fact
stringlengths
5
670
type
stringclasses
3 values
library
stringclasses
18 values
imports
listlengths
0
48
filename
stringclasses
782 values
symbolic_name
stringlengths
1
35
docstring
stringclasses
1 value
RecStruct : Set a → (ℓ₁ ℓ₂ : Level) → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
RecStruct
RecursorBuilder : RecStruct A ℓ₁ ℓ₂ → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
RecursorBuilder
Recursor : RecStruct A ℓ₁ ℓ₂ → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
Recursor
build : RecursorBuilder Rec → Recursor Rec
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
build
SubsetRecursorBuilder : Pred A ℓ → RecStruct A ℓ₁ ℓ₂ → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
SubsetRecursorBuilder
SubsetRecursor : Pred A ℓ → RecStruct A ℓ₁ ℓ₂ → Set _
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
SubsetRecursor
subsetBuild : SubsetRecursorBuilder Q Rec → SubsetRecursor Q Rec
function
Root
[ "Level", "Relation.Unary", "Relation.Unary.PredicateTransformer" ]
Induction.agda
subsetBuild
Lift {a} ℓ (A: Set a) : Set (a ⊔ ℓ) where constructor lift field lower : A open Lift public -- Synonyms 0ℓ : Level
record
Root
[ "Agda.Primitive as Prim public" ]
Level.agda
Lift
0ℓ : Level
function
Root
[ "Agda.Primitive as Prim public" ]
Level.agda
0ℓ
levelOfType : ∀ {a} → Set a → Level
function
Root
[ "Agda.Primitive as Prim public" ]
Level.agda
levelOfType
levelOfTerm : ∀ {a} {A : Set a} → A → Level
function
Root
[ "Agda.Primitive as Prim public" ]
Level.agda
levelOfTerm
SizedSet : (ℓ : Level) → Set (suc ℓ)
function
Root
[ "Level", "Agda.Builtin.Size public" ]
Size.agda
SizedSet
SuccessorSet c ℓ: Set (suc (c ⊔ ℓ)) where infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ suc# : Op₁ Carrier zero# : Carrier isSuccessorSet : IsSuccessorSet _≈_ suc# zero# open IsSuccessorSet isSuccessorSet public
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
SuccessorSet
Magma c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier isMagma : IsMagma _≈_ _∙_ open IsMagma isMagma public
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
Magma
UnitalMagma c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier isUnitalMagma : IsUnitalMagma _≈_ _∙_ ε open IsUnitalMagma isUnitalMagma public
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
UnitalMagma
InvertibleMagma c ℓ: Set (suc (c ⊔ ℓ)) where infix 8 _⁻¹ infixl 7 _∙_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier ε : Carrier _⁻¹ : Op₁ Carrier isInvertibleMagma : IsInvertibleMagma _≈_ _∙_ ε _⁻¹
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
InvertibleMagma
NearSemiring c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier isNearSemiring : IsNearSemiring _≈_ _+_ _*_ 0#
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
NearSemiring
SemiringWithoutAnnihilatingZero c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier 0# : Carrier 1# : Carrier
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
SemiringWithoutAnnihilatingZero
RingWithoutOne c ℓ: Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
RingWithoutOne
NonAssociativeRing c ℓ: Set (suc (c ⊔ ℓ)) where infix 8 -_ infixl 7 _*_ infixl 6 _+_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _+_ : Op₂ Carrier _*_ : Op₂ Carrier -_ : Op₁ Carrier
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
NonAssociativeRing
Quasigroup c ℓ: Set (suc (c ⊔ ℓ)) where infixl 7 _∙_ infixl 7 _\\_ infixl 7 _//_ infix 4 _≈_ field Carrier : Set c _≈_ : Rel Carrier ℓ _∙_ : Op₂ Carrier _\\_ : Op₂ Carrier _//_ : Op₂ Carrier
record
Algebra
[ "Algebra.Bundles.Raw", "Algebra.Core", "Algebra.Structures", "Relation.Binary.Core", "Level" ]
Algebra/Bundles.agda
Quasigroup
Op₁ : ∀ {ℓ} → Set ℓ → Set ℓ
function
Algebra
[ "Level" ]
Algebra/Core.agda
Op₁
Op₂ : ∀ {ℓ} → Set ℓ → Set ℓ
function
Algebra
[ "Level" ]
Algebra/Core.agda
Op₂
Congruent₁ : Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Congruent₁
Congruent₂ : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Congruent₂
LeftCongruent : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftCongruent
RightCongruent : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightCongruent
Associative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Associative
Commutative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Commutative
LeftIdentity : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftIdentity
RightIdentity : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightIdentity
Identity : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Identity
LeftZero : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftZero
RightZero : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightZero
Zero : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Zero
LeftInverse : A → Op₁ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftInverse
RightInverse : A → Op₁ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightInverse
Inverse : A → Op₁ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Inverse
LeftInvertible : A → Op₂ A → A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftInvertible
RightInvertible : A → Op₂ A → A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightInvertible
Invertible : A → Op₂ A → A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Invertible
LeftConical : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftConical
RightConical : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightConical
Conical : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Conical
_DistributesOverˡ_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_DistributesOverˡ_
_DistributesOverʳ_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_DistributesOverʳ_
_DistributesOver_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_DistributesOver_
_MiddleFourExchange_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_MiddleFourExchange_
_IdempotentOn_ : Op₂ A → A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_IdempotentOn_
Idempotent : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Idempotent
IdempotentFun : Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
IdempotentFun
Selective : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Selective
_Absorbs_ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
_Absorbs_
Absorptive : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Absorptive
SelfInverse : Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
SelfInverse
Involutive : Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Involutive
LeftCancellative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftCancellative
RightCancellative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightCancellative
Cancellative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Cancellative
AlmostLeftCancellative : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
AlmostLeftCancellative
AlmostRightCancellative : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
AlmostRightCancellative
AlmostCancellative : A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
AlmostCancellative
Interchangable : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Interchangable
LeftDividesˡ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftDividesˡ
LeftDividesʳ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftDividesʳ
RightDividesˡ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightDividesˡ
RightDividesʳ : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightDividesʳ
LeftDivides : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftDivides
RightDivides : Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightDivides
StarRightExpansive : A → Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarRightExpansive
StarLeftExpansive : A → Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarLeftExpansive
StarExpansive : A → Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarExpansive
StarLeftDestructive : Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarLeftDestructive
StarRightDestructive : Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarRightDestructive
StarDestructive : Op₂ A → Op₂ A → Op₁ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
StarDestructive
LeftAlternative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftAlternative
RightAlternative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightAlternative
Alternative : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Alternative
Flexible : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Flexible
Medial : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Medial
LeftSemimedial : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftSemimedial
RightSemimedial : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightSemimedial
Semimedial : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Semimedial
LeftBol : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
LeftBol
RightBol : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
RightBol
MiddleBol : Op₂ A → Op₂ A → Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
MiddleBol
Identical : Op₂ A → Set _
function
Algebra
[ "Relation.Binary.Core", "Algebra.Core", "Data.Product.Base", "Data.Sum.Base", "Relation.Binary.Definitions", "Relation.Nullary.Negation.Core" ]
Algebra/Definitions.agda
Identical
IsSuccessorSet (suc#: Op₁ A) (zero# : A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ suc#-cong : Congruent₁ suc# open IsEquivalence isEquivalence public setoid : Setoid a ℓ setoid = record { isEquivalence = isEquivalence } ------------------------------------------------------------------------
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsSuccessorSet
IsMagma (∙: Op₂ A) : Set (a ⊔ ℓ) where field isEquivalence : IsEquivalence _≈_ ∙-cong : Congruent₂ ∙ open IsEquivalence isEquivalence public setoid : Setoid a ℓ setoid = record { isEquivalence = isEquivalence } open Consequences.Congruence setoid ∙-cong public
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsMagma
IsUnitalMagma (∙: Op₂ A) (ε : A) : Set (a ⊔ ℓ) where field isMagma : IsMagma ∙ identity : Identity ε ∙ open IsMagma isMagma public identityˡ : LeftIdentity ε ∙ identityˡ = proj₁ identity identityʳ : RightIdentity ε ∙
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsUnitalMagma
IsInvertibleMagma (_∙_: Op₂ A) (ε : A) (_⁻¹ : Op₁ A) : Set (a ⊔ ℓ) where field isMagma : IsMagma _∙_ inverse : Inverse ε _⁻¹ _∙_ ⁻¹-cong : Congruent₁ _⁻¹ open IsMagma isMagma public inverseˡ : LeftInverse ε _⁻¹ _∙_ inverseˡ = proj₁ inverse
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsInvertibleMagma
IsNearSemiring (+ *: Op₂ A) (0# : A) : Set (a ⊔ ℓ) where field +-isMonoid : IsMonoid + 0# *-cong : Congruent₂ * *-assoc : Associative * distribʳ : * DistributesOverʳ + zeroˡ : LeftZero 0# * open IsMonoid +-isMonoid public renaming ( assoc to +-assoc
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsNearSemiring
IsSemiring (+ *: Op₂ A) (0# 1# : A) : Set (a ⊔ ℓ) where field isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# zero : Zero 0# * open IsSemiringWithoutAnnihilatingZero isSemiringWithoutAnnihilatingZero public isSemiringWithoutOne : IsSemiringWithoutOne + * 0# isSemiringWithoutOne = record
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsSemiring
IsRingWithoutOne (+ *: Op₂ A) (-_ : Op₁ A) (0# : A) : Set (a ⊔ ℓ) where field +-isAbelianGroup : IsAbelianGroup + 0# -_ *-cong : Congruent₂ * *-assoc : Associative * distrib : * DistributesOver + open IsAbelianGroup +-isAbelianGroup public renaming ( assoc to +-assoc ; ∙-cong to +-cong
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsRingWithoutOne
IsNonAssociativeRing (+ *: Op₂ A) (-_ : Op₁ A) (0# 1# : A) : Set (a ⊔ ℓ) where field +-isAbelianGroup : IsAbelianGroup + 0# -_ *-cong : Congruent₂ * *-identity : Identity 1# * distrib : * DistributesOver + zero : Zero 0# * open IsAbelianGroup +-isAbelianGroup public renaming ( assoc to +-assoc
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsNonAssociativeRing
IsQuasigroup (∙ \\ //: Op₂ A) : Set (a ⊔ ℓ) where field isMagma : IsMagma ∙ \\-cong : Congruent₂ \\ //-cong : Congruent₂ // leftDivides : LeftDivides ∙ \\ rightDivides : RightDivides ∙ // open IsMagma isMagma public \\-congˡ : LeftCongruent \\
record
Algebra
[ "Relation.Binary.Core", "Relation.Binary.Bundles", "Relation.Binary.Structures", "Algebra.Core", "Algebra.Definitions _≈_", "Algebra.Consequences.Setoid", "Data.Product.Base", "Level" ]
Algebra/Structures.agda
IsQuasigroup
DoubleNegationElimination : ∀ ℓ → Set (suc ℓ)
function
Axiom
[ "Axiom.ExcludedMiddle", "Level", "Relation.Nullary.Decidable.Core", "Relation.Nullary.Negation.Core" ]
Axiom/DoubleNegationElimination.agda
DoubleNegationElimination
em⇒dne : ExcludedMiddle ℓ → DoubleNegationElimination ℓ
function
Axiom
[ "Axiom.ExcludedMiddle", "Level", "Relation.Nullary.Decidable.Core", "Relation.Nullary.Negation.Core" ]
Axiom/DoubleNegationElimination.agda
em⇒dne
dne⇒em : DoubleNegationElimination ℓ → ExcludedMiddle ℓ
function
Axiom
[ "Axiom.ExcludedMiddle", "Level", "Relation.Nullary.Decidable.Core", "Relation.Nullary.Negation.Core" ]
Axiom/DoubleNegationElimination.agda
dne⇒em
ExcludedMiddle : ∀ ℓ → Set (suc ℓ)
function
Axiom
[ "Level", "Relation.Nullary.Decidable.Core" ]
Axiom/ExcludedMiddle.agda
ExcludedMiddle