description
stringlengths
171
4k
code
stringlengths
94
3.98k
normalized_code
stringlengths
57
4.99k
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
s = input() t = input() indl = [(-1) for i in range(len(t))] j = 0 for i in range(len(s)): if s[i] == t[j]: indl[j] = i j += 1 if j == len(t): break indr = [(-1) for i in range(len(t))] j = len(t) - 1 for i1 in range(len(s)): i = len(s) - 1 - i1 if s[i] == t[j]: indr[j] = i j -= 1 if j == -1: break l = indr[0] for i in range(len(t) - 1): l = max(l, indr[i + 1] - indl[i] - 1) l = max(l, len(s) - 1 - indl[len(t) - 1]) print(l)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR IF VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
string = str(input()) substring = str(input()) len_string = len(string) len_substring = len(substring) minimal_string_pos = [] max_string_pos = [] sub_flag = 0 for i in range(len_string): if string[i] == substring[sub_flag]: minimal_string_pos.append(i) sub_flag += 1 if sub_flag > len_substring - 1: break sub_flag = len(substring) - 1 for i in range(len_string - 1, -1, -1): if string[i] == substring[sub_flag]: max_string_pos.append(i) sub_flag -= 1 if sub_flag < 0: break max_string_pos = max_string_pos[::-1] digit_max_1 = max( max_string_pos[0], len_string - minimal_string_pos[len(minimal_string_pos) - 1] - 1 ) digit_max_2 = 0 for i in range(len(substring) - 1): digit_max_2 = ( max_string_pos[i + 1] - minimal_string_pos[i] - 1 if max_string_pos[i + 1] - minimal_string_pos[i] - 1 > digit_max_2 else digit_max_2 ) print(max(digit_max_1, digit_max_2))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
R = lambda: map(int, input().split()) s = input() t = input() ls, lt = len(s), len(t) a = [0] * lt j = ls - 1 for i in reversed(range(lt)): while s[j] != t[i]: j -= 1 a[i] = j j -= 1 res, l = 0, 0 for i in range(ls): rp = ls - 1 if l < lt: rp = a[l] - 1 res = max(res, rp - i + 1) if l < lt and s[i] == t[l]: l += 1 print(res)
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR WHILE VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
word = input() sub = input() n = len(word) m = len(sub) LR = [] RL = [] ind = 0 for i in range(n): if sub[ind] == word[i]: LR.append(i) ind += 1 if ind == m: break ind = m - 1 for i in range(n - 1, -1, -1): if sub[ind] == word[i]: RL.append(i) ind -= 1 if ind == -1: break RL.reverse() mn = max(n - LR[-1] - 1, RL[0]) for i in range(m - 1): d = RL[i + 1] - LR[i] - 1 if d > mn: mn = d print(mn)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
s = input() t = input() lefts = [(0) for i in range(len(t))] rights = [(0) for i in range(len(t))] i = 0 j = 0 while i < len(s) and j < len(t): if s[i] == t[j]: lefts[j] = i j += 1 i += 1 i = len(s) - 1 j = len(t) - 1 while i >= 0 and j >= 0: if s[i] == t[j]: rights[j] = i j -= 1 i -= 1 ans = max(len(s) - lefts[-1] - 1, rights[0]) for i in range(len(t) - 1): ans = max(ans, rights[i + 1] - lefts[i] - 1) print(ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
def int_multiple(): return [int(c) for c in input().split()] def int_single(): return int(input()) def str_multiple(): return [c for c in input().split()] def str_single(): return input() s = str_single() t = str_single() ti = 0 start = [] for si in range(len(s)): if s[si] == t[ti]: start.append(si) ti += 1 if ti == len(t): break end = [] ti = len(t) - 1 for si in reversed(list(range(len(s)))): if s[si] == t[ti]: end.append(si) ti -= 1 if ti < 0: break end = list(reversed(end)) start_mx = len(s) - start[-1] - 1 end_mx = end[0] mx_between = 0 for i in range(len(t) - 1): diff = end[i + 1] - start[i] - 1 mx_between = max(mx_between, diff) print(max(start_mx, end_mx, mx_between))
FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR LIST FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
s = input().rstrip() t = input().rstrip() left = [] idx = 0 for i, item in enumerate(s): if item == t[idx]: left.append(i) idx += 1 if idx == len(t): break right = [] idx = len(t) - 1 for i, item in enumerate(s[::-1]): if item == t[idx]: right.append(len(s) - i - 1) idx -= 1 if idx == -1: break right.reverse() ans = max(right[0], len(s) - right[-1] - 1) ans = max(ans, left[0], len(s) - left[-1] - 1) for l, r in zip(left, right[1:]): ans = max(ans, r - l - 1) print(ans)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR VAR FUNC_CALL VAR VAR NUMBER IF VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FOR VAR VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
s = input() t = input() L1 = [] L2 = [] ptr = 0 for i in range(0, len(s)): if s[i] == t[ptr]: L1.append(i) ptr += 1 if ptr >= len(t): break ptr = len(t) - 1 for i in range(len(s) - 1, -1, -1): if s[i] == t[ptr]: L2.append(i) ptr -= 1 if ptr < 0: break L2 = L2[::-1] mx = -1 for i in range(0, len(L1) - 1): mx = max(mx, L2[i + 1] - L1[i] - 1) mx = max(mx, L2[0]) mx = max(mx, len(s) - L1[-1] - 1) print(mx)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
s = input() t = input() def search(s, t): indext = 0 pos = [-1] for i in range(len(s)): if indext < len(t) and s[i] == t[indext]: pos += [i] indext += 1 if indext == len(t): return pos pos = search(s, t) right = len(s) - 1 ans = right - pos[-1] for i in range(len(t))[::-1]: while s[right] != t[i]: right -= 1 right -= 1 ans = max(ans, right - pos[i]) print(ans)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR LIST VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR VAR EXPR FUNC_CALL VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
a = list(input()) b = list(input()) l = [(0) for i in range(len(a))] r = [(0) for i in range(len(a))] itr = 0 m = len(b) n = len(a) for i in range(len(a)): if itr < m and b[itr] == a[i]: itr += 1 l[i] = itr itr = 0 for i in range(len(a)): if itr < m and b[m - 1 - itr] == a[n - 1 - i]: itr += 1 r[n - 1 - i] = itr ans = 0 for i in range(n): left = 1 right = n - i mid = 0 while left <= right: mid = (left + right) // 2 if l[i] + r[i + mid - 1] >= m: ans = max(ans, mid - 2) left = mid + 1 else: right = mid - 1 for i in range(n): if l[i] == 1: ans = max(ans, i) break for i in range(n): if l[n - 1 - i] == m: ans = max(ans, i) for i in range(n): if r[i] == m: ans = max(ans, i) for i in range(n): if r[n - 1 - i] == 1: ans = max(ans, i) break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR BIN_OP BIN_OP VAR NUMBER VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR BIN_OP BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
def f(s, t): right = [0] * len(t) for i in reversed(range(len(t))): pos = len(s) - 1 if i + 1 < len(t): pos = right[i + 1] - 1 while s[pos] != t[i]: pos -= 1 right[i] = pos ans = 0 pos = 0 for i in range(len(s)): rpos = len(s) - 1 if pos < len(t): rpos = right[pos] - 1 ans = max(ans, rpos - i + 1) if pos < len(t) and t[pos] == s[i]: pos += 1 return ans s = input() t = input() print(f(s, t))
FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR NUMBER FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER NUMBER WHILE VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER RETURN VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
The only difference between easy and hard versions is the length of the string. You are given a string $s$ and a string $t$, both consisting only of lowercase Latin letters. It is guaranteed that $t$ can be obtained from $s$ by removing some (possibly, zero) number of characters (not necessary contiguous) from $s$ without changing order of remaining characters (in other words, it is guaranteed that $t$ is a subsequence of $s$). For example, the strings "test", "tst", "tt", "et" and "" are subsequences of the string "test". But the strings "tset", "se", "contest" are not subsequences of the string "test". You want to remove some substring (contiguous subsequence) from $s$ of maximum possible length such that after removing this substring $t$ will remain a subsequence of $s$. If you want to remove the substring $s[l;r]$ then the string $s$ will be transformed to $s_1 s_2 \dots s_{l-1} s_{r+1} s_{r+2} \dots s_{|s|-1} s_{|s|}$ (where $|s|$ is the length of $s$). Your task is to find the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Input----- The first line of the input contains one string $s$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. The second line of the input contains one string $t$ consisting of at least $1$ and at most $2 \cdot 10^5$ lowercase Latin letters. It is guaranteed that $t$ is a subsequence of $s$. -----Output----- Print one integer β€” the maximum possible length of the substring you can remove so that $t$ is still a subsequence of $s$. -----Examples----- Input bbaba bb Output 3 Input baaba ab Output 2 Input abcde abcde Output 0 Input asdfasdf fasd Output 3
S = input() T = input() N, M = len(S), len(T) def calc(s, t): X = [0] * len(s) j = 0 for i in range(len(s)): if j >= len(t): X[i] = j elif s[i] == t[j]: X[i] = j + 1 j += 1 else: X[i] = X[i - 1] return [0] + X A, B = calc(S, T), calc(S[::-1], T[::-1])[::-1] l, r = 0, N while r - l > 1: m = (l + r) // 2 C = [(A[i] + B[i + m]) for i in range(N - m + 1)] if max(C) >= M: l = m else: r = m print(l)
ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER FUNC_CALL VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR NUMBER RETURN BIN_OP LIST NUMBER VAR ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys (*data,) = sys.stdin.read().split("\n")[::-1] def input(): return data.pop() for _ in range(int(input())): n, l, r = map(int, input().split()) (*socks,) = map(int, input().split()) left_colors = [0] * n right_colors = [0] * n for v in socks[:l]: left_colors[v - 1] += 1 for v in socks[l:]: if left_colors[v - 1]: left_colors[v - 1] -= 1 l -= 1 r -= 1 else: right_colors[v - 1] += 1 n = l + r cost = 0 if l < r: l, r = r, l left_colors, right_colors = right_colors, left_colors disb = n // 2 - r for i, v in enumerate(left_colors): diff = min(disb, v // 2) cost += diff disb -= diff left_colors[i] -= diff * 2 l -= diff * 2 n = l + r print(cost + n // 2 - min(l, r) + n // 2)
IMPORT ASSIGN VAR FUNC_CALL FUNC_CALL VAR STRING NUMBER FUNC_DEF RETURN FUNC_CALL VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER FOR VAR VAR VAR IF VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER VAR NUMBER VAR NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER VAR FOR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR BIN_OP VAR NUMBER
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for _ in range(int(input())): n, l, r = map(int, input().split()) cl = [(0) for _ in range(n)] cr = [(0) for _ in range(n)] socks = list(map(int, input().split())) for x in socks[:l]: cl[x - 1] += 1 if r > 0: for x in socks[l:]: cr[x - 1] += 1 if l > r: cl, cr = cr, cl for i in range(n): g = min(cl[i], cr[i]) cl[i] -= g cr[i] -= g diff = abs(r - l) // 2 cost = 0 i = 0 while diff > 0 and i < n: if cr[i] > 1: cr[i] -= 2 diff -= 1 cost += 1 else: i += 1 print(sum(cr) + cost)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR NUMBER FOR VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
from sys import stdin, stdout def INI(): return int(stdin.readline()) def INL(): return [int(_) for _ in stdin.readline().split()] def INS(): return stdin.readline() def MOD(): return pow(10, 9) + 7 def OPS(ans): stdout.write(str(ans) + "\n") def OPL(ans): [stdout.write(str(_) + " ") for _ in ans] stdout.write("\n") for _ in range(INI()): n, l, r = INL() X = INL() D1 = dict() for _ in range(l): if X[_] in D1: D1[X[_]] += 1 else: D1[X[_]] = 1 D2 = dict() for _ in range(l, n): if X[_] in D2: D2[X[_]] += 1 else: D2[X[_]] = 1 D1.get(X[_], 0) + 1 for _ in D1: if _ in D2: if D1[_] < D2[_]: D2[_] -= D1[_] D1[_] = 0 else: D1[_] -= D2[_] D2[_] = 0 ans = 0 x, y = 0, 0 for _ in D1: x += D1[_] for _ in D2: y += D2[_] if x < y: ans = x for _ in D2: if x: if D2[_] % 2 == 1: D2[_] -= 1 x -= 1 for _ in D2: if x < D2[_]: D2[_] -= x x = 0 break else: x -= D2[_] D2[_] = 0 for _ in D2: ans += (D2[_] + 1) // 2 OPS(ans) else: ans = y for _ in D1: if y: if D1[_] % 2 == 1: D1[_] -= 1 y -= 1 for _ in D1: if y < D1[_]: D1[_] -= y y = 0 break else: y -= D1[_] D1[_] = 0 for _ in D1: ans += (D1[_] + 1) // 2 OPS(ans)
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_DEF RETURN BIN_OP FUNC_CALL VAR NUMBER NUMBER NUMBER FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING FUNC_DEF EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR STRING VAR VAR EXPR FUNC_CALL VAR STRING FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER EXPR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FOR VAR VAR IF VAR VAR IF VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR VAR VAR VAR FOR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR FOR VAR VAR IF VAR IF BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR VAR FOR VAR VAR IF VAR IF BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER VAR VAR VAR ASSIGN VAR VAR NUMBER FOR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for tc in range(int(input())): n, l, r = map(int, input().split()) c = list(map(int, input().split())) if l == r: dic = {} for i in range(l): if c[i] not in dic: dic[c[i]] = 0 dic[c[i]] += 1 left = r for i in range(l, n): if c[i] in dic and dic[c[i]] > 0: dic[c[i]] -= 1 left -= 1 print(left) elif l > r: dic = {} for i in range(l): if c[i] not in dic: dic[c[i]] = 0 dic[c[i]] += 1 left = r for i in range(l, n): if c[i] in dic and dic[c[i]] > 0: dic[c[i]] -= 1 left -= 1 rem = (l - r) // 2 ans = 0 for i in dic: if rem == 0: break if dic[i] >= 2: s = dic[i] // 2 if dic[i] // 2 <= rem else rem rem -= s dic[i] -= s * 2 ans += s print(ans + left + 2 * rem) elif r > l: dic = {} for i in range(l, n): if c[i] not in dic: dic[c[i]] = 0 dic[c[i]] += 1 left = l for i in range(l): if c[i] in dic and dic[c[i]] > 0: dic[c[i]] -= 1 left -= 1 rem = (r - l) // 2 ans = 0 for i in dic: if rem == 0: break if dic[i] >= 2: s = dic[i] // 2 if dic[i] // 2 <= rem else rem rem -= s dic[i] -= s * 2 ans += s print(ans + left + 2 * rem)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP NUMBER VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
t = int(input()) for i in range(t): n, l, r = [int(x) for x in input().split()] lis = [int(x) for x in input().split()] dict1 = dict() dict2 = dict() for i in range(l): dict1[lis[i]] = dict1.get(lis[i], 0) + 1 for i in range(l, r + l): if lis[i] in dict1 and dict1[lis[i]] > 0: dict1[lis[i]] -= 1 else: dict2[lis[i]] = dict2.get(lis[i], 0) + 1 cost = 0 sum_left = sum([x for x in dict1.values()]) sum_right = sum([x for x in dict2.values()]) if sum_left == sum_right: print(sum_left) elif sum_left > sum_right: max_2 = sum([(x // 2) for x in dict1.values()]) if max_2 * 2 >= sum_left - sum_right: print(sum_right + (sum_left - sum_right) // 2) else: print(max_2 + sum_right + (sum_left - sum_right - max_2 * 2)) else: max_2 = sum([(x // 2) for x in dict2.values()]) if max_2 * 2 >= sum_right - sum_left: print(sum_left + (sum_right - sum_left) // 2) else: print(max_2 + sum_left + (sum_right - sum_left - max_2 * 2))
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR BIN_OP VAR VAR IF VAR VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR IF BIN_OP VAR NUMBER BIN_OP VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR BIN_OP BIN_OP VAR VAR BIN_OP VAR NUMBER
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
T = int(input()) for _ in range(T): N, L, R = map(int, input().split()) C = list(map(int, input().split())) MAX_C = max(C) LC = [(0) for i in range(MAX_C + 1)] RC = [(0) for i in range(MAX_C + 1)] for i in range(L): LC[C[i]] += 1 for i in range(L, N): RC[C[i]] += 1 for i in range(MAX_C + 1): common = min(LC[i], RC[i]) LC[i] -= common RC[i] -= common L -= common R -= common ans = 0 for i in range(MAX_C + 1): if LC[i] > 1 and L > R: diff = min((L - R) // 2, LC[i] // 2) LC[i] -= diff * 2 ans += diff L -= diff * 2 elif RC[i] > 1 and R > L: diff = min((R - L) // 2, RC[i] // 2) RC[i] -= diff * 2 ans += diff R -= diff * 2 mn = min(L, R) ans += mn delta = max(L, R) - mn ans += delta print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys def solve(N, L, R, A): my_dict = {} for a in A: my_dict[a] = [0, 0] for i in range(L): my_dict[A[i]][0] += 1 for i in range(L, N): my_dict[A[i]][1] += 1 mks = list(my_dict.keys()) recolor = 0 for mk in mks: recolor += abs(my_dict[mk][0] - my_dict[mk][1]) recolor /= 2 if L < R: imbalance = (R - L) / 2 fixable = 0 for mk in mks: if my_dict[mk][1] - my_dict[mk][0] > 0: fixable += (my_dict[mk][1] - my_dict[mk][0]) // 2 else: imbalance = (L - R) / 2 fixable = 0 for mk in mks: if my_dict[mk][0] - my_dict[mk][1] > 0: fixable += (my_dict[mk][0] - my_dict[mk][1]) // 2 plus = imbalance - fixable if plus > 0: recolor += plus print(int(recolor)) def run(): out = "" T = int(input()) for i in range(T): N, L, R = [int(x) for x in sys.stdin.readline().split()] A = [int(x) for x in sys.stdin.readline().split()] solve(N, L, R, A) run()
IMPORT FUNC_DEF ASSIGN VAR DICT FOR VAR VAR ASSIGN VAR VAR LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR VAR IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_DEF ASSIGN VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
def main(): t = int(input()) for i in range(t): solve() def solve(): n, l, r = map(int, input().split()) a = list(map(int, input().split())) r = a[l:] l = a[:l] r.sort() l.sort() matched = 0 pass pl = len(l) - 1 pr = len(r) - 1 while pr != -1 and pl != -1: if r[pr] == l[pl]: matched += 1 r.pop(pr) l.pop(pl) pl -= 1 pr -= 1 elif r[pr] > l[pl]: pr -= 1 else: pl -= 1 half = 0 if len(r) - len(l) >= 2: for i in range(len(r) - 2, -1, -1): if i < len(r) - 1 and r[i] == r[i + 1]: r.pop(i + 1) r.pop(i) half += 1 if len(r) == len(l): break if len(l) - len(r) >= 2: for i in range(len(l) - 2, -1, -1): if i < len(l) - 1 and l[i] == l[i + 1]: l.pop(i + 1) l.pop(i) half += 1 if len(l) == len(r): break print(n - matched * 2 - half - min(len(r), len(l))) main()
FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR IF BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR NUMBER IF FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
def main(): n, l, r = map(int, input().split()) k = n // 2 c = list(map(int, input().split())) c1, c2 = c[:l], c[l:] delta = abs(r - l) // 2 p1, p2 = [0] * n, [0] * n for i in range(l): p1[c1[i] - 1] += 1 for i in range(r): p2[c2[i] - 1] += 1 ans = 0 for i in range(n): while p1[i] > 0 and p2[i] > 0: p1[i] -= 1 p2[i] -= 1 k -= 1 if l > r: for i in range(n): while p1[i] >= 2 and delta > 0: delta -= 1 p1[i] -= 2 k -= 1 ans += 1 elif l < r: for i in range(n): while p2[i] >= 2 and delta > 0: delta -= 1 p2[i] -= 2 k -= 1 ans += 1 if delta != 0: ans += delta * 2 k -= delta ans += k print(ans) for _ in range(int(input())): main()
FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR BIN_OP LIST NUMBER VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for _ in range(int(input())): n, l, r = map(int, input().split()) a = [*map(int, input().split())] b = {} c = {} p, q = l, r for i in range(n): if i < l: b[a[i]] = b.get(a[i], 0) + 1 else: x = b.get(a[i], 0) if x == 1: p -= 1 q -= 1 del b[a[i]] elif x > 1: p -= 1 q -= 1 b[a[i]] -= 1 else: c[a[i]] = c.get(a[i], 0) + 1 if q > p: p, q = q, p b, c = c, b ans = q p -= q for i in b.values(): pr = i // 2 if p - 2 * pr < 0: pr = p // 2 p -= 2 * pr ans += pr break else: p -= 2 * pr ans += pr ans += p print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER IF VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP NUMBER VAR VAR VAR VAR BIN_OP NUMBER VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys input = sys.stdin.readline for _ in range(int(input())): n, l, r = map(int, input().split()) left = [(0) for __ in range(n)] right = [(0) for __ in range(n)] a = list(map(int, input().split())) for i in range(l): left[a[i] - 1] += 1 for i in range(l, n): right[a[i] - 1] += 1 for i in range(n): min_cnt = min(left[i], right[i]) left[i] -= min_cnt right[i] -= min_cnt l -= min_cnt r -= min_cnt ans = 0 if l < r: l, r = r, l left, right = right, left for i in range(n): extra = l - r can_do = left[i] // 2 do = min(can_do * 2, extra) ans += do // 2 l -= do ans += (l - r) // 2 + (l + r) // 2 print(ans)
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for i in range(int(input())): n, l, r = map(int, input().split()) C = [int(i) for i in input().split()] cost, cost1, cost2 = 0, 0, 0 C1 = C[:l] C2 = C[l:] d1, d2 = dict(), dict() for i in C1: if i in d1: d1[i] += 1 else: d1[i] = 1 for j in C2: if j in d2: d2[j] += 1 else: d2[j] = 1 for i in d1: if i in d2: x1 = d1[i] x2 = d2[i] sub = min(x1, x2) d1[i] = x1 - sub d2[i] = x2 - sub sum1, sum2 = 0, 0 d1_1, d1_pair = 0, 0 for i in d1: sum1 += d1[i] if d1[i] == 1: d1_1 += 1 else: d1_pair += d1[i] - d1[i] % 2 d1_1 += d1[i] % 2 d2_1, d2_pair = 0, 0 for i in d2: sum2 += d2[i] if d2[i] == 1: d2_1 += 1 else: d2_pair += d2[i] - d2[i] % 2 d2_1 += d2[i] % 2 rem = abs(sum1 - sum2) costa = min(sum1, sum2) if sum1 > sum2: if d1_pair >= rem: costa += rem / 2 else: ref = rem - d1_pair costa += d1_pair / 2 costa += ref elif sum1 < sum2: if d2_pair >= rem: costa += rem / 2 else: ref = rem - d2_pair costa += d2_pair / 2 costa += ref print(int(costa))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR VAR VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR NUMBER NUMBER FOR VAR VAR VAR VAR VAR IF VAR VAR NUMBER VAR NUMBER VAR BIN_OP VAR VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR IF VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys input = sys.stdin.buffer.readline def map_int(): return map(int, input().split()) def solve(): n, l, r = map_int() c = list(map_int()) if r > l: c = c[l:n] + c[:l] l, r = r, l color = [0] * (n + 1) for i in range(n): color[c[i]] += 1 if i < l else -1 ans = rem = n // 2 - r bad = 0 for cnt in color: if cnt > 1: used = min(cnt // 2, rem) cnt -= 2 * used rem -= used if cnt > 0: bad += cnt print(ans + bad - rem) for _ in range(int(input())): solve()
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR VAR BIN_OP NUMBER VAR VAR VAR IF VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for i in range(int(input())): n, l, r = map(int, input().split()) allsocks = list(map(int, input().split())) leftsocks = sorted(allsocks[:l]) rightsocks = sorted(allsocks[l:]) a = b = 0 while a < l and b < r: if leftsocks[a] < rightsocks[b]: a += 1 elif leftsocks[a] > rightsocks[b]: b += 1 else: leftsocks[a] = rightsocks[b] = 0 a += 1 b += 1 ll = l - leftsocks.count(0) lr = r - rightsocks.count(0) same = 0 p = 0 if l > r and ll > 1: while p < l - 1: if leftsocks[p] == leftsocks[p + 1] and leftsocks[p] != 0: same += 1 p += 2 else: p += 1 if r > l and lr > 1: while p < r - 1: if rightsocks[p] == rightsocks[p + 1] and rightsocks[p] != 0: same += 1 p += 2 else: p += 1 print(abs(l - r) // 2 + (ll + lr) // 2 - min(abs(l - r) // 2, same))
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR NUMBER WHILE VAR VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR NUMBER WHILE VAR BIN_OP VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for _ in range(int(input())): n, l, r = map(int, input().split()) arr = list(map(int, input().split())) dictl = {} for i in range(l): if dictl.get(arr[i]) is None: dictl[arr[i]] = 0 dictl[arr[i]] = dictl[arr[i]] + 1 dictr = {} for i in range(l, n): if dictr.get(arr[i]) is None: dictr[arr[i]] = 0 dictr[arr[i]] = dictr[arr[i]] + 1 for k in dictl.keys(): if dictr.get(k) is None: continue mini = min(dictl[k], dictr[k]) dictl[k] -= mini dictr[k] -= mini r -= mini l -= mini res = min(l, r) if l < r: diff = (r - l) // 2 for k in dictr.keys(): if diff == 0: break m = min(diff, dictr[k] // 2) res += m diff -= m res += diff * 2 else: diff = (l - r) // 2 for k in dictl.keys(): if diff == 0: break m = min(diff, dictl[k] // 2) res += m diff -= m res += diff * 2 print(res)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR NONE ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR NONE ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR BIN_OP VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR IF FUNC_CALL VAR VAR NONE ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
t = int(input()) for _ in range(t): n, l, r = map(int, input().split()) c = list(map(int, input().split())) colors = [([0] * 2) for _ in range(n)] cost = 0 L = c[:l] R = c[l:] for i in L: if colors[i - 1][1] > 0: colors[i - 1][1] -= 1 else: colors[i - 1][0] += 1 for i in R: if colors[i - 1][0] > 0: colors[i - 1][0] -= 1 else: colors[i - 1][1] += 1 lpair = 0 rpair = 0 for i in range(n): lpair += colors[i][0] // 2 rpair += colors[i][1] // 2 lcnt = 0 rcnt = 0 for i in range(n): if colors[i][0]: lcnt += colors[i][0] if colors[i][1]: rcnt += colors[i][1] cost += min(rcnt, lcnt) if rcnt == lcnt: print(cost) continue v = max(rcnt, lcnt) diff = abs(rcnt - lcnt) if v == lcnt: if lpair * 2 >= diff: cost += diff // 2 else: cost += diff - lpair elif rpair * 2 >= diff: cost += diff // 2 else: cost += diff - rpair print(cost)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER FOR VAR VAR IF VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR IF VAR VAR IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR IF BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys reader = (s.rstrip() for s in sys.stdin) input = reader.__next__ t = int(input()) def makeDict(left): leftMap = {} for item in left: if item not in leftMap: leftMap[item] = 0 leftMap[item] += 1 return leftMap for _ in range(t): n, l, r = map(int, input().split()) left = list(map(int, input().split())) right = [] while len(left) > l: right.append(left.pop()) leftMap = makeDict(left) rightMap = makeDict(right) lkeys = set(leftMap.keys()) rkeys = set(rightMap.keys()) for k in lkeys: if k in rkeys: mn = min(leftMap[k], rightMap[k]) leftMap[k] -= mn if not leftMap[k]: leftMap.pop(k) rightMap[k] -= mn if not rightMap[k]: rightMap.pop(k) left = [] right = [] a, b = sum(leftMap.values()), sum(rightMap.values()) if a < b: leftMap, rightMap = rightMap, leftMap a, b = b, a elif a == b: pass lkeys = leftMap.keys() gap = abs(a - b) cost = 0 vals = sorted(leftMap.values(), reverse=True) for i in range(len(vals)): val = vals[i] while gap and val >= 2: gap -= 2 vals[i] -= 2 val -= 2 cost += 1 X = sum(vals) while gap: cost += 2 X -= 2 gap -= 2 cost += X print(cost)
IMPORT ASSIGN VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR DICT FOR VAR VAR IF VAR VAR ASSIGN VAR VAR NUMBER VAR VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST WHILE FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR WHILE VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for _ in range(int(input())): n, left, right = map(int, input().split()) arr1 = [0] * n arr2 = [0] * n for i, x in enumerate(map(int, input().split())): if i < left: arr1[x - 1] += 1 else: arr2[x - 1] += 1 result = abs(left - right) // 2 diff_pairs = result sum_pos = sum_neg = 0 for i in range(n): diff = arr2[i] - arr1[i] if diff: diff_pairs_local = 0 if diff_pairs: diff_pairs_local = min(abs(diff) // 2, diff_pairs) if diff > 0: sum_pos += diff else: sum_neg += -diff if (right - left) * diff > 0: diff_pairs -= diff_pairs_local if diff > 0: sum_pos -= diff_pairs_local * 2 else: sum_neg -= diff_pairs_local * 2 result += max(sum_pos, sum_neg) - diff_pairs print(result)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR IF VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR IF VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR IF VAR NUMBER VAR VAR VAR VAR IF BIN_OP BIN_OP VAR VAR VAR NUMBER VAR VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys input = sys.stdin.readline t = int(input()) for tests in range(t): n, l, r = map(int, input().split()) C = list(map(int, input().split())) L = [0] * n R = [0] * n for i in range(n): if i < l: L[C[i] - 1] += 1 else: R[C[i] - 1] += 1 for i in range(n): MIN = min(L[i], R[i]) L[i] -= MIN R[i] -= MIN PL = 0 PR = 0 SUML = 0 SUMR = 0 for i in range(n): SUML += L[i] SUMR += R[i] PL += L[i] // 2 PR += R[i] // 2 if SUML == SUMR: print(SUML) continue elif SUMR > SUML: change = (SUMR - SUML) // 2 ANS = SUML + change * 2 - min(change, PR) print(ANS) else: change = (SUML - SUMR) // 2 ANS = SUMR + change * 2 - min(change, PL) print(ANS)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for u in range(int(input())): n, l, r = map(int, input().split()) x = [] x.append([(0) for i in range(n)]) x.append([(0) for i in range(n)]) y = [int(w) for w in input().split()] for i in range(n): t = y[i] if i < l: x[0][t - 1] += 1 else: x[1][t - 1] += 1 for i in range(n): t = min(x[0][i], x[1][i]) x[0][i] -= t x[1][i] -= t a1 = 0 a2 = 0 for i in range(n): a1 += x[0][i] a2 += x[1][i] ans = 0 if a1 < a2: i = 0 while i < n and a1 != a2: if x[1][i] > 1: a2 -= 2 x[1][i] -= 2 ans += 1 i -= 1 i += 1 else: i = 0 while i < n and a1 != a2: if x[0][i] > 1: a1 -= 2 x[0][i] -= 2 ans += 1 i -= 1 i += 1 ans = ans + max(a1, a2) print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST EXPR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR IF VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER VAR NUMBER BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys input = sys.stdin.readline def inp(): return int(input()) def inlt(): return list(map(int, input().split())) def insr(): s = input() return list(s[: len(s) - 1]) def invr(): return map(int, input().split()) tests = inp() for _ in range(tests): n, l, r = invr() c = inlt() colourCount = [[0, 0] for _ in range(n)] for ii in range(l): colourCount[c[ii] - 1][0] += 1 for ii in range(l, n): colourCount[c[ii] - 1][1] += 1 totalCost = 0 spareLeft = 0 spareRight = 0 for col in colourCount: matches = min(col) col[0] -= matches col[1] -= matches if l > r: matches = min(col[0] // 2, (l - r) // 2) l -= matches r += matches col[0] -= matches * 2 totalCost += matches elif r > l: matches = min(col[1] // 2, (r - l) // 2) l += matches r -= matches col[1] -= matches * 2 totalCost += matches matches = min(col[0], spareRight) spareRight -= matches col[0] -= matches spareLeft += col[0] totalCost += matches matches = min(col[1], spareLeft) spareLeft -= matches col[1] -= matches spareRight += col[1] totalCost += matches totalCost += spareLeft + spareRight print(totalCost)
IMPORT ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR RETURN FUNC_CALL VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR LIST NUMBER NUMBER VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR NUMBER VAR VAR NUMBER VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR NUMBER BIN_OP VAR NUMBER VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR NUMBER BIN_OP VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR BIN_OP VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
t = int(input()) for _ in range(t): n, l, r = map(int, input().split()) C = list(map(int, input().split())) d = {} for i in range(1, n + 1): d.update({i: [0, 0]}) for i in range(l): d[C[i]][0] += 1 for i in range(l, n): d[C[i]][1] += 1 c = n // 2 - min(l, r) s = 0 for i in d: x = (d[i][1] + d[i][0]) // 2 - min(d[i]) if s + x <= c: if d[i][0] <= d[i][1] and l <= r: d[i][0] += x d[i][1] -= x s += x elif d[i][0] > d[i][1] and l > r: d[i][0] -= x d[i][1] += x s += x elif d[i][0] <= d[i][1] and l <= r: d[i][0] += c - s d[i][1] -= c - s s = c elif d[i][0] > d[i][1] and l > r: d[i][0] -= c - s d[i][1] += c - s s = c if s < c: for i in d: if s == c: break if l < r and d[i][0] < d[i][1]: d[i][0], d[i][1] = d[i][1], d[i][0] s += 1 elif l > r and d[i][0] > d[i][1]: d[i][0], d[i][1] = d[i][1], d[i][0] s += 1 for i in d: if d[i][0] > d[i][1]: c += d[i][0] - d[i][1] print(c)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER EXPR FUNC_CALL VAR DICT VAR LIST NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR NUMBER NUMBER FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR VAR VAR VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER BIN_OP VAR VAR ASSIGN VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR VAR VAR VAR NUMBER BIN_OP VAR VAR VAR VAR NUMBER BIN_OP VAR VAR ASSIGN VAR VAR IF VAR VAR FOR VAR VAR IF VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
t = int(input()) for tk in range(t): n, l, r = map(int, input().split()) c = list(map(int, input().split())) d1 = {} d2 = {} for i in range(l): d1[c[i]] = d1.get(c[i], 0) + 1 for i in range(l, n): d2[c[i]] = d2.get(c[i], 0) + 1 for i in d1.keys(): x = min(d1[i], d2.get(i, 0)) d1[i] = d1[i] - x d2[i] = d2.get(i, 0) - x v1 = d1.values() v2 = d2.values() s1 = sum(v1) s2 = sum(v2) s = abs(s1 - s2) s = s // 2 if s == 0: print(s1) else: ans = max(s1, s2) if s1 > s2: for i in d1: a = d1[i] // 2 if s - a >= 0: ans -= a s -= a else: ans -= s break if s == 0: break print(ans) else: for i in d2: a = d2[i] // 2 if s - a >= 0: ans -= d2[i] // 2 s -= d2[i] // 2 else: ans -= s break if s == 0: break print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR VAR VAR BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR IF VAR VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR FOR VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys In = sys.stdin.readline T = int(In()) for tc in range(1, T + 1): n, l, r = map(int, In().split()) color = [(0) for _ in range(n + 1)] socks = list(map(int, In().split())) visited = {} left, right = {"total": 0, "odd": 0}, {"total": 0, "odd": 0} answer = 0 for i in range(l): color[socks[i]] += 1 visited[socks[i]] = True for i in range(l, n): color[socks[i]] -= 1 visited[socks[i]] = True for key in visited.keys(): temp = color[key] if temp == 0: continue if temp > 0: left["total"] += temp if temp % 2 != 0: left["odd"] += 1 else: temp = -temp right["total"] += temp if temp % 2 != 0: right["odd"] += 1 if left["total"] >= right["total"]: answer += right["total"] left["odd"] -= right["total"] if left["odd"] > 0: answer += left["odd"] answer += (left["total"] - right["total"] - left["odd"]) // 2 else: answer += (left["total"] - right["total"]) // 2 else: answer += left["total"] right["odd"] -= left["total"] if right["odd"] > 0: answer += right["odd"] answer += (right["total"] - left["total"] - right["odd"]) // 2 else: answer += (right["total"] - left["total"]) // 2 print(answer)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR VAR DICT STRING STRING NUMBER NUMBER DICT STRING STRING NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR ASSIGN VAR VAR VAR IF VAR NUMBER IF VAR NUMBER VAR STRING VAR IF BIN_OP VAR NUMBER NUMBER VAR STRING NUMBER ASSIGN VAR VAR VAR STRING VAR IF BIN_OP VAR NUMBER NUMBER VAR STRING NUMBER IF VAR STRING VAR STRING VAR VAR STRING VAR STRING VAR STRING IF VAR STRING NUMBER VAR VAR STRING VAR BIN_OP BIN_OP BIN_OP VAR STRING VAR STRING VAR STRING NUMBER VAR BIN_OP BIN_OP VAR STRING VAR STRING NUMBER VAR VAR STRING VAR STRING VAR STRING IF VAR STRING NUMBER VAR VAR STRING VAR BIN_OP BIN_OP BIN_OP VAR STRING VAR STRING VAR STRING NUMBER VAR BIN_OP BIN_OP VAR STRING VAR STRING NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for _ in range(int(input())): n, l, r = map(int, input().split()) c = list(map(int, input().split())) cs = set(c) lc = [] rc = [] for i in range(n): if i < l: lc.append(c[i]) else: rc.append(c[i]) ll = [0] * (n + 1) rr = [0] * (n + 1) for i in range(len(lc)): ll[lc[i]] += 1 for i in range(len(rc)): rr[rc[i]] += 1 cost = 0 sl = 0 sr = 0 for i in cs: t = min(ll[i], rr[i]) ll[i] -= t sl += ll[i] rr[i] -= t sr += rr[i] if sl < sr: for i in cs: if sl and rr[i] and rr[i] % 2 != 0: rr[i] -= 1 cost += 1 sl -= 1 if sl == 0: break if sl != 0: while sl: for i in cs: if rr[i] and sl > 1: rr[i] -= 2 sl -= 2 cost += 2 elif sl == 1: if rr[i]: rr[i] -= 1 sl -= 1 cost += 1 if sl == 0: break srr = 0 for i in cs: if rr[i]: cost += rr[i] // 2 if rr[i] % 2 != 0: rr[i] = 1 srr += 1 cost += srr else: for i in cs: if sr and ll[i] and ll[i] % 2 != 0: ll[i] -= 1 sr -= 1 cost += 1 if sr == 0: break if sr != 0: while sr: for i in cs: if ll[i] and sr > 1: ll[i] -= 2 sr -= 2 cost += 2 elif sr == 1: if ll[i]: ll[i] -= 1 sr -= 1 cost += 1 if sr == 0: break srr = 0 for i in cs: if ll[i]: cost += ll[i] // 2 if ll[i] % 2 != 0: ll[i] = 1 srr += 1 cost += srr print(cost)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR LIST ASSIGN VAR LIST FOR VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER WHILE VAR FOR VAR VAR IF VAR VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR VAR FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR NUMBER WHILE VAR FOR VAR VAR IF VAR VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER IF VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
t = int(input()) for case in range(1, t + 1): n, le, ri = [int(x) for x in input().split(" ")] socks = [int(x) for x in input().split(" ")] ans = 0 left = {} for sock in socks[:le]: if sock in left: left[sock] += 1 else: left[sock] = 1 right = {} for sock in socks[le:]: if sock in left and left[sock] != 0: left[sock] -= 1 le -= 1 ri -= 1 elif sock in right: right[sock] += 1 else: right[sock] = 1 if ri > le: le, ri = ri, le left, right = right, left ans += ri le -= ri for num in left.values(): pairs = num // 2 if le - 2 * pairs < 0: pairs = le // 2 le -= 2 * pairs ans += pairs break else: le -= 2 * pairs ans += pairs ans += le print(ans)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR NUMBER ASSIGN VAR DICT FOR VAR VAR VAR IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR DICT FOR VAR VAR VAR IF VAR VAR VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER IF BIN_OP VAR BIN_OP NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR BIN_OP NUMBER VAR VAR VAR VAR BIN_OP NUMBER VAR VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
def sign(x): return 1 if x > 0 else -1 def main(): t = int(input()) for _ in range(t): n, l, r = map(int, input().split()) c = list(map(int, input().split())) d = {} for i in range(n): if c[i] not in d: if i < l: d[c[i]] = 1 else: d[c[i]] = -1 elif i < l: d[c[i]] += 1 else: d[c[i]] -= 1 total = 0 cnt = ab_cnt = 0 for k in d: cnt += d[k] ab_cnt += abs(d[k]) sc = sign(cnt) ab = abs(cnt) for k in d: if d[k] == 0: continue if sc == sign(d[k]): goods = abs(d[k]) // 2 * 2 if goods >= ab: d[k] -= ab * sign(d[k]) total += ab // 2 ab_cnt -= ab ab = 0 break else: d[k] -= goods * sign(d[k]) ab -= goods total += goods // 2 ab_cnt -= goods total += ab ab_cnt -= ab total += ab_cnt // 2 print(total) main()
FUNC_DEF RETURN VAR NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FOR VAR VAR IF VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR VAR NUMBER NUMBER IF VAR VAR VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR ASSIGN VAR NUMBER VAR VAR BIN_OP VAR FUNC_CALL VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys input = sys.stdin.buffer.readline for t in range(int(input())): N, L, R = map(int, input().split()) A = list(map(int, input().split())) for i in range(N): A[i] -= 1 if L > R: A = A[L:] + A[:L] L, R = R, L C = [0] * N for i in range(L): C[A[i]] += 1 for i in range(L, N): C[A[i]] -= 1 X = R - L >> 1 Y = X F = [0] * N for i in range(L): F[i] = 1 for i in range(L, N): if C[A[i]] <= -2 and X > 0: C[A[i]] += 2 X -= 1 F[i] = 1 print(Y + (sum([abs(C[i]) for i in range(N)]) >> 1))
IMPORT ASSIGN VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR NUMBER VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR FUNC_CALL VAR VAR NUMBER
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys input = sys.stdin.readline def inI(): inputLine = input().split() return int(inputLine[0]) if len(inputLine) == 1 else map(int, inputLine) def inIL(): return list(map(int, input().split())) def inCL(): return list(input())[:-1] def out(*liste): if isinstance(liste[0], list): liste = liste[0] for element in liste: print(element, end=" ") print() t = inI() for it in range(t): n, l, r = inI() socks = inIL() left, right = socks[:l], socks[l:] if l < r: left, right = right, left r, l = l, r nbleft = [0] * (n + 1) sumleft = l nbright = [0] * (n + 1) sumright = r for color in left: nbleft[color] += 1 for color in right: nbright[color] += 1 for color in range(1, n + 1): paired = min(nbleft[color], nbright[color]) nbleft[color] -= paired sumleft -= paired nbright[color] -= paired sumright -= paired nbop = 0 for color in range(1, n + 1): if sumleft <= sumright: break switch = min(nbleft[color] // 2, (sumleft - sumright) // 2) nbop += switch nbleft[color] -= 2 * switch sumleft -= 2 * switch nbop += sumleft print(nbop)
IMPORT ASSIGN VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL FUNC_CALL VAR RETURN FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR NUMBER FUNC_DEF IF FUNC_CALL VAR VAR NUMBER VAR ASSIGN VAR VAR NUMBER FOR VAR VAR EXPR FUNC_CALL VAR VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR FOR VAR VAR VAR VAR NUMBER FOR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR BIN_OP NUMBER VAR VAR BIN_OP NUMBER VAR VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
g = int(input()) while g > 0: g -= 1 n, L, R = map(int, input().split()) a = list(map(int, input().split())) l = {} r = {} for i in range(n): if i < L: if a[i] not in l: l[a[i]] = 0 l[a[i]] += 1 else: if a[i] not in r: r[a[i]] = 0 r[a[i]] += 1 if R > L: l, r = r, l L, R = R, L ans = 0 for i in l: if i in r: t = min(l[i], r[i]) l[i] -= t r[i] -= t L -= t R -= t diff = L - R for i in l: if diff > 0: t = min(diff, l[i]) // 2 diff -= t * 2 L -= t * 2 l[i] -= t * 2 ans += t print(ans + L)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR VAR VAR NUMBER VAR BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
from sys import stdin, stdout for _ in range(int(stdin.readline())): n, l, r = map(int, stdin.readline().split()) arr = list(map(int, stdin.readline().split())) color = {} for a in range(l, n): if color.get(arr[a]) != None: color[arr[a]] += 1 else: color[arr[a]] = 1 left = {} for a in range(l): if left.get(arr[a]) != None: left[arr[a]] += 1 else: left[arr[a]] = 1 right = color.keys() l = 0 ans = 0 rr = 0 for r in right: if left.get(r) != None: if left[r] < color[r]: color[r] = color[r] - left[r] left[r] = 0 else: left[r] = left[r] - color[r] color[r] = 0 l = sum(left.values()) rr = sum(color.values()) lkeys = left.keys() if l == rr: ans = l else: if l > rr: for i in lkeys: if left[i] > 1: while rr != l and left[i] > 1: left[i] = left[i] - 2 l -= 2 ans += 1 if l == rr: break else: for i in right: if color[i] > 1: while rr != l and color[i] > 1: color[i] -= 2 rr -= 2 ans += 1 if l == rr: break ans += abs(l - rr) // 2 + (l + rr) // 2 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR VAR IF FUNC_CALL VAR VAR VAR NONE VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR VAR VAR NONE VAR VAR VAR NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF FUNC_CALL VAR VAR NONE IF VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR IF VAR VAR ASSIGN VAR VAR IF VAR VAR FOR VAR VAR IF VAR VAR NUMBER WHILE VAR VAR VAR VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR FOR VAR VAR IF VAR VAR NUMBER WHILE VAR VAR VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
t = int(input()) for f in range(t): n, l, r = map(int, input().split()) p = [int(x) for x in input().split()] le = p[0:l] ri = p[l:] le.sort() ri.sort() i = 0 j = 0 le1 = [] ri1 = [] while i < l and j < r: if le[i] == ri[j]: i += 1 j += 1 elif le[i] > ri[j]: ri1.append(ri[j]) j += 1 else: le1.append(le[i]) i += 1 while i < l: le1.append(le[i]) i += 1 while j < r: ri1.append(ri[j]) j += 1 cost = 0 if l > r: i = 1 while i < len(le1) and cost != (l - r) / 2: if le1[i] == le1[i - 1]: cost += 1 i += 2 else: i += 1 print(len(le1) - cost) else: j = 1 while j < len(ri1) and cost != (r - l) / 2: if ri1[j] == ri1[j - 1]: cost += 1 j += 2 else: j += 1 print(len(ri1) - cost)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST ASSIGN VAR LIST WHILE VAR VAR VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR VAR VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER WHILE VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
from sys import * ws = lambda: map(int, stdin.readline().strip().split()) li = lambda: list(map(int, stdin.readline().strip().split())) mod = 1000000007 def ncr(n, r, p): num = den = 1 for i in range(r): num = num * (n - i) % p den = den * (i + 1) % p return num * pow(den, p - 2, p) % p def gcd(a, b): if b == 0: return a return gcd(b, a % b) def prod(l): ans = 1 for i in range(len(l)): ans = ans * l[i] return ans def sortindex(l, a): c = [] if a == -1: rev = True else: rev = False for i in range(len(l)): c.append([l[i], i]) x = sorted(c, reverse=rev) return x for _ in range(int(input())): n, le, rr = ws() lis = li() l = [0] * (n + 1) r = [0] * (n + 1) for i in range(n): if i < le: l[lis[i]] += 1 else: r[lis[i]] += 1 temp = n // 2 - min(le, rr) ans = temp matches = 0 if le > rr: for i in range(n + 1): if temp == 0: break if l[i] > r[i]: c = (l[i] + r[i]) // 2 - r[i] if c == 0: continue if c <= temp: temp -= c l[i] -= c r[i] += c else: l[i] -= temp r[i] += temp temp = 0 elif rr > le: for i in range(n + 1): if temp == 0: break if r[i] > l[i]: c = (l[i] + r[i]) // 2 - l[i] if c == 0: continue if c <= temp: temp -= c l[i] += c r[i] -= c else: l[i] += temp r[i] -= temp temp = 0 for i in range(n + 1): if l[i] != 0 and r[i] != 0: matches += min(l[i], r[i]) ans += n // 2 - matches print(ans)
ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER FUNC_DEF ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR RETURN BIN_OP BIN_OP VAR FUNC_CALL VAR VAR BIN_OP VAR NUMBER VAR VAR FUNC_DEF IF VAR NUMBER RETURN VAR RETURN FUNC_CALL VAR VAR BIN_OP VAR VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR RETURN VAR FUNC_DEF ASSIGN VAR LIST IF VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR LIST VAR VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR RETURN VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR IF VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR NUMBER IF VAR VAR VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR IF VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR FUNC_CALL VAR VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys input = sys.stdin.readline (T,) = map(int, input().split()) for _ in range(T): N, L, R = map(int, input().split()) X = list(map(int, input().split())) C1 = [0] * N C2 = [0] * N for i in range(N): if i < L: C1[X[i] - 1] += 1 else: C2[X[i] - 1] += 1 if L > R: C2, C1 = C1, C2 L, R = R, L for i in range(N): if C1[i] > 0 and C2[i] > 0: mn = min(C1[i], C2[i]) C1[i] -= mn C2[i] -= mn r = 0 for i in range(N): while R - L > 2 * r and C2[i] > 1: r += 1 C2[i] -= 2 r += (R - L) // 2 - r r += (sum(C1) + sum(C2)) // 2 print(r)
IMPORT ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR BIN_OP VAR VAR NUMBER NUMBER IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR BIN_OP NUMBER VAR VAR VAR NUMBER VAR NUMBER VAR VAR NUMBER VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP BIN_OP FUNC_CALL VAR VAR FUNC_CALL VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for _ in range(int(input())): n, l, r = map(int, input().split()) t = list(map(int, input().split())) lc = [0] * (n + 1) rc = [0] * (n + 1) for i in range(1, n + 1): if i <= l: lc[t[i - 1]] += 1 else: rc[t[i - 1]] += 1 for i in range(1, n + 1): mn = min(lc[i], rc[i]) lc[i] -= mn rc[i] -= mn l -= mn r -= mn if l < r: l, r = r, l lc, rc = rc, lc ans = 0 for i in range(1, n + 1): extra = l - r can = lc[i] // 2 do = min(2 * can, extra) ans += do // 2 l -= do ans += (l - r) // 2 + (l + r) // 2 print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER IF VAR VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR VAR BIN_OP VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP NUMBER VAR VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
T = int(input()) t = 1 while t <= T: n, l, r = map(int, input().split()) arr = list(map(int, input().split())) dic1 = {} dic2 = {} for i in range(l): if arr[i] not in dic1: dic1[arr[i]] = 0 dic1[arr[i]] += 1 for j in range(l, n): if arr[j] not in dic2: dic2[arr[j]] = 0 dic2[arr[j]] += 1 for e in dic1: if e in dic2: minimum = min(dic1[e], dic2[e]) dic1[e] -= minimum dic2[e] -= minimum lefttot = 0 leftodd = 0 righttot = 0 rightodd = 0 for e in dic1: if dic1[e] > 0: if dic1[e] % 2 == 1: leftodd += 1 lefttot += dic1[e] for e in dic2: if dic2[e] > 0: if dic2[e] % 2 == 1: rightodd += 1 righttot += dic2[e] if lefttot <= righttot: color = lefttot extra = max(0, rightodd - color) direc = (righttot - lefttot) // 2 else: color = righttot extra = max(0, leftodd - color) direc = (lefttot - righttot) // 2 ans = color + extra // 2 + direc print(ans) t += 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR NUMBER VAR VAR VAR NUMBER FOR VAR VAR IF VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER VAR VAR VAR FOR VAR VAR IF VAR VAR NUMBER IF BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER VAR VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR EXPR FUNC_CALL VAR VAR VAR NUMBER
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
import sys def solve(n, l, r, arr): cnt = [(0) for i in range(n)] if l < r: l, r = r, l arr = arr[r:] + arr[:r] for i, c in enumerate(arr): if i < l: cnt[c - 1] += 1 else: cnt[c - 1] -= 1 a = 0 for c in cnt: if c > 0: a += c // 2 return sum(max(c, 0) for c in cnt) - min(a, (l - r) // 2) input = lambda: sys.stdin.readline().rstrip() t = int(input()) for i in range(t): n, l, r = map(int, input().split()) arr = list(map(int, input().split())) print(solve(n, l, r, arr))
IMPORT FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR VAR VAR FOR VAR VAR FUNC_CALL VAR VAR IF VAR VAR VAR BIN_OP VAR NUMBER NUMBER VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER FOR VAR VAR IF VAR NUMBER VAR BIN_OP VAR NUMBER RETURN BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER VAR VAR FUNC_CALL VAR VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
def answer(): rc = [0] * (n + 1) lc = [0] * (n + 1) for i in range(n): if i < l: lc[a[i]] += 1 else: rc[a[i]] += 1 v = n // 2 left = max(0, v - l) + max(0, v - r) for i in range(n + 1): m = min(rc[i], lc[i]) rc[i] -= m lc[i] -= m ans, extra = 0, 0 for i in range(n + 1): if l > r: v = min(lc[i] // 2, left) ans += v left -= v lc[i] -= 2 * v extra += lc[i] + rc[i] else: v = min(rc[i] // 2, left) ans += v left -= v rc[i] -= 2 * v extra += lc[i] + rc[i] return ans + extra // 2 + left for T in range(int(input())): n, l, r = map(int, input().split()) a = list(map(int, input().split())) print(answer())
FUNC_DEF ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR NUMBER BIN_OP VAR VAR FUNC_CALL VAR NUMBER BIN_OP VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR VAR VAR BIN_OP NUMBER VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR VAR VAR BIN_OP NUMBER VAR VAR BIN_OP VAR VAR VAR VAR RETURN BIN_OP BIN_OP VAR BIN_OP VAR NUMBER VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
t = int(input()) while t: n, l, r = map(int, input().split()) a = list(map(int, input().split())) p = max(a) d1 = {} d2 = {} for i in range(0, p + 1): d1[i] = 0 d2[i] = 0 for i in range(0, l): d1[a[i]] += 1 for i in range(0, r): d2[a[l + i]] += 1 if r == l: for i in d1.keys(): if d2[i] > 0 and d1[i] > 0: x = min(d1[i], d2[i]) d1[i] -= x d2[i] -= x count = 0 for i in d1.keys(): count += d1[i] print(count) elif r > l: diff = r - l for i in d1.keys(): if d2[i] > 0 and d1[i] > 0: x = min(d1[i], d2[i]) d1[i] -= x d2[i] -= x count = 0 for i in d2.keys(): if diff == 0: break temp = d2[i] // 2 if temp >= diff // 2: count = count + diff // 2 d2[i] = d2[i] - diff diff = 0 else: count = count + temp d2[i] = d2[i] - temp * 2 diff = diff - temp * 2 count = count + diff // 2 c = 0 for i in d1.keys(): c += d1[i] for i in d2.keys(): c += d2[i] count = count + c // 2 print(count) elif l > r: diff = l - r for i in d1.keys(): if d2[i] > 0 and d1[i] > 0: x = min(d1[i], d2[i]) d1[i] -= x d2[i] -= x count = 0 for i in d1.keys(): if diff == 0: break temp = d1[i] // 2 if temp >= diff // 2: count = count + diff // 2 d1[i] = d1[i] - diff diff = 0 else: count = count + temp d1[i] = d1[i] - temp * 2 diff = diff - temp * 2 count = count + diff // 2 c = 0 for i in d1.keys(): c += d1[i] for i in d2.keys(): c += d2[i] count = count + c // 2 print(count) t = t - 1
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR WHILE VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER VAR VAR VAR BIN_OP VAR VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR IF VAR VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR IF VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR VAR BIN_OP VAR VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for z in range(int(input())): n, l, r = [int(i) for i in input().split()] arr = [int(i) for i in input().split()] dl = {} dr = {} for i in range(l): if arr[i] not in dl: dl[arr[i]] = [] dl[arr[i]].append(i) for i in range(l, n): if arr[i] not in dr: dr[arr[i]] = [] dr[arr[i]].append(i) templ = n - r tempr = n - l for i in range(l): if arr[i] in dr: templ -= 1 tempr -= 1 temp1 = dl[arr[i]] temp2 = dr[arr[i]] del temp1[0] del temp2[0] if len(temp1) == 0: del dl[arr[i]] else: dl[arr[i]] = temp1 if len(temp2) == 0: del dr[arr[i]] else: dr[arr[i]] = temp2 ans = 0 if templ > tempr: for i in dl: tem = dl[i] while len(tem) >= 2 and templ > tempr: del tem[0] del tem[0] templ -= 2 ans += 1 if templ > tempr: ans += templ - tempr templ = tempr else: for i in dr: tem = dr[i] while len(tem) >= 2 and tempr > templ: del tem[0] del tem[0] tempr -= 2 ans += 1 if tempr > templ: ans += tempr - templ tempr = templ ans += templ print(ans)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR LIST EXPR FUNC_CALL VAR VAR VAR VAR FOR VAR FUNC_CALL VAR VAR VAR IF VAR VAR VAR ASSIGN VAR VAR VAR LIST EXPR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR VAR ASSIGN VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR NUMBER VAR NUMBER IF FUNC_CALL VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR VAR IF FUNC_CALL VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR VAR FOR VAR VAR ASSIGN VAR VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR FOR VAR VAR ASSIGN VAR VAR VAR WHILE FUNC_CALL VAR VAR NUMBER VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR ASSIGN VAR VAR VAR VAR EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for _ in range(int(input())): n, l, r = list(map(int, input().split())) ar = list(map(int, input().split())) rem, a, b = n, [0] * (n + 1), [0] * (n + 1) for i in range(l): a[ar[i]] += 1 for i in range(l, n): b[ar[i]] += 1 for i in range(1, n + 1): x = min(a[i], b[i]) a[i], b[i] = a[i] - x, b[i] - x rem -= 2 * x if r < l: l, r = r, l a, b = b, a mx, t = sum([(b[i] // 2) for i in range(1, n + 1)]), (r - l) // 2 print((rem - 2 * min(t, mx)) // 2 + t)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR BIN_OP VAR VAR VAR BIN_OP VAR VAR VAR VAR BIN_OP NUMBER VAR IF VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP BIN_OP VAR BIN_OP NUMBER FUNC_CALL VAR VAR VAR NUMBER VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
from sys import stdin, stdout input = stdin.readline def im(): return map(int, input().split()) def ii(): return int(input()) def il(): return list(map(int, input().split())) def ins(): return input()[:-1] for _ in range(ii()): n, l, r = im() lis = il() left = lis[:l] right = lis[l:] ldic = [0] * (n + 1) rdic = [0] * (n + 1) for i in left: ldic[i] += 1 for i in right: rdic[i] += 1 for i in left: if ldic[i] > 0 and rdic[i] > 0: mi = min(ldic[i], rdic[i]) ldic[i] -= mi rdic[i] -= mi l -= mi r -= mi count = 0 while True: if l == r: stdout.write(str(count + l) + "\n") break elif l < r: flag = 0 for i in range(len(rdic)): if rdic[i] > 1: cnt = min(rdic[i] // 2, (r - l) // 2) rdic[i] -= cnt * 2 count += cnt r -= cnt * 2 flag = 1 if l == r: break if flag == 0: cnt = (r - l) // 2 count += cnt l += cnt r -= cnt else: flag = 0 for i in range(len(ldic)): if ldic[i] > 1: cnt = min(ldic[i] // 2, (l - r) // 2) ldic[i] -= cnt * 2 count += cnt l -= cnt * 2 flag = 1 if l == r: break if flag == 0: cnt = (l - r) // 2 count += cnt r += cnt l -= cnt
ASSIGN VAR VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER FOR VAR VAR VAR VAR NUMBER FOR VAR VAR VAR VAR NUMBER FOR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR STRING IF VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP VAR VAR NUMBER BIN_OP BIN_OP VAR VAR NUMBER VAR VAR BIN_OP VAR NUMBER VAR VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR IF VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER VAR VAR VAR VAR VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
def solve(): n, l, r = map(int, input().split()) c = list(map(int, input().split())) lc = [0] * (n + 1) rc = [0] * (n + 1) res = 0 for i in range(l): lc[c[i]] += 1 for i in range(l, n): rc[c[i]] += 1 for i in range(n): d = min(lc[i], rc[i]) lc[i] -= d rc[i] -= d for i in range(n + 1): if lc[i] > rc[i]: if l > r: d = (l - r) // 2 give = min((lc[i] - rc[i]) // 2, d) rc[i] += give lc[i] -= give l -= give r += give res += give elif r > l: d = (r - l) // 2 give = min((rc[i] - lc[i]) // 2, d) r -= give l += give rc[i] -= give lc[i] += give res += give res += abs(r - l) // 2 d = 0 for i in range(n + 1): d += abs(lc[i] - rc[i]) res += d // 2 + int(d % 2 == 1) print(res) def main(): for _ in range(int(input())): solve() main()
FUNC_DEF ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR IF VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR VAR VAR NUMBER VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP FUNC_CALL VAR BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR BIN_OP BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR VAR FUNC_DEF FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
t = int(input()) for i in range(t): n, l, r = map(int, input().split()) z = list(map(int, input().split())) left_col = z[:l] right_col = z[l:] d1 = {} d2 = {} for j in range(1, n + 1): d1[j] = 0 d2[j] = 0 for j in range(len(left_col)): d1[left_col[j]] += 1 for j in range(len(right_col)): d2[right_col[j]] += 1 cnt = 0 if l == r: for j in range(1, n + 1): qa = min(d1[j], d2[j]) d1[j] -= qa d2[j] -= qa cnt += d1[j] + d2[j] money = cnt // 2 elif l > r: spl = 0 for j in range(1, n + 1): qa = min(d1[j], d2[j]) d1[j] -= qa d2[j] -= qa cnt += d1[j] + d2[j] if d1[j] > 1: spl += d1[j] // 2 if spl <= (l - r) // 2: money = (l - r) // 2 + cnt // 2 - spl else: money = cnt // 2 else: spl = 0 for j in range(1, n + 1): qa = min(d1[j], d2[j]) d1[j] -= qa d2[j] -= qa cnt += d1[j] + d2[j] if d2[j] > 1: spl += d2[j] // 2 if spl <= (r - l) // 2: money = (r - l) // 2 + cnt // 2 - spl else: money = cnt // 2 print(money)
ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR DICT ASSIGN VAR DICT FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR VAR FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR IF VAR VAR NUMBER VAR BIN_OP VAR VAR NUMBER IF VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP BIN_OP VAR VAR NUMBER BIN_OP VAR NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
total = 6 left = 3 right = 3 arr = [1, 2, 3, 1, 5, 6] def answer(total, left, right, arr): dp_left = [(0) for i in range(total)] dp_right = [(0) for i in range(total)] i = 0 while i < left: dp_left[arr[i] - 1] += 1 i += 1 while i < len(arr): dp_right[arr[i] - 1] += 1 i += 1 left1 = 0 right1 = 0 for i in range(total): if dp_left[i] >= 1 and dp_right[i] >= 1: m = min(dp_left[i], dp_right[i]) dp_left[i] -= m dp_right[i] -= m left1 += dp_left[i] right1 += dp_right[i] else: left1 += dp_left[i] right1 += dp_right[i] cost = 0 mid = (left1 + right1) // 2 if left1 > mid: cost += left1 - mid for i in range(total): if dp_left[i] >= 2: k = dp_left[i] // 2 if left1 - 2 * k > right1: left1 -= 2 * k elif left1 - 2 * k == right1: left1 -= 2 * k break else: p = right1 - (left1 - 2 * k) left1 -= p break if right1 > mid: cost += right1 - mid for i in range(total): if dp_right[i] >= 2: k = dp_right[i] // 2 if right1 - 2 * k > left1: right1 -= 2 * k elif right1 - 2 * k == left1: right1 -= 2 * k break else: p = left1 - (right1 - 2 * k) right1 -= p break cost += (left1 + right1) // 2 print(cost) t = int(input()) for w in range(t): inp = input().split() total = int(inp[0]) left = int(inp[1]) right = int(inp[2]) inp = input().split() arr = [] for i in inp: arr.append(int(i)) answer(total, left, right, arr)
ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR LIST NUMBER NUMBER NUMBER NUMBER NUMBER NUMBER FUNC_DEF ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR BIN_OP VAR VAR NUMBER NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF VAR VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR BIN_OP NUMBER VAR VAR VAR BIN_OP NUMBER VAR IF BIN_OP VAR BIN_OP NUMBER VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP NUMBER VAR VAR VAR IF VAR VAR VAR BIN_OP VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER ASSIGN VAR BIN_OP VAR VAR NUMBER IF BIN_OP VAR BIN_OP NUMBER VAR VAR VAR BIN_OP NUMBER VAR IF BIN_OP VAR BIN_OP NUMBER VAR VAR VAR BIN_OP NUMBER VAR ASSIGN VAR BIN_OP VAR BIN_OP VAR BIN_OP NUMBER VAR VAR VAR VAR BIN_OP BIN_OP VAR VAR NUMBER EXPR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FOR VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR VAR VAR VAR
To satisfy his love of matching socks, Phoenix has brought his $n$ socks ($n$ is even) to the sock store. Each of his socks has a color $c_i$ and is either a left sock or right sock. Phoenix can pay one dollar to the sock store to either: recolor a sock to any color $c'$ $(1 \le c' \le n)$ turn a left sock into a right sock turn a right sock into a left sock The sock store may perform each of these changes any number of times. Note that the color of a left sock doesn't change when it turns into a right sock, and vice versa. A matching pair of socks is a left and right sock with the same color. What is the minimum cost for Phoenix to make $n/2$ matching pairs? Each sock must be included in exactly one matching pair. -----Input----- The input consists of multiple test cases. The first line contains an integer $t$ ($1 \le t \le 1000$) β€” the number of test cases. The first line of each test case contains three integers $n$, $l$, and $r$ ($2 \le n \le 2 \cdot 10^5$; $n$ is even; $0 \le l, r \le n$; $l+r=n$) β€” the total number of socks, and the number of left and right socks, respectively. The next line contains $n$ integers $c_i$ ($1 \le c_i \le n$) β€” the colors of the socks. The first $l$ socks are left socks, while the next $r$ socks are right socks. It is guaranteed that the sum of $n$ across all the test cases will not exceed $2 \cdot 10^5$. -----Output----- For each test case, print one integer β€” the minimum cost for Phoenix to make $n/2$ matching pairs. Each sock must be included in exactly one matching pair. -----Examples----- Input 4 6 3 3 1 2 3 2 2 2 6 2 4 1 1 2 2 2 2 6 5 1 6 5 4 3 2 1 4 0 4 4 4 4 3 Output 2 3 5 3 -----Note----- In the first test case, Phoenix can pay $2$ dollars to: recolor sock $1$ to color $2$ recolor sock $3$ to color $2$ There are now $3$ matching pairs. For example, pairs $(1, 4)$, $(2, 5)$, and $(3, 6)$ are matching. In the second test case, Phoenix can pay $3$ dollars to: turn sock $6$ from a right sock to a left sock recolor sock $3$ to color $1$ recolor sock $4$ to color $1$ There are now $3$ matching pairs. For example, pairs $(1, 3)$, $(2, 4)$, and $(5, 6)$ are matching.
for _ in range(int(input())): n, l, r = map(int, input().split()) c = list(map(int, input().split())) sockc = [0] * (n + 1) cost = 0 for i in range(l): sockc[c[i]] += 1 for i in range(l, n): sockc[c[i]] -= 1 pos = 0 neg = 0 posodd = 0 negodd = 0 for i in range(n + 1): if sockc[i] > 0: pos += sockc[i] posodd += sockc[i] % 2 elif sockc[i] < 0: neg += -sockc[i] sockc[i] = -sockc[i] negodd += sockc[i] % 2 if pos == neg: print(pos) elif pos > neg: if posodd > neg: posodd -= neg print(posodd + (pos + neg - posodd) // 2) else: print((pos + neg) // 2) else: t = pos pos = neg neg = t posodd = negodd if posodd > neg: posodd -= neg print(posodd + (pos + neg - posodd) // 2) else: print((pos + neg) // 2)
FOR VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR VAR BIN_OP VAR VAR NUMBER IF VAR VAR NUMBER VAR VAR VAR ASSIGN VAR VAR VAR VAR VAR BIN_OP VAR VAR NUMBER IF VAR VAR EXPR FUNC_CALL VAR VAR IF VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR BIN_OP BIN_OP BIN_OP VAR VAR VAR NUMBER EXPR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = list(map(int, input().split())) x = list(map(int, input().split())) x.sort() count = 0 i = 0 j = n // 2 while i < n // 2 and j < n: if x[j] - x[i] >= z: count += 1 i += 1 j += 1 print(count)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
N, Z = list(map(int, input().split())) X = list(map(int, input().split())) X.sort() def compute(x1, x2): count = 0 i = 0 j = 0 while i < len(x1) and j < len(x2): while x2[j] - x1[i] < Z: j += 1 if j == len(x2): return count count += 1 i += 1 j += 1 return count if N % 2 == 0: print(compute(X[0 : N // 2], X[N // 2 :])) else: v1 = compute(X[0 : N // 2], X[N // 2 :]) v2 = compute(X[0 : N // 2 + 1], X[N // 2 + 1 :]) print(max(v1, v2))
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR WHILE BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR FUNC_CALL VAR VAR RETURN VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR IF BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP VAR NUMBER VAR BIN_OP VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, m = map(int, input().split()) a = list(map(int, input().split())) a.sort() k = n // 2 s = 0 mas = [0] * n for i in range(n): if mas[i] == 1: continue for j in range(k, n): if a[j] - a[i] >= m and mas[j] != 1: mas[i] = 1 mas[j] = 1 k = j + 1 s += 1 break if j == n - 1: print(s) exit() print(s)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER VAR NUMBER IF VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
_, z = list(map(int, input().split())) p = list(map(int, input().split())) p.sort() pos = -1 for i in range(len(p) // 2, len(p)): if p[i] >= p[0] + z: pos = i break if pos == -1: print(0) else: r = pos l = 0 ctr = 0 while True: if l == pos: break if r == len(p): break if p[r] >= p[l] + z: ctr += 1 r += 1 l += 1 else: r += 1 print(ctr)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR NUMBER VAR ASSIGN VAR VAR IF VAR NUMBER EXPR FUNC_CALL VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF VAR VAR IF VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
x, y = map(int, input().split()) a = list(map(int, input().split())) a.sort() i = 0 j = len(a) // 2 count = 0 while j < len(a): if abs(a[i] - a[j]) >= y: count += 1 a[i] = -1 a[j] = -1 else: j += 1 while i < len(a) and a[i] == -1: i += 1 while j < len(a) and (a[j] == -1 or j <= i): j += 1 print(count)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR VAR NUMBER VAR VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) A = list(map(int, input().split())) A.sort() ans = 0 vis = [False] * n j = n // 2 for i in range(n // 2): if vis[i]: continue while j < n and A[j] - A[i] < z: j += 1 if j == n: break vis[j] = True j += 1 ans += 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER IF VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
from sys import stdin, stdout def main(): from sys import stdin, stdout def read(): return stdin.readline().rstrip("\n") def read_array(sep=None, maxsplit=-1): return read().split(sep, maxsplit) def read_int(): return int(read()) def read_int_array(sep=None, maxsplit=-1): return [int(a) for a in read_array(sep, maxsplit)] def write(*args, **kwargs): sep = kwargs.get("sep", " ") end = kwargs.get("end", "\n") stdout.write(sep.join(str(a) for a in args) + end) def write_array(array, **kwargs): sep = kwargs.get("sep", " ") end = kwargs.get("end", "\n") stdout.write(sep.join(str(a) for a in array) + end) n, z = read_int_array() nums = read_int_array() nums.sort() out = 0 used = [False] * n i, j = 0, len(nums) // 2 while i < n: used[i] = True while j < n and (used[j] or nums[j] - nums[i] < z): j += 1 if j == n: break used[j] = True while i < n and used[i]: i += 1 out += 1 write(out) main()
FUNC_DEF FUNC_DEF RETURN FUNC_CALL FUNC_CALL VAR STRING FUNC_DEF NONE NUMBER RETURN FUNC_CALL FUNC_CALL VAR VAR VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF NONE NUMBER RETURN FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR FUNC_DEF ASSIGN VAR FUNC_CALL VAR STRING STRING ASSIGN VAR FUNC_CALL VAR STRING STRING EXPR FUNC_CALL VAR BIN_OP FUNC_CALL VAR FUNC_CALL VAR VAR VAR VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR VAR NUMBER BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR VAR ASSIGN VAR VAR NUMBER WHILE VAR VAR VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, x = [int(i) for i in input().split()] A = [int(i) for i in input().split()] A.sort() taken = [0] * n r = n // 2 ans = 0 for i in range(n): if taken[i]: continue while r < n and A[r] - A[i] < x: r += 1 while r < n and taken[r]: r += 1 if r < n and A[r] - A[i] >= x: taken[r] = 1 ans += 1 r += 1 taken[i] = 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR NUMBER IF VAR VAR BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) li = sorted(list(map(int, input().split()))) i, j = 0, n // 2 count = 0 n = len(li) while i < n // 2 and j < n: if li[j] - li[i] >= z: count += 1 i += 1 j += 1 else: j += 1 print(count)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR WHILE VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = list(map(int, input().split())) arr = list(map(int, input().split())) arr.sort() c = 0 l = 0 r = len(arr) // 2 while r < len(arr) and l < len(arr): if arr[l] == -1: l += 1 continue if arr[r] - arr[l] >= z and arr[r] != -1: arr[r] = -1 c += 1 r += 1 l += 1 else: r += 1 print(c)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) arr = sorted(map(int, input().split())) i, j, count = 0, n // 2, 0 while i < n // 2 and j < n: if arr[i] + z <= arr[j]: count += 1 i += 1 j += 1 print(count)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR VAR NUMBER BIN_OP VAR NUMBER NUMBER WHILE VAR BIN_OP VAR NUMBER VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = [int(x) for x in input().split(" ")] a = [int(x) for x in input().split(" ")] a.sort() res = 0 def can_match(k): if 2 * k > n: return False if k == 0: return True b = a[:] j = k for i in range(n): if b[i] != -1: while j < n and (j <= i or b[j] == -1 or b[j] < b[i] + z): j += 1 if j < n: b[i] = -1 b[j] = -1 k -= 1 if k == 0: return True else: break return False l, r = 0, n while l < r: m = (l + r) // 2 if can_match(m): l = m + 1 else: r = m print(l - 1)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR ASSIGN VAR NUMBER FUNC_DEF IF BIN_OP NUMBER VAR VAR RETURN NUMBER IF VAR NUMBER RETURN NUMBER ASSIGN VAR VAR ASSIGN VAR VAR FOR VAR FUNC_CALL VAR VAR IF VAR VAR NUMBER WHILE VAR VAR VAR VAR VAR VAR NUMBER VAR VAR BIN_OP VAR VAR VAR VAR NUMBER IF VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER IF VAR NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR NUMBER VAR WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) lst = list(map(int, input().split())) lst.sort() beg = n // 2 cnt = 0 for i in range(n // 2): low = beg high = n - 1 while low < high: mid = (low + high) // 2 if lst[mid] - lst[i] >= z: high = mid elif lst[mid] - lst[i] < z: low = mid + 1 if low == n - 1: if lst[low] - lst[i] >= z: cnt = cnt + 1 break beg = low + 1 cnt = cnt + 1 print(cnt)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER IF VAR BIN_OP VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) a = sorted(list(map(int, input().split()))) b = a[: n // 2] a = a[n // 2 :] i = 0 j = 0 ans = 0 while i < len(b) and j < len(a): if a[j] - b[i] >= z: ans += 1 i += 1 j += 1 else: j += 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = [int(i) for i in input().split(" ")] nums = [int(i) for i in input().split(" ")] nums.sort() if n % 2 == 0: odd = nums[: n // 2] even = nums[n // 2 :] else: odd = nums[: n // 2] even = nums[n // 2 + 1 :] i, j = 0, 0 res = 0 while i < len(odd) and j < len(even): if abs(odd[i] - even[j]) >= z: res += 1 i += 1 j += 1 else: j += 1 print(res)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR IF BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP VAR NUMBER ASSIGN VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, m = map(int, input().split()) li = [int(k) for k in input().split()] mark = [0] * n i = 0 j = n // 2 li.sort() ans = 0 while i < n and j < n: if i != j and li[j] - li[i] >= m and mark[i] == 0 and mark[j] == 0: ans += 1 mark[i] = 1 mark[j] = 1 i += 1 j += 1 elif li[j] - li[i] < m: if mark[i] == 1 and mark[j] == 0: i += 1 elif mark[j] == 1 and mark[i] == 0: j += 1 elif mark[j] == 1 and mark[i] == 1: i += 1 j += 1 elif mark[j] == 0 and mark[i] == 0: j += 1 elif li[j] - li[i] >= m: if mark[i] == 1 and mark[j] == 0: i += 1 elif mark[j] == 1 and mark[i] == 0: j += 1 elif mark[j] == 1 and mark[i] == 1: i += 1 j += 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
def li(): return list(map(int, input().split())) def num(): return map(int, input().split()) def nu(): return int(input()) def solve(): t = 1 for _ in range(t): n, z = num() a = li() a.sort() cc = 0 l = 0 end = n // 2 while l <= end: mid = (l + end) // 2 fl = True for i in range(mid): if a[n - mid + i] - a[i] < z: fl = False break if fl: l = mid + 1 else: end = mid - 1 print(end) solve()
FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF RETURN FUNC_CALL VAR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR NUMBER IF VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) s = sorted(list(map(int, input().split()))) q = [(True) for n in range(n)] rt = 0 i = 0 j = n // 2 while i < n and j < n: while j < n and s[i] + z > s[j]: j += 1 if i < j < n and q[i] and q[j]: q[i] = False q[j] = False rt += 1 i += 1 j += 1 print(rt)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) def can(x, c): for a, b in zip(x[:c], x[-c:]): if a + z > b: return False return True x = [int(x) for x in input().split()] x.sort() l = 0 r = n // 2 + 1 while r - l > 1: mid = (l + r) // 2 if can(x, mid): l = mid else: r = mid print(l)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR FUNC_DEF FOR VAR VAR FUNC_CALL VAR VAR VAR VAR VAR IF BIN_OP VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = list(map(int, input().split())) l = list(map(int, input().split())) l = sorted(l) wyn = 0 maly = 0 duzy = n // 2 zaj = [0] * n while duzy < n: while maly < n: if zaj[maly] == 1: maly += 1 else: break if l[duzy] - l[maly] >= z and zaj[duzy] == 0 and zaj[maly] == 0: wyn += 1 maly += 1 zaj[maly - 1] = 1 zaj[duzy] = 1 duzy += 1 print(wyn)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP LIST NUMBER VAR WHILE VAR VAR WHILE VAR VAR IF VAR VAR NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER VAR NUMBER VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
N, Z = list(map(int, input().split())) A = sorted([int(a) for a in input().split()]) l, r = 0, N // 2 + 1 while r - l > 1: m = (r + l) // 2 for i in range(m): if A[N - m + i] - A[i] < Z: r = m break else: l = m print(l)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
nzint = input().split() nz = [int(x) for x in nzint] input_string = input().split() intlist = [int(x) for x in input_string] intlist.sort() i, j = nz[0] - 1, nz[0] // 2 - 1 count = 0 while i >= nz[0] // 2 - 1 and j >= 0: if intlist[i] - intlist[j] >= nz[1]: count = count + 1 i = i - 1 j = j - 1 print(count)
ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR VAR BIN_OP VAR NUMBER NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, x = [int(i) for i in input().split()] nums = [int(i) for i in input().split()] nums.sort() left = 0 right = n + 1 count = 0 while True: if right - left <= 1 or right <= (n + 1) // 2: break c = 0 ok = True mid = int((left + right) / 2) for i in range(n - mid): if nums[mid + i] - nums[i] >= x: c += 1 else: ok = False break if not ok: left = mid else: right = mid if c > count: count = c ok = True c = 0 for i in range(n - left): if nums[left + i] - nums[i] >= x: c += 1 else: ok = False break if ok: if c > count and c <= (n + 1) // 2: count = c ok = True c = 0 for i in range(n - right): if nums[right + i] - nums[i] >= x: c += 1 else: ok = False break if ok: if c > count and c <= (n + 1) // 2: count = c print(count)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE NUMBER IF BIN_OP VAR VAR NUMBER VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR ASSIGN VAR VAR ASSIGN VAR VAR IF VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER ASSIGN VAR NUMBER IF VAR IF VAR VAR VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = [int(x) for x in input().split()] b = sorted([int(x) for x in input().split()]) a = [] for item in b: a.append([item, 0]) end = n // 2 counter = 0 for i in range(n): if end == i: end += 1 for j in range(end, n): if a[j][0] - a[i][0] >= z and a[j][1] == a[i][1] == 0: end = j counter += 1 a[i][1] = a[j][1] = 1 break else: end = j print(counter)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST FOR VAR VAR EXPR FUNC_CALL VAR LIST VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR IF VAR VAR VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR NUMBER VAR VAR NUMBER VAR VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR VAR NUMBER NUMBER ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = list(map(int, input().split())) X = list(map(int, input().split())) X.sort() l = n // 2 - 1 r = n - 1 m = (l + r) // 2 cnt = 0 for i in range(l, -1, -1): if X[r] - X[l] >= z: cnt += 1 l -= 1 r -= 1 else: l -= 1 print(cnt)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR NUMBER NUMBER IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
def check(num): first = l[0:num] second = l[n - num : n] for i in range(num): if second[i] - first[i] < m: return False return True n, m = map(int, input().split()) l = list(map(int, input().split())) l.sort() low = 0 high = n // 2 while low < high: mid = (low + high) // 2 if check(mid): low = mid + 1 else: high = mid - 1 if check(low): print(low) else: print(low - 1)
FUNC_DEF ASSIGN VAR VAR NUMBER VAR ASSIGN VAR VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR BIN_OP VAR NUMBER
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
def ans(array, z): array.sort() left = 0 right = n // 2 + 1 while right - left > 1: mid = (left + right) // 2 good = True for i in range(mid): good &= array[n - mid + i] - array[i] >= z if good: left = mid else: right = mid return left n, z = map(int, input().split()) a = list(map(int, input().split())) print(ans(a, z))
FUNC_DEF EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR VAR BIN_OP VAR BIN_OP BIN_OP VAR VAR VAR VAR VAR VAR IF VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
import sys readline = sys.stdin.buffer.readline read = sys.stdin.read ns = lambda: readline().rstrip() ni = lambda: int(readline().rstrip()) nm = lambda: map(int, readline().split()) nl = lambda: list(map(int, readline().split())) prn = lambda x: print(*x, sep="\n") def solve(): n, z = nm() a = sorted(nm()) ok, ng = 0, n // 2 + 1 while ng - ok > 1: mid = (ok + ng) // 2 p = a[:mid] q = a[-mid:] for y, x in zip(q, p): if y - x < z: ng = mid break else: ok = mid print(ok) return solve()
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR STRING FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR ASSIGN VAR VAR NUMBER BIN_OP BIN_OP VAR NUMBER NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR VAR FUNC_CALL VAR VAR VAR IF BIN_OP VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR RETURN EXPR FUNC_CALL VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) a = [int(x) for x in input().split()] A = sorted(a) A.sort() a = 0 b = n // 2 while a < b: mid = (a + b + 1) // 2 if all(A[-mid + ind] - A[ind] >= z for ind in range(mid)): a = mid else: b = mid - 1 print(a)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER IF FUNC_CALL VAR BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, k = map(int, input().split()) a = list(map(int, input().split())) a.sort() if len(a) % 2 == 0: x = len(a) // 2 else: x = len(a) // 2 + 1 i = 0 while x < len(a): if a[x] - a[i] >= k: i += 1 x += 1 print(i)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR IF BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP FUNC_CALL VAR VAR NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
def maxpairs(ls, mdiff): cou = 0 ls.sort() id2 = int(len(ls) / 2) for i in range(len(ls) // 2): flag = True cp_i = ls[i] while id2 <= len(ls) - 1: flag = False if cp_i + mdiff <= ls[id2]: cou += 1 id2 += 1 break id2 += 1 if flag: break return cou a, mdiff = map(int, input().split()) ls = list(map(int, input().strip().split())) print(maxpairs(ls, mdiff))
FUNC_DEF ASSIGN VAR NUMBER EXPR FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR VAR WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER ASSIGN VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, k = map(int, input().split()) l = [int(i) for i in input().split()] l.sort() def check(mi): try: if 2 * mi > n: return 0 l1 = [l[i] for i in range(mi)] l2 = [l[i] for i in range(n - mi, n)] for i in range(mi): if l1[i] + k > l2[i]: return 0 return 1 except: return 0 lo = 1 hi = n // 2 ans = 0 while lo <= hi: mi = lo + hi >> 1 if check(mi): ans = mi lo = mi + 1 else: hi = mi - 1 print(ans)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_DEF IF BIN_OP NUMBER VAR VAR RETURN NUMBER ASSIGN VAR VAR VAR VAR FUNC_CALL VAR VAR ASSIGN VAR VAR VAR VAR FUNC_CALL VAR BIN_OP VAR VAR VAR FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR VAR ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
import sys input = sys.stdin.readline n, z = list(map(int, input().split())) X = list(map(int, input().split())) X.sort() def match(cut): i = 0 j = cut ANS = 0 for i in range(cut): while j < n and X[j] - X[i] < z: j += 1 if j == n: break else: ANS += 1 j += 1 return ANS MIN = 1 MAX = n - 1 while MAX - MIN > 1: MID0 = (MIN + MAX) // 2 - 1 MID1 = (MIN + MAX) // 2 ANS2 = match(MID0) ANS3 = match(MID1) if ANS2 == ANS3: print(ANS2) return if ANS2 > ANS3: MAX = MID0 else: MIN = MID1 print(max(match(MIN), match(MAX)))
IMPORT ASSIGN VAR VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER RETURN VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP BIN_OP VAR VAR NUMBER NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR VAR IF VAR VAR EXPR FUNC_CALL VAR VAR RETURN IF VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
def find(A, z): def check(k, z): L = A[:k] R = A[-k:] for i in range(len(L)): if abs(L[i] - R[i]) >= z: continue else: return False return True A = sorted(A) left = 0 right = len(A) // 2 while right - left > 1: mid = (left + right) // 2 if check(mid, z): left = mid else: right = mid if check(left + 1, z): return left + 1 else: return left n, z = list(map(int, input().strip().split(" "))) A = list(map(int, input().strip().split(" "))) print(find(A, z))
FUNC_DEF FUNC_DEF ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR IF FUNC_CALL VAR BIN_OP VAR NUMBER VAR RETURN BIN_OP VAR NUMBER RETURN VAR ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, x = [int(i) for i in input().split()] A = [int(i) for i in input().split()] A.sort() taken = [0] * n lo = 0 hi = n // 2 + 1 def check(sz): if sz > n // 2: return 0 left = A[:sz] right = A[-sz:] ok = 1 for i in range(len(left)): if right[i] - left[i] >= x: continue else: ok = 0 return ok for i in range(200): mid = (lo + hi) // 2 if check(mid): lo = mid else: hi = mid ans = 0 for i in range(max(0, lo - 5), min(hi + 5, n // 2)): if check(i): ans = i else: break print(mid)
ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER NUMBER FUNC_DEF IF VAR BIN_OP VAR NUMBER RETURN NUMBER ASSIGN VAR VAR VAR ASSIGN VAR VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR VAR IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR NUMBER RETURN VAR FOR VAR FUNC_CALL VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR FUNC_CALL VAR NUMBER BIN_OP VAR NUMBER FUNC_CALL VAR BIN_OP VAR NUMBER BIN_OP VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) arrs = [int(x) for x in input().split()] arrs.sort() def fi(): j = len(arrs) // 2 while arrs[j] - arrs[0] < z and j < len(arrs) - 1: j += 1 l = 0 r = j arr = arrs[:] cnt = 0 while r != len(arr): if arr[l] == 10**10: l += 1 elif arr[r] - arr[l] >= z: arr[r] = 10**10 cnt += 1 r += 1 l += 1 else: r += 1 return cnt print(fi())
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_DEF ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER WHILE BIN_OP VAR VAR VAR NUMBER VAR VAR BIN_OP FUNC_CALL VAR VAR NUMBER VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR ASSIGN VAR VAR ASSIGN VAR NUMBER WHILE VAR FUNC_CALL VAR VAR IF VAR VAR BIN_OP NUMBER NUMBER VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR VAR BIN_OP NUMBER NUMBER VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
def max_pairs(arr, z): count = 0 N = len(arr) arr.sort() i = 0 mid = N // 2 + (1 if N % 2 else 0) j = mid while i < mid and j < N: while j < N and arr[j] - arr[i] < z: j += 1 if j != N: count += 1 i += 1 j += 1 return count def main(): n, z = map(int, input().split()) arr = [int(i) for i in input().split()] print(max_pairs(arr, z)) main()
FUNC_DEF ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR NUMBER BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR VAR WHILE VAR VAR VAR VAR WHILE VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER IF VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER RETURN VAR FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR FUNC_CALL VAR VAR VAR EXPR FUNC_CALL VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = list(map(int, input().split())) arr = list(map(int, input().split())) arr = [0] + arr s_arr = sorted(arr) f_arr = [1] * (n + 1) l = 1 r = int((n + 1) / 2) + 1 cnt = 0 while r <= n and l <= r: if s_arr[r] - s_arr[l] >= z: cnt += 1 l += 1 r += 1 print(cnt)
ASSIGN VAR VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR BIN_OP LIST NUMBER VAR ASSIGN VAR FUNC_CALL VAR VAR ASSIGN VAR BIN_OP LIST NUMBER BIN_OP VAR NUMBER ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER NUMBER ASSIGN VAR NUMBER WHILE VAR VAR VAR VAR IF BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) lst = list(map(int, input().split())) lst.sort() cnt = 0 begin = len(lst) // 2 for i in range(len(lst) // 2): if begin > len(lst) - 1: break elif lst[begin] - lst[i] >= z: cnt = cnt + 1 begin = begin + 1 continue else: while begin <= len(lst) - 1: if lst[begin] - lst[i] >= z: cnt = cnt + 1 begin = begin + 1 break else: begin = begin + 1 print(cnt)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER ASSIGN VAR BIN_OP FUNC_CALL VAR VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER WHILE VAR BIN_OP FUNC_CALL VAR VAR NUMBER IF BIN_OP VAR VAR VAR VAR VAR ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
n, z = map(int, input().split()) x = sorted(list(map(int, input().split()))) ost = [] number = 0 for i in range(n // 2): ost.append(x[i]) j = 0 length = len(ost) for i in range(n // 2, n): if j < length and x[i] - x[j] >= z: j += 1 number += 1 print(number)
ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR LIST ASSIGN VAR NUMBER FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER EXPR FUNC_CALL VAR VAR VAR ASSIGN VAR NUMBER ASSIGN VAR FUNC_CALL VAR VAR FOR VAR FUNC_CALL VAR BIN_OP VAR NUMBER VAR IF VAR VAR BIN_OP VAR VAR VAR VAR VAR VAR NUMBER VAR NUMBER EXPR FUNC_CALL VAR VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
def __starting_point(): n, z = map(int, input().split()) a = list(map(int, input().split())) a.sort() mask = [(0) for i in range(n)] start = int((n - 1) / 2) end = n - 1 res = 0 while end >= 0: if abs(a[start] - a[end]) >= z and mask[end] == 0 and mask[start] == 0: mask[start] = 1 mask[end] = 1 start -= 1 end -= 1 res += 1 elif mask[start] == 1: start -= 1 elif mask[end] == 1: end -= 1 else: start -= 1 if start < 0: break print(res) __starting_point()
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR ASSIGN VAR FUNC_CALL VAR FUNC_CALL VAR VAR FUNC_CALL FUNC_CALL VAR EXPR FUNC_CALL VAR ASSIGN VAR NUMBER VAR FUNC_CALL VAR VAR ASSIGN VAR FUNC_CALL VAR BIN_OP BIN_OP VAR NUMBER NUMBER ASSIGN VAR BIN_OP VAR NUMBER ASSIGN VAR NUMBER WHILE VAR NUMBER IF FUNC_CALL VAR BIN_OP VAR VAR VAR VAR VAR VAR VAR NUMBER VAR VAR NUMBER ASSIGN VAR VAR NUMBER ASSIGN VAR VAR NUMBER VAR NUMBER VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR NUMBER IF VAR VAR NUMBER VAR NUMBER VAR NUMBER IF VAR NUMBER EXPR FUNC_CALL VAR VAR EXPR FUNC_CALL VAR
You are given a set of points $x_1$, $x_2$, ..., $x_n$ on the number line. Two points $i$ and $j$ can be matched with each other if the following conditions hold: neither $i$ nor $j$ is matched with any other point; $|x_i - x_j| \ge z$. What is the maximum number of pairs of points you can match with each other? -----Input----- The first line contains two integers $n$ and $z$ ($2 \le n \le 2 \cdot 10^5$, $1 \le z \le 10^9$) β€” the number of points and the constraint on the distance between matched points, respectively. The second line contains $n$ integers $x_1$, $x_2$, ..., $x_n$ ($1 \le x_i \le 10^9$). -----Output----- Print one integer β€” the maximum number of pairs of points you can match with each other. -----Examples----- Input 4 2 1 3 3 7 Output 2 Input 5 5 10 9 5 8 7 Output 1 -----Note----- In the first example, you may match point $1$ with point $2$ ($|3 - 1| \ge 2$), and point $3$ with point $4$ ($|7 - 3| \ge 2$). In the second example, you may match point $1$ with point $3$ ($|5 - 10| \ge 5$).
def solve(): n, z = [int(s) for s in input().split(" ")] x = [int(s) for s in input().split(" ")] x.sort() def good(k): if 2 * k > n: return False for i in range(k): if x[-(k - i)] - x[i] < z: return False return True l = 0 r = n while r - l > 1: m = (l + r) // 2 if good(m): l = m else: r = m return l print(solve())
FUNC_DEF ASSIGN VAR VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING ASSIGN VAR FUNC_CALL VAR VAR VAR FUNC_CALL FUNC_CALL VAR STRING EXPR FUNC_CALL VAR FUNC_DEF IF BIN_OP NUMBER VAR VAR RETURN NUMBER FOR VAR FUNC_CALL VAR VAR IF BIN_OP VAR BIN_OP VAR VAR VAR VAR VAR RETURN NUMBER RETURN NUMBER ASSIGN VAR NUMBER ASSIGN VAR VAR WHILE BIN_OP VAR VAR NUMBER ASSIGN VAR BIN_OP BIN_OP VAR VAR NUMBER IF FUNC_CALL VAR VAR ASSIGN VAR VAR ASSIGN VAR VAR RETURN VAR EXPR FUNC_CALL VAR FUNC_CALL VAR