res += 1
print(res)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
for i in range(20):
if k > 10**i * 9 * (i + 1):
k -= 10**i * 9 * (i + 1)
else:
a, b = (k - 1) // (i + 1) + 10**i, (k - 1) % (i + 1)
print(str(a)[b])
break
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER IF VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
s = 0
pred = 0
for i in range(1, 20):
m = 9 * pow(10, i - 1) * i
s += m
if n <= s:
nd = pow(10, i - 1)
sme = n - pred
num = sme // i
ost = sme % i
if ost == 0:
dig = nd + num - 1
else:
dig = nd + num
d = i
rez = []
ddig = dig
while d > 0:
o = ddig % 10
a = ddig // 10
rez.append(o)
d -= 1
ddig = a
break
pred = s
print(str(rez[-ost]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR VAR WHILE VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
import sys
class ADigitsSequenceEasyEdition:
def solve(self):
k = int(input()) + 1
p = 1
c = 0
while c + p * (10**p - (10 ** (p - 1) if p > 1 else 0)) < k:
c += p * (10**p - (10 ** (p - 1) if p > 1 else 0))
p += 1
k -= c
bef = (10 ** (p - 1) if p > 1 else 0) + (k - 1) // p
print(str(bef)[(k - 1) % p], end="")
solver = ADigitsSequenceEasyEdition()
input = sys.stdin.readline
solver.solve()
|
IMPORT CLASS_DEF FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER VAR STRING ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
def find(n):
y, x = -1, 10000000000000
while y + 1 != x:
m = (y + x) // 2
if con(m) >= n:
x = m
else:
y = m
return str(x)[n - con(y) - 1]
def con(x):
s, q, z = 0, 1, 0
while x != 0:
z = min(x, 9 * 10 ** (q - 1))
x = x - z
s += z * q
q += 1
return s
print(find(n))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER WHILE BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR NUMBER FUNC_DEF ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
maxlength = 12
lengths = [1]
for i in range(1, maxlength + 1):
lengths.append(lengths[i - 1] + 9 * i * 10 ** (i - 1))
def getnum(n):
global lengths
mx = maxlength - 1
mn = 0
while 1:
chk = (mx - mn) // 2
if chk == 0:
break
chk += mn
if n < lengths[chk]:
mx = chk
else:
mn = chk
curlength = mx
curlength_ind = n - lengths[curlength - 1]
curdigind = curlength_ind % curlength
beforenumscount = curlength_ind // curlength
result = (
0
+ (beforenumscount // 10 ** (curlength - curdigind - 1) + (curdigind == 0)) % 10
)
return result
print(getnum(n))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER VAR VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP NUMBER BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
pre_cal_sum_dec = {}
def sum_dec(n):
global pre_cal_sum_dec
try:
return pre_cal_sum_dec[n]
except:
sumer = 0
for i in range(1, n):
sumer += 10**i
pre_cal_sum_dec[n] = sumer
return sumer
def find_head(digits):
if digits < 1:
return 0
elif digits == 1:
return 1
else:
return (digits - 1) * 10 ** (digits - 1) - sum_dec(digits - 1)
def cutter(start, end):
listo = [(0) for _ in range(10)]
part = (end - start) // 9
listo[0] = start
for each in range(1, 10):
start += part
listo[each] = start
return listo
def finder(number):
x, i = 0, 0
if number == 1:
return 1
while x < number:
bef = x
x = find_head(i)
i += 1
if x == number:
return 1
e = i - 2
number = number - bef
interval = e * 10 ** (e - 1)
col = number % e
if col == 0:
return (number // interval + 1) % 10
return number // (e * 10 ** (e - 1 - col)) % 10
print(finder(int(input())))
|
ASSIGN VAR DICT FUNC_DEF RETURN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP NUMBER VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER IF VAR NUMBER RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER VAR VAR ASSIGN VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER IF VAR NUMBER RETURN NUMBER WHILE VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN BIN_OP BIN_OP VAR BIN_OP VAR BIN_OP NUMBER BIN_OP BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
A = [
9,
189,
2889,
38889,
488889,
5888889,
68888889,
788888889,
8888888889,
98888888889,
1088888888889,
]
k = int(input())
if k < 10:
print(k)
else:
for n in range(0, 12):
if k > A[n + 1]:
continue
else:
a = 10 ** (n + 1) + (k - A[n] - 1) // (n + 2)
b = (k - A[n] - 1) % (n + 2)
print(str(a)[b])
break
|
ASSIGN VAR LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
step = 9
count = 0
digit = 1
while count + digit * step < n:
count += digit * step
step *= 10
digit += 1
i = n - count
k = int((i + (digit - 1)) / digit)
num = 10 ** (digit - 1) + (k - 1)
j = digit - (i + digit - 1) % digit - 1
while j > 0:
num = int(num / 10)
j -= 1
print(num % 10)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
from sys import stdin
def solve(tc):
k = int(stdin.readline().strip())
cmp = 9
ndigit = 1
while k > cmp * ndigit:
k -= cmp * ndigit
cmp *= 10
ndigit += 1
num = 10 ** (ndigit - 1) + (k - 1) // ndigit
pos = (k - 1) % ndigit
print(str(num)[pos])
pass
LOCAL_TEST = not __debug__
if LOCAL_TEST:
infile = __file__.split(".")[0] + "-test.in"
stdin = open(infile, "r")
tcs = int(stdin.readline().strip()) if LOCAL_TEST else 1
tc = 1
while tc <= tcs:
solve(tc)
tc += 1
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR IF VAR ASSIGN VAR BIN_OP FUNC_CALL VAR STRING NUMBER STRING ASSIGN VAR FUNC_CALL VAR VAR STRING ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
N = int(input())
terms = 1
n = 9
total = 0
while N > terms * n:
N = N - terms * n
total = total + n
terms = terms + 1
n = n * 10
print(str(total + (N + terms - 1) // terms)[(N - 1) % terms])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
x = 1
while n > 10 ** (len(str(x)) - 1) * 9 * len(str(x)):
n -= 10 ** (len(str(x)) - 1) * 9 * len(str(x))
x *= 10
t = len(str(x))
nadighe = False
while nadighe == False:
qw = 1
nadighe = True
while n > 10 ** (len(str(qw)) - 1) * 9 * t:
n -= 10 ** (len(str(qw)) - 1) * 9 * t
nadighe = False
qw *= 10
x += qw - 1
while n > len(str(x)):
n -= len(str(x))
x += 1
for i in range(len(str(x))):
if n != 0:
s = str(x)[i]
n -= 1
print(s)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR VAR BIN_OP BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
T = (
0,
9,
189,
2889,
38889,
488889,
5888889,
68888889,
788888889,
8888888889,
98888888889,
1088888888889,
)
k = int(input())
a = 0
for i in T:
if i - k > 0:
a = T.index(i)
break
temp = T[a] - k
x = temp % a
res = 10**a - 1 - int(temp / a)
ans = int(res % 10 ** (x + 1) / 10**x)
print(ans)
|
ASSIGN VAR NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR NUMBER FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
index = int(input())
total = 9
n = 1
while index > total:
total += (n + 1) * 10**n * 9
n += 1
last = 10 ** (n - 1)
total -= n * 9 * last
index = index - total
r = index % n
k = index // n
number = last + k
if r == 0:
print(str(number - 1)[n - 1])
else:
print(str(number)[r - 1])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
i = 0
s = 0
while True:
temp = (i + 1) * 9 * 10**i
if s + temp <= n:
s += temp
i += 1
else:
break
tc = n - s
nd = tc // (i + 1) - 1
tc -= (nd + 1) * (i + 1)
f = 10**i + nd
if tc != 0:
print(str(10**i + nd + 1)[tc - 1])
else:
print(str(10**i + nd)[-1])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
def main_function():
counter = int(input())
max_counter = 9
digits_per_number = 1
while max_counter < counter:
digits_per_number += 1
max_counter = max_counter + digits_per_number * 9 * 10 ** (
digits_per_number - 1
)
max_real_number = int(str(9) * digits_per_number)
dif = max_counter - counter
rem = dif % digits_per_number
real_number = max_real_number - dif // digits_per_number
print(str(real_number)[-1 - rem])
main_function()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input(""))
y = 9
x = 1
i = 2
m = 0
if k < 10:
print(k)
else:
while k > y:
h = y
y = y + 9 * i * 10**x
x += 1
i += 1
z = 10 ** (i - 1) + (k - y - 1) // (i - 1)
q = (k - h - 1) % (i - 1)
print(str(z)[q])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
def f(n):
kakn = 9
n -= 1
chisl = 1
while kakn < n:
kakn += 9 * 10**chisl * (chisl + 1)
chisl += 1
if n - kakn == 2:
return 0
t = kakn - 9 * 10 ** (chisl - 1) * chisl
n -= t
p = n // chisl
u = n % chisl
o = str(10 ** (chisl - 1) + p)
return o[u]
n = int(input())
print(f(n))
|
FUNC_DEF ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR RETURN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
import sys
n = int(input())
ind = 0
dig = 0
for i in range(1, 12):
dig += i * 10 ** (i - 1) * 9
if dig > n:
ind = i - 1
rt = dig - i * 10 ** (i - 1) * 9
break
n -= rt
no = 10**ind
if n == 0:
print(9)
sys.exit()
u = n
n -= n // (ind + 1) * (ind + 1)
no += max(0, u // (ind + 1) - 1)
if n == 0:
print(str(no)[-1])
else:
no += 1
while n > 0:
if n <= ind + 1:
e = str(no)
print(e[n - 1])
n -= ind + 1
no += 1
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER VAR VAR ASSIGN VAR BIN_OP NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
n = 1
for i in range(1, 20):
if k < n + 9 * 10 ** (i - 1) * i:
print(str(10 ** (i - 1) + (k - n) // i)[(k - n) % i])
break
n += 9 * 10 ** (i - 1) * i
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
def totaller(i):
if i == 0:
return 0
else:
total1 = totaller(i - 1) + 9 * 10 ** (i - 1) * i
return total1
no_of_digits = int(input())
j = 0
for i in range(1, 13):
if no_of_digits >= totaller(i):
j = i
kth_digit = (no_of_digits - totaller(j)) // (j + 1)
if (no_of_digits - totaller(j)) % (j + 1) != 0:
answer = str(kth_digit + 10**j)
print(answer[(no_of_digits - totaller(j)) % (j + 1) - 1])
else:
answer = str(kth_digit + 10**j - 1)
print(answer[(no_of_digits - totaller(j)) % (j + 1) - 1])
|
FUNC_DEF IF VAR NUMBER RETURN NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP BIN_OP NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
a = int(input())
i = 1
amount = a
while amount > i * (10**i - 10 ** (i - 1)):
amount = amount - i * (10**i - 10 ** (i - 1))
i = i + 1
x = amount // i
y = amount % i
if y == 0:
if i == 1:
print(x % 10)
else:
print((10 ** (i - 1) + x - 1) % 10)
elif i == 1:
print(x % 10)
else:
print((10 ** (i - 1) + x) // 10 ** (i - y) % 10)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP NUMBER BIN_OP VAR VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
s = 0
i = 1
c = 1
while s < n:
s += 9 * i * c
c += 1
i *= 10
n = n - s + 9 * i * (c - 1) // 10
c = c - 1
r = n % c
d = n // c
k = 10 ** (c - 1) + d
if r == 0:
print(int(str(k - 1)[-1]))
else:
print(int(str(k)[r - 1]))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
if k < 10:
print(k)
quit()
c = 0
n = k
a = k
while n > 0:
c += 1
sub = 10**c - 10 ** (c - 1)
a -= sub * c
n = a / (c + 1) + (10**c - 1)
if n + 1 <= 10 ** (c + 1):
if int(n) == n:
print(int(n % 10))
exit()
else:
print(str(int(n) + 1)[round((n - int(n)) * (c + 1)) - 1])
exit()
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER BIN_OP BIN_OP NUMBER VAR NUMBER IF BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
mul = 1
d = 1
while k > mul * 9 * d:
k -= mul * 9 * d
d += 1
mul *= 10
x = k % d
y = k // d
y += mul
if x == 0:
print((y - 1) % 10)
else:
y = y // pow(10, d - x)
print(y % 10)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
import sys
def input():
return sys.stdin.readline().rstrip()
def slv():
k = int(input())
def cnt_special(N):
if N == 0:
return 0
return cnt_special(N - 1) + N * (pow(10, N) - pow(10, N - 1))
def cnt_digit(N):
ord = len(str(N))
bound = ord - 1
return cnt_special(bound) + ord * (N + 1 - 10**bound)
if k < 10:
print(k)
else:
l = 1
r = int(1000000000000.0)
while r - l > 1:
med = (r + l) // 2
if cnt_digit(med) >= k:
r = med
else:
l = med
rep = k - cnt_digit(l)
print(str(r)[rep - 1])
return
def main():
t = 1
for i in range(t):
slv()
return
main()
|
IMPORT FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER RETURN BIN_OP FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR BIN_OP FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN BIN_OP FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR RETURN EXPR FUNC_CALL VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
import sys
k = int(input())
d = [0]
for i in range(1, 12):
d.append((10**i - 10 ** (i - 1)) * i + d[i - 1])
for i in range(1, len(d)):
if k <= d[i]:
f = d[i - 1]
f1 = 10 ** (i - 1)
print(str((k - f - 1) // i + f1)[(k - f - 1) % i])
sys.exit()
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
num_digits = 1
num_numbers = 9
k -= 1
while k > num_digits * num_numbers:
k -= num_numbers * num_digits
num_digits += 1
num_numbers *= 10
number = 10 ** (num_digits - 1) + k // num_digits
index = k % num_digits
answer = str(number)[index]
print(answer)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER WHILE VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
i = 1
s = 0
while i * 9 * 10 ** (i - 1) < n - s:
s += i * 10 ** (i - 1) * 9
i += 1
n -= s
j = n // i
k = n % i
if k is 0:
ind = i - 1
else:
ind = k - 1
print(str(10 ** (i - 1) + j - 1 + (k > 0))[ind])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
a = int(input())
c = [1] * 30
for i in range(1, 20):
c[i] = 9 * i * pow(10, i - 1)
for i in range(1, 15):
if a > c[i]:
a -= c[i]
else:
d = int((a - 1) / i + pow(10, i - 1) - 1)
e = (a - 1) % i + 1
f = str(d + 1)
print(f[e - 1])
return
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER RETURN
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
limit_int = limit = decimal = 9
count = 0
while True:
count += 1
if n <= limit:
difference = limit - n
position = difference % count
difference = difference // count
difference = decimal - difference
print("".join(list(reversed(str(difference))))[position])
break
else:
decimal = int(str(limit_int) * (count + 1))
limit += int(str(limit_int) + "0" * count) * (count + 1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR BIN_OP STRING VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
a, b, c, d, e, f, g, h, i, j, k, l = [
9 * 1,
90 * 2,
900 * 3,
9000 * 4,
90000 * 5,
900000 * 6,
9000000 * 7,
90000000 * 8,
900000000 * 9,
9000000000 * 10,
90000000000 * 11,
900000000000 * 12,
]
a = a
b = a + b
c = b + c
d = c + d
e = d + e
f = e + f
g = f + g
h = g + h
i = h + i
j = i + j
k = j + k
l = k + l
li1 = [0, a, b, c, d, e, f, g, h, i, j, k, l]
n = int(input())
nn = 0
for ii in range(1, 12):
if li1[ii - 1] < n and li1[ii + 1] > n:
nn = ii
n = n - li1[nn - 1]
r1 = 10 ** (nn - 1)
n1 = n // nn
r1 += n1 - 1
n2 = n - n1 * nn
if n2 == 0:
print(str(r1)[-1])
else:
print(str(r1 + 1)[n2 - 1])
|
ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR LIST BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER BIN_OP NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR LIST NUMBER VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
n = 1
up_bnd = 9
while k > up_bnd:
n += 1
up_bnd += 9 * n * 10 ** (n - 1)
low_bnd = 0
for i in range(1, n):
low_bnd += 9 * i * 10 ** (i - 1)
num = int((k - low_bnd) / n)
lb_val = 0
for i in range(n - 1):
lb_val = lb_val * 10 + 9
num += lb_val
rm = (k - low_bnd) % n
if rm != 0:
num += 1
ans = 0
if rm == 0:
ans = num % 10
else:
for i in range(n - rm + 1):
j = num % 10
num = int(num / 10)
ans = j
print(int(ans))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
if n <= 9:
print(n)
else:
i = 0
while (n - 9 * 10**i * (i + 1) > 0) & (i <= 11):
n = n - 9 * 10**i * (i + 1)
i = i + 1
r = n % (i + 1)
p = n // (i + 1)
d = 10**i + p - 1
if r != 0:
d = d + 1
ch = str(d)
print(ch[r - 1])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
l = []
n = []
sum = 0
multiply = 9
for i in range(1, 12):
s = "9" * i
n.append(int(s))
sum += i * multiply
multiply *= 10
l.append(sum)
k = int(input())
if k < 9:
print(k)
else:
t = 0
for i in range(len(l)):
if k < l[i]:
t = i
break
temp = k - l[t - 1]
offset = temp % (t + 1)
value = temp // (t + 1)
number = n[t - 1] + value
if offset == 0:
print(number % 10)
else:
number += 1
offset -= 1
print(str(number)[offset])
|
ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP STRING VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR IF VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
a = 9
for i in range(1, 12):
if k <= a * i:
a = a // 9 + k // i - 1
if k % i != 0:
b = str(a + 1)
c = k % i - 1
print(b[c])
else:
b = str(a)
print(b[-1])
break
else:
k = k - a * i
a = a * 10
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER NUMBER IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
a = []
for i in range(0, 12):
s = 9 * pow(10, i) * (i + 1)
if k <= s:
break
else:
k -= s
pos = i + 1
num = pow(10, pos - 1) + k // pos - 1
if k % pos == 0:
print(str(num)[-1])
else:
print(str(num + (0 if pos == 1 else 1))[k % pos - 1])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
def get_kth_digit(i):
if i < 10:
return i
batch = 9
count = 9
width = 1
while i > 10 * batch * (width + 1) + count:
batch *= 10
width += 1
count += batch * width
k = i - count - 1
num = 10**width + k // (width + 1)
return str(num)[k % (width + 1)]
def main():
i = int(input())
print(get_kth_digit(i))
def __starting_point():
main()
__starting_point()
|
FUNC_DEF IF VAR NUMBER RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER RETURN FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
q = 1
for t in range(q):
k = int(input())
m = 0
p = 9
while k > p:
m = m + 1
l = p
p = p + 9 * 10**m * (m + 1)
if m == 0:
print(k)
continue
ans = int("9" * m) + (k - l) // (m + 1)
if (k - l) % (m + 1) == 0:
print(str(ans)[-1])
else:
ans = ans + 1
print(str(ans)[(k - l) % (m + 1) - 1])
|
ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP STRING VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
s = k
i = 1
number_digits = 1
while s - i * (9 * 10 ** (i - 1)) > 0:
number_digits = number_digits + 1
s = s - i * (9 * 10 ** (i - 1))
i += 1
v = (s - 1) // number_digits
s = s - v * number_digits
ans = 10 ** (number_digits - 1) + v
ans = str(ans)
fans = ans[s - 1]
print(fans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR BIN_OP VAR BIN_OP NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input())
def exp_(i):
return (9 * pow(10, i) * i - 10**i + 1) // 9
i = 0
while True:
v = exp_(i)
if v >= n:
break
i = i + 1
if n == v:
print("9")
else:
n = n - exp_(i - 1)
num = 10 ** (i - 1) - 1
num = num + n // i
r = n % i
if r > 0:
num = num + 1
f = str(num)
print(f[r - 1])
else:
t = str(num)
print(t[-1])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP NUMBER FUNC_CALL VAR NUMBER VAR VAR BIN_OP NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
s = 1
i = 1
while s <= k:
s = s + 9 * i * 10 ** (i - 1)
i = i + 1
i = i - 1
s = s - 9 * i * 10 ** (i - 1)
t = i - (k - s) % i
n = 10 ** (i - 1) + int((k - s) / i)
while t:
r = n % 10
n = int(n / 10)
t = t - 1
print(r)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR WHILE VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
x = 0
c = 0
while x < k:
x += 9 * 10**c * (c + 1)
c += 1
p = (x - k) % c
k = 10**c - int((x - k) / c) - 1
k = str(k)
print(k[len(k) - p - 1])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
ch = 0
i = 0
r = 1
while k > r - 1:
r += 9 * (i + 1) * 10**i
i += 1
r -= 9 * i * 10 ** (i - 1)
print(str((k - r) // i + 10 ** (i - 1))[(k - r) % i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
def main():
k = int(input())
n, tenPow, s = 1, 1, 0
while s + 9 * tenPow * n < k:
s += 9 * tenPow * n
n += 1
tenPow *= 10
num = str(tenPow - 1 + (k - s + n - 1) // n)
print(num[(k - s - 1) % n])
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR BIN_OP BIN_OP NUMBER VAR VAR VAR VAR BIN_OP BIN_OP NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
s = 0
t = 0
c = 0
k = int(input())
while s < k:
te = s
temp = t
t = t + 9 * pow(10, c)
s = s + 9 * pow(10, c) * (c + 1)
c = c + 1
a = (k - te) // c
re = (k - te) % c
if re == 0:
a = a + temp
a = str(a)
print(a[-1])
else:
a = a + temp + 1
a = str(a)
print(a[re - 1])
|
ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER FUNC_CALL VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = input()
k = int(k)
n = 1
while k - n * 9 * 10 ** (n - 1) > 0:
k = k - n * 9 * 10 ** (n - 1)
n = n + 1
n = n - 1
if n == 0:
print(k)
else:
nth_num = (k - 1) // (n + 1) + 1
num = 10**n + nth_num - 1
pos = (k - 1) % (n + 1)
print(int(str(num)[pos]))
|
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
def f(x):
dig, cnt = 1, 9
ans = 0
while dig != len(str(x)):
ans += dig * cnt
dig += 1
cnt *= 10
ans += (x - cnt // 9 + 1) * dig
return ans
k = int(input())
l, r = 1, 1000000000000
if k == 1:
print(1)
return
while l < r:
mid = l + r + 1 >> 1
if f(mid) < k:
l = mid
else:
r = mid - 1
k -= f(l)
l += 1
print(str(l)[k - 1])
|
FUNC_DEF ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR VAR NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER RETURN WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
n = int(input()) - 1
c = 0
for i in range(11):
c += 9 * (i + 1) * 10**i
if c > n:
n -= c - 9 * (i + 1) * 10**i
v = n // (i + 1)
print(str(10**i + v)[n % (i + 1)])
break
|
ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR IF VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER VAR VAR BIN_OP VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
prev = 0
nextt = 0
NumofDigits = 0
while True:
prev = nextt
nextt = nextt + 9 * 10 ** (NumofDigits - 1) * NumofDigits
if k >= prev and k <= nextt:
break
NumofDigits = NumofDigits + 1
if NumofDigits == 1:
print(k)
else:
result = 10 ** (NumofDigits - 1) + int((k - (prev + 1)) / NumofDigits)
i = 0
while True:
if (k - int(prev + 1)) % NumofDigits == i:
break
i = i + 1
result = str(result)
print(result[i])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER BIN_OP NUMBER BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER WHILE NUMBER IF BIN_OP BIN_OP VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
k = int(input())
i = 1
while k > 9 * i * 10 ** (i - 1):
k -= 9 * i * 10 ** (i - 1)
i += 1
j = (k - 1) // i
k = k - j * i
print(str(10 ** (i - 1) + j)[k - 1])
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP BIN_OP NUMBER VAR BIN_OP NUMBER BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER
|
Let's write all the positive integer numbers one after another from $1$ without any delimiters (i.e. as a single string). It will be the infinite sequence starting with 123456789101112131415161718192021222324252627282930313233343536...
Your task is to print the $k$-th digit of this sequence.
-----Input-----
The first and only line contains integer $k$ ($1 \le k \le 10^{12}$) β the position to process ($1$-based index).
-----Output-----
Print the $k$-th digit of the resulting infinite sequence.
-----Examples-----
Input
7
Output
7
Input
21
Output
5
|
L = [((i + 1) * 9 * 10**i) for i in range(12)]
number = int(input())
exponent = 0
while number >= 0:
number -= L[exponent]
exponent += 1
exponent -= 1
number %= L[exponent]
start = 10**exponent
numDigits = exponent + 1
final = start + (number // numDigits - 1)
remainder = number % numDigits
if remainder == 0:
final = str(final)
print(final[-1])
else:
final = str(final + 1)
print(final[remainder - 1])
|
ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP NUMBER VAR VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER
|
Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The i-th area contains a_{i} animals in it. Also there are m roads in the zoo, and each road connects two distinct areas. Naturally the zoo is connected, so you can reach any area of the zoo from any other area using the roads.
Our child is very smart. Imagine the child want to go from area p to area q. Firstly he considers all the simple routes from p to q. For each route the child writes down the number, that is equal to the minimum number of animals among the route areas. Let's denote the largest of the written numbers as f(p, q). Finally, the child chooses one of the routes for which he writes down the value f(p, q).
After the child has visited the zoo, he thinks about the question: what is the average value of f(p, q) for all pairs p, q (p β q)? Can you answer his question?
-----Input-----
The first line contains two integers n and m (2 β€ n β€ 10^5; 0 β€ m β€ 10^5). The second line contains n integers: a_1, a_2, ..., a_{n} (0 β€ a_{i} β€ 10^5). Then follow m lines, each line contains two integers x_{i} and y_{i} (1 β€ x_{i}, y_{i} β€ n; x_{i} β y_{i}), denoting the road between areas x_{i} and y_{i}.
All roads are bidirectional, each pair of areas is connected by at most one road.
-----Output-----
Output a real number β the value of $\frac{\sum_{p, q, p \neq q} f(p, q)}{n(n - 1)}$.
The answer will be considered correct if its relative or absolute error doesn't exceed 10^{ - 4}.
-----Examples-----
Input
4 3
10 20 30 40
1 3
2 3
4 3
Output
16.666667
Input
3 3
10 20 30
1 2
2 3
3 1
Output
13.333333
Input
7 8
40 20 10 30 20 50 40
1 2
2 3
3 4
4 5
5 6
6 7
1 4
5 7
Output
18.571429
-----Note-----
Consider the first sample. There are 12 possible situations:
p = 1, q = 3, f(p, q) = 10. p = 2, q = 3, f(p, q) = 20. p = 4, q = 3, f(p, q) = 30. p = 1, q = 2, f(p, q) = 10. p = 2, q = 4, f(p, q) = 20. p = 4, q = 1, f(p, q) = 10.
Another 6 cases are symmetrical to the above. The average is $\frac{(10 + 20 + 30 + 10 + 20 + 10) \times 2}{12} \approx 16.666667$.
Consider the second sample. There are 6 possible situations:
p = 1, q = 2, f(p, q) = 10. p = 2, q = 3, f(p, q) = 20. p = 1, q = 3, f(p, q) = 10.
Another 3 cases are symmetrical to the above. The average is $\frac{(10 + 20 + 10) \times 2}{6} \approx 13.333333$.
|
def main():
n, m = map(int, input().split())
l = [int(i) for i in input().split()]
rank, ans = [], 0
for i in range(m):
a, b = map(int, input().split())
a, b = a - 1, b - 1
rank.append((min(l[a], l[b]), a, b))
rank = sorted(rank, key=lambda x: -x[0])
par = list(range(n))
siz = [1] * n
ans = 0.0
def find(a):
root = a
while root != par[root]:
root = par[root]
while a != par[a]:
newp = par[a]
par[a] = root
a = newp
return root
def merge(a, b, i):
a = find(a)
b = find(b)
if a == b:
return 0
add = siz[a] * siz[b]
siz[a] += siz[b]
par[b] = a
return add * i[0] / (n * (n - 1))
for i in rank:
ans += merge(i[1], i[2], i)
print("%.12f" % (2 * ans))
main()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR VAR WHILE VAR VAR VAR ASSIGN VAR VAR VAR WHILE VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR RETURN NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP STRING BIN_OP NUMBER VAR EXPR FUNC_CALL VAR
|
Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The i-th area contains a_{i} animals in it. Also there are m roads in the zoo, and each road connects two distinct areas. Naturally the zoo is connected, so you can reach any area of the zoo from any other area using the roads.
Our child is very smart. Imagine the child want to go from area p to area q. Firstly he considers all the simple routes from p to q. For each route the child writes down the number, that is equal to the minimum number of animals among the route areas. Let's denote the largest of the written numbers as f(p, q). Finally, the child chooses one of the routes for which he writes down the value f(p, q).
After the child has visited the zoo, he thinks about the question: what is the average value of f(p, q) for all pairs p, q (p β q)? Can you answer his question?
-----Input-----
The first line contains two integers n and m (2 β€ n β€ 10^5; 0 β€ m β€ 10^5). The second line contains n integers: a_1, a_2, ..., a_{n} (0 β€ a_{i} β€ 10^5). Then follow m lines, each line contains two integers x_{i} and y_{i} (1 β€ x_{i}, y_{i} β€ n; x_{i} β y_{i}), denoting the road between areas x_{i} and y_{i}.
All roads are bidirectional, each pair of areas is connected by at most one road.
-----Output-----
Output a real number β the value of $\frac{\sum_{p, q, p \neq q} f(p, q)}{n(n - 1)}$.
The answer will be considered correct if its relative or absolute error doesn't exceed 10^{ - 4}.
-----Examples-----
Input
4 3
10 20 30 40
1 3
2 3
4 3
Output
16.666667
Input
3 3
10 20 30
1 2
2 3
3 1
Output
13.333333
Input
7 8
40 20 10 30 20 50 40
1 2
2 3
3 4
4 5
5 6
6 7
1 4
5 7
Output
18.571429
-----Note-----
Consider the first sample. There are 12 possible situations:
p = 1, q = 3, f(p, q) = 10. p = 2, q = 3, f(p, q) = 20. p = 4, q = 3, f(p, q) = 30. p = 1, q = 2, f(p, q) = 10. p = 2, q = 4, f(p, q) = 20. p = 4, q = 1, f(p, q) = 10.
Another 6 cases are symmetrical to the above. The average is $\frac{(10 + 20 + 30 + 10 + 20 + 10) \times 2}{12} \approx 16.666667$.
Consider the second sample. There are 6 possible situations:
p = 1, q = 2, f(p, q) = 10. p = 2, q = 3, f(p, q) = 20. p = 1, q = 3, f(p, q) = 10.
Another 3 cases are symmetrical to the above. The average is $\frac{(10 + 20 + 10) \times 2}{6} \approx 13.333333$.
|
n, m = list(map(int, input().split()))
p, c = list(range(n + 1)), [1] * (n + 1)
v = [0] + list(map(int, input().split()))
s, e = 0, [()] * m
for i in range(m):
x, y = list(map(int, input().split()))
e[i] = x, y, min(v[x], v[y])
e.sort(key=lambda x: x[2], reverse=True)
q = [[i] for i in range(n + 1)]
for l, r, v in e:
l, r = p[l], p[r]
if l == r:
continue
if len(q[l]) > len(q[r]):
l, r = r, l
q[r].extend(q[l])
for t in q[l]:
p[t] = r
s += c[l] * c[r] * v
c[r] += c[l]
print(s * 2 / (n * (n - 1)))
|
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP LIST VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR LIST VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR FOR VAR VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER
|
Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The i-th area contains a_{i} animals in it. Also there are m roads in the zoo, and each road connects two distinct areas. Naturally the zoo is connected, so you can reach any area of the zoo from any other area using the roads.
Our child is very smart. Imagine the child want to go from area p to area q. Firstly he considers all the simple routes from p to q. For each route the child writes down the number, that is equal to the minimum number of animals among the route areas. Let's denote the largest of the written numbers as f(p, q). Finally, the child chooses one of the routes for which he writes down the value f(p, q).
After the child has visited the zoo, he thinks about the question: what is the average value of f(p, q) for all pairs p, q (p β q)? Can you answer his question?
-----Input-----
The first line contains two integers n and m (2 β€ n β€ 10^5; 0 β€ m β€ 10^5). The second line contains n integers: a_1, a_2, ..., a_{n} (0 β€ a_{i} β€ 10^5). Then follow m lines, each line contains two integers x_{i} and y_{i} (1 β€ x_{i}, y_{i} β€ n; x_{i} β y_{i}), denoting the road between areas x_{i} and y_{i}.
All roads are bidirectional, each pair of areas is connected by at most one road.
-----Output-----
Output a real number β the value of $\frac{\sum_{p, q, p \neq q} f(p, q)}{n(n - 1)}$.
The answer will be considered correct if its relative or absolute error doesn't exceed 10^{ - 4}.
-----Examples-----
Input
4 3
10 20 30 40
1 3
2 3
4 3
Output
16.666667
Input
3 3
10 20 30
1 2
2 3
3 1
Output
13.333333
Input
7 8
40 20 10 30 20 50 40
1 2
2 3
3 4
4 5
5 6
6 7
1 4
5 7
Output
18.571429
-----Note-----
Consider the first sample. There are 12 possible situations:
p = 1, q = 3, f(p, q) = 10. p = 2, q = 3, f(p, q) = 20. p = 4, q = 3, f(p, q) = 30. p = 1, q = 2, f(p, q) = 10. p = 2, q = 4, f(p, q) = 20. p = 4, q = 1, f(p, q) = 10.
Another 6 cases are symmetrical to the above. The average is $\frac{(10 + 20 + 30 + 10 + 20 + 10) \times 2}{12} \approx 16.666667$.
Consider the second sample. There are 6 possible situations:
p = 1, q = 2, f(p, q) = 10. p = 2, q = 3, f(p, q) = 20. p = 1, q = 3, f(p, q) = 10.
Another 3 cases are symmetrical to the above. The average is $\frac{(10 + 20 + 10) \times 2}{6} \approx 13.333333$.
|
read = lambda: map(int, input().split())
n, m = read()
v = list(read())
e = []
for i in range(m):
x, y = map(lambda x: int(x) - 1, input().split())
e.append((x, y, min(v[x], v[y])))
e.sort(key=lambda x: x[2], reverse=True)
belong = list(range(n))
union = [[i] for i in belong]
size = [1] * n
ans = 0
for i, j, k in e:
fi, fj = belong[i], belong[j]
if fi == fj:
continue
if not len(union[fi]) > len(union[fj]):
fi, fj = fj, fi
ans += k * size[fi] * size[fj]
size[fi] += size[fj]
union[fi] += union[fj]
for t in union[fj]:
belong[t] = fi
print("%.7lf" % (ans * 2 / n / (n - 1)))
|
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR IF VAR VAR IF FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR FOR VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP STRING BIN_OP BIN_OP BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER
|
Of course our child likes walking in a zoo. The zoo has n areas, that are numbered from 1 to n. The i-th area contains a_{i} animals in it. Also there are m roads in the zoo, and each road connects two distinct areas. Naturally the zoo is connected, so you can reach any area of the zoo from any other area using the roads.
Our child is very smart. Imagine the child want to go from area p to area q. Firstly he considers all the simple routes from p to q. For each route the child writes down the number, that is equal to the minimum number of animals among the route areas. Let's denote the largest of the written numbers as f(p, q). Finally, the child chooses one of the routes for which he writes down the value f(p, q).
After the child has visited the zoo, he thinks about the question: what is the average value of f(p, q) for all pairs p, q (p β q)? Can you answer his question?
-----Input-----
The first line contains two integers n and m (2 β€ n β€ 10^5; 0 β€ m β€ 10^5). The second line contains n integers: a_1, a_2, ..., a_{n} (0 β€ a_{i} β€ 10^5). Then follow m lines, each line contains two integers x_{i} and y_{i} (1 β€ x_{i}, y_{i} β€ n; x_{i} β y_{i}), denoting the road between areas x_{i} and y_{i}.
All roads are bidirectional, each pair of areas is connected by at most one road.
-----Output-----
Output a real number β the value of $\frac{\sum_{p, q, p \neq q} f(p, q)}{n(n - 1)}$.
The answer will be considered correct if its relative or absolute error doesn't exceed 10^{ - 4}.
-----Examples-----
Input
4 3
10 20 30 40
1 3
2 3
4 3
Output
16.666667
Input
3 3
10 20 30
1 2
2 3
3 1
Output
13.333333
Input
7 8
40 20 10 30 20 50 40
1 2
2 3
3 4
4 5
5 6
6 7
1 4
5 7
Output
18.571429
-----Note-----
Consider the first sample. There are 12 possible situations:
p = 1, q = 3, f(p, q) = 10. p = 2, q = 3, f(p, q) = 20. p = 4, q = 3, f(p, q) = 30. p = 1, q = 2, f(p, q) = 10. p = 2, q = 4, f(p, q) = 20. p = 4, q = 1, f(p, q) = 10.
Another 6 cases are symmetrical to the above. The average is $\frac{(10 + 20 + 30 + 10 + 20 + 10) \times 2}{12} \approx 16.666667$.
Consider the second sample. There are 6 possible situations:
p = 1, q = 2, f(p, q) = 10. p = 2, q = 3, f(p, q) = 20. p = 1, q = 3, f(p, q) = 10.
Another 3 cases are symmetrical to the above. The average is $\frac{(10 + 20 + 10) \times 2}{6} \approx 13.333333$.
|
R = lambda: map(int, input().split())
n, m = R()
a = list(R())
p, f, sz = [], [], []
e = [[] for i in range(n)]
vis = [0] * n
ans = 0
def find(u):
if f[u] != u:
f[u] = find(f[u])
return f[u]
for i in range(n):
p.append([a[i], i])
f.append(i)
sz.append(1)
p.sort()
p.reverse()
for i in range(m):
u, v = R()
e[u - 1].append(v - 1)
e[v - 1].append(u - 1)
for i in range(n):
u = p[i][1]
for v in e[u]:
if vis[v] and find(u) != find(v):
pu, pv = u, v
if sz[f[u]] > sz[f[v]]:
pu, pv = pv, pu
ans += p[i][0] * sz[f[pu]] * sz[f[pv]]
sz[f[pv]] += sz[f[pu]]
f[f[pu]] = f[pv]
vis[u] = 1
print("%.6f" % (2.0 * ans / n / (n - 1)))
|
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR LIST LIST LIST ASSIGN VAR LIST VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FUNC_DEF IF VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR RETURN VAR VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER FOR VAR VAR VAR IF VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP STRING BIN_OP BIN_OP BIN_OP NUMBER VAR VAR BIN_OP VAR NUMBER
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
cas = int(input())
while cas:
cas -= 1
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
a = list(zip(r, c))
a.sort()
now = 0
pre = 0
pr = 1
pz = 0
ans = 0
for i in range(n):
tmp = a[i]
now = tmp[0] - tmp[1]
zu = now // 2
if pre == now and now % 2 == 0:
ans += tmp[0] - pr
if pre != now and zu != pz:
ans += zu - pz
pre = now
pr = tmp[0]
pz = zu
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER VAR IF VAR VAR VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
cases = int(input())
for cas in range(cases):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
rc = []
for i in range(n):
rc.append((r[i], c[i]))
rc.sort(key=lambda x: x[0])
if rc[0] != (1, 1):
rc.insert(0, (1, 1))
ans = 0
for i in range(0, len(rc) - 1):
sum1, sub1 = rc[i][0] + rc[i][1], rc[i][0] - rc[i][1]
sum2, sub2 = rc[i + 1][0] + rc[i + 1][1], rc[i + 1][0] - rc[i + 1][1]
if sub1 == sub2:
if sum1 % 2 == 0:
ans += (sum2 - sum1) // 2
else:
ans += 0
elif sub1 % 2 == 0:
ans += (sub2 - sub1) // 2
else:
ans += (sub2 - sub1 + 1) // 2
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
for t in range(int(input())):
n = int(input())
r_arr = tuple(map(int, input().split()))
c_arr = tuple(map(int, input().split()))
r_rminusc = [(r, r - c, c) for r, c in zip(r_arr, c_arr)]
r_rminusc.sort()
cost = 0
current_pos = 1, 0, 1
for tup3 in r_rminusc:
diff1 = current_pos[1]
diff2 = tup3[1]
c11, c12 = divmod(diff1, 2)
c21, c22 = divmod(diff2, 2)
if c11 != c21:
cost += c21 - c11
elif c22 == 0 and c12 == 0:
cost += tup3[0] - current_pos[0]
current_pos = tup3
print(cost)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER NUMBER NUMBER FOR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR IF VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
for _ in range(int(input())):
n = int(input())
r = [int(x) for x in input().split()]
c = [int(x) for x in input().split()]
sx, sy = 1, 1
cost = 0
for dx, dy in sorted(zip(r, c)):
sl = sx - sy
dl = dx - dy
if sl == dl:
if sl % 2 == 0:
points = dx - sx
else:
points = 0
else:
sdbl = sl // 2
ddbl = dl // 2
if sdbl == ddbl:
points = 0
else:
points = ddbl - sdbl
cost += points
sx, sy = dx, dy
print(f"{cost}")
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
def main():
t = int(input())
allans = []
for _ in range(t):
n = int(input())
r = [1] + readIntArr()
c = [1] + readIntArr()
rc = list(zip(r, c))
rc.sort(key=lambda x: x[0])
ans = 0
for i in range(len(rc) - 1):
ii1, jj1 = rc[i]
ii2, jj2 = rc[i + 1]
if ii1 == ii2:
continue
k = ii2 - ii1
if (ii1 + jj1) % 2 == 0:
expectedjj2 = jj1 + k - 1
else:
expectedjj2 = jj1 + k
if jj2 > expectedjj2:
assert expectedjj2 + 1 == jj2
ans += ii2 - ii1
else:
ans += (1 + expectedjj2 - jj2) // 2
allans.append(ans)
multiLineArrayPrint(allans)
return
input = sys.stdin.buffer.readline
def oneLineArrayPrint(arr):
print(" ".join([str(x) for x in arr]))
def multiLineArrayPrint(arr):
print("\n".join([str(x) for x in arr]))
def multiLineArrayOfArraysPrint(arr):
print("\n".join([" ".join([str(x) for x in y]) for y in arr]))
def readIntArr():
return [int(x) for x in input().split()]
def queryInteractive(x, y):
print("? {} {}".format(x, y))
sys.stdout.flush()
return int(input())
def answerInteractive(ans):
print("! {}".format(ans))
sys.stdout.flush()
inf = float("inf")
MOD = 10**9 + 7
for _aa in range(1):
main()
|
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR RETURN ASSIGN VAR VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL STRING FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING VAR VAR EXPR FUNC_CALL VAR RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF EXPR FUNC_CALL VAR FUNC_CALL STRING VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
from sys import stdin
tt = int(stdin.readline())
ANS = []
for loop in range(tt):
n = int(stdin.readline())
r = list(map(int, stdin.readline().split()))
c = list(map(int, stdin.readline().split()))
r.sort()
c.sort()
if not r[0] == c[0] == 1:
r.append(1)
c.append(1)
dic = {}
maxl = 0
for i in range(len(r)):
maxl = max(maxl, r[i] - c[i])
if (r[i] + c[i]) % 2 == 0:
if r[i] - c[i] not in dic:
dic[r[i] - c[i]] = []
dic[r[i] - c[i]].append(r[i])
ans = maxl // 2
for x in dic:
dic[x].sort()
ans += dic[x][-1] - dic[x][0]
ANS.append(ans)
print("\n".join(map(str, ANS)))
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR DICT ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR NUMBER NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR LIST EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING FUNC_CALL VAR VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def helper(a, b):
if a == b:
return 0
x0, y0 = a
x1, y1 = b
if (x0 + y0) % 2 == 0:
x0 += 1
y0 += x1 - x0
if y1 > y0:
return x1 - x0 + 1
elif y1 == y0:
return 0
else:
return (y0 - y1 + 1) // 2
for i in range(int(input())):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
pool = sorted([[1, 1]] + [[r[i], c[i]] for i in range(n)])
print(sum([helper(pool[i - 1], pool[i]) for i in range(1, n + 1)]))
|
FUNC_DEF IF VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER VAR BIN_OP VAR VAR IF VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP LIST LIST NUMBER NUMBER LIST VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def calc_dist(r1, c1, r2, c2):
if r1 - c1 == r2 - c2:
if (r1 + c1) % 2 == 1:
return 0
else:
return r2 - r1
r2 -= r1 - 1
c2 -= c1 - 1
if (r1 + c1) % 2 == 0:
return (r2 - c2) // 2
else:
return (r2 - c2 + 1) // 2
t = int(input())
for _ in range(t):
n = int(input())
r = [int(s) for s in input().split(" ")]
c = [int(s) for s in input().split(" ")]
pts = list(zip(r, c))
pts.sort()
cur_r = 1
cur_c = 1
ans = 0
for nxt_r, nxt_c in pts:
ans += calc_dist(cur_r, cur_c, nxt_r, nxt_c)
cur_r = nxt_r
cur_c = nxt_c
print(ans)
|
FUNC_DEF IF BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN BIN_OP BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
for z in range(int(input())):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
a = []
b = 0
a1 = 0
for i in range(n):
b = max(b, r[i] - c[i])
if (r[i] - c[i]) % 2 == 0:
a.append([r[i] - c[i], r[i]])
a1 += 1
b //= 2
c = 0
if a1 != 0:
a.sort()
for i in range(1, len(a)):
if a[i][0] != a[i - 1][0]:
if a[i - 1][0] == 0 and r[0] != 1:
b += a[c][1] - 1
b += a[i - 1][1] - a[c][1]
c = i
b += a[-1][1] - a[c][1]
if a[-1][0] == 0 and r[0] != 1:
b += a[c][1] - 1
print(b)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR IF BIN_OP BIN_OP VAR VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR LIST BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER NUMBER VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER IF VAR NUMBER NUMBER NUMBER VAR NUMBER NUMBER VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def f(x, y):
if x == y:
return x - 1
else:
return (x - y) // 2
def g(x, y):
return (x - y + 1) // 2
for _ in range(int(input())):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
l = []
for i in range(n):
l.append([r[i], c[i]])
l.sort()
ans = f(l[0][0], l[0][1])
for i in range(1, n):
if (l[i - 1][0] + l[i - 1][1]) % 2 == 0:
ans += f(l[i][0] + 1 - l[i - 1][0], l[i][1] + 1 - l[i - 1][1])
else:
ans += g(l[i][0] + 1 - l[i - 1][0], l[i][1] + 1 - l[i - 1][1])
print(ans)
|
FUNC_DEF IF VAR VAR RETURN BIN_OP VAR NUMBER RETURN BIN_OP BIN_OP VAR VAR NUMBER FUNC_DEF RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER NUMBER VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def num_path2(list_pairs):
cnt = 0
l, r = 1, 1
ind = 0
while True:
if ind == len(list_pairs):
break
l_targ, r_targ = list_pairs[ind]
if (l, r) == (l_targ, r_targ):
ind += 1
elif r_targ == r:
cum = (l_targ - l) // 2
if (l_targ - l) % 2 == 1:
if (r + l) % 2 == 1:
cum += 1
cnt += cum
l, r = l_targ, r_targ
ind += 1
elif l_targ - l == r_targ - r:
if (r + l) % 2 == 0:
cnt += l_targ - l
l, r = l_targ, r_targ
ind += 1
else:
r_cand = r if (l + r) % 2 == 0 else r + 1
if 0 <= r_targ - r_cand <= l_targ - l - 1:
r = r_cand
else:
cnt += 1
r = r + 1 if (l + r) % 2 == 0 else r
l += 1
print(l, r, cnt)
return cnt
def num_path(list_pairs):
cnt = 0
l, r = 1, 1
ind = 0
while True:
if ind == len(list_pairs):
break
l_targ, r_targ = list_pairs[ind]
if (l, r) == (l_targ, r_targ):
ind += 1
elif r_targ == r:
cum = (l_targ - l) // 2
if (l_targ - l) % 2 == 1:
if (r + l) % 2 == 1:
cum += 1
cnt += cum
l, r = l_targ, r_targ
ind += 1
elif l_targ - l == r_targ - r:
if (r + l) % 2 == 0:
cnt += l_targ - l
l, r = l_targ, r_targ
ind += 1
elif (r + l) % 2 == 1:
jump = r_targ - r
l, r = l + jump, r + jump
else:
l, r = l + 1, r
return cnt
num = int(input())
for i in range(num):
input()
list_r = [int(el) for el in input().split()]
list_c = [int(el) for el in input().split()]
list_pairs = [(r, c) for r, c in zip(list_r, list_c)]
list_pairs.sort()
print(num_path(list_pairs))
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER IF NUMBER BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def dist(r1, c1, r2, c2):
if r1 - c1 == r2 - c2:
if (r1 + c1) % 2 == 0:
rez = r2 - r1
else:
rez = 0
else:
r2 = r2 - (r1 - 1)
c2 = c2 - (c1 - 1)
if (r1 + c1) % 2 == 0:
rez = (r2 - c2) // 2
else:
rez = (r2 - c2 + 1) // 2
return rez
t = int(input())
for j in range(t):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
d = sorted(zip(r, c))
ans = 0
r0, c0 = 1, 1
for r, c in d:
ans += dist(r0, c0, r, c)
r0, c0 = r, c
print(ans)
|
FUNC_DEF IF BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
max_int = 2147483648
min_int = -max_int
def calc(r0, c0, r1, c1):
d0 = r0 - c0
d1 = r1 - c1
if r0 == r1 and c0 == c1:
return 0
if d0 == d1:
if d0 % 2:
return 0
else:
return r1 - r0
return (d1 - d0) // 2 + (1 if d0 % 2 and not d1 % 2 else 0)
t = int(input())
for _t in range(t):
n = int(sys.stdin.readline())
r = list(map(int, sys.stdin.readline().split()))
c = list(map(int, sys.stdin.readline().split()))
l = []
for rr, cc in zip(r, c):
l.append((rr, cc))
l.sort()
prevr = 1
prevc = 1
out = 0
for rr, cc in l:
ans = calc(prevr, prevc, rr, cc)
out += ans
prevr = rr
prevc = cc
print(out)
|
IMPORT ASSIGN VAR NUMBER ASSIGN VAR VAR FUNC_DEF ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR VAR VAR RETURN NUMBER IF VAR VAR IF BIN_OP VAR NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR RETURN BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
T = int(input())
for t in range(T):
n = int(input())
rs = [int(ea) for ea in input().split(" ")]
cs = [int(ea) for ea in input().split(" ")]
points = []
for i in range(n):
points.append((rs[i], cs[i]))
points.sort()
if points[0] != (1, 1):
points.insert(0, (1, 1))
prev = 0
prevR = 1
cost = 0
for r, c in points[1:]:
cur = r - c
if cur == prev and cur % 2 == 0:
cost += r - prevR
else:
diff = cur - prev
cost += diff // 2
if diff % 2 == 1 and prev % 2 == 1:
cost += 1
prev = cur
prevR = r
print(cost)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR IF VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
input = sys.stdin.readline
def calc1(r1, r2, c1, c2):
if (r1 + c1) % 2 == 1:
return 0
return r2 - r1
def calc2(r1, r2, c1, c2):
diff = r2 - c2 - (r1 - c1)
if (r1 + c1) % 2 == 0:
return diff // 2
return (diff + 1) // 2
t = int(input())
for _ in range(t):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
points = [(1, 1)] + sorted(zip(r, c), key=lambda x: x[0])
ans = 0
for i in range(1, n + 1):
r1 = points[i - 1][0]
r2 = points[i][0]
c1 = points[i - 1][1]
c2 = points[i][1]
if r2 - c2 - (r1 - c1):
ans += calc2(r1, r2, c1, c2)
else:
ans += calc1(r1, r2, c1, c2)
print(ans)
|
IMPORT ASSIGN VAR VAR FUNC_DEF IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN NUMBER RETURN BIN_OP VAR VAR FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN BIN_OP VAR NUMBER RETURN BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
sys.setrecursionlimit(10**7)
input = sys.stdin.readline
f_inf = float("inf")
MOD = 10**9 + 7
def solve():
n = int(input())
R = list(map(int, input().split()))
C = list(map(int, input().split()))
points = [(r, c) for r, c in zip(R, C)]
points.sort()
res = 0
pr = pc = 1
for r, c in points:
if r - c == pr - pc:
if (r + c) % 2 == 0:
res += r - pr
else:
if pc != c:
pr += c - pc
pc = c
if (pr + pc) % 2 == 0:
res += (r - pr) // 2
else:
res += (r - pr + 1) // 2
pr, pc = r, c
print(res)
t = int(input())
for _ in range(t):
solve()
|
IMPORT EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
input = sys.stdin.readline
def calcDist(r1, c1, r2, c2):
if r1 - c1 == r2 - c2:
return r2 - r1 if (r1 + c1) % 2 == 0 else 0
r2 -= r1 - 1
c2 -= c1 - 1
return (r2 - c2) // 2 if (r1 + c1) % 2 == 0 else (r2 - c2 + 1) // 2
for _ in range(int(input())):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
p = [(x, y) for x, y in zip(r, c)]
p.sort()
ans = 0
lastX, lastY = 1, 1
for x, y in p:
ans += calcDist(lastX, lastY, x, y)
lastX, lastY = x, y
print(ans)
|
IMPORT ASSIGN VAR VAR FUNC_DEF IF BIN_OP VAR VAR BIN_OP VAR VAR RETURN BIN_OP BIN_OP VAR VAR NUMBER NUMBER BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER RETURN BIN_OP BIN_OP VAR VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def value(sr, sc, tr, tc):
r = tr - sr + 1
c = tc - sc + 1
if r == c:
return (c - 1) * int((sr + sc) % 2 == 0)
if r > c:
return (r - c + (sr + sc) % 2) // 2
else:
return -1
for _ in range(int(input())):
n = int(input())
r = [int(i) for i in input().split(" ")]
c = [int(i) for i in input().split(" ")]
T = []
for i in range(n):
T.append((r[i], c[i]))
T = sorted(T)
v = value(1, 1, T[0][0], T[0][1])
for i in range(1, n):
v += value(T[i - 1][0], T[i - 1][1], T[i][0], T[i][1])
print(v)
|
FUNC_DEF ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR RETURN BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR RETURN BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER NUMBER VAR NUMBER NUMBER VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def distance(current_point, next_point):
r1, c1 = current_point[0], current_point[1]
r2, c2 = next_point[0], next_point[1]
if (r1 - c1) % 2 == 1:
if (r2 - c2) % 2 == 1:
if r1 - c1 == r2 - c2:
return 0
else:
return (r2 - c2 - (r1 - c1)) // 2
else:
return (r2 - c2 - (r1 - c1) + 1) // 2
elif (r2 - c2) % 2 == 1:
return (r2 - c2 - (r1 - c1) - 1) // 2
elif r1 - c1 == r2 - c2:
return r2 - r1
else:
return (r2 - c2 - (r1 - c1)) // 2
def solve(n, lc, coordinates):
cost = 0
current_point = 1, 1
coordinates_index = 0
while coordinates_index < lc:
next_point = coordinates[coordinates_index]
cost = cost + distance(current_point, next_point)
current_point = next_point
coordinates_index += 1
return cost
t = int(input())
for tc in range(t):
n = int(input())
rs = [int(r) for r in input().split()]
cs = [int(c) for c in input().split()]
coordinates = []
for i in range(n):
coordinates.append((rs[i], cs[i]))
coordinates = sorted(coordinates)
lc = len(coordinates)
print(solve(n, lc, coordinates))
|
FUNC_DEF ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR RETURN NUMBER RETURN BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER RETURN BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR RETURN BIN_OP VAR VAR RETURN BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def main():
t = int(input())
for _ in range(t):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
rc = []
for i in range(n):
rc.append((r[i], r[i] - c[i] + 1))
rc.sort(key=lambda x: x[0])
pos = 1, 1
total = 0
for i in range(n):
nxt = rc[i]
if nxt[0] == 1:
continue
dy = nxt[0] - pos[0]
if pos[1] == nxt[1]:
if pos[1] % 2:
total += dy
else:
dx = nxt[1] - pos[1]
if dx % 2:
if pos[1] % 2 == 0:
total += 1
dx -= 1
total += dx // 2
pos = nxt
print(total)
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
input = sys.stdin.readline
t = int(input())
for _ in range(t):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
res = []
for i in range(n):
res.append([r[i], c[i]])
res.sort()
lastp, lastq = 1, 1
ans = 0
i = 0
while i < n:
currp, currq = res[i][0], res[i][1]
if currp - currq == lastp - lastq:
if (currp - currq) % 2 == 0:
ans += currp - lastp
elif currp - currq >= lastp - lastq:
ans += (currp - currq) // 2 - (lastp - lastq) // 2
lastp, lastq = currp, currq
i += 1
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
input = sys.stdin.readline
t = int(input().strip())
for __ in range(t):
n = int(input().strip())
rarr = [int(val) for val in input().strip().split(" ")]
carr = [int(val) for val in input().strip().split(" ")]
arr = [(0, 1, 1)] + [(r - c, r, c) for r, c in zip(rarr, carr)]
arr.sort()
res = 0
for i in range(n):
delta = arr[i + 1][0] - arr[i][0]
if delta % 2:
if arr[i][0] % 2:
res += delta // 2 + 1
else:
res += delta // 2
elif delta == 0 and arr[i][0] % 2 == 0:
res += arr[i + 1][1] - arr[i][1]
else:
res += delta // 2
print(res)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR BIN_OP LIST NUMBER NUMBER NUMBER BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER IF BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER IF VAR NUMBER BIN_OP VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def minCost(a, b):
if (b[0] + b[1]) % 2 == 0 and b[0] - b[1] == a[0] - a[1]:
return b[0] - a[0]
diagA = (a[0] - a[1]) // 2
diagB = (b[0] - b[1]) // 2
return diagB - diagA
t = int(input())
for i in range(t):
n = int(input())
nodes = list(zip(map(int, input().split()), map(int, input().split())))
nodes.insert(0, (1, 1))
nodes.sort()
res = 0
for i in range(len(nodes) - 1):
res += minCost(nodes[i], nodes[i + 1])
print(res)
|
FUNC_DEF IF BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER BIN_OP VAR NUMBER VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER RETURN BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER NUMBER RETURN BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
t = int(input())
for _ in range(t):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
l = [(r[i], c[i]) for i in range(n)]
l.sort()
x, y = 1, 1
ans = 0
for nx, ny in l:
need = ny - y
dif = nx - x
if (x + y) % 2 == 0:
if dif == need:
ans += need
else:
left = dif - need
ans += left // 2
elif dif == need:
ans += 0
else:
left = dif - need
ans += (left + 1) // 2
x = nx
y = ny
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
input = sys.stdin.buffer.readline
for _ in range(int(input())):
n = int(input())
p = [(1, 1)] + sorted(
list(zip(map(int, input().split()), map(int, input().split())))
)
cost = 0
for i in range(n):
back = p[i + 1][0] - p[i][0] - (p[i + 1][1] - p[i][1])
if back == 0:
cost += (1 - sum(p[i]) % 2) * (p[i + 1][0] - p[i][0])
else:
back -= 1 - sum(p[i]) % 2
cost += (back + 1) // 2
print(cost)
|
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER IF VAR NUMBER VAR BIN_OP BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
for _ in range(int(input())):
n = int(input())
row = map(int, input().split())
col = map(int, input().split())
pos = [(1, 1)]
for r, c in zip(row, col):
pos.append((r, c))
pos.sort()
cost = 0
for i in range(n):
r1, c1 = pos[i]
r2, c2 = pos[i + 1]
if r1 - c1 == r2 - c2:
if (r1 - c1) % 2 == 0:
cost += r2 - r1
else:
d = abs(r1 - c1 - (r2 - c2))
cost += d // 2
if d % 2 == 1 and (r1 - c1) % 2 == 1:
cost += 1
print(cost)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
import sys
sys.setrecursionlimit(10**5)
int1 = lambda x: int(x) - 1
p2D = lambda x: print(*x, sep="\n")
def II():
return int(sys.stdin.buffer.readline())
def LI():
return list(map(int, sys.stdin.buffer.readline().split()))
def LI1():
return list(map(int1, sys.stdin.buffer.readline().split()))
def LLI(rows_number):
return [LI() for _ in range(rows_number)]
def LLI1(rows_number):
return [LI1() for _ in range(rows_number)]
def BI():
return sys.stdin.buffer.readline().rstrip()
def SI():
return sys.stdin.buffer.readline().rstrip().decode()
dij = [(0, 1), (-1, 0), (0, -1), (1, 0), (1, 1), (1, -1), (-1, 1), (-1, -1)]
inf = 10**16
md = 10**9 + 7
for _ in range(II()):
n = II()
rr = LI()
cc = LI()
rc = [(r, c) for r, c in zip(rr, cc)]
rc.sort()
ans = 0
now = 0
pr = 1
for r, c in rc:
nxt = r - c
if now < nxt:
if now & 1:
ans += (nxt - now + 1) // 2
else:
ans += (nxt - now) // 2
elif now > nxt:
if now & 1:
ans += (nxt - now) // 2
else:
ans += (nxt - now + 1) // 2
elif now & 1 == 0:
ans += r - pr
now = nxt
pr = r
print(ans)
|
IMPORT EXPR FUNC_CALL VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR IF BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR IF BIN_OP VAR NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def solve():
n = int(input())
points = []
x = input()
x = [int(i) for i in x.split(" ")]
for i in x:
points.append([i, 0])
y = input()
y = [int(i) for i in y.split(" ")]
for i, v in enumerate(y):
points[i][1] = v
points.sort()
ans = 0
start = [1, 1]
for x, y in points:
a, b = start
if x - y == a - b:
if (a - b) % 2 == 0:
ans += y - b
else:
ans += (x - y) // 2 - (a - b) // 2
start = [x, y]
print(ans)
def main():
t = int(input())
while t:
solve()
t -= 1
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FOR VAR VAR EXPR FUNC_CALL VAR LIST VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR STRING FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER FOR VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR EXPR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
P = lambda: map(int, input().split())
for _ in range(*P()):
(n,) = P()
d = [(1, 1)] + sorted(zip(P(), P()))
a = 0
for i in range(n):
r, c = d[i]
v = r - c
R, C = d[i + 1]
a += (R - C) // 2 - v // 2 + (R - r) * (v & 1 < 1 and v == R - C)
print(a)
|
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
t = int(input())
for _ in range(t):
n = int(input())
rc = []
r = list(map(int, input().split()))
c = list(map(int, input().split()))
for i in range(n):
rc.append([r[i], c[i]])
rc.sort()
if rc[0] != [1, 1]:
rc.insert(0, [1, 1])
n += 1
s = 0
for i in range(n - 1):
if (
rc[i][1] - rc[i][0] == rc[i + 1][1] - rc[i + 1][0]
and (rc[i][1] + rc[i][0]) % 2 == 0
):
s += rc[i + 1][0] - rc[i][0]
elif (
rc[i][1] - rc[i][0] == rc[i + 1][1] - rc[i + 1][0]
and (rc[i][1] + rc[i][0]) % 2 != 0
):
s += 0
elif (rc[i][1] + rc[i][0]) % 2 == 0:
s += (rc[i + 1][0] - rc[i][0] - (rc[i + 1][1] - rc[i][1])) // 2
else:
s += (rc[i + 1][0] - rc[i][0] - (rc[i + 1][1] - rc[i][1]) + 1) // 2
print(s)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR IF VAR NUMBER LIST NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER LIST NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER NUMBER VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
for _ in range(int(input())):
n = int(input())
(*rows,) = map(int, input().split())
(*cols,) = map(int, input().split())
points = sorted(range(n), key=lambda i: rows[i])
prev_row = 0
prev_col = 0
ans = 0
for point in points:
prev_diag = prev_row - prev_col
row = rows[point] - 1
col = cols[point] - 1
cur_diag = row - col
if cur_diag == prev_diag and cur_diag & 1 == 0:
ans += row - prev_row
if prev_diag & 1 == 0:
prev_diag += 1
ans += (cur_diag - prev_diag + 1) // 2
prev_row, prev_col = row, col
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
from sys import gettrace, stdin
if gettrace():
def inputi():
return input()
else:
def input():
return next(stdin)[:-1]
def inputi():
return stdin.buffer.readline()
def solve():
n = int(input())
rr = [1] + [int(a) for a in input().split()]
cc = [1] + [int(a) for a in input().split()]
rc = sorted(zip(rr, cc))
res = 0
for (r1, c1), (r2, c2) in zip(rc, rc[1:]):
if (r1 + c1) % 2 == 0 and c2 - r2 == c1 - r1:
res += r2 - r1
else:
if (r1 + c1) % 2 == 0:
r1 += 1
res += (r2 - c2 - (r1 - c1) + 1) // 2
print(res)
def main():
t = int(input())
for _ in range(t):
solve()
main()
|
IF FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER BIN_OP VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
for nt in range(int(input())):
n = int(input())
b = list(map(int, input().split()))
c = list(map(int, input().split()))
a = [[b[i], c[i]] for i in range(n)]
a.sort()
if a[0] == [1, 1]:
a.pop(0)
n -= 1
ans = 0
i = 0
curr = [1, 1]
while i < n and a[i][0] == a[i][1]:
ans += a[i][0] - curr[0]
curr = a[i]
i += 1
odd = sum(curr) % 2
while i < n:
if a[i][0] - a[i][1] == curr[0] - curr[1]:
if not odd:
ans += a[i][0] - curr[0]
elif odd:
ans += (a[i][0] - a[i][1] - (curr[0] - curr[1]) - 1) // 2 + 1
else:
ans += (a[i][0] - a[i][1] - (curr[0] - curr[1])) // 2
curr = a[i]
odd = sum(curr) % 2
i += 1
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR IF VAR NUMBER LIST NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER WHILE VAR VAR VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR VAR BIN_OP BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER NUMBER NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Consider an infinite triangle made up of layers. Let's number the layers, starting from one, from the top of the triangle (from top to bottom). The $k$-th layer of the triangle contains $k$ points, numbered from left to right. Each point of an infinite triangle is described by a pair of numbers $(r, c)$ ($1 \le c \le r$), where $r$ is the number of the layer, and $c$ is the number of the point in the layer. From each point $(r, c)$ there are two directed edges to the points $(r+1, c)$ and $(r+1, c+1)$, but only one of the edges is activated. If $r + c$ is even, then the edge to the point $(r+1, c)$ is activated, otherwise the edge to the point $(r+1, c+1)$ is activated. Look at the picture for a better understanding.
Activated edges are colored in black. Non-activated edges are colored in gray.
From the point $(r_1, c_1)$ it is possible to reach the point $(r_2, c_2)$, if there is a path between them only from activated edges. For example, in the picture above, there is a path from $(1, 1)$ to $(3, 2)$, but there is no path from $(2, 1)$ to $(1, 1)$.
Initially, you are at the point $(1, 1)$. For each turn, you can:
Replace activated edge for point $(r, c)$. That is if the edge to the point $(r+1, c)$ is activated, then instead of it, the edge to the point $(r+1, c+1)$ becomes activated, otherwise if the edge to the point $(r+1, c+1)$, then instead if it, the edge to the point $(r+1, c)$ becomes activated. This action increases the cost of the path by $1$;
Move from the current point to another by following the activated edge. This action does not increase the cost of the path.
You are given a sequence of $n$ points of an infinite triangle $(r_1, c_1), (r_2, c_2), \ldots, (r_n, c_n)$. Find the minimum cost path from $(1, 1)$, passing through all $n$ points in arbitrary order.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) is the number of test cases. Then $t$ test cases follow.
Each test case begins with a line containing one integer $n$ ($1 \le n \le 2 \cdot 10^5$) is the number of points to visit.
The second line contains $n$ numbers $r_1, r_2, \ldots, r_n$ ($1 \le r_i \le 10^9$), where $r_i$ is the number of the layer in which $i$-th point is located.
The third line contains $n$ numbers $c_1, c_2, \ldots, c_n$ ($1 \le c_i \le r_i$), where $c_i$ is the number of the $i$-th point in the $r_i$ layer.
It is guaranteed that all $n$ points are distinct.
It is guaranteed that there is always at least one way to traverse all $n$ points.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output the minimum cost of a path passing through all points in the corresponding test case.
-----Examples-----
Input
4
3
1 4 2
1 3 1
2
2 4
2 3
2
1 1000000000
1 1000000000
4
3 10 5 8
2 5 2 4
Output
0
1
999999999
2
-----Note-----
None
|
def test(n, p):
p.sort()
cost = 0
prevd = 0
prevr = 1
prevc = 1
for i in range(n):
r, c = p[i]
d = r - c
if prevd == d:
if d % 2:
cost += 0
else:
cost += r - prevr
else:
cost += d // 2 - prevd // 2
prevr = r
prevd = d
return cost
for kT in range(int(input())):
n = int(input())
r = list(map(int, input().split()))
c = list(map(int, input().split()))
p = [(r[i], c[i]) for i in range(n)]
print(test(n, p))
|
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR IF BIN_OP VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.