description
stringlengths 171
4k
| code
stringlengths 94
3.98k
| normalized_code
stringlengths 57
4.99k
|
|---|---|---|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
f = input
for _ in range(t):
n, k = map(int, f().split())
x = sorted(map(int, f().split()))
f()
r = [0] * n
c = n - 1
for i in range(n - 1, -1, -1):
while x[c] > x[i] + k:
c -= 1
r[i] = c
m = [0] * n
c = 0
for i in range(n - 1, -1, -1):
m[i] = c
c = max(r[i] - i + 1, c)
o = [(r[i] - i + 1 + m[r[i]]) for i in range(n)]
print(max(o))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for p in range(t):
arr = [int(i) for i in input().split()]
n = arr[0]
k = arr[1]
x_list = [int(i) for i in input().split()]
y_list = [int(i) for i in input().split()]
coordinates = []
for i in range(n):
coordinates.append([x_list[i], y_list[i]])
coordinates = sorted(coordinates, key=lambda x: x[0])
dp = [(0) for i in range(n)]
j = n - 1
for i in range(n - 1, -1, -1):
while j >= i and coordinates[j][0] - coordinates[i][0] > k:
j -= 1
dp[i] = j - i + 1
dp1 = list(dp)
dp1 = dp1[::-1]
suffix_dp = [(0) for i in range(n)]
suffix_dp[0] = dp1[0]
for i in range(1, n):
suffix_dp[i] = max(suffix_dp[i - 1], dp1[i - 1])
suffix_dp = suffix_dp[::-1]
dp2 = [(0) for i in range(n)]
dp2[0] = 1
j = 0
for i in range(n):
while j <= i and coordinates[i][0] - coordinates[j][0] > k:
j += 1
dp2[i] = i - j + 1
ans = 0
for i in range(n):
if i == n - 1:
ans = max(ans, dp2[i])
else:
ans = max(dp2[i] + suffix_dp[i], ans)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = list(map(int, input().split()))
xcor = list(map(int, input().split()))
ycor = list(map(int, input().split()))
arr = []
for i in range(n):
arr.append([xcor[i], ycor[i]])
arr.sort()
dp = [(0) for i in range(n)]
dp[n - 1] = 1
for i in range(n - 2, -1, -1):
dp[i] = dp[i + 1]
lo = i
hi = n - 1
e = 0
while lo <= hi:
mid = (lo + hi) // 2
if arr[mid][0] <= arr[i][0] + k:
e = mid - i + 1
lo = mid + 1
else:
hi = mid - 1
dp[i] = max(dp[i], e)
ans = 0
for i in range(n):
lo = i
hi = n - 1
pos = i
while lo <= hi:
mid = (lo + hi) // 2
if arr[mid][0] <= arr[i][0] + k:
pos = mid
lo = mid + 1
else:
hi = mid - 1
me = pos - i + 1
if pos + 1 < n:
me += dp[pos + 1]
ans = max(ans, me)
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
xs = list(map(int, input().split()))
ys = list(map(int, input().split()))
pts = list(zip(xs, ys))
pts.sort(key=lambda p: p[0])
dp = []
rp = 0
for i in range(n):
while rp < n and pts[rp][0] - pts[i][0] <= k:
rp += 1
dp.append(rp - i)
suffixes = [0] * n
suffixes[-1] = dp[-1]
for i in range(n - 2, -1, -1):
suffixes[i] = max(suffixes[i + 1], dp[i])
suffixes.append(0)
ans = 0
rp = 0
for i in range(n):
while rp < n and pts[rp][0] - pts[i][0] <= k:
rp += 1
ans = max(ans, dp[i] + suffixes[rp])
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
def arr(A, k):
n = len(A)
pre = [0] * n
l = 0
r = 0
while r < n:
if abs(A[r] - A[l]) <= k:
r += 1
else:
while l < r and abs(A[r] - A[l]) > k:
l += 1
r += 1
pre[r - 1] = r - l
return pre
def answer(n, k, A):
if n == 1:
return 1
A.sort()
pre = arr(A, k)
suff = arr(A[::-1], k)
suff = suff[::-1]
maxip = [0] * n
maxi = 0
maxis = [0] * n
for i in range(n):
maxi = max(maxi, pre[i])
maxip[i] = maxi
maxi = 0
for i in range(n - 1, -1, -1):
maxi = max(maxi, suff[i])
maxis[i] = maxi
maxi = 0
for i in range(n - 1):
maxi = max(maxi, maxip[i] + maxis[i + 1])
return maxi
t = int(input())
for i in range(t):
n, k = map(int, input().split())
arr1 = list(map(int, input().split()))
arr2 = list(map(int, input().split()))
print(answer(n, k, arr1))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP VAR VAR RETURN VAR FUNC_DEF IF VAR NUMBER RETURN NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
def solve():
n, k = map(int, input().split())
a = [int(i) for i in input().split()]
input()
dp = [0] * (n + 10)
ma = [0] * (n + 10)
r = -1
a.sort()
for i in range(n):
r = max(r, i)
for j in range(r, n):
if a[j] <= a[i] + k:
r = j
else:
break
dp[i] = r - i + 1
for i in range(n, -1, -1):
ma[i] = max(dp[i], ma[i + 1])
ans = 0
for i in range(n):
ans = max(dp[i] + ma[i + dp[i]], ans)
print(ans)
t = int(input())
for i in range(t):
solve()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = list(map(int, input().split()))
nums, _ = sorted(map(int, input().split())), list(map(int, input().split()))
if 2 * k >= nums[-1] - nums[0]:
print(len(nums))
continue
f = [0] * (n + 1)
l = ans = 0
for r, v in enumerate(nums):
while v - nums[l] > k:
l += 1
f[r + 1] = max(f[r], r - l + 1)
ans = max(ans, f[l] + r - l + 1)
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF BIN_OP NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
T = int(input())
for case in range(T):
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = list(map(int, input().split()))
suf = [(0) for i in range(n + 2)]
ans = [(0) for i in range(n + 2)]
x.sort()
j = 0
for i in range(n):
while j < n and x[j] <= x[i] + k:
j += 1
ans[i] = j - i
for i in range(n - 1, -1, -1):
suf[i] = max(ans[i], suf[i + 1])
mx = 0
for i in range(n):
mx = max(mx, ans[i] + suf[min(n, ans[i] + i)])
print(mx)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
def solve(coords, k):
left = 0
right = 0
dp = [0]
result = 0
while True:
while right < len(coords) and coords[right] - coords[left] <= k:
right += 1
dp.append(max(dp[right - 1], right - left))
result = max(result, dp[left] + right - left)
if right == len(coords):
break
left += 1
return result
for _ in range(int(input())):
n, k = map(int, input().split())
coords = sorted(map(int, input().split()))
input()
print(solve(coords, k))
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER WHILE NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for i in range(t):
params = input()
n, k = int(params.split()[0]), int(params.split()[1])
coordinates = input()
something = input()
numbers = list(map(int, coordinates.split()))
numbers.sort()
if numbers[-1] - numbers[0] <= 2 * k or len(numbers) == 1:
print(n)
continue
right = [0] * len(numbers)
left = [0] * len(numbers)
left[0] = 1
p = 0
q = 0
while True:
while q < len(numbers) and numbers[q] - numbers[p] <= k:
left[q] = q - p + 1
q += 1
if q == len(numbers):
right[p] = q - p
break
right[p] = q - p
while numbers[q] - numbers[p] > k:
p += 1
right[p] = q - p
if numbers[q] - numbers[p] == k:
right[p] = right[p - 1]
for j in range(0, len(numbers) - 1):
left[j + 1] = max(left[j], left[j + 1])
for j in range(len(numbers) - 1, 0, -1):
right[j - 1] = max(right[j - 1], right[j])
maximum = 0
for j in range(0, len(numbers) - 1):
maximum = max(left[j] + right[j + 1], maximum)
print(maximum)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR IF BIN_OP VAR NUMBER VAR NUMBER BIN_OP NUMBER VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
def ans(n, k, x, y):
x.sort()
l = [0] * len(x)
r = [0] * len(x)
i = 0
j = 0
temp = 0
while i < len(x) and j < len(x):
temp = i - j + 1
if i == j:
l[i] = temp
i += 1
elif x[i] - x[j] <= k:
l[i] = temp
i += 1
else:
j += 1
i = n - 1
j = n - 1
temp = 0
while i >= 0 and j >= 0:
temp = j - i + 1
if i == j:
r[i] = temp
i -= 1
elif x[j] - x[i] <= k:
r[i] = temp
i -= 1
else:
j -= 1
prefix = [0] * len(x)
suffix = [0] * len(x)
prefix[0] = l[0]
suffix[-1] = r[-1]
for i in range(1, len(x)):
prefix[i] = max(l[i], prefix[i - 1])
for i in range(len(x) - 2, -1, -1):
suffix[i] = max(r[i], suffix[i + 1])
answer = 1
for i in range(n - 1):
answer = max(answer, prefix[i] + suffix[i + 1])
print(answer)
m = int(input())
for i in range(m):
arr = input().split()
n = int(arr[0])
k = int(arr[1])
a = input().split()
b = input().split()
x = []
y = []
for j in a:
x.append(int(j))
for j in b:
y.append(int(j))
ans(n, k, x, y)
|
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = map(int, input().split())
arr = list(map(int, input().split()))
y = list(map(int, input().split()))
arr.sort()
i = j = 0
end = [0] * n
start = [0] * n
while j < n:
if arr[j] - arr[i] <= k:
if j:
end[j] = max(end[j - 1], j - i + 1)
else:
end[j] = j - i + 1
j += 1
else:
i += 1
i = j = n - 1
while i >= 0:
if arr[j] - arr[i] <= k:
if i == n - 1:
start[i] = j - i + 1
else:
start[i] = max(start[i + 1], j - i + 1)
i -= 1
else:
j -= 1
ans = 1
for i in range(n - 1):
ans = max(ans, start[i + 1] + end[i])
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR IF VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
from sys import stdin, stdout
def find(N, K, X):
X.sort()
arrA = [0]
j = 0
r = 0
for i in range(N):
r += 1
if i < N - 1 and X[i] == X[i + 1]:
continue
while X[i] - X[j] > K:
j += 1
r -= 1
arrA.append(r)
X.reverse()
arrB = [0]
j = 0
r = 0
for i in range(N):
r += 1
if i < N - 1 and X[i] == X[i + 1]:
continue
while -X[i] + X[j] > K:
j += 1
r -= 1
arrB.append(r)
for i in range(1, len(arrA)):
arrA[i] = max(arrA[i], arrA[i - 1])
arrB[i] = max(arrB[i], arrB[i - 1])
arrB.reverse()
return max([(arrA[i] + arrB[i]) for i in range(len(arrA))])
def main():
for _ in range(int(stdin.readline())):
N, K = list(map(int, stdin.readline().split()))
X = list(map(int, stdin.readline().split()))
list(map(int, stdin.readline().split()))
print(find(N, K, X))
main()
|
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR RETURN FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = map(int, input().split())
x.sort()
start = 0
p = [0] * n
p[0] = 1
for i in range(1, n):
if x[i] - x[start] <= k:
p[i] = i - start + 1
else:
while x[i] - x[start] > k:
start += 1
p[i] = i - start + 1
last = n - 1
s = [0] * n
s[-1] = 1
for i in range(len(s) - 2, -1, -1):
if x[last] - x[i] <= k:
s[i] = last - i + 1
else:
while x[last] - x[i] > k:
last -= 1
s[i] = last - i + 1
for i in range(1, n):
p[i] = max(p[i], p[i - 1], 0)
mx = p[0]
for i in range(n - 1):
mx = max(mx, p[i] + s[i + 1])
print(max(mx, max(p), max(s)))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
from sys import stdin, stdout
input = stdin.buffer.readline
for _ in range(int(input())):
n, k = map(int, input().split())
(*x,) = map(int, input().split())
(*y,) = map(int, input().split())
a = [[x[i], y[i]] for i in range(n)]
b = [0] * n
c = [0] * (n + 1)
dp = [0] * (n + 1)
a.sort()
j = 0
c[0] = a[0][0]
b[0] = 1
for i in range(1, n):
if a[i][0] != a[i - 1][0]:
j += 1
c[j] = a[i][0]
b[j] += 1
pref = [0] * (n + 1)
for i in range(n):
pref[i] = pref[i - 1] + b[i]
i = j = 0
ans = 0
while i < n:
while c[i] - c[j] > k:
j += 1
ans = max(ans, dp[j - 1] + pref[i] - pref[j - 1])
dp[i] = max(dp[i - 1], pref[i] - pref[j - 1])
i += 1
print(ans)
|
ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
def run():
n, k = map(int, input().split())
xS = list(map(int, input().split()))
yS = list(map(int, input().split()))
lMax, rMax = [0] * n, [0] * n
xS.sort()
j = n - 1
for i in range(n - 1, -1, -1):
while xS[j] - xS[i] > k:
j -= 1
rMax[i] = j - i + 1
if i + 1 < n:
rMax[i] = max(rMax[i], rMax[i + 1])
j = 0
for i in range(n):
while xS[i] - xS[j] > k:
j += 1
lMax[i] = i - j + 1
if i > 0:
lMax[i] = max(lMax[i], lMax[i - 1])
ans = 1
for i in range(n - 1):
ans = max(ans, rMax[i + 1] + lMax[i])
print(ans)
if 1:
for i in range(int(input())):
run()
else:
run()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP LIST NUMBER VAR BIN_OP LIST NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR IF NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for test in range(t):
n, k = map(int, input().split())
points = []
x = list(map(int, input().split()))
y = list(map(int, input().split()))
for i in range(n):
points.append([x[i], y[i]])
points.sort()
l, r = 0, 0
lrs = []
while l < n:
r = max(r, l)
while r < n and points[r][0] - points[l][0] <= k:
r += 1
lrs.append(r - l)
l += 1
l, r = 0, 0
rrs = []
points.reverse()
while l < n:
r = max(r, l)
while r < n and points[l][0] - points[r][0] <= k:
r += 1
rrs.append(r - l)
l += 1
rrs.reverse()
prer = [0]
for i in range(len(lrs) - 1, -1, -1):
prer.append(max(prer[-1], lrs[i]))
ans = 0
prer.reverse()
for i in range(n):
ans = max(rrs[i] + prer[i + 1], ans)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR LIST WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR WHILE VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR LIST EXPR FUNC_CALL VAR WHILE VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR WHILE VAR VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
T = int(input())
while T > 0:
n, k = map(int, input().split())
xs = list(map(int, input().split()))
ys = list(map(int, input().split()))
xs.sort()
dp1 = [0] * n
start = 0
for i in range(n):
while xs[i] - xs[start] > k:
start += 1
dp1[i] = max(dp1[i - 1], i - start + 1)
start = 0
dp2 = [0] * n
for i in range(n):
while xs[i] - xs[start] > k:
start += 1
if start > 0:
dp2[i] = max(dp2[i - 1], i - start + 1 + dp1[start - 1])
else:
dp2[i] = max(dp2[i - 1], i - start + 1)
res = dp2[-1]
print(res)
T -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
import sys
LI = lambda: list(map(int, sys.stdin.readline().strip("\n").split()))
MI = lambda: map(int, sys.stdin.readline().strip("\n").split())
SI = lambda: sys.stdin.readline().strip("\n")
II = lambda: int(sys.stdin.readline().strip("\n"))
for _ in range(II()):
n, k = MI()
a = sorted(MI())
b = MI()
l, r = [0] * n, [0] * n
for i in range(n):
s, e = 0, i - 1
ret = -1
val = a[i] - k
while s <= e:
m = (s + e) // 2
if a[m] >= val:
e = m - 1
else:
s = m + 1
ret = m
l[i] = i - ret if ret != -1 else i + 1
s, e = i + 1, n - 1
ret = -1
val = a[i] + k
while s <= e:
m = (s + e) // 2
if a[m] <= val:
s = m + 1
else:
e = m - 1
ret = m
r[i] = ret - i if ret != -1 else n - i
for i in range(1, n):
l[i] = max(l[i], l[i - 1])
for i in range(n - 2, -1, -1):
r[i] = max(r[i], r[i + 1])
ans = 1
for i in range(n - 1):
ans = max(ans, l[i] + r[i + 1])
print(ans)
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP LIST NUMBER VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER BIN_OP VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
from sys import stdin
class Input:
def readline(self):
return stdin.readline().strip()
def read_int(self):
return int(self.readline())
def read_list(self):
return self.readline().split()
def test_cases(self):
cases = self.read_int()
for case in range(cases):
yield self
class Problem:
def __init__(self, input):
n, k = list(map(int, input.read_list()))
xcoord = list(map(int, input.read_list()))
ycoord = list(map(int, input.read_list()))
count = {(0): 0}
for x in xcoord:
count[x] = count.get(x, 0) + 1
a = []
for pair in count.items():
a.append(pair)
a.sort(key=lambda p: p[0])
i = 1
j = 0
n = len(a)
s = [(0) for i in range(n)]
dp = [(0) for i in range(n)]
ans = 0
while i < n:
s[i] = s[i - 1] + a[i][1]
while j + 1 < i and a[j + 1][0] + k < a[i][0]:
j += 1
s[i] -= a[j][1]
dp[i] = max(dp[i - 1], s[i])
ans = max(ans, s[i] + dp[j])
i += 1
print(ans)
for case_input in Input().test_cases():
Problem(case_input)
|
CLASS_DEF FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR VAR CLASS_DEF FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR ASSIGN VAR DICT NUMBER NUMBER FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER WHILE BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = input()
x.sort()
L = [(0) for _ in range(n)]
R = [(0) for _ in range(n)]
prev = 0
L[0] = 1
for i in range(1, n):
L[i] = L[i - 1] + 1
while x[i] - x[prev] > k:
prev += 1
L[i] -= 1
prev = n - 1
R[prev] = 1
for i in range(n - 2, -1, -1):
R[i] = R[i + 1] + 1
while x[prev] - x[i] > k:
prev -= 1
R[i] -= 1
for i in range(1, n):
L[i] = max(L[i], L[i - 1])
for i in range(n - 2, -1, -1):
R[i] = max(R[i], R[i + 1])
ans = 1
for i in range(n - 1):
ans = max(ans, R[i + 1] + L[i])
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input().strip())
for _ in range(t):
n, k = map(int, input().split())
arr = [int(i) for i in input().split()]
xx = input()
if n == 1:
print(1)
else:
arr.sort()
cnt = [(0) for i in range(n)]
left = arr[0]
right = left + k
for i in range(n):
if arr[i] <= right:
cnt[0] += 1
else:
break
index = 1
right_point = i
cons = 1
while index < n:
left = arr[index]
if arr[index] != arr[index - 1]:
cnt[index] = cnt[index - 1] - cons
cons = 1
for i in range(right_point, n):
if arr[i] > left + k:
right_point = i
break
if i == n - 1:
right_point = n
cnt[index] += 1
else:
cons += 1
cnt[index] = cnt[index - 1]
index += 1
dp = [(0) for i in range(n + 1)]
for i in range(n - 1, -1, -1):
dp[i] = max(dp[i + 1], cnt[i])
ans = 0
for i in range(n):
result = cnt[i] + (0 if i + cnt[i] >= n else dp[i + cnt[i]])
if result > ans:
ans = result
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR BIN_OP VAR VAR VAR IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = list(map(int, input().split()))
x.sort()
plat1 = [0] * n
plat2 = [0] * n
p_left = 0
for i in range(n):
if x[i] > x[p_left] + k:
p_left += 1
plat1[i] = i - p_left + 1
if i > 0:
plat1[i] = max(plat1[i - 1], plat1[i])
p_right = n - 1
for i in range(n - 1, -1, -1):
if x[i] < x[p_right] - k:
p_right -= 1
plat2[i] = p_right - i + 1
if i < n - 1:
plat2[i] = max(plat2[i + 1], plat2[i])
ans = 1
for i in range(n - 1):
ans = max(ans, plat1[i] + plat2[i + 1])
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
def solve():
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = list(map(int, input().split()))
x.sort()
l = [0] * len(x)
r = [0] * len(x)
st = 0
for i in range(len(x)):
while x[i] - k > x[st]:
st += 1
l[i] = i - st + 1
if i > 0:
l[i] = max(l[i], l[i - 1])
en = len(x) - 1
for i in reversed(range(len(x))):
while x[i] + k < x[en]:
en -= 1
r[i] = en - i + 1
if i < len(x) - 1:
r[i] = max(r[i], r[i + 1])
ans = 0
for i in range(len(x)):
if i == len(x) - 1:
ans = max(ans, l[i])
else:
ans = max(ans, l[i] + r[i + 1])
print(ans)
T = int(input())
for _ in range(T):
solve()
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
(T,) = map(int, input().split())
for _ in range(T):
N, k = map(int, input().split())
X = list(sorted(list(map(int, input().split())))) + [10**18]
Y = list(map(int, input().split())) + [10**18]
yi = 0
Z = [0] * N
V = [1] * N
for i in range(N):
while X[yi + 1] <= X[i] + k:
yi += 1
V[yi] = yi - i + 1
Z[i] = yi - i + 1
for i in range(1, N):
V[i] = max(V[i], V[i - 1])
for i in range(N - 2, -1, -1):
Z[i] = max(Z[i], Z[i + 1])
R = 1
for i in range(N - 1):
R = max(R, V[i] + Z[i + 1])
print(R)
|
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR LIST BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR LIST BIN_OP NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
def solution(n, k, x, y):
x.sort()
l, r, a, b, c = [], [], 0, 0, 1
while b < n:
if c <= n - 1:
while x[c] - x[b] <= k:
c += 1
if c == n:
break
while x[b] - x[a] > k:
a += 1
r.append(c - b)
l.append(b - a + 1)
b += 1
for i in range(1, n):
l[i] = max(l[i - 1], l[i])
r[n - 1 - i] = max(r[n - 1 - i], r[n - i])
max_ = l[0]
for i in range(n - 1):
max_ = max(max_, l[i] + r[i + 1])
return max_
t = int(input())
for _ in range(t):
n, k = map(int, input().split(" "))
x = list(map(int, input().split(" ")))
y = list(map(int, input().split(" ")))
print(solution(n, k, x, y))
|
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR LIST LIST NUMBER NUMBER NUMBER WHILE VAR VAR IF VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
import sys
stdin = sys.stdin
stdout = sys.stdout
def binSearch(arr, num, start, end):
while start != end:
mid = (start + end) // 2
if arr[mid] >= num:
end = mid
else:
start = mid + 1
return start
test = int(stdin.readline())
for t in range(test):
n, k = [int(_) for _ in stdin.readline().split()]
x = [int(_) for _ in stdin.readline().split()]
y = [int(_) for _ in stdin.readline().split()]
x.sort()
dp = [(0) for i in range(n + 1)]
dp2 = [(0) for i in range(n + 1)]
for i in range(1, len(x) + 1):
dp[i] = dp[i - 1]
dp2[i] = dp2[i - 1]
covered = x[i - 1] - k
idx = binSearch(x, covered, 0, i - 1)
dp[i] = max(dp[i], i - idx)
dp2[i] = max(dp2[i], i - idx + dp[idx])
stdout.write(f"{dp2[n]}\n")
|
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
import sys as _sys
def main():
t = int(input())
for i in range(t):
n, k = _read_ints()
xs = tuple(_read_ints())
ys = tuple(_read_ints())
result = find_max_points_can_save_n(xs, ys, platform_size=k)
print(result)
def _read_ints():
return map(int, _sys.stdin.readline().split(" "))
def find_max_points_can_save_n(points_xs, points_ys, platform_size):
del points_ys
max_points_can_save = _find_max_range(points_xs, platform_size * 2 + 1)[1]
ranges = _compute_ranges(points_xs, platform_size)
first_ranges = list(ranges)
second_ranges = sorted(ranges, key=lambda range_: range_[1], reverse=True)
i_second = 0
for (first_x, last_x), points_saved in first_ranges:
while i_second < len(second_ranges) and second_ranges[i_second][0][0] <= last_x:
i_second += 1
if i_second >= len(second_ranges):
break
points_saved_second = second_ranges[i_second][1]
max_points_can_save = max(
max_points_can_save, points_saved + points_saved_second
)
return max_points_can_save
def _find_max_range(points_xs, range_size):
if not points_xs:
return (0, range_size), 0
points_xs = sorted(points_xs)
points_n = len(points_xs)
first_x = points_xs[0]
last_x = first_x + range_size
max_range = None
max_range_value = 0
i_points_begin = 0
i_points_end = 0
while True:
while i_points_begin < points_n and points_xs[i_points_begin] < first_x:
i_points_begin += 1
while i_points_end < points_n and points_xs[i_points_end] <= last_x:
i_points_end += 1
if i_points_end - i_points_begin > max_range_value:
max_range = first_x, last_x
max_range_value = i_points_end - i_points_begin
if i_points_end >= points_n:
break
last_x = points_xs[i_points_end]
first_x = last_x - range_size
return max_range, max_range_value
def _compute_ranges(points_xs, range_size):
if not points_xs:
return (0, range_size), 0
points_xs = sorted(points_xs)
points_n = len(points_xs)
computed_ranges = []
first_x = points_xs[0]
last_x = first_x + range_size
i_points_begin = 0
i_points_end = 0
while True:
while i_points_begin < points_n and points_xs[i_points_begin] < first_x:
i_points_begin += 1
while i_points_end < points_n and points_xs[i_points_end] <= last_x:
i_points_end += 1
computed_ranges.append(((first_x, last_x), i_points_end - i_points_begin))
if i_points_end >= points_n:
break
last_x = points_xs[i_points_end]
first_x = last_x - range_size
return computed_ranges
main()
|
IMPORT FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR VAR VAR WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER NUMBER VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR RETURN VAR FUNC_DEF IF VAR RETURN NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NONE ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR VAR FUNC_DEF IF VAR RETURN NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR RETURN VAR EXPR FUNC_CALL VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
import sys
t = int(input())
for _ in range(t):
[n, k] = map(int, input().split())
x = list(map(int, input().split()))
x.sort()
input()
j = n - 1
r = [0] * n
for i in range(n - 1, -1, -1):
while x[j] - x[i] > k:
j -= 1
r[i] = j - i + 1
j = 0
l = [0] * n
for i in range(0, n):
while x[i] - x[j] > k:
j += 1
l[i] = i - j + 1
for i in range(1, n):
l[i] = max(l[i - 1], l[i])
for i in range(n - 2, -1, -1):
r[i] = max(r[i + 1], r[i])
ans = 1
for i in range(0, n - 1):
ans = max(l[i] + r[i + 1], ans)
print(ans)
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
import sys
input = sys.stdin.readline
t = int(input())
for ii in range(t):
n, k = map(int, input().split())
x = [int(i) for i in input().split()]
y = [int(i) for i in input().split()]
x.sort()
i, j = 0, 0
ans, tmp = 0, 1
end, start = 0, 0
store = []
while j < n:
if x[j] - x[i] <= k:
j += 1
if j < n and x[j] - x[i] <= k:
tmp += 1
else:
j -= 1
store.append((tmp, i, j))
tmp -= 1
i += 1
store.append((tmp, i, j - 1))
store.sort(reverse=True)
start = [0] * (n + 1)
for i in range(len(store)):
start[store[i][1]] = max(start[store[i][1]], store[i][0])
for i in range(n - 2, -1, -1):
start[i] = max(start[i + 1], start[i])
ans = 0
for i in range(n):
if start[i] == 0:
start[i] = max(0, start[i - 1] - 1)
for i in store:
ans = max(ans, i[0] + start[i[2] + 1])
sys.stdout.write(str(ans) + "\n")
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR LIST WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR NUMBER FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = map(int, input().split())
x, y = [int(i) for i in input().split()], [int(i) for i in input().split()]
x.sort()
x.append(9999999999999999999)
t, ans, arr, r = 0, 0, [0] * (n + 5), 0
ll = 0
for i in range(n):
while x[r + 1] - x[i] <= k:
r = r + 1
can = r - i + 1
arr[i] = can, x[i] + k + 1
while ll <= i and arr[ll][1] < x[i]:
t = max([t, arr[ll][0]])
ll = ll + 1
ans = max([ans, can + t])
r = 0
for i in range(n):
while x[r + 1] - x[i] <= k * 2 + 1:
r = r + 1
ans = max([ans, r - i + 1])
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR LIST VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR LIST VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR LIST VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = map(int, input().split())
l = list(map(int, input().split()))
l2 = list(map(int, input().split()))
l.sort()
l3 = []
l4 = [0]
kk = 1
count = 0
c = 0
i = 0
j = 0
ans = 0
while i < n and j < n:
if l[j] - l[i] <= k and j >= i:
ans = max(ans, j - i + 1)
l3.append(ans)
j += 1
else:
i += 1
i = n - 1
j = n - 1
ans = 0
while i > 0 and j > 0:
if l[i] - l[j] <= k and j <= i:
ans = max(ans, i - j + 1)
l4.append(ans)
j -= 1
else:
i -= 1
c = len(l3)
ans = 0
for i in range(c):
ans = max(ans, l3[i] + l4[n - i - 1])
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
import sys
input = sys.stdin.readline
t = int(input())
for rrr in range(t):
n, k = list(map(int, input().split()))
x = list(map(int, input().split()))
y = list(map(int, input().split()))
x.sort()
pl = []
i = 0
j = 0
tmp = []
for j in range(n):
if x[j] - x[i] > k:
pl.append((i, j - 1))
while i < len(x) and x[j] - x[i] > k:
i += 1
if j == n - 1:
while i < len(x) and x[j] - x[i] > k:
i += 1
pl.append((i, j))
rr = list(pl)
rr.sort(key=lambda x: x[1])
if len(x) < 3:
print(len(x))
else:
best = 0
ans = 0
j = 0
for i in range(len(pl)):
l, r = pl[i][0], pl[i][1]
if l > rr[j][1]:
best = max(best, rr[j][1] - rr[j][0] + 1)
if l <= rr[j][1]:
ans = max(ans, r - rr[j][0] + 1)
ans = max(ans, r - l + 1 + best)
while rr[j][1] < l:
if l > rr[j][1]:
best = max(best, rr[j][1] - rr[j][0] + 1)
if l <= rr[j][1]:
ans = max(ans, r - rr[j][0] + 1)
ans = max(ans, r - l + 1 + best)
j += 1
if l > rr[j][1]:
best = max(best, rr[j][1] - rr[j][0] + 1)
if l <= rr[j][1]:
ans = max(ans, r - rr[j][0] + 1)
ans = max(ans, r - l + 1 + best)
if False:
if rrr == 251:
print(n, k)
print(pl)
print(rr)
print(x)
print(ans)
else:
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR WHILE VAR VAR NUMBER VAR IF VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER IF VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR IF NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for i in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
input()
a.sort()
dp = [0] * n
dp[0] = 1
i = 1
while i < n and a[i] - a[0] <= k:
dp[i] = i + 1
i += 1
l = i
t = 0
while i < n:
while a[i] - a[t] > k:
t += 1
dp[i] = max(dp[i - 1], i - t + 1)
i += 1
if l == n:
print(len(a))
else:
s = 0
t = 0
while l < n:
while a[l] - a[t] > k:
t += 1
s = max(dp[t - 1] + l - t + 1, s)
l += 1
print(s)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for i in range(t):
n, k = list(map(int, input().split()))
x = list(map(int, input().split()))
y = list(map(int, input().split()))
x.sort()
num = x[0]
for j in range(n):
x[j] -= num
j = 0
while j < n:
if x[j] <= k:
j += 1
else:
break
if j == n or x[-1] - x[0] <= 2 * k or n == 1:
print(n)
else:
r = [j]
p = j - 1
for j in range(1, n):
while p < n:
temp = x[p] - x[j]
if temp <= k:
p += 1
else:
break
r.append(min(p, n) - j)
p -= 1
l = []
q = 0
for j in range(n):
while x[j] - x[q] > k:
q += 1
l.append(j - q + 1)
pref = [l[0]]
suff = [0] * n
suff[-1] = r[-1]
for j in range(1, n):
pref.append(max(pref[-1], l[j]))
suff[-j - 1] = max(suff[-j], r[-j - 1])
ans = 0
for j in range(n - 1):
ans = max(ans, pref[j] + suff[j + 1])
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR NUMBER VAR NUMBER BIN_OP NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, p = [int(x) for x in input().split()]
a = [int(x) for x in input().split()]
b = input()
a.sort()
b = []
c = []
j = 0
k = 0
if n <= 2:
print(n)
continue
for i in range(n):
while a[i] - a[j] > p:
j += 1
while k < n and a[k] - a[i] <= p:
k += 1
k -= 1
b.append(i - j + 1)
c.append(k - i + 1)
for i in range(1, n - 1):
b[i] = max(b[i], b[i - 1])
c[n - i - 1] = max(c[n - i - 1], c[n - i])
ss = 0
for i in range(n - 1):
ss = max(ss, b[i] + c[i + 1])
print(ss)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for _ in range(t):
n, k = [int(zz) for zz in input().split()]
x = [int(zz) for zz in input().split()]
y = [int(zz) for zz in input().split()]
x.sort()
l = x[0]
r = x[-1]
if k * 2 + 1 >= r - l:
print(n)
continue
else:
cnts = [(-1) for __ in range(len(x))]
j = 0
for i in range(len(x)):
while x[i] - x[j] > k:
j += 1
cnts[i] = i - j + 1
mr = [(0) for __ in range(len(x))]
for i in range(len(x) - 1, -1, -1):
mr[i] = cnts[i]
if i + 1 < len(x):
mr[i] = max(mr[i], mr[i + 1])
ans = 1
j = 0
for i in range(len(x)):
while j < len(x) and x[j] - x[i] <= k:
j += 1
if j == len(x):
break
ans = max(ans, cnts[i] + mr[j])
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF BIN_OP BIN_OP VAR NUMBER NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = list(map(int, input().split()))
x.sort()
l = [1]
r = [1]
left = 0
right = n - 1
for pos in range(1, n):
while x[left] < x[pos] - k:
left += 1
l.append(max(l[-1], pos - left + 1))
pos = 0
for pos in range(n - 2, -1, -1):
while x[right] > x[pos] + k:
right -= 1
r.append(max(r[-1], right - pos + 1))
r.reverse()
ans = 1
for i in range(n - 1):
ans = max(l[i] + r[i + 1], ans)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
from sys import stdin, stdout
def two_platforms(n, k, x_a):
x_a.sort()
la = [0] * n
ra = [0] * n
hi = 0
mx = 0
for i in range(n):
while hi < i and x_a[i] - x_a[hi] > k:
hi += 1
mx = max(mx, i - hi + 1)
la[i] = mx
tj = n - 1
mx = 0
for j in range(n - 1, -1, -1):
while tj > j and x_a[tj] - x_a[j] > k:
tj -= 1
mx = max(mx, tj - j + 1)
ra[j] = mx
ans = ra[0]
for i in range(0, n - 1):
ans = max(ans, la[i] + ra[i + 1])
return ans
t = int(stdin.readline())
for num in range(t):
n, k = map(int, stdin.readline().split())
x_a = list(map(int, stdin.readline().split()))
y_a = list(map(int, stdin.readline().split()))
ans = two_platforms(n, k, x_a)
stdout.write(str(ans) + "\n")
|
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
from sys import stdin, stdout
class SOLVE:
def bsearch(self, left, right, j, x, k, pos, cmd):
if left > right:
return pos
mid = (left + right) // 2
if cmd == "rpos":
if x[mid] <= x[j] + k:
pos = mid
return self.bsearch(mid + 1, right, j, x, k, pos, cmd)
else:
return self.bsearch(left, mid - 1, j, x, k, pos, cmd)
elif x[mid] >= x[j] - k:
pos = mid
return self.bsearch(left, mid - 1, j, x, k, pos, cmd)
else:
return self.bsearch(mid + 1, right, j, x, k, pos, cmd)
def solve(self):
R = stdin.readline
W = stdout.write
ans = []
for i in range(int(input())):
n, k = [int(temp) for temp in R().split()]
x = [int(temp) for temp in R().split()]
y = [int(temp) for temp in R().split()]
x.sort()
rpos = {}
for j in range(n):
rpos[j] = self.bsearch(j, n - 1, j, x, k, j, "rpos")
rmx = {}
rmx[n - 1] = 1
for j in range(n - 2, -1, -1):
rmx[j] = max(rmx[j + 1], rpos[j] - j + 1)
mx = 1
for j in range(n - 1):
mx = max(
mx, rpos[j] - j + 1 + (rmx[rpos[j] + 1] if rpos[j] + 1 < n else 0)
)
ans += [str(mx)]
W("\n".join(ans))
def main():
s = SOLVE()
s.solve()
main()
|
CLASS_DEF FUNC_DEF IF VAR VAR RETURN VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR STRING IF VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR RETURN FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR IF VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR RETURN FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR STRING ASSIGN VAR DICT ASSIGN VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR LIST FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL STRING VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = map(int, input().split())
x_coordinates = list(map(int, input().split()))
x_coordinates.sort()
input()
if n == 1:
print(1)
continue
L = 0
R = 0
length = 0
points = 0
platform_points = []
while True:
length = x_coordinates[R] - x_coordinates[L]
if length <= k:
points = R - L + 1
R += 1
if R >= n:
platform_points.append((L, points))
break
else:
platform_points.append((L, points))
while x_coordinates[R] - x_coordinates[L] > k:
L += 1
maximum_points_to_the_right = [1] * n
for i, points in platform_points:
maximum_points_to_the_right[i] = points
for i in range(n - 1, 0, -1):
maximum_points_to_the_right[i - 1] = max(
maximum_points_to_the_right[i - 1], maximum_points_to_the_right[i]
)
for i in range(n - 1):
maximum_points_to_the_right[i + 1] = max(
maximum_points_to_the_right[i + 1], maximum_points_to_the_right[i] - 1
)
L = n - 1
R = n - 1
length = 0
points = 0
platform_points = []
while True:
length = x_coordinates[R] - x_coordinates[L]
if length <= k:
points = R - L + 1
L -= 1
if L < 0:
platform_points.append((R, points))
break
else:
platform_points.append((R, points))
while x_coordinates[R] - x_coordinates[L] > k:
R -= 1
maximum_points_to_the_left = [1] * n
for i, points in platform_points:
maximum_points_to_the_left[i] = points
for i in range(n - 1):
maximum_points_to_the_left[i + 1] = max(
maximum_points_to_the_left[i + 1], maximum_points_to_the_left[i]
)
for i in range(n - 1, 0, -1):
maximum_points_to_the_left[i - 1] = max(
maximum_points_to_the_left[i - 1], maximum_points_to_the_left[i] - 1
)
s = []
for i in range(n - 1):
x = maximum_points_to_the_left[i] + maximum_points_to_the_right[i + 1]
s.append(x)
print(max(s))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE NUMBER ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
from sys import stdin
for _ in range(int(stdin.readline())):
n, k = map(int, stdin.readline().split())
arr_x = list(map(int, stdin.readline().split()))
arr_y = list(map(int, stdin.readline().split()))
arr_x.sort()
left = [0] * (n + 1)
i = 0
j = 0
while i < n:
while j <= i and arr_x[i] - arr_x[j] > k:
j += 1
left[i + 1] = max(left[i], i - j + 1)
i += 1
right = [0] * (n + 1)
i = n - 1
j = n - 1
while i >= 0:
while j >= i and arr_x[j] - arr_x[i] > k:
j -= 1
right[i] = max(right[i + 1], j - i + 1)
i -= 1
ans = 0
for i in range(n + 1):
ans = max(ans, left[i] + right[i])
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for i in range(int(input())):
n, k = list(map(int, input().split()))
x = sorted(map(int, input().split()))
input()
a = []
j = 0
for i in range(n):
while j < n and x[j] - x[i] <= k:
j += 1
a.append(j - i)
c = a[:]
a1 = a[:]
for i in range(1, n):
a[i] = max(a[i], a[i - 1])
for i in range(n - 2, -1, -1):
a1[i] = max(a1[i], a1[i + 1])
j = n - 1
l = n - 1
z = 0
for i in range(n - 1, -1, -1):
while x[l] - x[i] > k:
l -= 1
b = 0
if l != n - 1:
b = a1[l + 1]
while j >= 0 and x[i - 1] - x[j] <= k:
j -= 1
if j >= 0:
b = max(b, a[j])
else:
z = max(z, l + 1)
z = max(z, b + c[i])
print(min(z, n))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER WHILE VAR NUMBER BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = list(map(int, input().split()))
cnt = {}
for i in x:
cnt[i] = 0
for i in x:
cnt[i] += 1
keys, first, last, val = list(cnt.keys()), {}, {}, 0
for i in keys:
first[i], last[i] = 0, 0
keys.sort()
i, j = 0, 0
while i < len(keys) or j < len(keys):
if j < len(keys) and keys[j] <= keys[i] + k:
val += cnt[keys[j]]
if i < len(keys):
first[keys[i]] = max(first[keys[i]], val)
if j < len(keys):
last[keys[j]] = max(last[keys[j]], val)
j += 1
else:
val -= cnt[keys[i]]
i += 1
if i < len(keys):
first[keys[i]] = max(first[keys[i]], val)
if j < len(keys):
last[keys[j]] = max(last[keys[j]], val)
mx, res = 0, first[keys[0]]
for i in range(1, len(keys)):
mx = max(mx, last[keys[i - 1]])
res = max(res, mx + first[keys[i]])
print(res)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR DICT DICT NUMBER FOR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = map(int, input().split())
a = list(map(int, input().split()))
y = input()
a.sort()
l = [0] * (n + 1)
r = [0] * (n + 1)
i = 0
for j in range(n):
while a[j] - a[i] > k:
i += 1
l[j + 1] = j - i + 1
l[j + 1] = max(l[j], l[j + 1])
i = n - 1
for j in range(n - 1, -1, -1):
while a[i] - a[j] > k:
i -= 1
r[j] = i - j + 1
r[j] = max(r[j], r[j + 1])
maximum = 0
for i in range(n + 1):
maximum = max(maximum, l[i] + r[i])
print(maximum)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for t in range(int(input())):
n, k = map(int, input().split())
lx = list(map(int, input().split()))
ly = list(map(int, input().split()))
lx = list(sorted(lx))
ll = [0]
pi = 0
for i in range(len(lx)):
while lx[i] > lx[pi] + k:
pi += 1
ll.append(i - pi + 1)
lr = [0]
pi = n - 1
for i in range(len(lx) - 1, -1, -1):
while lx[pi] > lx[i] + k:
pi -= 1
lr.append(pi - i + 1)
for i in range(1, len(ll)):
ll[i] = max(ll[i], ll[i - 1])
for i in range(1, len(lr)):
lr[i] = max(lr[i], lr[i - 1])
lr = lr[::-1]
ans = 0
for i in range(len(ll)):
ans = max(ans, ll[i] + lr[i])
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR LIST NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR LIST NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
from sys import stdin
input = stdin.readline
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
x = sorted(list(map(int, input().split())))
y = list(map(int, input().split()))
mostSaved = [0] * (n + 1)
savedFromStart = [0] * n
i, j = 0, 0
prevX = -1
while i < n:
if x[i] == prevX:
savedFromStart[i] = savedFromStart[i - 1]
else:
prevX = x[i]
while j < n and x[j] <= x[i] + k:
j += 1
savedFromStart[i] = j - i
i += 1
for i in range(n - 1, -1, -1):
mostSaved[i] = max(mostSaved[i + 1], savedFromStart[i])
out = [
(savedFromStart[i] + mostSaved[min(n, i + savedFromStart[i])]) for i in range(n)
]
print(max(out))
|
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
h = int(input())
l = []
for i in range(h):
n, k = list(map(int, input().split()))
x = list(map(int, input().split()))
y = list(map(int, input().split()))
a = [None] * n
b = [None] * n
x.sort()
j = n - 1
for h in range(n - 1, -1, -1):
while x[j] - x[h] > k:
j -= 1
a[h] = j - h + 1
if h + 1 < n:
a[h] = max(a[h], a[h + 1])
j = 0
for h in range(n):
while x[h] - x[j] > k:
j += 1
b[h] = h - j + 1
if h > 0:
b[h] = max(b[h], b[h - 1])
ans = 1
for h in range(n - 1):
ans = max(ans, a[h + 1] + b[h])
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NONE VAR ASSIGN VAR BIN_OP LIST NONE VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
TC = int(input())
for tc in range(TC):
N, K = map(int, input().split())
X = list(map(int, input().split()))
Y = list(map(int, input().split()))
if N < 3:
print(N)
continue
X.sort()
l = [(0) for _ in X]
r = [(0) for _ in X]
j = 0
for i, x in enumerate(X):
while x > X[j] + K:
j += 1
l[i] = i - j + 1
j = N - 1
for i in range(N - 1, -1, -1):
while X[j] > X[i] + K:
j -= 1
r[i] = j - i + 1
max_l = l.copy()
max_r = r.copy()
for i, ml in enumerate(l[1:], 1):
max_l[i] = max(ml, max_l[i - 1])
for i in range(N - 2, -1, -1):
max_r[i] = max(r[i], max_r[i + 1])
result = 0
for i in range(N - 1):
result = max(result, max_l[i] + max_r[i + 1])
print(result)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER VAR VAR ASSIGN VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
def is_ok(X, K, i, mid):
if X[mid] - X[i] <= K:
return True
else:
return False
def binary_search(X, K, i):
ng = len(X)
ok = i
while abs(ok - ng) > 1:
mid = ng + (ok - ng) // 2
if is_ok(X, K, i, mid):
ok = mid
else:
ng = mid
return ok
def is_ok2(X, K, i, mid):
if X[mid] < X[i] - K:
return True
else:
return False
def binary_search2(X, K, i):
ng = i
ok = 0
while abs(ok - ng) > 1:
mid = ng + (ok - ng) // 2
if is_ok2(X, K, i, mid):
ok = mid
else:
ng = mid
return ok
def main():
T = int(input())
for _ in range(T):
N, K = (int(i) for i in input().split())
X = [int(i) for i in input().split()]
_ = [int(i) for i in input().split()]
X.sort()
count = [0] * N
for i in range(N):
ret = binary_search(X, K, i)
count[i] = ret - i + 1
ans = count[0]
count_max = [0] * N
count_max[0] = count[0]
for i in range(1, N):
cur = count[i]
if X[i] - X[0] <= K:
cur += i
else:
j = binary_search2(X, K, i)
cur += count_max[j]
ans = max(ans, cur)
count_max[i] = max(count_max[i - 1], count[i])
print(ans)
main()
|
FUNC_DEF IF BIN_OP VAR VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR WHILE FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF IF VAR VAR BIN_OP VAR VAR VAR RETURN NUMBER RETURN NUMBER FUNC_DEF ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR VAR NUMBER VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
a.sort()
ret, ret2 = 1, 0
j, l = 1, 0
for i in range(1, n):
while a[i] - a[j] > k:
j += 1
while a[j - 1] - a[l] > k:
l += 1
ret2 = max(ret2, j - l)
ret2 = max(ret2, j - l)
ret = max(ret, i - j + 1 + ret2)
print(ret)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER WHILE BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = [int(i) for i in input().split()]
a = [int(i) for i in input().split()]
a.sort()
input()
l = []
r = [0] * n
j = 0
for i in range(n):
while a[i] - a[j] > k:
j += 1
l.append(i - j + 1)
j = n - 1
for i in range(n - 1, -1, -1):
while a[j] - a[i] > k:
j -= 1
r[i] = j - i + 1
ml = [l[0]] * n
for i in range(1, n):
ml[i] = max(l[i], ml[i - 1])
mr = [r[-1]] * n
for i in range(n - 2, -1, -1):
mr[i] = max(r[i], mr[i + 1])
ans = 0
for i in range(n - 1):
ans = max(ans, ml[i] + mr[i + 1])
if n == 1:
print(1)
else:
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP LIST VAR NUMBER VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST VAR NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
from sys import stdin
def inp():
return stdin.buffer.readline().rstrip().decode("utf8")
def itg():
return int(stdin.buffer.readline())
def mpint():
return map(int, stdin.buffer.readline().split())
for __ in range(itg()):
n, k = mpint()
arr = list(mpint())
arr.sort()
inp()
left = [0] * n
j = 0
for i in range(n):
while arr[i] - arr[j] > k:
j += 1
left[i] = i - j + 1
right = [0] * n
j = n - 1
for i in range(n - 1, -1, -1):
while arr[j] - arr[i] > k:
j -= 1
right[i] = j - i + 1
for i in range(1, n):
left[i] = max(left[i], left[i - 1])
for i in range(n - 2, -1, -1):
right[i] = max(right[i], right[i + 1])
ans = left[-1]
for i in range(n - 1):
ans = max(ans, left[i] + right[i + 1])
print(ans)
|
FUNC_DEF RETURN FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
import sys
class ETwoPlatforms:
def solve(self, tc=0):
for _ in range(int(input())):
n, k = [int(_) for _ in input().split()]
x = [int(_) for _ in input().split()]
y = [int(_) for _ in input().split()]
x.sort()
ans = 0
s, e = 0, 1
mx = 1
n = len(x)
pre = [0] * (n + 1)
pre[1] = 1
last = -1
while e < n:
while e < n and x[e] - x[s] <= k:
pre[e] = max(pre[last], e - s)
last = e
e += 1
pre[e] = max(pre[last], e - s)
last = e
s += 1
post = [0] * n
post[-1] = 1
s, e = n - 1, n - 2
last = 0
while e >= 0:
while e >= 0 and x[s] - x[e] <= k:
post[e] = max(post[last], s - e + 1)
last = e
e -= 1
e += 1
post[e] = max(post[last], s - e + 1)
last = e
e -= 1
s -= 1
ans = 0
for i in range(n):
ans = max(ans, pre[i] + post[i])
ans = max(ans, pre[n])
print(ans)
solver = ETwoPlatforms()
input = sys.stdin.readline
solver.solve()
|
IMPORT CLASS_DEF FUNC_DEF NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER WHILE VAR NUMBER BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
z = lambda: map(int, input().split())
r = range
p = print
for _ in r(int(input())):
n, k = z()
l = sorted(list(z()))
z()
if n < 3:
p(n)
continue
a = i = 0
b = m = e = o = 1
f = 2
c = [0, 1]
d = [1]
while a < n:
while b < n and l[b] <= l[a] + k:
b += 1
m = max(m, b - a)
c += [m]
a += 1
while e < n + 1:
while f < n + 1 and l[-f] >= l[-e] - k:
f += 1
o = max(o, f - e)
d += [o]
e += 1
p(max(c[i] + d[-i - 1] for i in r(n)))
|
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER ASSIGN VAR LIST NUMBER WHILE VAR VAR WHILE VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR LIST VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR LIST VAR VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
for i in range(t):
n, k = map(int, input().split())
xs = map(int, input().split())
ys = map(int, input().split())
points_at_x = dict()
for x in xs:
points_at_x[x] = points_at_x.get(x, 0) + 1
points = sorted(points_at_x.keys())
m = len(points)
saved = [0] * m
p_ends = [m] * m
start = 0
end = 0
while start < m and start <= end and end < m + 1:
if end < m and points[end] - points[start] <= k:
saved[start] += points_at_x[points[end]]
end += 1
else:
p_ends[start] = end
start += 1
if start < m:
saved[start] = saved[start - 1] - points_at_x[points[start - 1]]
max_saved = [0] * m
max_saved[m - 1] = saved[m - 1]
for j in range(m - 1):
max_saved[m - 2 - j] = max(max_saved[m - 1 - j], saved[m - 2 - j])
result = 0
for j in range(m):
temp = saved[j]
temp2 = p_ends[j]
if temp2 < m:
temp += max_saved[temp2]
result = max(result, temp)
print(result)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
tc = int(input())
for _ in range(tc):
n, k = map(int, input().split(" "))
x = sorted(list(map(int, input().split(" "))))
input()
left = [1] * n
l = 0
for r in range(1, n):
while x[r] - x[l] > k:
l += 1
left[r] = r - l + 1
left[r] = max(left[r], left[r - 1])
right = [1] * n
r = n - 1
for l in reversed(range(n - 1)):
while x[r] - x[l] > k:
r -= 1
right[l] = r - l + 1
right[l] = max(right[l], right[l + 1])
answer = 1
for i in range(n - 1):
answer = max(answer, left[i] + right[i + 1])
print(answer)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
tc = int(input())
for _ in range(tc):
n, k = map(int, input().split())
x = list(map(int, input().split()))
input()
if n == 1:
print(1)
continue
x.sort()
j = 0
a = []
for i in range(n):
while j + 1 < n and x[j + 1] - x[i] <= k:
j += 1
a.append(j - i + 1)
for i in range(n - 2, -1, -1):
a[i] = max(a[i], a[i + 1])
j = n - 1
b = []
for i in range(n - 1, -1, -1):
while j - 1 >= 0 and x[i] - x[j - 1] <= k:
j -= 1
b.append(i - j + 1)
b.reverse()
for i in range(1, n):
b[i] = max(b[i], b[i - 1])
print(max(a[i + 1] + b[i] for i in range(n - 1)))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR NUMBER VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR NUMBER NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR VAR FUNC_CALL VAR BIN_OP VAR NUMBER
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
import sys
input = sys.stdin.buffer.readline
def print(val):
sys.stdout.write(str(val) + "\n")
def prog():
for _ in range(int(input())):
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = list(map(int, input().split()))
x.sort()
most_at_point = [0] * n
most_after_point = [0] * (n + 1)
tot = 0
j = -1
for i in range(n):
while j + 1 < n and x[j + 1] <= x[i] + k:
j += 1
tot += 1
most_at_point[i] = tot
tot -= 1
for i in range(n - 1, -1, -1):
most_after_point[i] = max(most_after_point[i + 1], most_at_point[i])
best = 0
j = 0
for i in range(n):
while j < n and x[j] <= x[i] + k:
j += 1
if j == n:
best = max(best, most_at_point[i])
else:
best = max(best, most_at_point[i] + most_after_point[j])
print(best)
prog()
|
IMPORT ASSIGN VAR VAR FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = map(int, input().split())
x = sorted(map(int, input().split()))
input()
j = n - 1
r = [-1] * n
l = [-1] * n
for i in range(n - 1, -1, -1):
if x[j] - x[i] > k:
j = j - 1
r[i] = j - i + 1
if i < n - 1:
r[i] = max(r[i], r[i + 1])
j = 0
for i in range(0, n, 1):
if x[i] - x[j] > k:
j = j + 1
l[i] = i - j + 1
if i > 0:
l[i] = max(l[i], l[i - 1])
ans = 1
for i in range(n - 1):
ans = max(ans, l[i] + r[i + 1])
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
t = int(input())
while t > 0:
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = list(map(int, input().split()))
x.sort()
prefix = [0] * (n + 2)
suffix = [0] * (n + 2)
i = 1
j = 1
while i <= n and j <= n:
diff = x[j - 1] - x[i - 1]
if diff <= k:
prefix[j] = max(j - i + 1, prefix[j - 1])
j += 1
else:
i += 1
i = n
j = n
while i >= 0 and j >= 0:
diff = abs(x[j - 1] - x[i - 1])
if diff <= k:
suffix[i] = max(abs(j - i + 1), suffix[i + 1])
i -= 1
else:
j -= 1
max_points = 0
for i in range(1, n + 1):
max_points = max(max_points, prefix[i] + suffix[i + 1])
print(max_points)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
def solve(n, k, x, y):
x = sorted(x)
l = [0] * n
r = [0] * n
ptr = n - 1
for i in range(n - 1, -1, -1):
while x[ptr] - x[i] > k:
ptr -= 1
r[i] = ptr - i + 1
if i + 1 < n:
r[i] = max(r[i], r[i + 1])
ptr = 0
for i in range(n):
while x[i] - x[ptr] > k:
ptr += 1
l[i] = i - ptr + 1
if i > 0:
l[i] = max(l[i], l[i - 1])
ans = 1
for i in range(n - 1):
ans = max(ans, l[i] + r[i + 1])
print(ans)
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = list(map(int, input().split()))
solve(n, k, x, y)
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for t in range(int(input())):
n, k = map(int, input().split())
x = [int(i) for i in input().split()]
y = input()
x.sort()
mx = []
price = []
cur = 0
ptr = 0
for p, i in enumerate(x):
while ptr < len(x) and x[ptr] - i <= k:
cur += 1
ptr += 1
price.append(cur)
cur -= 1
cur = 0
for p, i in enumerate(price):
cur = max(cur, i)
mx.append(cur)
ans = 0
ptr = 0
for p, i in enumerate(price):
while x[p] - x[ptr] > k:
ptr += 1
if ptr != 0:
ans = max(ans, mx[ptr - 1] + i)
else:
ans = max(ans, i)
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for _ in range(int(input())):
n, k = map(int, input().split())
x = list(map(int, input().split()))
y = list(map(int, input().split()))
x.sort()
left, right = [0] * n, [0] * n
first = 0
for i in range(n):
while first < n and x[first] - x[i] <= k:
first += 1
right[i] = first - i
second = n - 1
for i in range(n - 1, -1, -1):
while second >= 0 and x[i] - x[second] <= k:
second -= 1
left[i] = i - second
mx, ans = 0, 0
for i in range(n):
ans = max(ans, mx + right[i])
mx = max(mx, left[i])
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP LIST NUMBER VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
import sys
input = sys.stdin.readline
t = int(input())
for _ in range(t):
n, k = list(map(int, input().split()))
x = list(map(int, input().split()))
y = list(map(int, input().split()))
x.sort()
take = n - 1
suffix = [0] * n
for i in range(n - 1, -1, -1):
while x[i] + k < x[take]:
take -= 1
suffix[i] = take - i + 1
mx = 0
for i in range(n - 1, -1, -1):
mx = max(suffix[i], mx)
suffix[i] = mx
ans = 1
take = 0
for i in range(n - 1):
while x[i] - k > x[take]:
take += 1
temp = i - take + 1
ans = max(ans, temp + suffix[i + 1])
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
from sys import stdin, stdout
t = int(stdin.readline())
for _ in range(t):
n, k = map(int, stdin.readline().split())
x = list(map(int, stdin.readline().split()))
y = stdin.readline()
if n == 1:
print(1)
continue
endi = [1] * n
starti = [1] * n
x.sort()
curri = 0
i = 1
while i < n:
if x[i] - x[curri] < k:
endi[i] = i - curri + 1
i += 1
elif x[i] - x[curri] == k:
endi[i] = i - curri + 1
i += 1
else:
curri += 1
for i in range(1, n):
endi[i] = max(endi[i], endi[i - 1])
curri = n - 1
i = n - 2
while i >= 0:
if x[curri] - x[i] < k:
starti[i] = curri - i + 1
i -= 1
elif x[curri] - x[i] == k:
starti[i] = curri - i + 1
i -= 1
else:
curri -= 1
for i in range(n - 2, -1, -1):
starti[i] = max(starti[i], starti[i + 1])
maxi = x.count(x[0])
for i in range(n - 1):
s = endi[i] + starti[i + 1]
if s > maxi:
maxi = s
print(maxi)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
There are $n$ points on a plane. The $i$-th point has coordinates $(x_i, y_i)$. You have two horizontal platforms, both of length $k$. Each platform can be placed anywhere on a plane but it should be placed horizontally (on the same $y$-coordinate) and have integer borders. If the left border of the platform is $(x, y)$ then the right border is $(x + k, y)$ and all points between borders (including borders) belong to the platform.
Note that platforms can share common points (overlap) and it is not necessary to place both platforms on the same $y$-coordinate.
When you place both platforms on a plane, all points start falling down decreasing their $y$-coordinate. If a point collides with some platform at some moment, the point stops and is saved. Points which never collide with any platform are lost.
Your task is to find the maximum number of points you can save if you place both platforms optimally.
You have to answer $t$ independent test cases.
For better understanding, please read the Note section below to see a picture for the first test case.
-----Input-----
The first line of the input contains one integer $t$ ($1 \le t \le 2 \cdot 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of the test case contains two integers $n$ and $k$ ($1 \le n \le 2 \cdot 10^5$; $1 \le k \le 10^9$) β the number of points and the length of each platform, respectively. The second line of the test case contains $n$ integers $x_1, x_2, \dots, x_n$ ($1 \le x_i \le 10^9$), where $x_i$ is $x$-coordinate of the $i$-th point. The third line of the input contains $n$ integers $y_1, y_2, \dots, y_n$ ($1 \le y_i \le 10^9$), where $y_i$ is $y$-coordinate of the $i$-th point. All points are distinct (there is no pair $1 \le i < j \le n$ such that $x_i = x_j$ and $y_i = y_j$).
It is guaranteed that the sum of $n$ does not exceed $2 \cdot 10^5$ ($\sum n \le 2 \cdot 10^5$).
-----Output-----
For each test case, print the answer: the maximum number of points you can save if you place both platforms optimally.
-----Example-----
Input
4
7 1
1 5 2 3 1 5 4
1 3 6 7 2 5 4
1 1
1000000000
1000000000
5 10
10 7 5 15 8
20 199 192 219 1904
10 10
15 19 8 17 20 10 9 2 10 19
12 13 6 17 1 14 7 9 19 3
Output
6
1
5
10
-----Note-----
The picture corresponding to the first test case of the example:
[Image]
Blue dots represent the points, red segments represent the platforms. One of the possible ways is to place the first platform between points $(1, -1)$ and $(2, -1)$ and the second one between points $(4, 3)$ and $(5, 3)$. Vectors represent how the points will fall down. As you can see, the only point we can't save is the point $(3, 7)$ so it falls down infinitely and will be lost. It can be proven that we can't achieve better answer here. Also note that the point $(5, 3)$ doesn't fall at all because it is already on the platform.
|
for t in range(int(input())):
n, k = map(int, input().split())
xs = sorted(list(map(int, input().split())))
input()
best = 0
i = j = 0
while j < n:
while j < n and xs[j] <= xs[i] + k:
j += 1
if best < j - i:
best = j - i
best_start = i
best_end = j
i += 1
i = j = 0
best2 = 0
while j < best_start:
while j < best_start and xs[j] <= xs[i] + k:
j += 1
if best2 < j - i:
best2 = j - i
i += 1
i = j = best_end
while j < n:
while j < n and xs[j] <= xs[i] + k:
j += 1
if best2 < j - i:
best2 = j - i
i += 1
best += best2
j = best_start
while j > -1 and xs[j] + k >= xs[best_start]:
j -= 1
last = best_start - j
goodies = [(best_start, last)]
if j == -1:
j = 0
for i in range(best_start + 1, best_end - 1):
while xs[j] + k < xs[i]:
j += 1
if i - j + 1 > last:
last = i - j + 1
goodies.append((i, last))
j = best_end - 1
best2 = 0
while j < n and xs[j] + k >= xs[best_end - 1]:
j += 1
if j == n:
j = n - 1
for i in range(best_end - 1, best_start, -1):
while xs[i] + k < xs[j]:
j -= 1
if i == goodies[-1][0]:
goodies.pop()
if j - i + 1 + goodies[-1][1] > best2:
best2 = j - i + 1 + goodies[-1][1]
print(max(best, best2))
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER WHILE VAR VAR WHILE VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR WHILE VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR VAR WHILE VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR NUMBER VAR VAR ASSIGN VAR VAR WHILE VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR LIST VAR VAR IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR IF BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
t = int(input())
while t != 0:
n, m = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
one = []
two = []
for i in range(n):
if b[i] == 1:
one.append(a[i])
else:
two.append(a[i])
one.sort()
two.sort()
ans = 0
while len(one) > 0 and len(two) > 0 and m > 0:
if one[-1] >= m:
ans += 1
m -= one[-1]
one.pop()
break
elif m <= two[-1]:
ans += 2
m -= two[-1]
two.pop()
break
elif len(one) == 1:
ans += 2
m -= two[-1]
two.pop()
elif two[-1] > one[-1] + one[-2]:
ans += 2
m -= two[-1]
two.pop()
else:
m -= one[-1]
ans += 1
one.pop()
if m <= 0:
print(ans)
else:
while len(one) > 0 and m > 0:
ans += 1
m -= one[-1]
one.pop()
if m <= 0:
print(ans)
else:
while len(two) > 0 and m > 0:
ans += 2
m -= two[-1]
two.pop()
if m <= 0:
print(ans)
else:
print(-1)
t -= 1
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR IF VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR IF FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR IF VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR NUMBER
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
import sys
N = int(200000.0 + 5)
sys.setrecursionlimit(N)
def charming():
n, m = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
c = list(zip(a, b))
c.sort(key=lambda x: x[0] / x[1], reverse=True)
res = 0
last = 0
sum = 0
for i in range(n):
if sum >= m:
break
sum += c[i][0]
res += c[i][1]
last = i
if sum < m:
print(-1)
return
if c[last][1] == 1:
print(res)
return
for i in range(last + 1, n):
if c[i][1] == 1 and sum - c[last][0] + c[i][0] >= m:
print(res - 1)
return
for i in range(last):
if c[i][1] == 1 and sum - c[i][0] >= m:
print(res - 1)
return
print(res)
for t in range(int(input())):
charming()
|
IMPORT ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN IF VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR RETURN FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR VAR NUMBER VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER RETURN FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER NUMBER BIN_OP VAR VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER RETURN EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
t = int(input())
for _ in range(t):
n, m = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
Q = sum(a) - m
if Q < 0:
print(-1)
else:
l1 = sorted([x for i, x in enumerate(a) if b[i] == 1])
l2 = sorted([x for i, x in enumerate(a) if b[i] == 2])
for i in range(1, len(l1)):
l1[i] += l1[i - 1]
for i in range(1, len(l2)):
l2[i] += l2[i - 1]
opt = 0
p = 0
j = len(l1) - 1
for i in range(len(l2) + 1):
c = 2 * i
if p > Q:
break
while j >= 0 and l1[j] > Q - p:
j -= 1
c += j + 1
if c > opt:
opt = c
if i < len(l2):
p = l2[i]
print(sum(b) - opt)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP NUMBER VAR IF VAR VAR WHILE VAR NUMBER VAR VAR BIN_OP VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
def clean(apps, free, app_mem, points):
if sum(app_mem) < free:
return -1
elif sum(app_mem) == free:
return sum(points)
else:
s2, s1 = 0, 0
mem1, mem2 = [], []
for i in range(apps):
if points[i] == 1:
mem1.append(app_mem[i])
else:
mem2.append(app_mem[i])
s2 += app_mem[i]
mem1.sort(reverse=True), mem2.sort(reverse=True)
ans = float("inf")
k = len(mem2) - 1
for j in range(len(mem1) + 1):
while k >= 0 and s2 - mem2[k] + s1 >= free:
s2 -= mem2[k]
k -= 1
if s1 + s2 >= free:
ans = min(ans, 2 * (k + 1) + j)
if j < len(mem1):
s1 += mem1[j]
return ans
for test in range(int(input())):
n, m = map(int, input().split())
memory = list(map(int, input().split()))
pts = list(map(int, input().split()))
print(clean(n, m, memory, pts))
|
FUNC_DEF IF FUNC_CALL VAR VAR VAR RETURN NUMBER IF FUNC_CALL VAR VAR VAR RETURN FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR LIST LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER BIN_OP VAR NUMBER VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
t = int(input())
for _ in range(t):
n, m = map(int, input().rsplit())
gen_a = map(int, input().rsplit())
gen_b = map(int, input().rsplit())
a_1, a_2 = [0], [0]
total_m = 0
for i, j in zip(gen_a, gen_b):
if j == 1:
a_1.append(i)
else:
a_2.append(i)
total_m += i
if total_m < m:
print(-1)
continue
a_1 = sorted(a_1)
a_2 = sorted(a_2)
sum_m, sum_r = 0, 0
l, r = len(a_1) - 1, len(a_2) - 1
while l + r > 0:
if a_1[l] >= m - sum_m:
sum_m += a_1[l]
sum_r += 1
break
if a_2[r] >= m - sum_m:
sum_m += a_2[r]
sum_r += 2
break
if r <= 0 and l > 0:
sum_m += a_1[l]
sum_r += 1
l -= 1
elif l <= 0 and r > 0:
sum_m += a_2[r]
sum_r += 2
r -= 1
elif a_1[l] + a_1[l - 1] > a_2[r]:
sum_m += a_1[l]
sum_r += 1
l -= 1
else:
sum_m += a_2[r]
sum_r += 2
r -= 1
if sum_m >= m:
break
print(sum_r)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST NUMBER LIST NUMBER ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE BIN_OP VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
for _ in range(int(input())):
n, m = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
x = []
y = []
for i in range(n):
if b[i] == 1:
x.append(a[i])
else:
y.append(a[i])
x.sort(reverse=True)
y.sort(reverse=True)
t, cost = 0, 0
p2 = -1
ans = 210000000000
while p2 + 1 < len(y) and t < m:
p2 += 1
t += y[p2]
cost += 2
if t >= m:
ans = min(ans, cost)
for i in range(len(x)):
t += x[i]
cost += 1
while p2 >= 0 and t - y[p2] >= m:
t -= y[p2]
p2 -= 1
cost -= 2
if t >= m:
ans = min(ans, cost)
if ans >= 210000000000:
print(-1)
else:
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR NUMBER BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
from sys import stderr
def dbp(*args, **kwargs):
pass
def get_int_list():
return [int(i) for i in input().strip().split()]
def do_thing():
N, freeme = get_int_list()
mlist = get_int_list()
clist = get_int_list()
if sum(mlist) < freeme:
return -1
c1list = []
c2list = []
rsum = 0
for i in range(N):
if clist[i] == 1:
c1list.append(mlist[i])
else:
t = mlist[i]
c2list.append(t)
rsum += t
c1list.sort(reverse=True)
c2list.sort(reverse=True)
dbp("target:", freeme)
dbp(c1list)
dbp(c2list)
lsum = 0
r = len(c2list)
bcc = float("inf")
for l in range(len(c1list) + 1):
dbp("before:", l, lsum, r, rsum, bcc)
while r > 0 and lsum + rsum - c2list[r - 1] >= freeme:
r -= 1
rsum -= c2list[r]
if lsum + rsum >= freeme:
cost = 2 * r + l
dbp(l, lsum, r, rsum, "goodcost:", cost)
bcc = min(cost, bcc)
if l < len(c1list):
lsum += c1list[l]
dbp("after:", l, lsum, r, rsum, bcc)
return bcc if bcc != float("inf") else -1
maxcc = int(input().strip())
for cc in range(maxcc):
print(do_thing())
|
FUNC_DEF FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR RETURN NUMBER ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR STRING VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR STRING VAR VAR VAR VAR VAR WHILE VAR NUMBER BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP NUMBER VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR STRING VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR STRING VAR VAR VAR VAR VAR RETURN VAR FUNC_CALL VAR STRING VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
import sys
input = sys.stdin.readline
t = int(input())
for i in range(t):
n, k = map(int, input().split())
a = [int(x) for x in input().split()]
b = [int(x) for x in input().split()]
c = []
ones = [0]
for i in range(n):
c.append((a[i] / b[i], b[i]))
if b[i] == 1:
ones.append(a[i])
ones.sort()
ones = ones[::-1]
if max(ones) >= k:
print(1)
continue
if len(ones) == n + 1:
s = 0
if sum(ones) < k:
print(-1)
continue
for i in range(n):
s += ones[i]
if s >= k:
print(i + 1)
break
continue
c.sort()
c = c[::-1]
d = []
temp = [c[0]]
for i in range(n - 1):
if c[i][0] == c[i + 1][0]:
temp.append(c[i + 1])
else:
d.extend(temp[::-1])
temp = [c[i + 1]]
d.extend(temp[::-1])
c = d
ans = 0
temp = 0
flag = False
temp_list = []
x = 0
for i in range(n):
if ones[x] >= k - temp:
ans += 1
flag = True
break
ans += c[i][1]
temp += c[i][0] * c[i][1]
if c[i][1] == 1:
x += 1
temp_list.append(c[i])
if temp >= k:
flag = True
break
if not flag:
print(-1)
continue
temp_list = temp_list[::-1]
for i in range(len(temp_list)):
if temp - c[i][0] * c[i][1] >= k:
temp -= c[i][0]
ans -= c[i][1]
print(ans)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR NUMBER VAR VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER IF VAR VAR NUMBER NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER IF VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
def search(arr, key):
l = 0
r = len(arr) - 1
while l <= r:
m = (l + r) // 2
if arr[m] >= key:
r = m - 1
else:
l = m + 1
return l
t = int(input())
while t > 0:
t -= 1
n, m = map(int, input().strip().split())
a = list(map(int, input().strip().split()))
b = list(map(int, input().strip().split()))
one = []
two = []
for i in range(n):
if b[i] == 1:
one.append(a[i])
else:
two.append(a[i])
one.sort(reverse=True)
two.sort(reverse=True)
for i in range(1, len(one)):
one[i] += one[i - 1]
for i in range(1, len(two)):
two[i] += two[i - 1]
if len(two) == 0:
if one[len(one) - 1] >= m:
print(search(one, m) + 1)
else:
print(-1)
elif len(one) == 0:
if two[len(two) - 1] >= m:
print(search(two, m) * 2 + 2)
else:
print(-1)
elif one[len(one) - 1] + two[len(two) - 1] < m:
print(-1)
else:
ans = 1000000000000000000
if one[len(one) - 1] >= m:
ans = search(one, m) + 1
if two[len(two) - 1] >= m:
ans = min(ans, search(two, m) * 2 + 2)
for i in range(len(one)):
if one[i] + two[len(two) - 1] >= m:
tmp = i + 1
if one[i] < m:
tmp += search(two, m - one[i]) * 2 + 2
else:
ans = min(ans, tmp)
break
ans = min(ans, tmp)
print(ans)
|
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER IF BIN_OP VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
for _ in range(int(input())):
n, m = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
a1 = [10000000000]
a2 = [10000000000]
for i in range(n):
if b[i] == 1:
a1.append(a[i])
else:
a2.append(a[i])
a1.sort(reverse=True)
a2.sort(reverse=True)
a1[0] = 0
a2[0] = 0
for i in range(1, len(a1)):
a1[i] += a1[i - 1]
am = False
c = float("inf")
for i in range(len(a2)):
if i >= 1:
a2[i] += a2[i - 1]
l = -1
r = len(a1)
h = m - a2[i]
while r > l + 1:
mid = (l + r) // 2
if h > a1[mid]:
l = mid
else:
r = mid
if r != len(a1):
am = True
c = min(c, 2 * i + r)
if am:
print(c)
else:
print(-1)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER NUMBER ASSIGN VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR WHILE VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR VAR IF VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
R = lambda: list(map(int, input().split()))
def bs(a, k):
l = 0
r = len(a) - 1
while l < r:
m = l + (r - l) // 2
if a[m] < k:
l = m + 1
else:
r = m
m = (l + r) // 2
return m
for _ in range(int(input())):
n, m = R()
a = R()
b = R()
if sum(a) < m:
print(-1)
continue
reg, imp = [], []
for i in range(n):
if b[i] == 1:
reg.append(a[i])
else:
imp.append(a[i])
reg = sorted(reg)[::-1]
imp = sorted(imp)[::-1]
pi = [0]
for i in range(len(imp)):
pi.append(pi[-1] + imp[i])
mr = 0
mi = bs(pi, m)
ans = 10**9
if pi[mi] >= m:
ans = mi * 2
for i in range(len(reg)):
mr += reg[i]
lef = m - mr
mi = bs(pi, lef)
if pi[mi] + mr >= m:
ans = min(ans, mi * 2 + i + 1)
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR LIST LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
def solve():
inp = input().rstrip().split(" ")
n, m = int(inp[0]), int(inp[1])
a_arr = input().rstrip().split(" ")
b_arr = input().rstrip().split(" ")
sum_reg = 0
sum_imp = 0
reg_apps = []
imp_apps = []
for i in range(n):
if b_arr[i] == "1":
reg_apps.append(int(a_arr[i]))
sum_reg += int(a_arr[i])
else:
imp_apps.append(int(a_arr[i]))
sum_imp += int(a_arr[i])
reg_apps.sort()
imp_apps.sort()
if sum_reg + sum_imp < m:
print(-1)
return
tot_removed = 0
min_points_lost = 0
while sum_reg < m - tot_removed:
tot_removed += imp_apps.pop()
min_points_lost += 2
while tot_removed < m and len(reg_apps) + len(imp_apps) > 0:
if len(reg_apps) == 0:
tot_removed += imp_apps.pop()
min_points_lost += 2
elif len(imp_apps) == 0:
tot_removed += reg_apps.pop()
min_points_lost += 1
elif reg_apps[-1] >= imp_apps[-1]:
tot_removed += reg_apps.pop()
min_points_lost += 1
elif tot_removed + reg_apps[-1] >= m:
tot_removed += reg_apps.pop()
min_points_lost += 1
elif len(reg_apps) > 1 and reg_apps[-1] + reg_apps[-2] > imp_apps[-1]:
tot_removed += reg_apps.pop()
tot_removed += reg_apps.pop()
min_points_lost += 2
else:
tot_removed += imp_apps.pop()
min_points_lost += 2
print(min_points_lost)
def main():
T = int(input())
for c in range(T):
solve()
main()
|
FUNC_DEF ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR VAR FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR IF BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP VAR VAR VAR FUNC_CALL VAR VAR NUMBER WHILE VAR VAR BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR NUMBER IF FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
from itertools import repeat
def line():
return map(int, input().split())
def num():
return int(input())
def nfunc(f, n, *args, **kwargs):
return (f(*args, **kwargs) for _ in repeat(None, n))
t = num()
for _ in repeat(None, t):
n, m = line()
mems = list(line())
uses = list(line())
norms = sorted(mem for mem, use in zip(mems, uses) if use == 1)[::-1]
imps = sorted(mem for mem, use in zip(mems, uses) if use == 2)[::-1]
nn, ni = len(norms), len(imps)
ans = 0
i, j = 0, 0
while m > 0:
if i < nn - 1 and j < ni:
if m > norms[i] and norms[i] + norms[i + 1] < imps[j]:
ans += 2
m -= imps[j]
j += 1
else:
ans += 1
m -= norms[i]
i += 1
elif i == nn - 1 and j < ni:
if m > norms[i] and norms[i] < imps[j]:
ans += 2
m -= imps[j]
j += 1
else:
ans += 1
m -= norms[i]
i += 1
elif i < nn:
ans += 1
m -= norms[i]
i += 1
elif j < ni:
ans += 2
m -= imps[j]
j += 1
else:
break
if m > 0:
print(-1)
else:
print(ans)
|
FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR NONE VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NONE VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER WHILE VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
def dell(mlst, imp, m):
n = len(mlst)
cc = []
for i in range(n):
cc.append((mlst[i] / imp[i], i))
cc.sort()
sm = lose = 0
i = place2 = place = place1 = -1
for i in range(n - 1, -1, -1):
place = cc[i][1]
sm += mlst[place]
lose += imp[place]
if imp[place] == 2:
place2 = place
else:
place1 = place
if sm >= m:
break
if sm < m:
return -1
if place == place2:
if place1 != -1 and sm - mlst[place1] >= m:
return lose - 1
i -= 1
while i >= 0 and imp[cc[i][1]] == 2:
i -= 1
if i >= 0 and sm - mlst[place2] + mlst[cc[i][1]] >= m:
return lose - 1
return lose
t = int(input())
for u in range(t):
mm = input().split()
ml = list(map(int, input().split()))
imp = list(map(int, input().split()))
print(dell(ml, imp, int(mm[1])))
|
FUNC_DEF ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER VAR VAR VAR VAR VAR VAR IF VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR IF VAR VAR RETURN NUMBER IF VAR VAR IF VAR NUMBER BIN_OP VAR VAR VAR VAR RETURN BIN_OP VAR NUMBER VAR NUMBER WHILE VAR NUMBER VAR VAR VAR NUMBER NUMBER VAR NUMBER IF VAR NUMBER BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR RETURN BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
def bisect(b, m):
l, h, ind = 0, len(b) - 1, -1
while l <= h:
mid = (l + h) // 2
if b[mid] >= m:
ind = mid
h = mid - 1
else:
l = mid + 1
return ind
def answer(m):
c1, c2 = [0], []
for i in range(n):
if b[i] == 1:
c1.append(a[i])
else:
c2.append(a[i])
c1.sort(reverse=True)
c2.sort(reverse=True)
c1.insert(0, 0)
i, j, ans = 0, 0, 0
for i in range(1, len(c2)):
c2[i] += c2[i - 1]
ans = 10**8
for i in range(len(c1)):
m -= c1[i]
if m <= 0:
ans = min(ans, i)
break
val = bisect(c2, m)
if val != -1:
ans = min(ans, i + (val + 1) * 2)
if ans == 10**8:
return -1
else:
return ans
for T in range(int(input())):
n, m = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
print(answer(m))
|
FUNC_DEF ASSIGN VAR VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR LIST NUMBER LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP NUMBER NUMBER RETURN NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
from sys import stdin
input = stdin.buffer.readline
t = int(input())
for i in range(t):
n, m = map(int, input().split())
a = [int(x) for x in input().split()]
b = [int(x) for x in input().split()]
ones = []
twos = []
for i in range(n):
if b[i] == 1:
ones.append(a[i])
else:
twos.append(a[i])
ones.sort(reverse=True)
twos.sort(reverse=True)
x = 0
for i in range(len(ones)):
x = x + ones[i]
ones[i] = x
x = 0
for i in range(len(twos)):
x = x + twos[i]
twos[i] = x
s = x
ans = 10**8
ones = [0] + ones
for i in range(len(ones)):
x = m - ones[i]
if x <= 0:
ans = min(ans, i)
continue
if x > s:
continue
start = 0
end = len(twos) - 1
pos = -1
while start <= end:
mid = (start + end) // 2
if twos[mid] >= x:
pos = mid
end = mid - 1
else:
start = mid + 1
ans = min(ans, i + (pos + 1) * 2)
if ans == 10**8:
print(-1)
else:
print(ans)
|
ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR NUMBER NUMBER IF VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
def readInt():
return int(input())
def readInts():
return [int(x) for x in input().split()]
def readBin():
return [int(x) for x in readString()]
def readString():
return input().rstrip()
def readCase():
return readString()
def solve(n, m, usage, convenience):
normal = []
high = []
max_loss = 2 * n + 1
for x in range(n):
if convenience[x] == 1:
normal.append(usage[x])
else:
high.append(usage[x])
normal.sort(reverse=True)
high.sort(reverse=True)
loss = 0
normalPos = 0
highPos = 0
while m > 0 and normalPos < len(normal):
m -= normal[normalPos]
normalPos += 1
loss += 1
best_loss = max_loss
if m <= 0:
best_loss = loss
normalPos -= 1
while highPos < len(high):
m -= high[highPos]
highPos += 1
loss += 2
while normalPos >= 0:
if m + normal[normalPos] <= 0:
m += normal[normalPos]
normalPos -= 1
loss -= 1
else:
break
if m <= 0 and loss < best_loss:
best_loss = loss
if best_loss == max_loss:
return -1
else:
return best_loss
cases = readInt()
for case in range(cases):
n, m = readInts()
usage = readInts()
convenience = readInts()
print(solve(n, m, usage, convenience))
|
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR BIN_OP BIN_OP NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER IF BIN_OP VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER VAR VAR ASSIGN VAR VAR IF VAR VAR RETURN NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
for t in range(int(input())):
n, m = [int(i) for i in input().split()]
d = [int(i) for i in input().split()]
dff = [int(i) for i in input().split()]
if sum(d) < m:
print(-1)
continue
d1 = [d[i] for i in range(n) if dff[i] == 1]
d2 = [d[i] for i in range(n) if dff[i] == 2]
ld1 = len(d1)
ld2 = len(d2)
d1.sort(reverse=True)
d2.sort(reverse=True)
p1 = 0
p2 = 0
ans = 0
while m > 0:
if p1 == ld1 - 1:
while m > d1[p1]:
ans += 2
m -= d2[p2]
p2 += 1
if m <= 0:
break
else:
ans += 1
m -= d1[p1]
break
opt1 = 0 if p1 >= ld1 - 1 else d1[p1] + d1[p1 + 1]
opt2 = 0 if p2 == ld2 else d2[p2]
if opt2 > opt1:
if opt2 > m:
break
ans += 2
p2 += 1
m -= opt2
else:
if opt1 > m:
break
ans += 1
m -= d1[p1]
p1 += 1
if m > 0:
opt0 = 0 if p1 == ld1 else d1[p1]
if opt0 >= m:
ans += 1
else:
ans += 2
print(ans)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR VAR IF VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER VAR VAR IF VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
from sys import stdin
for _ in range(int(input())):
n, m = map(int, stdin.readline().strip().split())
a = list(map(int, stdin.readline().strip().split()))
b = list(map(int, stdin.readline().strip().split()))
s = sum(a)
sb = sum(b)
if s < m:
print(-1)
elif s == m:
print(sb)
else:
two, one = [], []
for i in range(n):
if b[i] == 1:
one.append(a[i])
else:
two.append(a[i])
one.sort(reverse=True)
two.sort(reverse=True)
lo, lt = len(one), len(two)
s1, s2 = [0] * lo, [0] * lt
for i in range(lo):
if i == 0:
s1[i] = one[i]
else:
s1[i] = s1[i - 1] + one[i]
for i in range(lt):
if i == 0:
s2[i] = two[0]
else:
s2[i] = s2[i - 1] + two[i]
lost = sb
if lt == 0:
for i in range(lo):
if s1[i] >= m:
lost = i + 1
break
else:
for i in range(lo):
if s1[i] < m:
val = s1[i]
if val + s2[-1] < m:
continue
temp = i + 1
for j in range(lt):
temp += 2
if val + s2[j] >= m:
break
lost = min(lost, temp)
else:
lost = min(lost, i + 1)
break
for i in range(lt):
if s2[i] >= m:
lost = min(lost, 2 * (i + 1))
break
print(lost)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR LIST LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR BIN_OP LIST NUMBER VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR VAR IF VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR IF BIN_OP VAR VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
class app:
a = 0
b = 0
def __init__(self, a, b):
self.a = a
self.b = b
def cmp(app):
return app.a
def solve():
n, m = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
arr = []
for i in range(n):
arr.append(app(a[i], b[i]))
arr = sorted(arr, key=cmp)
sum = 0
msum = 0
twos = []
ones = []
for i in range(n - 1, -1, -1):
if sum < m:
sum += arr[i].a
msum += arr[i].b
if arr[i].b == 2:
twos.append(arr[i].a)
elif arr[i].b == 1:
ones.append(arr[i].a)
ind = 0
while ind < len(ones) and twos:
if sum - twos[-1] + ones[ind] >= m:
sum = sum - twos[-1] + ones[ind]
msum -= 1
ind += 1
twos.pop()
elif ind + 1 < len(ones) and sum - twos[-1] + ones[ind] + ones[ind + 1] >= m:
sum = sum - twos[-1] + ones[ind] + ones[ind + 1]
ind += 2
twos.pop()
else:
break
if sum >= m:
print(msum)
else:
print(-1)
def main():
t = int(input())
for i in range(t):
solve()
main()
|
CLASS_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR VAR ASSIGN VAR VAR FUNC_DEF RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR IF BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
for _ in range(int(input())):
n, m = map(int, input().split())
a, b = list(map(int, input().split())), list(map(int, input().split()))
imp = sorted([a[i] for i in range(n) if b[i] == 2])
not_imp = sorted([a[i] for i in range(n) if b[i] == 1])
res = 0
while (imp and not_imp) and m > 0:
if imp[-1] > sum(not_imp[-2:]) and not_imp[-1] < m:
m -= imp.pop()
res += 2
else:
m -= not_imp.pop()
res += 1
if m > 0:
while imp and m > 0:
m -= imp.pop()
res += 2
while not_imp and m > 0:
m -= not_imp.pop()
res += 1
if m > 0:
print(-1)
else:
print(res)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR NUMBER IF VAR NUMBER FUNC_CALL VAR VAR NUMBER VAR NUMBER VAR VAR FUNC_CALL VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER WHILE VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER WHILE VAR VAR NUMBER VAR FUNC_CALL VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
t = int(input())
for j in range(t):
n, m = tuple(map(int, input().split(" ")))
a = list(map(int, input().split(" ")))
b = list(map(int, input().split(" ")))
one = []
two = []
for i in range(n):
if b[i] == 1:
one.append(a[i])
else:
two.append(a[i])
two.sort(key=lambda x: -x)
one.sort(key=lambda x: -x)
sum1, sum2 = 0, sum(two)
r = len(two)
INF = 9999999999999
ans = INF
for i in range(len(one) + 1):
while r > 0 and sum1 + sum2 - two[r - 1] >= m:
sum2 -= two[r - 1]
r -= 1
if sum1 + sum2 >= m:
ans = min(ans, i + 2 * r)
if i < len(one):
sum1 += one[i]
print("-1" if ans == INF else str(ans))
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP NUMBER VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR STRING FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
import sys
input = sys.stdin.readline
t = int(input())
for tests in range(t):
n, m = map(int, input().split())
A = list(map(int, input().split()))
B = list(map(int, input().split()))
A1 = []
A2 = []
for i in range(n):
if B[i] == 1:
A1.append(A[i])
else:
A2.append(A[i])
A1.sort(reverse=True)
A2.sort(reverse=True)
S1 = [0]
for a in A1:
S1.append(S1[-1] + a)
S2 = [0]
for a in A2:
S2.append(S2[-1] + a)
ANS = 1 << 60
ind2 = len(S2) - 1
for i in range(len(S1)):
s1 = S1[i]
while s1 + S2[ind2] >= m:
ANS = min(ANS, i + ind2 * 2)
if ind2 > 0:
ind2 -= 1
else:
break
if ANS == 1 << 60:
print(-1)
else:
print(ANS)
|
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR WHILE BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP VAR NUMBER IF VAR NUMBER VAR NUMBER IF VAR BIN_OP NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
cases = int(input())
for _ in range(cases):
n, m = [int(i) for i in input().strip().split()]
mem = [int(i) for i in input().strip().split()]
points = [int(i) for i in input().strip().split()]
ones = [(mem[i], points[i]) for i in range(n) if points[i] == 1]
twos = [(mem[i], points[i]) for i in range(n) if points[i] == 2]
ones.sort()
twos.sort()
ans = 0
while m > 0 and (ones or twos):
if not twos or ones and m - ones[-1][0] <= 0:
m -= ones.pop()[0]
ans += 1
elif not ones:
m -= twos.pop()[0]
ans += 2
else:
oneSum = sum(x[0] for x in ones[-2:])
twoSum = twos[-1][0]
if oneSum >= twoSum:
m -= ones.pop()[0]
ans += 1
else:
m -= twos.pop()[0]
ans += 2
print(ans if m <= 0 else -1)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR IF VAR VAR BIN_OP VAR VAR NUMBER NUMBER NUMBER VAR FUNC_CALL VAR NUMBER VAR NUMBER IF VAR VAR FUNC_CALL VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER IF VAR VAR VAR FUNC_CALL VAR NUMBER VAR NUMBER VAR FUNC_CALL VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR NUMBER VAR NUMBER
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
t = int(input())
for _ in range(t):
n, m = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
x = []
y = []
for i in range(len(a)):
if b[i] == 1:
x.append(a[i])
else:
y.append(a[i])
x = sorted(x, reverse=True)
y = sorted(y, reverse=True)
i = 0
j = 0
ans = 0
lis = []
while i < len(x) and j < len(y) and m > 0:
if x[i] >= m:
ans += 1
m -= x[i]
lis.append(x[i])
i += 1
elif x[i] > y[j]:
ans += 1
m -= x[i]
lis.append(x[i])
i += 1
elif y[j] >= m:
ans += 2
m -= y[j]
j += 1
elif 2 * x[i] > y[j]:
ans += 1
m -= x[i]
lis.append(x[i])
i += 1
else:
ans += 2
m -= y[j]
j += 1
while i < len(x) and m > 0:
ans += 1
m -= x[i]
i += 1
while j < len(y) and m > 0:
ans += 2
m -= y[j]
j += 1
if m > 0:
print(-1)
else:
while lis != [] and lis[-1] + m <= 0:
ans -= 1
m += lis[-1]
lis.pop()
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR VAR VAR VAR NUMBER IF BIN_OP NUMBER VAR VAR VAR VAR VAR NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER WHILE VAR LIST BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
rn = lambda: int(input())
rns = lambda: map(int, input().split())
rl = lambda: list(map(int, input().split()))
rs = lambda: input()
YN = lambda x: print("YES") if x else print("NO")
mod = lambda x: x % (10**9 + 7)
def d(a):
d = {}
for i in a:
if i not in d:
d[i] = 0
d[i] += 1
return d
for _ in range(rn()):
n, m = rns()
a = rl()
b = rl()
if sum(a) < m:
print(-1)
else:
ones = []
twos = []
for i in range(n):
if b[i] == 1:
ones.append(a[i])
else:
twos.append(a[i])
ones.sort(reverse=True)
twos.sort(reverse=True)
i = 0
j = 0
acc = 0
while acc < m and i < len(ones):
acc += ones[i]
i += 1
while acc < m and j < len(twos):
acc += twos[j]
j += 1
ans = i + 2 * j
while i > 0:
i -= 1
acc -= ones[i]
while acc < m and j < len(twos):
acc += twos[j]
j += 1
if acc >= m:
ans = min(ans, i + 2 * j)
else:
break
print(ans)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR STRING FUNC_CALL VAR STRING ASSIGN VAR BIN_OP VAR BIN_OP BIN_OP NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP NUMBER VAR WHILE VAR NUMBER VAR NUMBER VAR VAR VAR WHILE VAR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP NUMBER VAR EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
for _ in range(int(input())):
n, m = map(int, input().split())
memories = list(map(int, input().split()))
convenience = list(map(int, input().split()))
X, Y = [], []
for a, b in zip(memories, convenience):
if b == 1:
X.append(a)
else:
Y.append(a)
X.sort(reverse=True)
Y.sort()
i, j = 0, 0
suma = sum(Y)
puntos = float("inf")
while i <= len(X):
while j < len(Y) and suma - Y[j] >= m:
suma -= Y[j]
j += 1
if suma >= m:
puntos = min(puntos, i + 2 * (len(Y) - j))
if i < len(X):
suma += X[i]
i += 1
if suma < m:
print(-1)
continue
print(puntos)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR STRING WHILE VAR FUNC_CALL VAR VAR WHILE VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR BIN_OP NUMBER BIN_OP FUNC_CALL VAR VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
t = int(input())
for i in range(t):
n, m = list(map(int, input().split()))
a = list(map(int, input().split()))
b = list(map(int, input().split()))
if sum(a) < m:
print(-1)
else:
one_arr = []
two_arr = []
for app, score in zip(a, b):
if score == 1:
one_arr.append(app)
else:
two_arr.append(app)
one_arr.sort()
two_arr.sort()
counter = 0
while m > 0:
if len(one_arr) == 0:
m -= two_arr[-1]
del two_arr[-1]
counter += 2
elif len(two_arr) == 0:
m -= one_arr[-1]
del one_arr[-1]
counter += 1
elif m <= one_arr[-1]:
m -= one_arr[-1]
counter += 1
del one_arr[-1]
elif len(one_arr) > 1:
if one_arr[-1] + one_arr[-2] > two_arr[-1]:
m -= one_arr[-1]
counter += 1
del one_arr[-1]
else:
m -= two_arr[-1]
counter += 2
del two_arr[-1]
else:
m -= two_arr[-1]
counter += 2
del two_arr[-1]
print(counter)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR VAR FUNC_CALL VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
in_length = int(input())
final_ouput = []
for i in range(in_length):
[num_apps, mem_needed] = input().split()
mem_used = [int(el) for el in input().split()]
conv_points = input().split()
big_num = 5000000000
out = big_num
low_apps = []
high_apps = []
for j in range(int(num_apps)):
if conv_points[j] == "1":
low_apps.append(mem_used[j])
else:
high_apps.append(mem_used[j])
low_apps = sorted(low_apps)
high_apps = sorted(high_apps)
low_apps.reverse()
high_apps.reverse()
acc_sum_low = 0
acc_sum_high = sum(high_apps)
high_length = len(high_apps)
for j in range(len(low_apps) + 1):
while high_length > 0 and acc_sum_low + acc_sum_high - high_apps[
high_length - 1
] >= int(mem_needed):
high_length -= 1
acc_sum_high -= high_apps[high_length]
if acc_sum_low + acc_sum_high >= int(mem_needed):
out = min(out, 2 * high_length + j)
if j != len(low_apps):
acc_sum_low += low_apps[j]
if out == big_num:
final_ouput.append(-1)
else:
final_ouput.append(out)
for out in final_ouput:
print(out)
|
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN LIST VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR STRING EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
for t in range(int(input())):
n, m = [int(k) for k in input().split()]
a = [int(k) for k in input().split()]
b = [int(k) for k in input().split()]
if m > sum(a):
print(-1)
continue
imp = []
non = []
for i in range(n):
if b[i] == 2:
imp += [a[i]]
else:
non += [a[i]]
ans = 0
imp.sort(reverse=True)
non.sort(reverse=True)
il = len(imp)
nl = len(non)
ii = 0
ni = 0
while m > 0:
if ni < nl:
m -= non[ni]
ni += 1
ans += 1
else:
m -= imp[ii]
ii += 1
ans += 2
fin = ans
ni -= 1
while ni >= 0:
m += non[ni]
ans -= 1
ni -= 1
while m > 0 and ii < il:
m -= imp[ii]
ii += 1
ans += 2
if m > 0:
break
if ans < fin:
fin = ans
print(fin)
|
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR LIST VAR VAR VAR LIST VAR VAR ASSIGN VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR NUMBER VAR NUMBER WHILE VAR NUMBER VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
def solve():
n, m = input().split()
n = int(n)
m = int(m)
mem = input().split()
unit = input().split()
regular = []
important = []
for i in range(n):
mem[i] = int(mem[i])
unit[i] = int(unit[i])
if unit[i] == 1:
regular.append(mem[i])
else:
important.append(mem[i])
regular.sort(reverse=True)
important.sort(reverse=True)
sum_regular = 0
sum_important = sum(important)
index_important = len(important)
res = 1000000000.0 + 1
for i in range(len(regular) + 1):
while (
index_important > 0
and sum_regular + sum_important - important[index_important - 1] >= m
):
index_important -= 1
sum_important -= important[index_important]
if sum_regular + sum_important >= m:
res = min(res, 2 * index_important + i)
if i != len(regular):
sum_regular += regular[i]
if res != 1000000000.0 + 1:
return res
else:
return -1
no_tests = int(input())
results = []
for i in range(no_tests):
results.append(solve())
for result in results:
print(result)
|
FUNC_DEF ASSIGN VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR IF VAR BIN_OP NUMBER NUMBER RETURN VAR RETURN NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FOR VAR VAR EXPR FUNC_CALL VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
import sys
input = sys.stdin.readline
def solution(n, m, a, b):
l_1 = []
l_2 = []
diff_memory = 0
sol = 10**10
sum_a = sum(a)
if sum_a < m:
print(-1)
return
l_1 = [ai for ai, bi in zip(a, b) if bi == 1]
l_2_slave = [ai for ai, bi in zip(a, b) if bi == 2]
l_1.sort(reverse=True)
l_2_slave.sort(reverse=True)
l_2 = []
for i in range(-1, 2 * len(l_2_slave) - 1):
if i % 2 == 1:
l_2.append(0)
else:
l_2.append(l_2_slave[i // 2])
partial_l1 = [0]
for elem in l_1:
partial_l1.append(partial_l1[-1] + elem)
partial_l2 = [0]
for elem in l_2:
partial_l2.append(partial_l2[-1] + elem)
i1 = len(partial_l1) - 1
for i2 in range(len(partial_l2)):
while i1 >= 0:
if partial_l1[i1] + partial_l2[i2] >= m:
sol = min(sol, i1 + i2)
i1 -= 1
else:
break
print(sol)
T = int(input())
for t in range(T):
n, m = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
solution(n, m, a, b)
|
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER ASSIGN VAR BIN_OP NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR NUMBER RETURN ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR NUMBER BIN_OP BIN_OP NUMBER FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR LIST NUMBER FOR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR
|
Polycarp often uses his smartphone. He has already installed $n$ applications on it. Application with number $i$ takes up $a_i$ units of memory.
Polycarp wants to free at least $m$ units of memory (by removing some applications).
Of course, some applications are more important to Polycarp than others. He came up with the following scoring system β he assigned an integer $b_i$ to each application:
$b_i = 1$ β regular application;
$b_i = 2$ β important application.
According to this rating system, his phone has $b_1 + b_2 + \ldots + b_n$ convenience points.
Polycarp believes that if he removes applications with numbers $i_1, i_2, \ldots, i_k$, then he will free $a_{i_1} + a_{i_2} + \ldots + a_{i_k}$ units of memory and lose $b_{i_1} + b_{i_2} + \ldots + b_{i_k}$ convenience points.
For example, if $n=5$, $m=7$, $a=[5, 3, 2, 1, 4]$, $b=[2, 1, 1, 2, 1]$, then Polycarp can uninstall the following application sets (not all options are listed below):
applications with numbers $1, 4$ and $5$. In this case, it will free $a_1+a_4+a_5=10$ units of memory and lose $b_1+b_4+b_5=5$ convenience points;
applications with numbers $1$ and $3$. In this case, it will free $a_1+a_3=7$ units of memory and lose $b_1+b_3=3$ convenience points.
applications with numbers $2$ and $5$. In this case, it will free $a_2+a_5=7$ memory units and lose $b_2+b_5=2$ convenience points.
Help Polycarp, choose a set of applications, such that if removing them will free at least $m$ units of memory and lose the minimum number of convenience points, or indicate that such a set does not exist.
-----Input-----
The first line contains one integer $t$ ($1 \le t \le 10^4$) β the number of test cases. Then $t$ test cases follow.
The first line of each test case contains two integers $n$ and $m$ ($1 \le n \le 2 \cdot 10^5$, $1 \le m \le 10^9$) β the number of applications on Polycarp's phone and the number of memory units to be freed.
The second line of each test case contains $n$ integers $a_1, a_2, \ldots, a_n$ ($1 \le a_i \le 10^9$) β the number of memory units used by applications.
The third line of each test case contains $n$ integers $b_1, b_2, \ldots, b_n$ ($1 \le b_i \le 2$) β the convenience points of each application.
It is guaranteed that the sum of $n$ over all test cases does not exceed $2 \cdot 10^5$.
-----Output-----
For each test case, output on a separate line:
-1, if there is no set of applications, removing which will free at least $m$ units of memory;
the minimum number of convenience points that Polycarp will lose if such a set exists.
-----Examples-----
Input
5
5 7
5 3 2 1 4
2 1 1 2 1
1 3
2
1
5 10
2 3 2 3 2
1 2 1 2 1
4 10
5 1 3 4
1 2 1 2
4 5
3 2 1 2
2 1 2 1
Output
2
-1
6
4
3
-----Note-----
In the first test case, it is optimal to remove applications with numbers $2$ and $5$, freeing $7$ units of memory. $b_2+b_5=2$.
In the second test case, by removing the only application, Polycarp will be able to clear only $2$ of memory units out of the $3$ needed.
In the third test case, it is optimal to remove applications with numbers $1$, $2$, $3$ and $4$, freeing $10$ units of memory. $b_1+b_2+b_3+b_4=6$.
In the fourth test case, it is optimal to remove applications with numbers $1$, $3$ and $4$, freeing $12$ units of memory. $b_1+b_3+b_4=4$.
In the fifth test case, it is optimal to remove applications with numbers $1$ and $2$, freeing $5$ units of memory. $b_1+b_2=3$.
|
import sys
t = int(input())
for _ in range(t):
n, k = map(int, input().split())
a = list(map(int, input().split()))
b = list(map(int, input().split()))
reg, imp = [], []
for i in range(n):
if b[i] == 1:
reg.append(a[i])
else:
imp.append(a[i])
reg.sort(reverse=True)
imp.sort(reverse=True)
reg_len, imp_len = len(reg), len(imp)
r = imp_len
ans = sys.maxsize
curSumA, curSumB = 0, sum(imp)
for i in range(reg_len + 1):
while r > 0 and curSumA + curSumB - imp[r - 1] >= k:
r -= 1
curSumB -= imp[r]
if curSumA + curSumB >= k:
ans = min(ans, 2 * r + i)
if i != reg_len:
curSumA += reg[i]
print(-1 if ans == sys.maxsize else ans)
|
IMPORT ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR LIST LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER WHILE VAR NUMBER BIN_OP BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP NUMBER VAR VAR IF VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER VAR
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.