Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
7
7.74k
type
stringclasses
3 values
library
stringclasses
4 values
imports
listlengths
0
17
filename
stringlengths
14
69
symbolic_name
stringlengths
1
27
docstring
stringclasses
1 value
ua-in : ∀ {i} {A B : Set i} → A ≃ B → A == B
function
old
[ "open import Base public hiding (apd; Σ-eq)" ]
old/BaseOver.agda
ua-in
ua-out : ∀ {i} {A B : Set i} → A == B → A ≃ B
function
old
[ "open import Base public hiding (apd; Σ-eq)" ]
old/BaseOver.agda
ua-out
_ ∼_ {i j} (A : Set i) (B : Set j) : Set (max i j) where constructor _,_,_ field to : A → B from : B → A eq : ∞ ((a : A) (b : B) → ((to a ≡ b) ∼ (a ≡ from b))) -- Identity id-∼ : ∀ {i} (A : Set i) → A ∼ A id-∼ A = (id A) , (id A) , ♯ (λ a b → id-∼ (a ≡ b)) -- Transitivity trans-∼ : ∀ {i} {A B C : Set i} → A ∼ B → B ∼ C → A ∼ C trans-∼ (to , from , eq) (to' , from' , eq') = ((to' ◯ to) , (from ◯ from') , ♯ (λ a c → trans-∼ (♭ eq' (to a) c) (♭ eq a (from' c))) ) --(λ a c → ♯ trans-∼ (♭ (eq' (to a) c)) (♭ (eq a (from' c))))) -- -- Left unity -- left-unit-∼ : ∀ {i} {A B : Set i} (f : A ∼ B) → trans-∼ (id-∼ A) f ≡ f -- left-unit-∼ f = {!!} postulate !-≡ : ∀ {i} {A : Set i} {u v : A} → (u ≡ v) ≡ (v ≡ u) -- Symmetry is harder sym-∼ : ∀ {i} {A B : Set i} → A ∼ B → B ∼ A sym-∼ (to , from , eq) = (from , to , ♯ (λ b a → let (too , fromo , eqo) = sym-∼ (♭ eq a b) in ((! ◯ (too ◯ !)) , {!!} , {!!}))) --(λ a b → transport (λ u → ∞ (u ∼ (a ≡ to b))) !-≡ (transport (λ u → ∞ ((b ≡ from a) ∼ u)) !-≡ (♯ (sym-∼ (♭ (eq b a))))))) --♯ trans-∼ {!!} (trans-∼ (sym-∼ (♭ (eq b a))) {!!}))) -- Logical equivalence with the usual notion of equivalences ∼-to-≃ : ∀ {i j} {A : Set i} {B : Set j} → (A ∼ B → A ≃ B) ∼-to-≃ (to , from , eq) = (to , iso-is-eq to from (λ b → _∼_.from (♭ eq (from b) b) refl) (λ a → ! (_∼_.to (♭ eq a (to a)) refl))) ≃-to-∼ : ∀ {i j} {A : Set i} {B : Set j} → (A ≃ B → A ∼ B) ≃-to-∼ e = (π₁ e) , (inverse e) , ♯ (λ a b → ≃-to-∼ (equiv-compose (path-to-eq (ap (λ b → e ☆ a ≡ b) (! (inverse-right-inverse e b)))) ((equiv-ap e a (inverse e b))⁻¹))) -- Unfinished attempt to prove that this notion is coherent ∼-eq-raw : ∀ {i j} {A : Set i} {B : Set j} {f f' : A → B} (p : f ≡ f') {g g' : B → A} (q : g ≡ g') {eq : ∞ ((a : A) (b : B) → ((f a ≡ b) ∼ (a ≡ g b)))} {eq' : ∞ ((a : A) (b : B) → ((f' a ≡ b) ∼ (a ≡ g' b)))} (r : transport _ p (transport _ q eq) ≡ eq') → (f , g , eq) ≡ (f' , g' , eq') ∼-eq-raw refl refl refl = refl -- ∼-eq : ∀ {i j} {A : Set i} {B : Set j} -- {f f' : A → B} (p : (a : A) → f a ≡ f' a) -- {g g' : B → A} (q : (b : B) → g b ≡ g' b) -- {eq : (a : A) (b : B) → ∞ ((f a ≡ b) ∼ (a ≡ g b))} -- {eq' : (a : A) (b : B) → ∞ ((f' a ≡ b) ∼ (a ≡ g' b))} -- (r : (a : A) (b : B) → -- transport (λ u → (u ≡ b) ∼ (a ≡ g' b)) (p a) ( -- transport (λ u → (f a ≡ b) ∼ (a ≡ u)) (q b) (♭ (eq a b))) -- ≡ ♭ (eq' a b)) -- → (f , g , eq) ≡ (f' , g' , eq') -- ∼-eq p q r = ∼-eq-raw (funext p) (funext q) -- (funext (λ a → (funext (λ b → {!r a b!})))) -- coherent : ∀ {i j} (A : Set i) (B : Set j) → ((A ≃ B) ≃ (A ∼ B)) -- coherent A B = (≃-to-∼ A B , iso-is-eq _ (∼-to-≃ A B) -- (λ y → ∼-eq (λ a → refl _) -- (λ b → happly (inverse-iso-is-eq (_∼_.to y) (_∼_.from y) _ _) b) -- (λ a b → {!!})) -- (λ e → Σ-eq (refl _) (π₁ (is-equiv-is-prop _ _ _))))
record
old
[ "open import Base", "open import Coinduction" ]
old/CoindEquiv.agda
_
hfiber : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) (y : B) → Set (max i j)
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
hfiber
is-equiv : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) → Set (max i j)
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
is-equiv
is-iso : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) → Set (max i j)
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
is-iso
is-hae : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) → Set (max i j)
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
is-hae
iso-is-hae : ∀ {i j} {A : Set i} {B : Set j} → (f : A → B) → is-iso f → is-hae f
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
iso-is-hae
hae-is-eq : ∀ {i j} {A : Set i} {B : Set j} → (f : A → B) → is-hae f → is-equiv f
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
hae-is-eq
id-is-equiv : ∀ {i} (A : Set i) → is-equiv (id A)
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
id-is-equiv
id-equiv : ∀ {i} (A : Set i) → A ≃ A
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
id-equiv
path-to-eq : ∀ {i} {A B : Set i} → (A ≡ B → A ≃ B)
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
path-to-eq
contr-equiv-unit : ∀ {i j} {A : Set i} → (is-contr A → A ≃ unit {j})
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel" ]
old/Equivalences.agda
contr-equiv-unit
total-map : Σ A P → Σ A Q
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel", "open import Equivalences" ]
old/FiberEquivalences.agda
total-map
fiberwise-is-equiv : is-equiv total-map → ((x : A) → is-equiv (f x))
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel", "open import Equivalences" ]
old/FiberEquivalences.agda
fiberwise-is-equiv
id : ∀ {i} (A : Set i) → (A → A)
function
old
[ "open import Types" ]
old/Functions.agda
id
cst : ∀ {i j} {A : Set i} {B : Set j} (b : B) → (A → B)
function
old
[ "open import Types" ]
old/Functions.agda
cst
happly : ∀ {j} {P : A → Set j} {f g : Π A P} (p : f ≡ g) → ((x : A) → f x ≡ g x)
function
old
[ "open import Types", "open import Paths", "open import HLevel", "open import Equivalences", "open import Univalence" ]
old/Funext.agda
happly
is-contr : Set i → Set i
function
old
[ "open import Types", "open import Paths" ]
old/HLevel.agda
is-contr
is-truncated : ℕ₋₂ → (Set i → Set i)
function
old
[ "open import Types", "open import Paths" ]
old/HLevel.agda
is-truncated
is-hlevel : ℕ → (Set i → Set i)
function
old
[ "open import Types", "open import Paths" ]
old/HLevel.agda
is-hlevel
has-all-paths : Set i → Set i
function
old
[ "open import Types", "open import Paths" ]
old/HLevel.agda
has-all-paths
has-dec-eq : Set i → Set i
function
old
[ "open import Types", "open import Paths" ]
old/HLevel.agda
has-dec-eq
hProp : (i : Level) → Set (suc i)
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel", "open import Equivalences", "open import Univalence", "open import Funext" ]
old/HLevelBis.agda
hProp
hSet : (i : Level) → Set (suc i)
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel", "open import Equivalences", "open import Univalence", "open import Funext" ]
old/HLevelBis.agda
hSet
_ <_ : ℕ → ℕ → Set where <n : {n : ℕ} → n < S n <S : {n m : ℕ} → (n < m) → (n < S m) _+_ : ℕ → ℕ → ℕ 0 + m = m S n + m = S (n + m) +S-is-S+ : (n m : ℕ) → n + S m ≡ S n + m +S-is-S+ O m = refl +S-is-S+ (S n) m = ap S (+S-is-S+ n m) +0-is-id : (n : ℕ) → n + 0 ≡ n +0-is-id O = refl +0-is-id (S n) = ap S (+0-is-id n) private ℤ-get-pos : ℤ → ℕ ℤ-get-pos O = 0 ℤ-get-pos (pos n) = n ℤ-get-pos (neg n) = 0 pos-injective : (n m : ℕ) (p : pos n ≡ pos m) → n ≡ m pos-injective n m p = ap ℤ-get-pos p ℤ-get-neg : ℤ → ℕ ℤ-get-neg O = 0 ℤ-get-neg (pos n) = 0 ℤ-get-neg (neg n) = n neg-injective : (n m : ℕ) (p : neg n ≡ neg m) → n ≡ m neg-injective n m p = ap ℤ-get-neg p ℤ-neg≢O≢pos-type : ℤ → Set ℤ-neg≢O≢pos-type O = unit ℤ-neg≢O≢pos-type (pos n) = ⊥ ℤ-neg≢O≢pos-type (neg n) = ⊥ ℤ-neg≢pos-type : ℤ → Set ℤ-neg≢pos-type O = unit ℤ-neg≢pos-type (pos n) = ⊥ ℤ-neg≢pos-type (neg n) = unit abstract ℤ-O≢pos : (n : ℕ) → O ≢ pos n ℤ-O≢pos n p = transport ℤ-neg≢O≢pos-type p tt ℤ-pos≢O : (n : ℕ) → pos n ≢ O ℤ-pos≢O n p = transport ℤ-neg≢O≢pos-type (! p) tt ℤ-O≢neg : (n : ℕ) → O ≢ neg n ℤ-O≢neg n p = transport ℤ-neg≢O≢pos-type p tt ℤ-neg≢O : (n : ℕ) → neg n ≢ O ℤ-neg≢O n p = transport ℤ-neg≢O≢pos-type (! p) tt ℤ-neg≢pos : (n m : ℕ) → neg n ≢ pos m ℤ-neg≢pos n m p = transport ℤ-neg≢pos-type p tt ℤ-pos≢neg : (n m : ℕ) → pos n ≢ neg m ℤ-pos≢neg n m p = transport ℤ-neg≢pos-type (! p) tt ℤ-has-dec-eq : has-dec-eq ℤ ℤ-has-dec-eq O O = inl refl ℤ-has-dec-eq O (pos n) = inr (ℤ-O≢pos n) ℤ-has-dec-eq O (neg n) = inr (ℤ-O≢neg n) ℤ-has-dec-eq (pos n) O = inr (ℤ-pos≢O n) ℤ-has-dec-eq (pos n) (pos m) with ℕ-has-dec-eq n m ℤ-has-dec-eq (pos n) (pos m) | inl p = inl (ap pos p) ℤ-has-dec-eq (pos n) (pos m) | inr p⊥ = inr (λ p → p⊥ (pos-injective n m p)) ℤ-has-dec-eq (pos n) (neg m) = inr (ℤ-pos≢neg n m) ℤ-has-dec-eq (neg n) O = inr (ℤ-neg≢O n) ℤ-has-dec-eq (neg n) (pos m) = inr (ℤ-neg≢pos n m) ℤ-has-dec-eq (neg n) (neg m) with ℕ-has-dec-eq n m ℤ-has-dec-eq (neg n) (neg m) | inl p = inl (ap neg p) ℤ-has-dec-eq (neg n) (neg m) | inr p⊥ = inr (λ p → p⊥ (neg-injective n m p)) ℤ-is-set : is-set ℤ ℤ-is-set = dec-eq-is-set ℤ-has-dec-eq
data
old
[ "open import Base" ]
old/Integers.agda
_
succ : ℤ → ℤ
function
old
[ "open import Base" ]
old/Integers.agda
succ
pred : ℤ → ℤ
function
old
[ "open import Base" ]
old/Integers.agda
pred
succ-is-equiv : is-equiv succ
function
old
[ "open import Base" ]
old/Integers.agda
succ-is-equiv
succ-equiv : ℤ ≃ ℤ
function
old
[ "open import Base" ]
old/Integers.agda
succ-equiv
_ ≡_ {i} {A : Set i} (a : A) : A → Set i where refl : a ≡ a _==_ = _≡_ _≢_ : ∀ {i} {A : Set i} → (A → A → Set i) x ≢ y = ¬ (x ≡ y) -- -- This should not be provable -- K : {A : Set} → (x : A) → (p : x ≡ x) → p ≡ refl x -- K .x (refl x) = refl -- Composition and opposite of paths infixr 8 _∘_ -- \o _∘_ : ∀ {i} {A : Set i} {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) refl ∘ q = q -- Composition with the opposite definitional behaviour _∘'_ : ∀ {i} {A : Set i} {x y z : A} → (x ≡ y → y ≡ z → x ≡ z) q ∘' refl = q ! : ∀ {i} {A : Set i} {x y : A} → (x ≡ y → y ≡ x) ! refl = refl -- Equational reasoning combinator infix 2 _∎ infixr 2 _≡⟨_⟩_ _≡⟨_⟩_ : ∀ {i} {A : Set i} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _ ≡⟨ p1 ⟩ p2 = p1 ∘ p2 _∎ : ∀ {i} {A : Set i} (x : A) → x ≡ x _∎ _ = refl -- Obsolete, for retrocompatibility only infixr 2 _≡⟨_⟩∎_ _≡⟨_⟩∎_ : ∀ {i} {A : Set i} (x : A) {y z : A} → x ≡ y → y ≡ z → x ≡ z _≡⟨_⟩∎_ = _≡⟨_⟩_ -- Transport and ap ap : ∀ {i j} {A : Set i} {B : Set j} (f : A → B) {x y : A} → (x ≡ y → f x ≡ f y) ap f refl = refl -- Make equational reasoning much more readable syntax ap f p = p |in-ctx f transport : ∀ {i j} {A : Set i} (P : A → Set j) {x y : A} → (x ≡ y → P x → P y) transport P refl t = t apd : ∀ {i j} {A : Set i} {P : A → Set j} (f : (a : A) → P a) {x y : A} → (p : x ≡ y) → transport P p (f x) ≡ f y apd f refl = refl apd! : ∀ {i j} {A : Set i} {P : A → Set j} (f : (a : A) → P a) {x y : A} → (p : x ≡ y) → f x ≡ transport P (! p) (f y) apd! f refl = refl -- Paths in Sigma types
data
old
[ "open import Types", "open import Functions" ]
old/Paths.agda
_
bool {i} : Set i where true : bool false : bool -- Dependent sum
data
old
[]
old/Types.agda
bool
_ ⊔_ {i j} (A : Set i) (B : Set j) : Set (max i j) where -- \sqcup inl : A → A ⊔ B inr : B → A ⊔ B -- Product _×_ : ∀ {i j} (A : Set i) (B : Set j) → Set (max i j) -- \times A × B = Σ A (λ _ → B) -- Dependent product Π : ∀ {i j} (A : Set i) (P : A → Set j) → Set (max i j) Π A P = (x : A) → P x -- Natural numbers
data
old
[]
old/Types.agda
_
ℕ : Set where -- \bn O : ℕ S : (n : ℕ) → ℕ {-# BUILTIN NATURAL ℕ #-} {-# BUILTIN ZERO O #-} {-# BUILTIN SUC S #-} -- Truncation index (isomorphic to the type of integers ≥ -2)
data
old
[]
old/Types.agda
ℕ ₋₂ : Set where ⟨-2⟩ : ℕ₋₂ S : (n : ℕ₋₂) → ℕ₋₂ ⟨-1⟩ : ℕ₋₂ ⟨-1⟩ = S ⟨-2⟩ ⟨0⟩ : ℕ₋₂ ⟨0⟩ = S ⟨-1⟩ _-1 : ℕ → ℕ₋₂ O -1 = ⟨-1⟩ (S n) -1 = S (n -1) ⟨_⟩ : ℕ → ℕ₋₂ ⟨ n ⟩ = S (n -1) ⟨1⟩ = ⟨ 1 ⟩ ⟨2⟩ = ⟨ 2 ⟩ _+2+_ : ℕ₋₂ → ℕ₋₂ → ℕ₋₂ ⟨-2⟩ +2+ n = n S m +2+ n = S (m +2+ n) -- Integers
data
old
[]
old/Types.agda
ℤ : Set where -- \bz O : ℤ pos : (n : ℕ) → ℤ neg : (n : ℕ) → ℤ -- Lifting
data
old
[]
old/Types.agda
unit {i} : Set i where constructor tt ⊤ = unit -- \top -- Booleans
record
old
[]
old/Types.agda
unit
Σ {i j} (A : Set i) (P : A → Set j) : Set (max i j) where -- \Sigma constructor _,_ field π₁ : A -- \pi\_1 π₂ : P (π₁) -- \pi\_2
record
old
[]
old/Types.agda
Σ
lift {i} (j : Level) (A : Set i) : Set (max i j) where constructor ↑ -- \u field ↓ : A -- \d
record
old
[]
old/Types.agda
lift
abort : ∀ {i j} {P : ⊥ {i} → Set j} → ((x : ⊥) → P x)
function
old
[]
old/Types.agda
abort
abort-nondep : ∀ {i j} {A : Set j} → (⊥ {i} → A)
function
old
[]
old/Types.agda
abort-nondep
Π : ∀ {i j} (A : Set i) (P : A → Set j) → Set (max i j)
function
old
[]
old/Types.agda
Π
_-1 : ℕ → ℕ₋₂
function
old
[]
old/Types.agda
_-1
path-to-eq-equiv : {A B : Set i} → ((A ≡ B) ≃ (A ≃ B))
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel", "open import Equivalences" ]
old/Univalence.agda
path-to-eq-equiv
eq-to-path-equiv : {A B : Set i} → ((A ≃ B) ≃ (A ≡ B))
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel", "open import Equivalences" ]
old/Univalence.agda
eq-to-path-equiv
eq-to-path : {A B : Set i} → (A ≃ B → A ≡ B)
function
old
[ "open import Types", "open import Functions", "open import Paths", "open import HLevel", "open import Equivalences" ]
old/Univalence.agda
eq-to-path
_ ==_ {i} {A : Type i} (a : A) : A → Type i where idp : a == a Path = _==_ {-# BUILTIN EQUALITY _==_ #-} {- Paulin-Mohring J rule At the time I’m writing this (July 2013), the identity type is somehow broken in Agda dev, it behaves more or less as the Martin-Löf identity type instead of behaving like the Paulin-Mohring identity type. So here is the Paulin-Mohring J rule -} J : ∀ {i j} {A : Type i} {a : A} (B : (a' : A) (p : a == a') → Type j) (d : B a idp) {a' : A} (p : a == a') → B a' p J B d idp = d J' : ∀ {i j} {A : Type i} {a : A} (B : (a' : A) (p : a' == a) → Type j) (d : B a idp) {a' : A} (p : a' == a) → B a' p J' B d idp = d infixr 80 _∙_ _∙_ : ∀ {i} {A : Type i} {x y z : A} → (x == y → y == z → x == z) idp ∙ q = q {- Rewriting This is a new pragma added to Agda to help create higher inductive types. -} infix 30 _↦_ postulate -- HIT _↦_ : ∀ {i} {A : Type i} → A → A → Type i {-# BUILTIN REWRITE _↦_ #-} {- Unit type The unit type is defined as record so that we also get the η-rule definitionally. -}
data
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
_
ℕ : Type₀ where O : ℕ S : (n : ℕ) → ℕ Nat = ℕ {-# BUILTIN NATURAL ℕ #-} {- Lifting to a higher universe level The operation of lifting enjoys both β and η definitionally. It’s a bit annoying to use, but it’s not used much (for now). -}
data
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
TLevel : Type₀ where ⟨-2⟩ : TLevel S : (n : TLevel) → TLevel ℕ₋₂ = TLevel ⟨_⟩₋₂ : ℕ → ℕ₋₂ ⟨ O ⟩₋₂ = ⟨-2⟩ ⟨ S n ⟩₋₂ = S ⟨ n ⟩₋₂ {- Coproducts and case analysis -}
data
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
TLevel
Coprod {i j} (A : Type i) (B : Type j) : Type (lmax i j) where inl : A → Coprod A B inr : B → Coprod A B infixr 80 _⊔_ _⊔_ = Coprod Dec : ∀ {i} (P : Type i) → Type i Dec P = P ⊔ ¬ P {- Pointed types and pointed maps. [A ⊙→ B] was pointed, but it was never used as a pointed type. -} infix 60 ⊙[_,_]
data
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
Coprod
Phantom {i} {A : Type i} (a : A) : Type₀ where phantom : Phantom a {- Numeric literal overloading This enables writing numeric literals -}
data
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
Phantom
Σ {i j} (A : Type i) (B : A → Type j) : Type (lmax i j) where constructor _,_ field fst : A snd : B fst
record
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
Σ
Lift {i j} (A : Type i) : Type (lmax i j) where instance constructor lift field lower : A
record
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
Lift
Ptd (i : ULevel) : Type (lsucc i) where constructor ⊙[_,_] field de⊙ : Type i pt : de⊙
record
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
Ptd
FromNat {i} (A : Type i) : Type (lsucc i) where field in-range : ℕ → Type i read : ∀ n → ⦃ _ : in-range n ⦄ → A
record
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
FromNat
FromNeg {i} (A : Type i) : Type (lsucc i) where field in-range : ℕ → Type i read : ∀ n → ⦃ _ : in-range n ⦄ → A
record
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
FromNeg
Type : (i : ULevel) → Set (lsucc i)
function
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
Type
of-type : ∀ {i} (A : Type i) (u : A) → A
function
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
of-type
coe : ∀ {i} {A B : Type i} (p : A == B) → A → B
function
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
coe
Π : ∀ {i j} (A : Type i) (P : A → Type j) → Type (lmax i j)
function
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
Π
idf : ∀ {i} (A : Type i) → (A → A)
function
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
idf
cst : ∀ {i j} {A : Type i} {B : Type j} (b : B) → (A → B)
function
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
cst
Dec : ∀ {i} (P : Type i) → Type i
function
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
Dec
ptd : ∀ {i} (A : Type i) → A → Ptd i
function
core
[ "open import Agda.Primitive public using (lzero)" ]
core/lib/Base.agda
ptd
idf-is-equiv : ∀ {i} (A : Type i) → is-equiv (idf A)
function
core
[ "open import lib.Base", "open import lib.NType", "open import lib.PathFunctor", "open import lib.PathGroupoid", "open import lib.Function" ]
core/lib/Equivalence.agda
idf-is-equiv
ide : ∀ {i} (A : Type i) → A ≃ A
function
core
[ "open import lib.Base", "open import lib.NType", "open import lib.PathFunctor", "open import lib.PathGroupoid", "open import lib.Function" ]
core/lib/Equivalence.agda
ide
lower-equiv : ∀ {i j} {A : Type i} → Lift {j = j} A ≃ A
function
core
[ "open import lib.Base", "open import lib.NType", "open import lib.PathFunctor", "open import lib.PathGroupoid", "open import lib.Function" ]
core/lib/Equivalence.agda
lower-equiv
Σ₂-Empty : ∀ {i} {A : Type i} → Σ A (λ _ → Empty) ≃ Empty
function
core
[ "open import lib.Basics", "open import lib.types.Sigma", "open import lib.types.Pi", "open import lib.types.Paths", "open import lib.types.Unit", "open import lib.types.Empty" ]
core/lib/Equivalence2.agda
Σ₂-Empty
CommSquare {i₀ i₁ j₀ j₁} {A₀ : Type i₀} {A₁ : Type i₁} {B₀ : Type j₀} {B₁ : Type j₁} (f₀ : A₀ → B₀) (f₁ : A₁ → B₁) (hA : A₀ → A₁) (hB : B₀ → B₁) : Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) where constructor comm-sqr field commutes : hB ∘ f₀ ∼ f₁ ∘ hA
record
core
[ "open import lib.Base", "open import lib.PathGroupoid" ]
core/lib/Function.agda
CommSquare
is-surj : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) → Type (lmax i j)
function
core
[ "open import lib.Basics", "open import lib.types.Truncation" ]
core/lib/Function2.agda
is-surj
is-connected : ∀ {i} → ℕ₋₂ → Type i → Type i
function
core
[ "open import lib.Basics", "open import lib.NType2", "open import lib.Equivalence2", "open import lib.path-seq.Rotations", "open import lib.types.Unit", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Pointed", "open import lib.types.Sigma", "open import lib.types.Paths", "open import lib.types.TLevel", "open import lib.types.Truncation" ]
core/lib/NConnected.agda
is-connected
has-conn-fibers : ∀ {i j} {A : Type i} {B : Type j} → ℕ₋₂ → (A → B) → Type (lmax i j)
function
core
[ "open import lib.Basics", "open import lib.NType2", "open import lib.Equivalence2", "open import lib.path-seq.Rotations", "open import lib.types.Unit", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Pointed", "open import lib.types.Sigma", "open import lib.types.Paths", "open import lib.types.TLevel", "open import lib.types.Truncation" ]
core/lib/NConnected.agda
has-conn-fibers
-2-conn : ∀ {i} (A : Type i) → is-connected -2 A
function
core
[ "open import lib.Basics", "open import lib.NType2", "open import lib.Equivalence2", "open import lib.path-seq.Rotations", "open import lib.types.Unit", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Pointed", "open import lib.types.Sigma", "open import lib.types.Paths", "open import lib.types.TLevel", "open import lib.types.Truncation" ]
core/lib/NConnected.agda
-2-conn
inhab-conn : ∀ {i} {A : Type i} (a : A) → is-connected -1 A
function
core
[ "open import lib.Basics", "open import lib.NType2", "open import lib.Equivalence2", "open import lib.path-seq.Rotations", "open import lib.types.Unit", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Pointed", "open import lib.types.Sigma", "open import lib.types.Paths", "open import lib.types.TLevel", "open import lib.types.Truncation" ]
core/lib/NConnected.agda
inhab-conn
is-gpd : {i : ULevel} → Type i → Type i
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Relation2", "open import lib.types.Paths", "open import lib.types.Pi", "open import lib.types.Sigma", "open import lib.types.TLevel" ]
core/lib/NType2.agda
is-gpd
has-level-prop : ∀ {i} → ℕ₋₂ → SubtypeProp (Type i) i
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Relation2", "open import lib.types.Paths", "open import lib.types.Pi", "open import lib.types.Sigma", "open import lib.types.TLevel" ]
core/lib/NType2.agda
has-level-prop
_-Type_ : (n : ℕ₋₂) (i : ULevel) → Type (lsucc i)
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Relation2", "open import lib.types.Paths", "open import lib.types.Pi", "open import lib.types.Sigma", "open import lib.types.TLevel" ]
core/lib/NType2.agda
_-Type_
hProp : (i : ULevel) → Type (lsucc i)
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Relation2", "open import lib.types.Paths", "open import lib.types.Pi", "open import lib.types.Sigma", "open import lib.types.TLevel" ]
core/lib/NType2.agda
hProp
hSet : (i : ULevel) → Type (lsucc i)
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Relation2", "open import lib.types.Paths", "open import lib.types.Pi", "open import lib.types.Sigma", "open import lib.types.TLevel" ]
core/lib/NType2.agda
hSet
_-Type₀ : (n : ℕ₋₂) → Type₁
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Relation2", "open import lib.types.Paths", "open import lib.types.Pi", "open import lib.types.Sigma", "open import lib.types.TLevel" ]
core/lib/NType2.agda
_-Type₀
hProp-is-set : (i : ULevel) → is-set (hProp i)
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Relation2", "open import lib.types.Paths", "open import lib.types.Pi", "open import lib.types.Sigma", "open import lib.types.TLevel" ]
core/lib/NType2.agda
hProp-is-set
hSet-level : (i : ULevel) → has-level 1 (hSet i)
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Relation2", "open import lib.types.Paths", "open import lib.types.Pi", "open import lib.types.Sigma", "open import lib.types.TLevel" ]
core/lib/NType2.agda
hSet-level
ap-idf : ∀ {i} {A : Type i} {u v : A} (p : u == v) → ap (idf A) p == p
function
core
[ "open import lib.Base", "open import lib.PathGroupoid" ]
core/lib/PathFunctor.agda
ap-idf
Rel : ∀ (A : Type i) j → Type (lmax i (lsucc j))
function
core
[ "open import lib.Base" ]
core/lib/Relation.agda
Rel
empty-rel : ∀ {A : Type i} → Rel A lzero
function
core
[ "open import lib.Base" ]
core/lib/Relation.agda
empty-rel
coe-equiv : ∀ {i} {A B : Type i} → A == B → A ≃ B
function
core
[ "open import lib.Base", "open import lib.PathGroupoid", "open import lib.PathFunctor", "open import lib.Equivalence", "open import lib.PathOver" ]
core/lib/Univalence.agda
coe-equiv
ua-equiv : ∀ {i} {A B : Type i} → (A ≃ B) ≃ (A == B)
function
core
[ "open import lib.Base", "open import lib.PathGroupoid", "open import lib.PathFunctor", "open import lib.Equivalence", "open import lib.PathOver" ]
core/lib/Univalence.agda
ua-equiv
Cube {i} {A : Type i} {a₀₀₀ : A} : {a₀₁₀ a₁₀₀ a₁₁₀ a₀₀₁ a₀₁₁ a₁₀₁ a₁₁₁ : A} {p₀₋₀ : a₀₀₀ == a₀₁₀} {p₋₀₀ : a₀₀₀ == a₁₀₀} {p₋₁₀ : a₀₁₀ == a₁₁₀} {p₁₋₀ : a₁₀₀ == a₁₁₀} (sq₋₋₀ : Square p₀₋₀ p₋₀₀ p₋₁₀ p₁₋₀) -- left {p₀₋₁ : a₀₀₁ == a₀₁₁} {p₋₀₁ : a₀₀₁ == a₁₀₁} {p₋₁₁ : a₀₁₁ == a₁₁₁} {p₁₋₁ : a₁₀₁ == a₁₁₁} (sq₋₋₁ : Square p₀₋₁ p₋₀₁ p₋₁₁ p₁₋₁) -- right {p₀₀₋ : a₀₀₀ == a₀₀₁} {p₀₁₋ : a₀₁₀ == a₀₁₁} {p₁₀₋ : a₁₀₀ == a₁₀₁} {p₁₁₋ : a₁₁₀ == a₁₁₁} (sq₀₋₋ : Square p₀₋₀ p₀₀₋ p₀₁₋ p₀₋₁) -- back (sq₋₀₋ : Square p₋₀₀ p₀₀₋ p₁₀₋ p₋₀₁) -- top (sq₋₁₋ : Square p₋₁₀ p₀₁₋ p₁₁₋ p₋₁₁) -- bottom (sq₁₋₋ : Square p₁₋₀ p₁₀₋ p₁₁₋ p₁₋₁) -- front → Type i where idc : Cube ids ids ids ids ids ids {- Just transport, but less clutter to use -}
data
core
[ "open import lib.Base", "open import lib.PathGroupoid", "open import lib.cubical.Square" ]
core/lib/cubical/Cube.agda
Cube
Square {i} {A : Type i} {a₀₀ : A} : {a₀₁ a₁₀ a₁₁ : A} → a₀₀ == a₀₁ → a₀₀ == a₁₀ → a₀₁ == a₁₁ → a₁₀ == a₁₁ → Type i where ids : Square idp idp idp idp hid-square : ∀ {i} {A : Type i} {a₀₀ a₀₁ : A} {p : a₀₀ == a₀₁} → Square p idp idp p hid-square {p = idp} = ids vid-square : ∀ {i} {A : Type i} {a₀₀ a₁₀ : A} {p : a₀₀ == a₁₀} → Square idp p p idp vid-square {p = idp} = ids square-to-disc : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋ square-to-disc ids = idp disc-to-square : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋ → Square p₀₋ p₋₀ p₋₁ p₁₋ disc-to-square {p₀₋ = idp} {p₋₀ = idp} {p₋₁ = idp} {p₁₋ = .idp} idp = ids square-to-disc-β : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (α : p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋) → square-to-disc (disc-to-square {p₀₋ = p₀₋} {p₋₀ = p₋₀} α) == α square-to-disc-β {p₀₋ = idp} {p₋₀ = idp} {p₋₁ = idp} {p₁₋ = .idp} idp = idp disc-to-square-β : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} (sq : Square p₀₋ p₋₀ p₋₁ p₁₋) → disc-to-square (square-to-disc sq) == sq disc-to-square-β ids = idp square-disc-equiv : ∀ {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → (Square p₀₋ p₋₀ p₋₁ p₁₋) ≃ (p₀₋ ∙ p₋₁ == p₋₀ ∙ p₁₋) square-disc-equiv = equiv square-to-disc disc-to-square square-to-disc-β disc-to-square-β Square-level : ∀ {n : ℕ₋₂} {i} {A : Type i} {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → has-level (S (S n)) A → has-level n (Square p₀₋ p₋₀ p₋₁ p₁₋) Square-level {n} A-level = transport (has-level n) (! (ua square-disc-equiv)) $ has-level-apply (has-level-apply A-level _ _) _ _ ap-square : ∀ {i j} {A : Type i} {B : Type j} (f : A → B) {a₀₀ a₀₁ a₁₀ a₁₁ : A} {p₀₋ : a₀₀ == a₀₁} {p₋₀ : a₀₀ == a₁₀} {p₋₁ : a₀₁ == a₁₁} {p₁₋ : a₁₀ == a₁₁} → Square p₀₋ p₋₀ p₋₁ p₁₋ → Square (ap f p₀₋) (ap f p₋₀) (ap f p₋₁) (ap f p₁₋) ap-square f ids = ids ap-square-hid : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a₀ a₁ : A} {p : a₀ == a₁} → ap-square f (hid-square {p = p}) == hid-square ap-square-hid {p = idp} = idp ap-square-vid : ∀ {i j} {A : Type i} {B : Type j} {f : A → B} {a₀ a₁ : A} {p : a₀ == a₁} → ap-square f (vid-square {p = p}) == vid-square ap-square-vid {p = idp} = idp
data
core
[ "open import lib.Base", "open import lib.Equivalence", "open import lib.NType", "open import lib.PathFunctor", "open import lib.PathGroupoid", "open import lib.PathOver", "open import lib.Univalence" ]
core/lib/cubical/Square.agda
Square
CommSquareᴳ {i₀ i₁ j₀ j₁} {G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} (φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁) : Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) where constructor comm-sqrᴳ field commutesᴳ : ∀ g₀ → GroupHom.f (ξH ∘ᴳ φ₀) g₀ == GroupHom.f (φ₁ ∘ᴳ ξG) g₀ infixr 0 _□$ᴳ_ _□$ᴳ_ = CommSquareᴳ.commutesᴳ is-csᴳ-equiv : ∀ {i₀ i₁ j₀ j₁} {G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} {φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → CommSquareᴳ φ₀ φ₁ ξG ξH → Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) is-csᴳ-equiv {ξG = ξG} {ξH} _ = is-equiv (GroupHom.f ξG) × is-equiv (GroupHom.f ξH) CommSquareEquivᴳ : ∀ {i₀ i₁ j₀ j₁} {G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} (φ₀ : G₀ →ᴳ H₀) (φ₁ : G₁ →ᴳ H₁) (ξG : G₀ →ᴳ G₁) (ξH : H₀ →ᴳ H₁) → Type (lmax (lmax i₀ i₁) (lmax j₀ j₁)) CommSquareEquivᴳ φ₀ φ₁ ξG ξH = Σ (CommSquareᴳ φ₀ φ₁ ξG ξH) is-csᴳ-equiv abstract CommSquareᴳ-∘v : ∀ {i₀ i₁ i₂ j₀ j₁ j₂} {G₀ : Group i₀} {G₁ : Group i₁} {G₂ : Group i₂} {H₀ : Group j₀} {H₁ : Group j₁} {H₂ : Group j₂} {φ : G₀ →ᴳ H₀} {ψ : G₁ →ᴳ H₁} {χ : G₂ →ᴳ H₂} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} {μA : G₁ →ᴳ G₂} {μB : H₁ →ᴳ H₂} → CommSquareᴳ ψ χ μA μB → CommSquareᴳ φ ψ ξG ξH → CommSquareᴳ φ χ (μA ∘ᴳ ξG) (μB ∘ᴳ ξH) CommSquareᴳ-∘v {ξG = ξG} {μB = μB} (comm-sqrᴳ □₁₂) (comm-sqrᴳ □₀₁) = comm-sqrᴳ λ g₀ → ap (GroupHom.f μB) (□₀₁ g₀) ∙ □₁₂ (GroupHom.f ξG g₀) CommSquareEquivᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁} {G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} {φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → (cse : CommSquareEquivᴳ φ₀ φ₁ ξG ξH) → CommSquareEquivᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , fst (snd cse))) (GroupIso.g-hom (ξH , snd (snd cse))) CommSquareEquivᴳ-inverse-v (comm-sqrᴳ cs , ise) with CommSquareEquiv-inverse-v (comm-sqr cs , ise) ... | (comm-sqr cs' , ise') = cs'' , ise' where abstract cs'' = comm-sqrᴳ cs' CommSquareᴳ-inverse-v : ∀ {i₀ i₁ j₀ j₁} {G₀ : Group i₀} {G₁ : Group i₁} {H₀ : Group j₀} {H₁ : Group j₁} {φ₀ : G₀ →ᴳ H₀} {φ₁ : G₁ →ᴳ H₁} {ξG : G₀ →ᴳ G₁} {ξH : H₀ →ᴳ H₁} → CommSquareᴳ φ₀ φ₁ ξG ξH → (ξG-ise : is-equiv (GroupHom.f ξG)) (ξH-ise : is-equiv (GroupHom.f ξH)) → CommSquareᴳ φ₁ φ₀ (GroupIso.g-hom (ξG , ξG-ise)) (GroupIso.g-hom (ξH , ξH-ise)) CommSquareᴳ-inverse-v cs ξG-ise ξH-ise = fst (CommSquareEquivᴳ-inverse-v (cs , ξG-ise , ξH-ise)) -- basic facts nicely represented in commuting squares inv-hom-natural-comm-sqr : ∀ {i j} (G : AbGroup i) (H : AbGroup j) (φ : AbGroup.grp G →ᴳ AbGroup.grp H) → CommSquareᴳ φ φ (inv-hom G) (inv-hom H) inv-hom-natural-comm-sqr _ _ φ = comm-sqrᴳ λ g → ! (GroupHom.pres-inv φ g)
record
core
[ "open import lib.Basics", "open import lib.types.Sigma", "open import lib.types.Group", "open import lib.types.CommutingSquare", "open import lib.groups.Homomorphism", "open import lib.groups.Isomorphism" ]
core/lib/groups/CommutingSquare.agda
CommSquareᴳ
Πᴳ : ∀ {i j} (I : Type i) (F : I → Group j) → Group (lmax i j)
function
core
[ "open import lib.Basics", "open import lib.types.Bool", "open import lib.types.Group", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Sigma", "open import lib.types.Coproduct", "open import lib.types.Truncation", "open import lib.groups.Homomorphism", "open import lib.groups.Isomorphism", "open import lib.groups.SubgroupProp", "open import lib.groups.Lift", "open import lib.groups.Unit" ]
core/lib/groups/GroupProduct.agda
Πᴳ
GroupStructureHom {i j} {GEl : Type i} {HEl : Type j} (GS : GroupStructure GEl) (HS : GroupStructure HEl) : Type (lmax i j) where constructor group-structure-hom private module G = GroupStructure GS module H = GroupStructure HS field f : GEl → HEl pres-comp : preserves-comp G.comp H.comp f abstract pres-ident : f G.ident == H.ident pres-ident = H.cancel-l (f G.ident) $ H.comp (f G.ident) (f G.ident) =⟨ ! (pres-comp G.ident G.ident) ⟩ f (G.comp G.ident G.ident) =⟨ ap f (G.unit-l G.ident) ⟩ f G.ident =⟨ ! (H.unit-r (f G.ident)) ⟩ H.comp (f G.ident) H.ident =∎ pres-inv : ∀ g → f (G.inv g) == H.inv (f g) pres-inv g = ! $ H.inv-unique-l _ _ $ H.comp (f (G.inv g)) (f g) =⟨ ! (pres-comp (G.inv g) g) ⟩ f (G.comp (G.inv g) g) =⟨ ap f (G.inv-l g) ⟩ f G.ident =⟨ pres-ident ⟩ H.ident =∎ pres-exp : ∀ g i → f (G.exp g i) == H.exp (f g) i pres-exp g (pos O) = pres-ident pres-exp g (pos (S O)) = idp pres-exp g (pos (S (S n))) = pres-comp g (G.exp g (pos (S n))) ∙ ap (H.comp (f g)) (pres-exp g (pos (S n))) pres-exp g (negsucc O) = pres-inv g pres-exp g (negsucc (S n)) = pres-comp (G.inv g) (G.exp g (negsucc n)) ∙ ap2 H.comp (pres-inv g) (pres-exp g (negsucc n)) pres-conj : ∀ g h → f (G.conj g h) == H.conj (f g) (f h) pres-conj g h = pres-comp (G.comp g h) (G.inv g) ∙ ap2 H.comp (pres-comp g h) (pres-inv g) pres-diff : ∀ g h → f (G.diff g h) == H.diff (f g) (f h) pres-diff g h = pres-comp g (G.inv h) ∙ ap (H.comp (f g)) (pres-inv h) pres-sum : ∀ {I : ℕ} (g : Fin I → GEl) → f (G.sum g) == H.sum (f ∘ g) pres-sum {I = O} _ = pres-ident pres-sum {I = S I} g = pres-comp (G.sum (g ∘ Fin-S)) (g (_ , ltS)) ∙ ap (λ h → H.comp h (f (g (_ , ltS)))) (pres-sum (g ∘ Fin-S)) pres-subsum-r : ∀ {k l} {I : ℕ} {A : Type k} {B : Type l} → (p : Fin I → Coprod A B) (g : B → GEl) → f (G.subsum-r p g) == H.subsum-r p (f ∘ g) pres-subsum-r p g = pres-sum (Coprod-rec (λ _ → G.ident) g ∘ p) ∙ ap H.sum (λ= λ x → Coprod-rec-post∘ f (λ _ → G.ident) g (p x) ∙ ap (λ h → Coprod-rec h (f ∘ g) (p x)) (λ= λ _ → pres-ident)) ⊙f : ⊙[ GEl , G.ident ] ⊙→ ⊙[ HEl , H.ident ] ⊙f = f , pres-ident infix 0 _→ᴳˢ_ -- [ˢ] for structures _→ᴳˢ_ = GroupStructureHom
record
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Function2", "open import lib.NType2", "open import lib.types.Coproduct", "open import lib.types.Fin", "open import lib.types.Group", "open import lib.types.Int", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Subtype", "open import lib.types.Truncation", "open import lib.groups.SubgroupProp" ]
core/lib/groups/Homomorphism.agda
GroupStructureHom
GroupHom {i j} (G : Group i) (H : Group j) : Type (lmax i j) where constructor group-hom private module G = Group G module H = Group H field f : G.El → H.El pres-comp : ∀ g₁ g₂ → f (G.comp g₁ g₂) == H.comp (f g₁) (f g₂) open GroupStructureHom {GS = G.group-struct} {HS = H.group-struct} record {f = f ; pres-comp = pres-comp} hiding (f ; pres-comp) public infix 0 _→ᴳ_ _→ᴬᴳ_ _→ᴳ_ = GroupHom _→ᴬᴳ_ : ∀ {i} {j} (G : AbGroup i) (H : AbGroup j) → Type (lmax i j) _→ᴬᴳ_ G H = AbGroup.grp G →ᴳ AbGroup.grp H →ᴳˢ-to-→ᴳ : ∀ {i j} {G : Group i} {H : Group j} → (Group.group-struct G →ᴳˢ Group.group-struct H) → (G →ᴳ H) →ᴳˢ-to-→ᴳ (group-structure-hom f pres-comp) = group-hom f pres-comp idhom : ∀ {i} (G : Group i) → (G →ᴳ G) idhom G = group-hom (idf _) (λ _ _ → idp) idshom : ∀ {i} {GEl : Type i} (GS : GroupStructure GEl) → (GS →ᴳˢ GS) idshom GS = group-structure-hom (idf _) (λ _ _ → idp) {- constant (zero) homomorphism -}
record
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Function2", "open import lib.NType2", "open import lib.types.Coproduct", "open import lib.types.Fin", "open import lib.types.Group", "open import lib.types.Int", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Subtype", "open import lib.types.Truncation", "open import lib.groups.SubgroupProp" ]
core/lib/groups/Homomorphism.agda
GroupHom
idhom : ∀ {i} (G : Group i) → (G →ᴳ G)
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Function2", "open import lib.NType2", "open import lib.types.Coproduct", "open import lib.types.Fin", "open import lib.types.Group", "open import lib.types.Int", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Subtype", "open import lib.types.Truncation", "open import lib.groups.SubgroupProp" ]
core/lib/groups/Homomorphism.agda
idhom
idshom : ∀ {i} {GEl : Type i} (GS : GroupStructure GEl) → (GS →ᴳˢ GS)
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Function2", "open import lib.NType2", "open import lib.types.Coproduct", "open import lib.types.Fin", "open import lib.types.Group", "open import lib.types.Int", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Subtype", "open import lib.types.Truncation", "open import lib.groups.SubgroupProp" ]
core/lib/groups/Homomorphism.agda
idshom
inv-hom : ∀ {i} (G : AbGroup i) → GroupHom (AbGroup.grp G) (AbGroup.grp G)
function
core
[ "open import lib.Basics", "open import lib.Equivalence2", "open import lib.Function2", "open import lib.NType2", "open import lib.types.Coproduct", "open import lib.types.Fin", "open import lib.types.Group", "open import lib.types.Int", "open import lib.types.Nat", "open import lib.types.Pi", "open import lib.types.Subtype", "open import lib.types.Truncation", "open import lib.groups.SubgroupProp" ]
core/lib/groups/Homomorphism.agda
inv-hom
ℤ-group-structure : GroupStructure ℤ
function
core
[ "open import lib.Basics", "open import lib.NType2", "open import lib.types.Int", "open import lib.types.Group", "open import lib.types.List", "open import lib.types.Word", "open import lib.groups.Homomorphism", "open import lib.groups.Isomorphism", "open import lib.groups.FreeAbelianGroup", "open import lib.groups.GeneratedGroup", "open import lib.types.SetQuotient" ]
core/lib/groups/Int.agda
ℤ-group-structure
ℤ-group : Group₀
function
core
[ "open import lib.Basics", "open import lib.NType2", "open import lib.types.Int", "open import lib.types.Group", "open import lib.types.List", "open import lib.types.Word", "open import lib.groups.Homomorphism", "open import lib.groups.Isomorphism", "open import lib.groups.FreeAbelianGroup", "open import lib.groups.GeneratedGroup", "open import lib.types.SetQuotient" ]
core/lib/groups/Int.agda
ℤ-group
ℤ-group-is-abelian : is-abelian ℤ-group
function
core
[ "open import lib.Basics", "open import lib.NType2", "open import lib.types.Int", "open import lib.types.Group", "open import lib.types.List", "open import lib.types.Word", "open import lib.groups.Homomorphism", "open import lib.groups.Isomorphism", "open import lib.groups.FreeAbelianGroup", "open import lib.groups.GeneratedGroup", "open import lib.types.SetQuotient" ]
core/lib/groups/Int.agda
ℤ-group-is-abelian
ℤ-abgroup : AbGroup₀
function
core
[ "open import lib.Basics", "open import lib.NType2", "open import lib.types.Int", "open import lib.types.Group", "open import lib.types.List", "open import lib.types.Word", "open import lib.groups.Homomorphism", "open import lib.groups.Isomorphism", "open import lib.groups.FreeAbelianGroup", "open import lib.groups.GeneratedGroup", "open import lib.types.SetQuotient" ]
core/lib/groups/Int.agda
ℤ-abgroup
End of preview. Expand in Data Studio

Agda-HoTT

Structured dataset from HoTT-Agda — Homotopy Type Theory.

604 declarations extracted from Agda source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string data, record, function
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
15

Collection including phanerozoic/Agda-HoTT