Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
6
30.1k
type
stringclasses
2 values
library
stringclasses
46 values
imports
listlengths
0
156
filename
stringlengths
12
117
symbolic_name
stringlengths
1
145
docstring
stringclasses
1 value
acl2s-size-string : (implies (stringp x) (equal (acl2s-size x) (length x))) :rule-classes ((:rewrite :backchain-limit-lst 0)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-string
acl2s-size-rational : (implies (rationalp x) (equal (acl2s-size x) (integer-abs (numerator x)))) :rule-classes ((:rewrite :backchain-limit-lst 0))) #| Causes rewrite loops. Seems like an ACL2 bug, or at least there is a potential for improvement since we should catch such rewrite loops. Investigate at some point. (remove similar built-in clauses to reproduce)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-rational
acl2s-size-cons : (implies (consp (double-rewrite x)) (equal (acl2s-size x) (+ 1 (acl2s-size (car (double-rewrite x))) (acl2s-size (cdr (double-rewrite x)))))) :rule-classes ((:rewrite :backchain-limit-lst 0))) |#
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-cons
acl2s-size-else : (implies (and (atom (double-rewrite x)) (not (rationalp x)) (not (stringp x))) (equal (acl2s-size x) 0)) :rule-classes ((:rewrite :backchain-limit-lst 0))) |#
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-else
acl2s-size-type-fc : (natp (acl2s-size x)) :rule-classes ((:type-prescription) (:forward-chaining :trigger-terms ((acl2s-size x)))))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-type-fc
acons-acl2s-size-lemma : (= (acl2s-size (acons x1 x2 x3)) (+ 2 (acl2s-size x1) (acl2s-size x2) (acl2s-size x3))) :rule-classes ((:rewrite)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acons-acl2s-size-lemma
acl2s-size-of-prod-cons1 : (<= (acl2s-size std::y) (acl2s-size (std::prod-cons std::x std::y))) :rule-classes :linear)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-of-prod-cons1
acl2s-size-of-prod-cons2 : (<= (acl2s-size std::x) (acl2s-size (std::prod-cons std::x std::y))) :rule-classes :linear)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-of-prod-cons2
acl2s-size-of-nth-linear : (implies (consp (double-rewrite x)) (< (acl2s-size (nth i x)) (acl2s-size x))) :rule-classes ((:linear :backchain-limit-lst 0)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-of-nth-linear
acl2s-size-of-nth-linear-weak : (<= (acl2s-size (nth i x)) (acl2s-size x)) :rule-classes :linear)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-of-nth-linear-weak
acl2s-size-of-nthcdr-linear : (implies (and (not (zp (double-rewrite n))) (consp (double-rewrite x))) (< (acl2s-size (nthcdr n x)) (acl2s-size x))) :hints (("Goal" :in-theory (enable nthcdr))) :rule-classes ((:linear :backchain-limit-lst 1)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-of-nthcdr-linear
acl2s-size-of-nthcdr-linear-weak : (<= (acl2s-size (nthcdr n x)) (acl2s-size x)) :hints (("Goal" :in-theory (enable nthcdr))) :rule-classes :linear) (encapsulate () (local (include-book "arithmetic-5/top" :dir :system))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-of-nthcdr-linear-weak
acl2s-size-of-remove-duplicates : (<= (acl2s-size (remove-duplicates-equal x)) (acl2s-size x)) :rule-classes :linear))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-of-remove-duplicates
acl2s-size-when-member : (implies (member-equal a (double-rewrite x)) (< (acl2s-size a) (acl2s-size x))) :hints (("Goal" :in-theory (enable member-equal))) :rule-classes ((:linear :backchain-limit-lst 1 :match-free :all) (:rewrite :backchain-limit-lst 1 :match-free :all)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-when-member
acl2s-size-of-remove-assoc-equal-upper-bound : (<= (acl2s-size (remove-assoc-equal a x)) (acl2s-size x)) :hints (("Goal" :in-theory (enable remove-assoc-equal))) :rule-classes :linear)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-of-remove-assoc-equal-upper-bound
tail-acl2s-size : (implies (not (set::emptyp x)) (< (acl2s-size (set::tail x)) (acl2s-size x))) :hints (("Goal" :in-theory (enable set::emptyp set::tail))) :rule-classes ((:rewrite :backchain-limit-lst 0) (:linear :backchain-limit-lst 0)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
tail-acl2s-size
head-acl2s-size : (implies (not (set::emptyp x)) (< (acl2s-size (set::head x)) (acl2s-size x))) :hints (("Goal" :in-theory (enable set::emptyp set::head))) :rule-classes ((:rewrite :backchain-limit-lst 0) (:linear :backchain-limit-lst 0)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
head-acl2s-size
split-list-1-acl2s-size : (implies (consp (double-rewrite x)) (< (acl2s-size (mv-nth 1 (str::split-list-1 x str::del))) (acl2s-size x))) :hints (("Goal" :in-theory (enable str::split-list-1))) :rule-classes ((:rewrite :backchain-limit-lst 0) (:linear :backchain-limit-lst 0)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
split-list-1-acl2s-size
records-acl2s-size-linear-arith- : <= (<= (acl2s-size (mget k r)) (acl2s-size r)) :hints (("goal" :in-theory (enable mget recordp no-nil-val-alistp ordered-unique-key-alistp))) :rule-classes :linear)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
records-acl2s-size-linear-arith-
records-acl2s-size-linear-arith- : <2 (implies (mget k r) (< (acl2s-size (mget k r)) (acl2s-size r))) :hints (("goal" :in-theory (enable mget recordp no-nil-val-alistp ordered-unique-key-alistp))) :rule-classes ((:linear :backchain-limit-lst 1)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
records-acl2s-size-linear-arith-
records-acl2s-size : (implies (consp r) (< (acl2s-size (mget k r)) (acl2s-size r))) :hints (("goal" :in-theory (enable mget recordp no-nil-val-alistp ordered-unique-key-alistp))) :rule-classes ((:linear :backchain-limit-lst 1)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
records-acl2s-size
acl2s-size-evens-weak : (<= (acl2s-size (evens x)) (acl2s-size x)) :hints (("Goal" :induct (evens x))) :rule-classes :linear)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-evens-weak
acl2s-size-evens-strong : (implies (consp (cdr (double-rewrite x))) (< (acl2s-size (evens x)) (acl2s-size x))) :rule-classes ((:linear :backchain-limit-lst 1)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-evens-strong
acl2-size-append : (<= (acl2-size (append x y)) (+ (acl2-size x) (acl2-size y) 1)) :rule-classes ((:linear) (:rewrite)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2-size-append
acl2s-size-append-tlp : (implies (and (true-listp x) (true-listp y)) (= (acl2s-size (append x y)) (+ (acl2s-size x) (acl2s-size y)))) :hints (("goal" :in-theory (enable append))) :rule-classes ((:rewrite :backchain-limit-lst 1))) #| Maybe a replacement for car-of-append
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-append-tlp
car-of-append-backchain : (implies (consp (double-rewrite x)) (equal (car (append x y)) (car x))) :rule-classes ((:rewrite :backchain-limit-lst 0))) |#
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
car-of-append-backchain
rev-acl2s-size : (<= (acl2s-size (rev x)) (acl2s-size x)) :hints (("Goal" :in-theory (e/d (rev)))) :rule-classes ((:linear)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
rev-acl2s-size
rev-acl2s-size-tlp : (implies (true-listp x) (= (acl2s-size (rev x)) (acl2s-size x))) :hints (("Goal" :in-theory (enable rev))) :rule-classes ((:rewrite :backchain-limit-lst 0)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
rev-acl2s-size-tlp
acl2s-size-of-hons-remove-duplicates : (<= (acl2s-size (acl2::hons-remove-duplicates x)) (acl2s-size x)) :hints (("Goal" :in-theory (enable acl2::hons-remove-duplicates))) :rule-classes ((:linear) (:rewrite))) (encapsulate () (local (include-book "arithmetic-5/top" :dir :system))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-of-hons-remove-duplicates
acl2s-size- : <=-acl2-count (<= (acl2s-size x) (acl2-count x)) :rule-classes :linear)) #| There seems to be no way to get rid of the double-rewrite warning without introducing a non-rec warning. Is this what is supposed to happen? |#
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-
len- : <=-acl2s-size (<= (len x) (acl2s-size x)) :rule-classes :linear) ; This came up when I asked openai to write and verify a sorting ; function in ACL2. It used remove and we don't have a theorem like ; this, so here goes.
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
len-
acl2-count-remove : (<= (acl2-count (remove a x)) (acl2-count x)) :rule-classes :linear)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2-count-remove
acl2-count-remove2 : (<= (acl2-count (remove-equal a x)) (acl2-count x)) :rule-classes :linear) #| Maybe be useful for replacing acl2-count with acl2s-size.
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2-count-remove2
acl2s-size-built-in-1 : (o-p (acl2s-size x)) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-1
acl2s-size-built-int : (integerp (acl2s-size x)) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-int
acl2s-size-built-nat : (<= 0 (acl2s-size x)) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-nat
acl2s-size-o : <-< (equal (o< (acl2s-size x) (acl2s-size y)) (< (acl2s-size x) (acl2s-size y)))) ; Car and cdr decrease on consps.
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-o
acl2s-size-built-in-2 : (implies (consp x) (and (< (acl2s-size (car x)) (acl2s-size x)) (o< (acl2s-size (car x)) (acl2s-size x)))) :rule-classes ((:built-in-clause)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-2
acl2s-size-built-in-3 : (implies (consp x) (and (< (acl2s-size (cdr x)) (acl2s-size x)) (o< (acl2s-size (cdr x)) (acl2s-size x)))) :rule-classes ((:built-in-clause))) ; Car and cdr decrease on non-atoms.
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-3
acl2s-size-built-in-4 : (implies (not (atom x)) (and (< (acl2s-size (car x)) (acl2s-size x)) (o< (acl2s-size (car x)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-4
acl2s-size-built-in-5 : (implies (not (atom x)) (and (< (acl2s-size (cdr x)) (acl2s-size x)) (o< (acl2s-size (cdr x)) (acl2s-size x)))) :rule-classes :built-in-clause) ; Car and cdr decrease on non-endps.
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-5
acl2s-size-built-in-6 : (implies (not (endp x)) (and (< (acl2s-size (car x)) (acl2s-size x)) (o< (acl2s-size (car x)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-6
acl2s-size-built-in-7 : (implies (not (endp x)) (and (< (acl2s-size (cdr x)) (acl2s-size x)) (o< (acl2s-size (cdr x)) (acl2s-size x)))) :rule-classes :built-in-clause) ; 1- decreases on positives and on non-negatives other than 0. But we ; represent (1- x) three different ways: (1- x), (+ x -1) and (+ -1 x). And to ; say "other than 0" we can use (not (zp x)) or (integerp x) together ; with the negations of any one of (equal x 0), (= x 0) or (= 0 x). The ; symmetry of equal is built into unification, but not so =, so w...
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-7
acl2s-size-built-in-8 : (implies (not (zp x)) (and (< (acl2s-size (binary-+ x -1)) (acl2s-size x)) (o< (acl2s-size (binary-+ x -1)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-8
acl2s-size-built-in-9 : (implies (not (zp x)) (and (< (acl2s-size (binary-+ -1 x)) (acl2s-size x)) (o< (acl2s-size (binary-+ -1 x)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-9
acl2s-size-built-in-10 : (implies (and (integerp x) (< 0 x)) (and (< (acl2s-size (binary-+ x -1)) (acl2s-size x)) (o< (acl2s-size (binary-+ x -1)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-10
acl2s-size-built-in-11 : (implies (and (integerp x) (not (< x 0)) (not (= x 0))) (and (< (acl2s-size (binary-+ x -1)) (acl2s-size x)) (o< (acl2s-size (binary-+ x -1)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-11
acl2s-size-built-in-12 : (implies (and (integerp x) (not (< x 0)) (not (= x 0))) (and (< (acl2s-size (binary-+ x -1)) (acl2s-size x)) (o< (acl2s-size (binary-+ x -1)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-12
acl2s-size-built-in-13 : (implies (and (integerp x) (not (< x 0)) (not (equal x 0))) (and (< (acl2s-size (binary-+ x -1)) (acl2s-size x)) (o< (acl2s-size (binary-+ x -1)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-13
acl2s-size-built-in-14 : (implies (and (integerp x) (< 0 x)) (and (< (acl2s-size (binary-+ -1 x)) (acl2s-size x)) (o< (acl2s-size (binary-+ -1 x)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-14
acl2s-size-built-in-15 : (implies (and (integerp x) (not (< x 0)) (not (= x 0))) (and (< (acl2s-size (binary-+ -1 x)) (acl2s-size x)) (o< (acl2s-size (binary-+ -1 x)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-15
acl2s-size-built-in-16 : (implies (and (integerp x) (not (< x 0)) (not (= 0 x))) (and (< (acl2s-size (binary-+ -1 x)) (acl2s-size x)) (o< (acl2s-size (binary-+ -1 x)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-16
acl2s-size-built-in-17 : (implies (and (integerp x) (not (< x 0)) (not (equal 0 x))) (and (< (acl2s-size (binary-+ -1 x)) (acl2s-size x)) (o< (acl2s-size (binary-+ -1 x)) (acl2s-size x)))) :rule-classes :built-in-clause) ; Finally, cdr decreases on non-nil true-listps, but we can say ; "non-nil" as (eq x nil), (eq nil x), (null x) or (equal x nil)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-17
acl2s-size-built-in-18 : (implies (and (true-listp x) (not (eq x nil))) (and (< (acl2s-size (cdr x)) (acl2s-size x)) (o< (acl2s-size (cdr x)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-18
acl2s-size-built-in-19 : (implies (and (true-listp x) (not (null x))) (and (< (acl2s-size (cdr x)) (acl2s-size x)) (o< (acl2s-size (cdr x)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-19
acl2s-size-built-in-20 : (implies (and (true-listp x) (not (eq nil x))) (and (< (acl2s-size (cdr x)) (acl2s-size x)) (o< (acl2s-size (cdr x)) (acl2s-size x)))) :rule-classes :built-in-clause)
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-20
acl2s-size-built-in-21 : (implies (and (true-listp x) (not (equal x nil))) (and (< (acl2s-size (cdr x)) (acl2s-size x)) (o< (acl2s-size (cdr x)) (acl2s-size x)))) :rule-classes :built-in-clause) )
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-built-in-21
acl2s-size-car-cdr-linear : (implies (consp x) (equal (acl2s-size x) (+ 1 (acl2s-size (car x)) (acl2s-size (cdr x))))) :rule-classes :linear) #|
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-car-cdr-linear
acl2s-size-string : (implies (stringp x) (equal (acl2s-size x) (length x))) :rule-classes ((:rewrite :backchain-limit-lst 0)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-string
acl2s-size-rational : (implies (rationalp x) (equal (acl2s-size x) (integer-abs (numerator x)))) :rule-classes ((:rewrite :backchain-limit-lst 0)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-rational
acl2s-size-cons : (implies (consp x) (equal (acl2s-size x) (+ 1 (acl2s-size (car x)) (acl2s-size (cdr x))))) :rule-classes ((:rewrite :backchain-limit-lst 0)))
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-cons
acl2s-size-else : (implies (and (atom x) (not (rationalp x)) (not (stringp x))) (equal (acl2s-size x) 0)) :rule-classes ((:rewrite :backchain-limit-lst 0))) (thm (implies (consp x) (o< (acl2s-size (cdr x)) (acl2s-size x)))) (thm (implies (consp x) (< (acl2s-size (cdr x)) (acl2s-size x)))) (thm (implies (consp x) (o< (acl2-count (cdr x)) (acl2-count x)))) (thm (implies (consp x) (< (acl2-count (cdr x)) (acl2-count x)))) |#
theorem
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size-else
acl2s-size (x) : (declare (xargs :guard t)) (cond ((consp x) (+ 1 (acl2s-size (car x)) (acl2s-size (cdr x)))) ((rationalp x) (integer-abs (numerator x))) ((stringp x) (length x)) (t 0))) #| Added these rules as built-in clauses
function
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
acl2s-size
add-acl2s-builtin-clauses (state) : (declare (xargs :mode :program :stobjs state)) (let ((rules *acl2s-size-built-in-clauses*)) (pprogn (f-put-global 'half-length-built-in-clauses (floor (+ (length rules) (length (global-val 'built-in-clauses (w state)))) 2) state) (f-put-global 'built-in-clauses (classify-and-store-built-in-clause-rules rules (global-val 'built-in-clauses (w state)) (w state)) state)))) (add-acl2s-builtin-clauses state) (global-val 'built-in-clauses (w state)) (global-val 'half-length-built-in-clauses (w state)) ...
function
acl2s
[ "acl2s/cons-size", "arithmetic-5/top", "arithmetic-5/top", "arithmetic-5/top" ]
acl2s/acl2s-size.lisp
add-acl2s-builtin-clauses
natp-implies-acl2-numberp : (implies (natp x) (acl2-numberp x)) :rule-classes ((:rewrite)))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
natp-implies-acl2-numberp
posp-implies-acl2-numberp : (implies (posp x) (acl2-numberp x)) :rule-classes ((:rewrite)))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
posp-implies-acl2-numberp
integerp-implies-acl2-numberp : (implies (integerp x) (acl2-numberp x)) :rule-classes ((:rewrite)))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
integerp-implies-acl2-numberp
rationalp-implies-acl2-numberp2 : (implies (rationalp x) (acl2-numberp x)) :rule-classes ((:rewrite)))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
rationalp-implies-acl2-numberp2
natp-implies-rationalp : (implies (natp x) (rationalp x)) :rule-classes ((:rewrite)))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
natp-implies-rationalp
posp-implies-rationalp : (implies (posp x) (rationalp x)) :rule-classes ((:rewrite)))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
posp-implies-rationalp
integerp-implies-rationalp : (implies (integerp x) (rationalp x)) :rule-classes ((:rewrite))) |# #| New versions using only fc rules and disabling natp, posp definitions. The idea is to construct a partial order of the types and only include forward-chaining rules that state a type is a subtype of the types immediately above it. The types are: neg: non-pos-integer, non-0-integer, neg-rational pos: nat, non-0-integer, pos-rational non-pos-integer: integer non-0-integer: integer nat: integer odd: (not recognizer) even: (not r...
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
integerp-implies-rationalp
negp-expand-+ : (implies (and (integerp x) (integerp y)) (equal (negp (+ x y)) (< x (- y)))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
negp-expand-+
posp-expand-+ : (implies (and (integerp x) (integerp y)) (equal (posp (+ x y)) (< (- y) x))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
posp-expand-+
natp-expand-+ : (implies (and (integerp x) (integerp y)) (equal (natp (+ x y)) (<= (- y) x))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
natp-expand-+
non-pos-integerp-expand-+ : (implies (and (integerp x) (integerp y)) (equal (non-pos-integerp (+ x y)) (<= x (- y)))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
non-pos-integerp-expand-+
non-neg-rational-expand-+ : (implies (and (rationalp x) (rationalp y)) (equal (non-neg-rationalp (+ x y)) (<= (- y) x))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
non-neg-rational-expand-+
non-pos-rational-expand-+ : (implies (and (rationalp x) (rationalp y)) (equal (non-pos-rationalp (+ x y)) (<= x (- y))))) |# #| Rules like this will probably blow up if I want to get something complete, so instead I use computed hints.
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
non-pos-rational-expand-+
negp-closed-under-+x : (implies (and (negp x) (non-pos-integerp y)) (negp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
negp-closed-under-+x
negp-closed-under-+y : (implies (and (negp y) (non-pos-integerp x)) (negp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
negp-closed-under-+y
posp-closed-under-+x : (implies (and (posp x) (natp y)) (posp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
posp-closed-under-+x
posp-closed-under-+y : (implies (and (posp y) (natp x)) (posp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
posp-closed-under-+y
natp-closed-under-+ : (implies (and (natp x) (natp y)) (natp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
natp-closed-under-+
non-pos-integerp-closed-under-+ : (implies (and (non-pos-integerp x) (non-pos-integerp y)) (non-pos-integerp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
non-pos-integerp-closed-under-+
neg-rational-closed-under-+x : (implies (and (neg-rationalp x) (non-pos-rationalp y)) (neg-rationalp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
neg-rational-closed-under-+x
neg-rational-closed-under-+y : (implies (and (neg-rationalp y) (non-pos-rationalp x)) (neg-rationalp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
neg-rational-closed-under-+y
pos-rational-closed-under-+x : (implies (and (pos-rationalp x) (non-neg-rationalp y)) (pos-rationalp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
pos-rational-closed-under-+x
pos-rational-closed-under-+y : (implies (and (pos-rationalp y) (non-neg-rationalp x)) (pos-rationalp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
pos-rational-closed-under-+y
non-neg-rational-closed-under-+ : (implies (and (non-neg-rationalp x) (non-neg-rationalp y)) (non-neg-rationalp (+ x y))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
non-neg-rational-closed-under-+
non-pos-rational-closed-under-+ : (implies (and (non-pos-rationalp x) (non-pos-rationalp y)) (non-pos-rationalp (+ x y)))) |# (in-theory (disable negp posp natp non-pos-integerp neg-ratiop pos-ratiop ratiop neg-rationalp pos-rationalp non-neg-rationalp non-pos-rationalp)) #| End of new version. |# #| From rtl/rel11/lib/top.lisp, where various arithmetic-5 theorems are disabled. I commented out some disabled theorems that seem fine to me. |# (local (in-theory #!acl2(disable
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
non-pos-rational-closed-under-+
acl2s-default-mod-ratio : (implies (and (not (complex-rationalp x)) (syntaxp (not (acl2::proveably-real/rational 'y (cons (cons 'y y) 'nil) mfc state)))) (equal (mod x y) (if (real/rationalp y) (mod x y) (fix x)))) :rule-classes ((:rewrite :backchain-limit-lst 0))) #!acl2
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
acl2s-default-mod-ratio
acl2s : ::acl2s-cancel-floor-+ (implies (and (real/rationalp (/ x y)) (syntaxp (in-term-order-+ x mfc state)) (bind-free (find-cancelling-addends x y mfc state) (addend)) (equal i (/ addend y)) (integerp i)) (equal (floor x y) (+ (- i) (floor (+ addend x) y)))) :hints (("goal" :by acl2::cancel-floor-+)) :rule-classes ((:rewrite :backchain-limit-lst 2))) #!acl2
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
acl2s
acl2s : ::acl2s-cancel-mod-+ (implies (and (acl2-numberp y) (not (equal y 0)) (syntaxp (not (equal x ''0))) (real/rationalp (/ x y)) (syntaxp (in-term-order-+ x mfc state)) (bind-free (find-cancelling-addends x y mfc state) (addend)) (equal i (/ addend y)) (integerp i)) (equal (mod x y) (mod (+ addend x) y))) :hints (("goal" :use ((:instance acl2::cancel-mod-+)) :in-theory (disable acl2::cancel-mod-+ acl2::cancel-floor-+))) :otf-flg t :rule-classes ((:rewrite :backchain-limit-lst 2))) #| This was leadin...
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
acl2s
acl2s : ::acl2s-prefer-positive-addends-< (implies (and (syntaxp (in-term-order-+ lhs mfc state)) (syntaxp (in-term-order-+ rhs mfc state)) (syntaxp (or (equal (fn-symb lhs) 'binary-+) (equal (fn-symb rhs) 'binary-+))) (bind-free (find-negative-addend lhs rhs mfc state) (x))) (equal (< lhs rhs) (< (+ x lhs) (+ x rhs)))) :rule-classes ((:rewrite :backchain-limit-lst 2))) #!acl2
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
acl2s
acl2s : ::acl2s-prefer-positive-addends-<1 (implies (and (syntaxp (in-term-order-+ lhs mfc state)) (syntaxp (in-term-order-+ rhs mfc state)) (syntaxp (or (equal (fn-symb lhs) 'binary-+) (equal (fn-symb rhs) 'binary-+))) (bind-free (find-negative-addend lhs rhs mfc state) (x)) (equal yyy (- x))) (equal (< lhs (+ yyy rhs)) (< (+ (- yyy) lhs) rhs))) :rule-classes ((:rewrite :backchain-limit-lst 2))) |# #!acl2
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
acl2s
acl2s : ::acl2s-prefer-positive-addends-<2 (implies (and (syntaxp (in-term-order-+ lhs mfc state)) (syntaxp (in-term-order-+ rhs mfc state)) (syntaxp (or (equal (fn-symb lhs) 'binary-+) (equal (fn-symb rhs) 'binary-+))) (bind-free (find-negative-addend lhs rhs mfc state) (x)) (equal yyy (- x))) (equal (< (+ yyy lhs) rhs) (< lhs (+ (- yyy) rhs)))) :rule-classes ((:rewrite :backchain-limit-lst 2))) #!acl2
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
acl2s
acl2s : ::acl2s-prefer-positive-addends-equal (implies (and (acl2-numberp lhs) (acl2-numberp rhs) (syntaxp (in-term-order-+ lhs mfc state)) (syntaxp (in-term-order-+ rhs mfc state)) (syntaxp (or (equal (fn-symb lhs) 'binary-+) (equal (fn-symb rhs) 'binary-+))) (bind-free (find-negative-addend lhs rhs mfc state) (x))) (equal (equal lhs rhs) (equal (+ x lhs) (+ x rhs)))) :rule-classes ((:rewrite :backchain-limit-lst 0))) #!acl2
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
acl2s
acl2s : ::acl2s-reduce-additive-constant-< (implies (and (syntaxp (in-term-order-+ lhs mfc state)) (syntaxp (in-term-order-+ rhs mfc state)) (bind-free (find-constant-addend lhs rhs) (c)) (not (equal c 0)) (syntaxp (simplify-ok-p (cons '< (cons lhs (cons rhs 'nil))) '(< (binary-+ c lhs) (binary-+ c rhs)) (cons (cons 'lhs lhs) (cons (cons 'rhs rhs) (cons (cons 'c c) 'nil))) mfc state)) (acl2-numberp lhs) (acl2-numberp rhs) (acl2-numberp c)) (equal (< lhs rhs) (< (+ c lhs) (+ c rhs)))) :rule-classes ((:re...
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
acl2s
acl2s : ::acl2s-reduce-additive-constant-equal (implies (and (syntaxp (in-term-order-+ lhs mfc state)) (syntaxp (in-term-order-+ rhs mfc state)) (bind-free (find-constant-addend lhs rhs) (c)) (not (equal c 0)) (syntaxp (simplify-ok-p (cons 'equal (cons lhs (cons rhs 'nil))) '(equal (binary-+ c lhs) (binary-+ c rhs)) (cons (cons 'lhs lhs) (cons (cons 'rhs rhs) (cons (cons 'c c) 'nil))) mfc state)) (acl2-numberp lhs) (acl2-numberp rhs) (acl2-numberp c)) (equal (equal lhs rhs) (equal (+ c lhs) (+ c rhs))))...
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
acl2s
numerator-1-decreases : (implies (rationalp n) (< (numerator (- n 1)) (numerator n))) :hints (("goal" :use ((:instance ACL2::|(* r (denominator r))| (acl2::r n)) (:instance ACL2::|(* r (denominator r))| (acl2::r (- n 1))) ) :in-theory (disable ACL2::|(* r (denominator r))|))) :rule-classes ((:linear) (:rewrite)))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
numerator-1-decreases
nat-induction-scheme : t :rule-classes ((:induction :pattern (integerp x) :condition (and (integerp x) (>= x 0)) :scheme (nat-ind x))))
theorem
acl2s
[ "defdata/top", "tau/bounders/elementary-bounders", "definec", "acl2s/ccg/ccg", "arithmetic-5/lib/basic-ops/simple-equalities-and-inequalities", "arithmetic-5/lib/basic-ops/simplify", "arithmetic-5/lib/basic-ops/building-blocks", "arithmetic-5/lib/floor-mod/floor-mod", "arithmetic-5/top", "rtl/rel11/lib/top", "arithmetic-5/top" ]
acl2s/base-arithmetic.lisp
nat-induction-scheme
End of preview. Expand in Data Studio

ACL2

A structured dataset of theorems and functions from the ACL2 Community Books, one of the largest collections of formally verified libraries.

Source

Statistics

Property Value
Total Entries 231,000
Theorems 171,519
Functions 59,481
Source Files 13,165

Schema

Column Type Description
fact string Theorem statement or function definition
type string "theorem" or "function"
library string ACL2 book directory
imports list[string] include-book statements
filename string Source .lisp file
symbolic_name string Declaration name

About ACL2

ACL2 (A Computational Logic for Applicative Common Lisp) is used for:

  • Hardware verification (AMD, Intel processors)
  • Software verification
  • Mathematical formalization
  • Industrial applications

Notable Uses

  • Floating-point division verification (AMD, Intel)
  • Microprocessor verification
  • JVM bytecode verification
  • Security protocol analysis

Creator

Charles Norton (phanerozoic)

Downloads last month
23

Collection including phanerozoic/ACL2