Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
5
670
type
stringclasses
3 values
library
stringclasses
18 values
imports
listlengths
0
48
filename
stringclasses
782 values
symbolic_name
stringlengths
1
35
docstring
stringclasses
1 value
RecStruct : Set a → (ℓ₁ ℓ₂ : Level) → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
RecStruct
RecursorBuilder : RecStruct A ℓ₁ ℓ₂ → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
RecursorBuilder
Recursor : RecStruct A ℓ₁ ℓ₂ → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
Recursor
build : RecursorBuilder Rec → Recursor Rec
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
build
SubsetRecursorBuilder : Pred A ℓ → RecStruct A ℓ₁ ℓ₂ → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
SubsetRecursorBuilder
SubsetRecursor : Pred A ℓ → RecStruct A ℓ₁ ℓ₂ → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
SubsetRecursor
subsetBuild : SubsetRecursorBuilder Q Rec → SubsetRecursor Q Rec
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
subsetBuild
Lift {a} ℓ (A: Set a) : Set (a ⊔ ℓ) where constructor lift field lower : A open Lift public -- Synonyms 0ℓ : Level
record
Root
[ "Agda.Primitive as Prim public" ]
Level.agda
Lift
0ℓ : Level
function
Root
[ "Agda.Primitive as Prim public" ]
Level.agda
0ℓ
levelOfType : ∀ {a} → Set a → Level
function
Root
[ "Agda.Primitive as Prim public" ]
Level.agda
levelOfType
levelOfTerm : ∀ {a} {A : Set a} → A → Level
function
Root
[ "Agda.Primitive as Prim public" ]
Level.agda
levelOfTerm
SizedSet : (ℓ : Level) → Set (suc ℓ)
function
Root
[ "Level", "Agda.Builtin.Size public" ]
Size.agda
SizedSet
SuccessorSet c ℓ: Set (suc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ suc# : Op₁ Carrier zero# : Carrier isSuccessorSet : IsSuccessorSet _≈_ suc# zero# open IsSuccessorSet isSuccessorSet public
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
SuccessorSet
Magma c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier isMagma : IsMagma _≈_ _∙_ open IsMagma isMagma public
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
Magma
UnitalMagma c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier isUnitalMagma : IsUnitalMagma _≈_ _∙_ ε open IsUnitalMagma isUnitalMagma public
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
UnitalMagma
InvertibleMagma c ℓ: Set (suc (c ⊔ ℓ)) where infix 8 _⁻¹ infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier _⁻¹ : Op₁ Carrier isInvertibleMagma : IsInvertibleMagma _≈_ _∙_ ε _⁻¹
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
InvertibleMagma
NearSemiring c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier isNearSemiring : IsNearSemiring _≈_ _+_ _*_ 0#
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
NearSemiring
SemiringWithoutAnnihilatingZero c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier 1# : Carrier
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
SemiringWithoutAnnihilatingZero
RingWithoutOne c ℓ: Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
RingWithoutOne
NonAssociativeRing c ℓ: Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
NonAssociativeRing
Quasigroup c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infixl 7 _\\_ infixl 7 _//_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier _\\_ : Op₂ Carrier _//_ : Op₂ Carrier
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
Quasigroup
Op₁ : ∀ {ℓ} → Set ℓ → Set ℓ
function
Algebra
[ "Level" ]
Algebra/Core.agda
Op₁
Op₂ : ∀ {ℓ} → Set ℓ → Set ℓ
function
Algebra
[ "Level" ]
Algebra/Core.agda
Op₂
Congruent₁ : Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Congruent₁
Congruent₂ : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Congruent₂
LeftCongruent : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftCongruent
RightCongruent : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightCongruent
Associative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Associative
Commutative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Commutative
LeftIdentity : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftIdentity
RightIdentity : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightIdentity
Identity : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Identity
LeftZero : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftZero
RightZero : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightZero
Zero : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Zero
LeftInverse : A → Op₁ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftInverse
RightInverse : A → Op₁ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightInverse
Inverse : A → Op₁ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Inverse
LeftInvertible : A → Op₂ A → A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftInvertible
RightInvertible : A → Op₂ A → A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightInvertible
Invertible : A → Op₂ A → A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Invertible
LeftConical : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftConical
RightConical : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightConical
Conical : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Conical
_DistributesOverˡ_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_DistributesOverˡ_
_DistributesOverʳ_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_DistributesOverʳ_
_DistributesOver_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_DistributesOver_
_MiddleFourExchange_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_MiddleFourExchange_
_IdempotentOn_ : Op₂ A → A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_IdempotentOn_
Idempotent : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Idempotent
IdempotentFun : Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
IdempotentFun
Selective : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Selective
_Absorbs_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_Absorbs_
Absorptive : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Absorptive
SelfInverse : Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
SelfInverse
Involutive : Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Involutive
LeftCancellative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftCancellative
RightCancellative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightCancellative
Cancellative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Cancellative
AlmostLeftCancellative : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
AlmostLeftCancellative
AlmostRightCancellative : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
AlmostRightCancellative
AlmostCancellative : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
AlmostCancellative
Interchangable : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Interchangable
LeftDividesˡ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftDividesˡ
LeftDividesʳ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftDividesʳ
RightDividesˡ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightDividesˡ
RightDividesʳ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightDividesʳ
LeftDivides : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftDivides
RightDivides : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightDivides
StarRightExpansive : A → Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarRightExpansive
StarLeftExpansive : A → Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarLeftExpansive
StarExpansive : A → Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarExpansive
StarLeftDestructive : Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarLeftDestructive
StarRightDestructive : Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarRightDestructive
StarDestructive : Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarDestructive
LeftAlternative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftAlternative
RightAlternative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightAlternative
Alternative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Alternative
Flexible : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Flexible
Medial : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Medial
LeftSemimedial : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftSemimedial
RightSemimedial : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightSemimedial
Semimedial : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Semimedial
LeftBol : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftBol
RightBol : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightBol
MiddleBol : Op₂ A → Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
MiddleBol
Identical : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Identical
IsSuccessorSet (suc#: Op₁ A) (zero# : A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ suc#-cong : Congruent₁ suc# open IsEquivalence isEquivalence public setoid : Setoid a ℓ setoid = record { isEquivalence = isEquivalence } ------------------------------------------------------------------------
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsSuccessorSet
IsMagma (∙: Op₂ A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ ∙-cong : Congruent₂ ∙ open IsEquivalence isEquivalence public setoid : Setoid a ℓ setoid = record { isEquivalence = isEquivalence } open Consequences.Congruence setoid ∙-cong public
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsMagma
IsUnitalMagma (∙: Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isMagma : IsMagma ∙ identity : Identity ε ∙ open IsMagma isMagma public identityˡ : LeftIdentity ε ∙ identityˡ = proj₁ identity identityʳ : RightIdentity ε ∙
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsUnitalMagma
IsInvertibleMagma (_∙_: Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where field isMagma : IsMagma _∙_ inverse : Inverse ε _⁻¹ _∙_ ⁻¹-cong : Congruent₁ _⁻¹ open IsMagma isMagma public inverseˡ : LeftInverse ε _⁻¹ _∙_ inverseˡ = proj₁ inverse
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsInvertibleMagma
IsNearSemiring (+ *: Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field +-isMonoid : IsMonoid + 0# *-cong : Congruent₂ * *-assoc : Associative * distribʳ : * DistributesOverʳ + zeroˡ : LeftZero 0# * open IsMonoid +-isMonoid public renaming ( assoc to +-assoc
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsNearSemiring
IsSemiring (+ *: Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# zero : Zero 0# * open IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero public isSemiringWithoutOne : IsSemiringWithoutOne + * 0# isSemiringWithoutOne = record
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsSemiring
IsRingWithoutOne (+ *: Op₂ A) (-_ : Op₁ A) (0# : A) : Set (a ⊔ ℓ) where field +-isAbelianGroup : IsAbelianGroup + 0# -_ *-cong : Congruent₂ * *-assoc : Associative * distrib : * DistributesOver + open IsAbelianGroup +-isAbelianGroup public renaming ( assoc to +-assoc ; ∙-cong to +-cong
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsRingWithoutOne
IsNonAssociativeRing (+ *: Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isAbelianGroup : IsAbelianGroup + 0# -_ *-cong : Congruent₂ * *-identity : Identity 1# * distrib : * DistributesOver + zero : Zero 0# * open IsAbelianGroup +-isAbelianGroup public renaming ( assoc to +-assoc
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsNonAssociativeRing
IsQuasigroup (∙ \\ //: Op₂ A) : Set (a ⊔ ℓ) where field isMagma : IsMagma ∙ \\-cong : Congruent₂ \\ //-cong : Congruent₂ // leftDivides : LeftDivides ∙ \\ rightDivides : RightDivides ∙ // open IsMagma isMagma public \\-congˡ : LeftCongruent \\
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsQuasigroup
DoubleNegationElimination : ∀ ℓ → Set (suc ℓ)
function
Axiom
[ "Axiom.ExcludedMiddle", "Level", "Relation.Nullary.Decidable.Core", "Relation.Nullary.Negation.Core" ]
Axiom/DoubleNegationElimination.agda
DoubleNegationElimination
em⇒dne : ExcludedMiddle ℓ → DoubleNegationElimination ℓ
function
Axiom
[ "Axiom.ExcludedMiddle", "Level", "Relation.Nullary.Decidable.Core", "Relation.Nullary.Negation.Core" ]
Axiom/DoubleNegationElimination.agda
em⇒dne
dne⇒em : DoubleNegationElimination ℓ → ExcludedMiddle ℓ
function
Axiom
[ "Axiom.ExcludedMiddle", "Level", "Relation.Nullary.Decidable.Core", "Relation.Nullary.Negation.Core" ]
Axiom/DoubleNegationElimination.agda
dne⇒em
ExcludedMiddle : ∀ ℓ → Set (suc ℓ)
function
Axiom
[ "Level", "Relation.Nullary.Decidable.Core" ]
Axiom/ExcludedMiddle.agda
ExcludedMiddle
End of preview. Expand in Data Studio

Agda-Stdlib

Structured dataset of definitions and types from the Agda standard library v2.3.

Schema

Column Type Description
fact string Type signature and definition
type string function, data, record
library string Top-level module (Data, Relation, Algebra, etc.)
imports list Import statements
filename string Source file path
symbolic_name string Declaration identifier
docstring string Documentation comment (3% coverage)

Statistics

By Type

Type Count
function 6,804
record 208
data 62

By Library (Top 10)

Library Count
Data 4,100
Relation 791
Algebra 741
Function 433
Codata 358
Reflection 178
Effect 113
System 92
Text 86
Tactic 82

Note

This is the first Agda dataset on Hugging Face. Agda is a dependently-typed programming language and proof assistant.

Use Cases

  • Retrieval/RAG for Agda
  • Learning dependent type patterns
  • Training embeddings for formal proofs
  • Cross-prover research (compare with Coq, Lean, Idris)
Downloads last month
19

Collection including phanerozoic/Agda-Stdlib