paredeyes's picture
Add files using upload-large-folder tool
2386e30 verified
/*
* Copyright 2008-2021 NVIDIA Corporation
* Copyright 2013 Filipe RNC Maia
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <thrust/detail/config.h>
#if defined(_CCCL_IMPLICIT_SYSTEM_HEADER_GCC)
# pragma GCC system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_CLANG)
# pragma clang system_header
#elif defined(_CCCL_IMPLICIT_SYSTEM_HEADER_MSVC)
# pragma system_header
#endif // no system header
#include <thrust/complex.h>
#include <thrust/detail/complex/c99math.h>
#include <cfloat>
#include <cmath>
THRUST_NAMESPACE_BEGIN
/* --- Binary Arithmetic Operators --- */
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator+(const complex<T0>& x, const complex<T1>& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x.real() + y.real(), x.imag() + y.imag());
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator+(const complex<T0>& x, const T1& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x.real() + y, x.imag());
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator+(const T0& x, const complex<T1>& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x + y.real(), y.imag());
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator-(const complex<T0>& x, const complex<T1>& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x.real() - y.real(), x.imag() - y.imag());
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator-(const complex<T0>& x, const T1& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x.real() - y, x.imag());
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator-(const T0& x, const complex<T1>& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x - y.real(), -y.imag());
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator*(const complex<T0>& x, const complex<T1>& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>( x.real() * y.real() - x.imag() * y.imag()
, x.real() * y.imag() + x.imag() * y.real());
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator*(const complex<T0>& x, const T1& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x.real() * y, x.imag() * y);
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator*(const T0& x, const complex<T1>& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x * y.real(), x * y.imag());
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator/(const complex<T0>& x, const complex<T1>& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
// Find `abs` by ADL.
using std::abs;
T s = abs(y.real()) + abs(y.imag());
T oos = T(1.0) / s;
T ars = x.real() * oos;
T ais = x.imag() * oos;
T brs = y.real() * oos;
T bis = y.imag() * oos;
s = (brs * brs) + (bis * bis);
oos = T(1.0) / s;
complex<T> quot( ((ars * brs) + (ais * bis)) * oos
, ((ais * brs) - (ars * bis)) * oos);
return quot;
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator/(const complex<T0>& x, const T1& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x.real() / y, x.imag() / y);
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
operator/(const T0& x, const complex<T1>& y)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
return complex<T>(x) / y;
}
/* --- Unary Arithmetic Operators --- */
template <typename T>
__host__ __device__
complex<T> operator+(const complex<T>& y)
{
return y;
}
template <typename T>
__host__ __device__
complex<T> operator-(const complex<T>& y)
{
return y * -T(1);
}
/* --- Other Basic Arithmetic Functions --- */
// As std::hypot is only C++11 we have to use the C interface
template <typename T>
__host__ __device__
T abs(const complex<T>& z)
{
return hypot(z.real(), z.imag());
}
// XXX Why are we specializing here?
namespace detail {
namespace complex {
__host__ __device__
inline float abs(const thrust::complex<float>& z)
{
return hypotf(z.real(),z.imag());
}
__host__ __device__
inline double abs(const thrust::complex<double>& z)
{
return hypot(z.real(),z.imag());
}
} // end namespace complex
} // end namespace detail
template <>
__host__ __device__
inline float abs(const complex<float>& z)
{
return detail::complex::abs(z);
}
template <>
__host__ __device__
inline double abs(const complex<double>& z)
{
return detail::complex::abs(z);
}
template <typename T>
__host__ __device__
T arg(const complex<T>& z)
{
// Find `atan2` by ADL.
using std::atan2;
return atan2(z.imag(), z.real());
}
template <typename T>
__host__ __device__
complex<T> conj(const complex<T>& z)
{
return complex<T>(z.real(), -z.imag());
}
template <typename T>
__host__ __device__
T norm(const complex<T>& z)
{
return z.real() * z.real() + z.imag() * z.imag();
}
// XXX Why specialize these, we could just rely on ADL.
template <>
__host__ __device__
inline float norm(const complex<float>& z)
{
// Find `abs` and `sqrt` by ADL.
using std::abs;
using std::sqrt;
if (abs(z.real()) < sqrt(FLT_MIN) && abs(z.imag()) < sqrt(FLT_MIN))
{
float a = z.real() * 4.0f;
float b = z.imag() * 4.0f;
return (a * a + b * b) / 16.0f;
}
return z.real() * z.real() + z.imag() * z.imag();
}
template <>
__host__ __device__
inline double norm(const complex<double>& z)
{
// Find `abs` and `sqrt` by ADL.
using std::abs;
using std::sqrt;
if (abs(z.real()) < sqrt(DBL_MIN) && abs(z.imag()) < sqrt(DBL_MIN))
{
double a = z.real() * 4.0;
double b = z.imag() * 4.0;
return (a * a + b * b) / 16.0;
}
return z.real() * z.real() + z.imag() * z.imag();
}
template <typename T0, typename T1>
__host__ __device__
complex<typename detail::promoted_numerical_type<T0, T1>::type>
polar(const T0& m, const T1& theta)
{
typedef typename detail::promoted_numerical_type<T0, T1>::type T;
// Find `cos` and `sin` by ADL.
using std::cos;
using std::sin;
return complex<T>(m * cos(theta), m * sin(theta));
}
THRUST_NAMESPACE_END