Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
9
34.3k
type
stringclasses
3 values
library
stringclasses
2 values
imports
listlengths
0
227
filename
stringlengths
22
99
symbolic_name
stringlengths
1
57
docstring
stringclasses
1 value
concept : ...
function
docs
[ "open import foundation-core.template public", "open import ..." ]
docs/TEMPLATE.lagda.md
concept
satisfies-property-concept : ...
function
docs
[ "open import foundation-core.template public", "open import ..." ]
docs/TEMPLATE.lagda.md
satisfies-property-concept
concept-subconcept : ...
function
docs
[ "open import foundation-core.template public", "open import ..." ]
docs/TEMPLATE.lagda.md
concept-subconcept
is-complete-prop-Metric-Ab : {l1 l2 : Level} → Metric-Ab l1 l2 → Prop (l1 ⊔ l2)
function
src
[ "open import analysis.metric-abelian-groups", "open import foundation.dependent-pair-types", "open import foundation.propositions", "open import foundation.subtypes", "open import foundation.universe-levels", "open import metric-spaces.complete-metric-spaces", "open import metric-spaces.metric-spaces" ]
src/analysis/complete-metric-abelian-groups.lagda.md
is-complete-prop-Metric-Ab
is-complete-Metric-Ab : {l1 l2 : Level} → Metric-Ab l1 l2 → UU (l1 ⊔ l2)
function
src
[ "open import analysis.metric-abelian-groups", "open import foundation.dependent-pair-types", "open import foundation.propositions", "open import foundation.subtypes", "open import foundation.universe-levels", "open import metric-spaces.complete-metric-spaces", "open import metric-spaces.metric-spaces" ]
src/analysis/complete-metric-abelian-groups.lagda.md
is-complete-Metric-Ab
Complete-Metric-Ab : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import analysis.metric-abelian-groups", "open import foundation.dependent-pair-types", "open import foundation.propositions", "open import foundation.subtypes", "open import foundation.universe-levels", "open import metric-spaces.complete-metric-spaces", "open import metric-spaces.metric-spaces" ]
src/analysis/complete-metric-abelian-groups.lagda.md
Complete-Metric-Ab
convergent-series-Complete-Metric-Ab : {l1 l2 : Level} (G : Complete-Metric-Ab l1 l2) → UU (l1 ⊔ l2)
function
src
[ "open import analysis.complete-metric-abelian-groups", "open import analysis.convergent-series-metric-abelian-groups", "open import analysis.series-complete-metric-abelian-groups", "open import foundation.dependent-pair-types", "open import foundation.inhabited-types", "open import foundation.propositions", "open import foundation.subtypes", "open import foundation.universe-levels", "open import metric-spaces.cauchy-sequences-complete-metric-spaces", "open import metric-spaces.cauchy-sequences-metric-spaces" ]
src/analysis/convergent-series-complete-metric-abelian-groups.lagda.md
convergent-series-Complete-Metric-Ab
convergent-series-Metric-Ab : {l1 l2 : Level} (G : Metric-Ab l1 l2) → UU (l1 ⊔ l2)
function
src
[ "open import analysis.metric-abelian-groups", "open import analysis.series-metric-abelian-groups", "open import elementary-number-theory.addition-natural-numbers", "open import elementary-number-theory.inequality-natural-numbers", "open import elementary-number-theory.natural-numbers", "open import foundation.action-on-identifications-functions", "open import foundation.binary-transport", "open import foundation.dependent-pair-types", "open import foundation.functoriality-propositional-truncation", "open import foundation.identity-types", "open import foundation.logical-equivalences", "open import foundation.propositions", "open import foundation.subtypes", "open import foundation.transport-along-identifications", "open import foundation.universe-levels", "open import lists.sequences", "open import metric-spaces.convergent-sequences-metric-spaces", "open import metric-spaces.limits-of-sequences-metric-spaces" ]
src/analysis/convergent-series-metric-abelian-groups.lagda.md
convergent-series-Metric-Ab
convergent-series-ℝ : (l : Level) → UU (lsuc l)
function
src
[ "open import analysis.convergent-series-complete-metric-abelian-groups", "open import analysis.convergent-series-metric-abelian-groups", "open import analysis.series-real-numbers", "open import foundation.dependent-pair-types", "open import foundation.propositions", "open import foundation.subtypes", "open import foundation.universe-levels", "open import lists.sequences", "open import real-numbers.cauchy-sequences-real-numbers", "open import real-numbers.dedekind-real-numbers", "open import real-numbers.metric-additive-group-of-real-numbers" ]
src/analysis/convergent-series-real-numbers.lagda.md
convergent-series-ℝ
Metric-Ab : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import elementary-number-theory.positive-rational-numbers", "open import foundation.action-on-identifications-binary-functions", "open import foundation.binary-relations", "open import foundation.cartesian-product-types", "open import foundation.conjunction", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.universe-levels", "open import group-theory.abelian-groups", "open import metric-spaces.extensionality-pseudometric-spaces", "open import metric-spaces.isometries-metric-spaces", "open import metric-spaces.isometries-pseudometric-spaces", "open import metric-spaces.metric-spaces", "open import metric-spaces.pseudometric-spaces", "open import metric-spaces.rational-neighborhood-relations" ]
src/analysis/metric-abelian-groups.lagda.md
Metric-Ab
is-nonnegative-prop-series-ℝ : {l : Level} → series-ℝ l → Prop l
function
src
[ "open import analysis.series-real-numbers", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.propositions", "open import foundation.universe-levels", "open import order-theory.increasing-sequences-posets", "open import real-numbers.absolute-value-real-numbers", "open import real-numbers.addition-nonnegative-real-numbers", "open import real-numbers.inequality-real-numbers", "open import real-numbers.nonnegative-real-numbers" ]
src/analysis/nonnegative-series-real-numbers.lagda.md
is-nonnegative-prop-series-ℝ
is-nonnegative-series-ℝ : {l : Level} → series-ℝ l → UU l
function
src
[ "open import analysis.series-real-numbers", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.propositions", "open import foundation.universe-levels", "open import order-theory.increasing-sequences-posets", "open import real-numbers.absolute-value-real-numbers", "open import real-numbers.addition-nonnegative-real-numbers", "open import real-numbers.inequality-real-numbers", "open import real-numbers.nonnegative-real-numbers" ]
src/analysis/nonnegative-series-real-numbers.lagda.md
is-nonnegative-series-ℝ
series-Metric-Ab {l1 l2 : Level} (G : Metric-Ab l1 l2) : UU l1 where constructor series-terms-Metric-Ab field term-series-Metric-Ab : sequence (type-Metric-Ab G)
record
src
[ "open import analysis.metric-abelian-groups", "open import elementary-number-theory.addition-natural-numbers", "open import elementary-number-theory.natural-numbers", "open import foundation.action-on-identifications-functions", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.function-extensionality", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.universe-levels", "open import group-theory.abelian-groups", "open import group-theory.sums-of-finite-sequences-of-elements-abelian-groups", "open import lists.sequences", "open import univalent-combinatorics.coproduct-types", "open import univalent-combinatorics.standard-finite-types" ]
src/analysis/series-metric-abelian-groups.lagda.md
series-Metric-Ab
series-ℝ : (l : Level) → UU (lsuc l)
function
src
[ "open import analysis.series-complete-metric-abelian-groups", "open import analysis.series-metric-abelian-groups", "open import elementary-number-theory.addition-natural-numbers", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.universe-levels", "open import lists.sequences", "open import order-theory.increasing-sequences-posets", "open import real-numbers.absolute-value-real-numbers", "open import real-numbers.addition-nonnegative-real-numbers", "open import real-numbers.dedekind-real-numbers", "open import real-numbers.difference-real-numbers", "open import real-numbers.inequality-real-numbers", "open import real-numbers.metric-additive-group-of-real-numbers", "open import real-numbers.nonnegative-real-numbers" ]
src/analysis/series-real-numbers.lagda.md
series-ℝ
series-terms-ℝ : {l : Level} → sequence (ℝ l) → series-ℝ l
function
src
[ "open import analysis.series-complete-metric-abelian-groups", "open import analysis.series-metric-abelian-groups", "open import elementary-number-theory.addition-natural-numbers", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.universe-levels", "open import lists.sequences", "open import order-theory.increasing-sequences-posets", "open import real-numbers.absolute-value-real-numbers", "open import real-numbers.addition-nonnegative-real-numbers", "open import real-numbers.dedekind-real-numbers", "open import real-numbers.difference-real-numbers", "open import real-numbers.inequality-real-numbers", "open import real-numbers.metric-additive-group-of-real-numbers", "open import real-numbers.nonnegative-real-numbers" ]
src/analysis/series-real-numbers.lagda.md
series-terms-ℝ
term-series-ℝ : {l : Level} → series-ℝ l → sequence (ℝ l)
function
src
[ "open import analysis.series-complete-metric-abelian-groups", "open import analysis.series-metric-abelian-groups", "open import elementary-number-theory.addition-natural-numbers", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.universe-levels", "open import lists.sequences", "open import order-theory.increasing-sequences-posets", "open import real-numbers.absolute-value-real-numbers", "open import real-numbers.addition-nonnegative-real-numbers", "open import real-numbers.dedekind-real-numbers", "open import real-numbers.difference-real-numbers", "open import real-numbers.inequality-real-numbers", "open import real-numbers.metric-additive-group-of-real-numbers", "open import real-numbers.nonnegative-real-numbers" ]
src/analysis/series-real-numbers.lagda.md
term-series-ℝ
partial-sum-series-ℝ : {l : Level} → series-ℝ l → sequence (ℝ l)
function
src
[ "open import analysis.series-complete-metric-abelian-groups", "open import analysis.series-metric-abelian-groups", "open import elementary-number-theory.addition-natural-numbers", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.universe-levels", "open import lists.sequences", "open import order-theory.increasing-sequences-posets", "open import real-numbers.absolute-value-real-numbers", "open import real-numbers.addition-nonnegative-real-numbers", "open import real-numbers.dedekind-real-numbers", "open import real-numbers.difference-real-numbers", "open import real-numbers.inequality-real-numbers", "open import real-numbers.metric-additive-group-of-real-numbers", "open import real-numbers.nonnegative-real-numbers" ]
src/analysis/series-real-numbers.lagda.md
partial-sum-series-ℝ
obj-augmented-simplex-Category : UU lzero
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.precategories", "open import elementary-number-theory.inequality-standard-finite-types", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels", "open import order-theory.order-preserving-maps-posets" ]
src/category-theory/augmented-simplex-category.lagda.md
obj-augmented-simplex-Category
hom-set-augmented-simplex-Category : obj-augmented-simplex-Category → obj-augmented-simplex-Category → Set lzero
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.precategories", "open import elementary-number-theory.inequality-standard-finite-types", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels", "open import order-theory.order-preserving-maps-posets" ]
src/category-theory/augmented-simplex-category.lagda.md
hom-set-augmented-simplex-Category
hom-augmented-simplex-Category : obj-augmented-simplex-Category → obj-augmented-simplex-Category → UU lzero
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.precategories", "open import elementary-number-theory.inequality-standard-finite-types", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels", "open import order-theory.order-preserving-maps-posets" ]
src/category-theory/augmented-simplex-category.lagda.md
hom-augmented-simplex-Category
id-hom-augmented-simplex-Category : (n : obj-augmented-simplex-Category) → hom-augmented-simplex-Category n n
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.precategories", "open import elementary-number-theory.inequality-standard-finite-types", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels", "open import order-theory.order-preserving-maps-posets" ]
src/category-theory/augmented-simplex-category.lagda.md
id-hom-augmented-simplex-Category
augmented-simplex-Precategory : Precategory lzero lzero
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.precategories", "open import elementary-number-theory.inequality-standard-finite-types", "open import elementary-number-theory.natural-numbers", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels", "open import order-theory.order-preserving-maps-posets" ]
src/category-theory/augmented-simplex-category.lagda.md
augmented-simplex-Precategory
Category : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.nonunital-precategories", "open import category-theory.precategories", "open import category-theory.preunivalent-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.1-types", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.fundamental-theorem-of-identity-types", "open import foundation.identity-types", "open import foundation.logical-equivalences", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.surjective-maps", "open import foundation.universe-levels" ]
src/category-theory/categories.lagda.md
Category
total-hom-Category : {l1 l2 : Level} (C : Category l1 l2) → UU (l1 ⊔ l2)
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.nonunital-precategories", "open import category-theory.precategories", "open import category-theory.preunivalent-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.1-types", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.fundamental-theorem-of-identity-types", "open import foundation.identity-types", "open import foundation.logical-equivalences", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.surjective-maps", "open import foundation.universe-levels" ]
src/category-theory/categories.lagda.md
total-hom-Category
sSet-Large-Precategory : Large-Precategory lsuc (_⊔_)
function
src
[ "open import category-theory.categories", "open import category-theory.large-categories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import category-theory.presheaf-categories", "open import category-theory.simplex-category", "open import foundation.commuting-squares-of-maps", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/category-of-simplicial-sets.lagda.md
sSet-Large-Precategory
is-large-category-sSet-Large-Category : is-large-category-Large-Precategory sSet-Large-Precategory
function
src
[ "open import category-theory.categories", "open import category-theory.large-categories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import category-theory.presheaf-categories", "open import category-theory.simplex-category", "open import foundation.commuting-squares-of-maps", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/category-of-simplicial-sets.lagda.md
is-large-category-sSet-Large-Category
sSet-Large-Category : Large-Category lsuc (_⊔_)
function
src
[ "open import category-theory.categories", "open import category-theory.large-categories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import category-theory.presheaf-categories", "open import category-theory.simplex-category", "open import foundation.commuting-squares-of-maps", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/category-of-simplicial-sets.lagda.md
sSet-Large-Category
sSet : (l : Level) → UU (lsuc l)
function
src
[ "open import category-theory.categories", "open import category-theory.large-categories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import category-theory.presheaf-categories", "open import category-theory.simplex-category", "open import foundation.commuting-squares-of-maps", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/category-of-simplicial-sets.lagda.md
sSet
hom-set-sSet : {l1 l2 : Level} (X : sSet l1) (Y : sSet l2) → Set (l1 ⊔ l2)
function
src
[ "open import category-theory.categories", "open import category-theory.large-categories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import category-theory.presheaf-categories", "open import category-theory.simplex-category", "open import foundation.commuting-squares-of-maps", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/category-of-simplicial-sets.lagda.md
hom-set-sSet
hom-sSet : {l1 l2 : Level} (X : sSet l1) (Y : sSet l2) → UU (l1 ⊔ l2)
function
src
[ "open import category-theory.categories", "open import category-theory.large-categories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import category-theory.presheaf-categories", "open import category-theory.simplex-category", "open import foundation.commuting-squares-of-maps", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/category-of-simplicial-sets.lagda.md
hom-sSet
id-hom-sSet : {l1 : Level} (X : sSet l1) → hom-sSet X X
function
src
[ "open import category-theory.categories", "open import category-theory.large-categories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import category-theory.presheaf-categories", "open import category-theory.simplex-category", "open import foundation.commuting-squares-of-maps", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/category-of-simplicial-sets.lagda.md
id-hom-sSet
sSet-Precategory : (l : Level) → Precategory (lsuc l) l
function
src
[ "open import category-theory.categories", "open import category-theory.large-categories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import category-theory.presheaf-categories", "open import category-theory.simplex-category", "open import foundation.commuting-squares-of-maps", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/category-of-simplicial-sets.lagda.md
sSet-Precategory
sSet-Category : (l : Level) → Category (lsuc l) l
function
src
[ "open import category-theory.categories", "open import category-theory.large-categories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import category-theory.presheaf-categories", "open import category-theory.simplex-category", "open import foundation.commuting-squares-of-maps", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/category-of-simplicial-sets.lagda.md
sSet-Category
extensions : the identity map on `D` trivially gives a right extension of `D`
function
src
[ "open import category-theory.algebras-monads-on-precategories", "open import category-theory.functors-precategories", "open import category-theory.monads-on-precategories", "open import category-theory.natural-transformations-functors-precategories", "open import category-theory.precategories", "open import category-theory.right-extensions-precategories", "open import category-theory.right-kan-extensions-precategories", "open import foundation.action-on-identifications-functions", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.universe-levels" ]
src/category-theory/codensity-monads-on-precategories.lagda.md
extensions
core-precategory-Category : {l1 l2 : Level} (C : Category l1 l2) → Precategory l1 l2
function
src
[ "open import category-theory.categories", "open import category-theory.cores-precategories", "open import category-theory.groupoids", "open import category-theory.isomorphisms-in-categories", "open import category-theory.precategories", "open import category-theory.pregroupoids", "open import category-theory.subcategories", "open import category-theory.wide-subcategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.universe-levels" ]
src/category-theory/cores-categories.lagda.md
core-precategory-Category
core-category-Category : {l1 l2 : Level} (C : Category l1 l2) → Category l1 l2
function
src
[ "open import category-theory.categories", "open import category-theory.cores-precategories", "open import category-theory.groupoids", "open import category-theory.isomorphisms-in-categories", "open import category-theory.precategories", "open import category-theory.pregroupoids", "open import category-theory.subcategories", "open import category-theory.wide-subcategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.universe-levels" ]
src/category-theory/cores-categories.lagda.md
core-category-Category
core-precategory-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → Precategory l1 l2
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import category-theory.pregroupoids", "open import category-theory.replete-subprecategories", "open import category-theory.subprecategories", "open import category-theory.wide-subprecategories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.functoriality-dependent-pair-types", "open import foundation.fundamental-theorem-of-identity-types", "open import foundation.subtypes", "open import foundation.torsorial-type-families", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/cores-precategories.lagda.md
core-precategory-Precategory
Full-Subcategory : {l1 l2 : Level} (l3 : Level) (C : Category l1 l2) → UU (l1 ⊔ lsuc l3)
function
src
[ "open import category-theory.categories", "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.embeddings-precategories", "open import category-theory.full-subprecategories", "open import category-theory.fully-faithful-functors-precategories", "open import category-theory.functors-categories", "open import category-theory.maps-categories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/full-subcategories.lagda.md
Full-Subcategory
Full-Subprecategory : {l1 l2 : Level} (l3 : Level) (C : Precategory l1 l2) → UU (l1 ⊔ lsuc l3)
function
src
[ "open import category-theory.categories", "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.embeddings-precategories", "open import category-theory.fully-faithful-functors-precategories", "open import category-theory.functors-precategories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.maps-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.equivalences", "open import foundation.function-types", "open import foundation.fundamental-theorem-of-identity-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtype-identity-principle", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/full-subprecategories.lagda.md
Full-Subprecategory
id-functor-Category : {l1 l2 : Level} (C : Category l1 l2) → functor-Category C C
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.maps-categories", "open import foundation.equivalences", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.universe-levels" ]
src/category-theory/functors-categories.lagda.md
id-functor-Category
of : - a map `F₀ : C → D` on objects at some chosen universe level `γ`,
function
src
[ "open import category-theory.functors-precategories", "open import category-theory.large-precategories", "open import category-theory.maps-from-small-to-large-precategories", "open import category-theory.precategories", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.universe-levels" ]
src/category-theory/functors-from-small-to-large-precategories.lagda.md
of
id-functor-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → functor-Precategory C C
function
src
[ "open import category-theory.functors-set-magmoids", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.maps-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import foundation.action-on-identifications-functions", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.equivalences", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.subtypes", "open import foundation.type-arithmetic-dependent-pair-types", "open import foundation.universe-levels" ]
src/category-theory/functors-precategories.lagda.md
id-functor-Precategory
Gaunt-Category : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import category-theory.categories", "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.isomorphism-induction-categories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.nonunital-precategories", "open import category-theory.precategories", "open import category-theory.rigid-objects-categories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.surjective-maps", "open import foundation.universe-levels" ]
src/category-theory/gaunt-categories.lagda.md
Gaunt-Category
nonunital-precategory-Gaunt-Category : {l1 l2 : Level} → Gaunt-Category l1 l2 → Nonunital-Precategory l1 l2
function
src
[ "open import category-theory.categories", "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.isomorphism-induction-categories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.nonunital-precategories", "open import category-theory.precategories", "open import category-theory.rigid-objects-categories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.surjective-maps", "open import foundation.universe-levels" ]
src/category-theory/gaunt-categories.lagda.md
nonunital-precategory-Gaunt-Category
precategory-Gaunt-Category : {l1 l2 : Level} → Gaunt-Category l1 l2 → Precategory l1 l2
function
src
[ "open import category-theory.categories", "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.isomorphism-induction-categories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.nonunital-precategories", "open import category-theory.precategories", "open import category-theory.rigid-objects-categories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.surjective-maps", "open import foundation.universe-levels" ]
src/category-theory/gaunt-categories.lagda.md
precategory-Gaunt-Category
strongly-preunivalent-category-Gaunt-Category : {l1 l2 : Level} → Gaunt-Category l1 l2 → Strongly-Preunivalent-Category l1 l2
function
src
[ "open import category-theory.categories", "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.isomorphism-induction-categories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.nonunital-precategories", "open import category-theory.precategories", "open import category-theory.rigid-objects-categories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.surjective-maps", "open import foundation.universe-levels" ]
src/category-theory/gaunt-categories.lagda.md
strongly-preunivalent-category-Gaunt-Category
total-hom-Gaunt-Category : {l1 l2 : Level} (C : Gaunt-Category l1 l2) → UU (l1 ⊔ l2)
function
src
[ "open import category-theory.categories", "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.isomorphism-induction-categories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.nonunital-precategories", "open import category-theory.precategories", "open import category-theory.rigid-objects-categories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.surjective-maps", "open import foundation.universe-levels" ]
src/category-theory/gaunt-categories.lagda.md
total-hom-Gaunt-Category
is-groupoid-prop-Category : {l1 l2 : Level} (C : Category l1 l2) → Prop (l1 ⊔ l2)
function
src
[ "open import category-theory.categories", "open import category-theory.functors-categories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import category-theory.pregroupoids", "open import foundation.1-types", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.function-types", "open import foundation.functoriality-dependent-pair-types", "open import foundation.fundamental-theorem-of-identity-types", "open import foundation.identity-types", "open import foundation.iterated-dependent-pair-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.torsorial-type-families", "open import foundation.type-arithmetic-dependent-pair-types", "open import foundation.universe-levels" ]
src/category-theory/groupoids.lagda.md
is-groupoid-prop-Category
is-groupoid-Category : {l1 l2 : Level} (C : Category l1 l2) → UU (l1 ⊔ l2)
function
src
[ "open import category-theory.categories", "open import category-theory.functors-categories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import category-theory.pregroupoids", "open import foundation.1-types", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.function-types", "open import foundation.functoriality-dependent-pair-types", "open import foundation.fundamental-theorem-of-identity-types", "open import foundation.identity-types", "open import foundation.iterated-dependent-pair-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.torsorial-type-families", "open import foundation.type-arithmetic-dependent-pair-types", "open import foundation.universe-levels" ]
src/category-theory/groupoids.lagda.md
is-groupoid-Category
Groupoid : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import category-theory.categories", "open import category-theory.functors-categories", "open import category-theory.isomorphisms-in-categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import category-theory.pregroupoids", "open import foundation.1-types", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.function-types", "open import foundation.functoriality-dependent-pair-types", "open import foundation.fundamental-theorem-of-identity-types", "open import foundation.identity-types", "open import foundation.iterated-dependent-pair-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.torsorial-type-families", "open import foundation.type-arithmetic-dependent-pair-types", "open import foundation.universe-levels" ]
src/category-theory/groupoids.lagda.md
Groupoid
is-section-indiscrete-Precategory : {l : Level} → obj-Precategory ∘ indiscrete-Precategory {l} ~ id
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import category-theory.pregroupoids", "open import category-theory.preunivalent-categories", "open import category-theory.strict-categories", "open import category-theory.subterminal-precategories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.iterated-dependent-product-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/indiscrete-precategories.lagda.md
is-section-indiscrete-Precategory
obj-initial-Category : UU lzero
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
obj-initial-Category
hom-set-initial-Category : obj-initial-Category → obj-initial-Category → Set lzero
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
hom-set-initial-Category
hom-initial-Category : obj-initial-Category → obj-initial-Category → UU lzero
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
hom-initial-Category
id-hom-initial-Category : {x : obj-initial-Category} → hom-initial-Category x x
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
id-hom-initial-Category
initial-Precategory : Precategory lzero lzero
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
initial-Precategory
is-category-initial-Category : is-category-Precategory initial-Precategory
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
is-category-initial-Category
initial-Category : Category lzero lzero
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
initial-Category
is-strongly-preunivalent-initial-Category : is-strongly-preunivalent-Precategory initial-Precategory
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
is-strongly-preunivalent-initial-Category
is-strict-category-initial-Category : is-strict-category-Precategory initial-Precategory
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
is-strict-category-initial-Category
initial-Strict-Category : Strict-Category lzero lzero
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
initial-Strict-Category
is-gaunt-initial-Category : is-gaunt-Category initial-Category
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
is-gaunt-initial-Category
initial-Gaunt-Category : Gaunt-Category lzero lzero
function
src
[ "open import category-theory.categories", "open import category-theory.functors-precategories", "open import category-theory.gaunt-categories", "open import category-theory.indiscrete-precategories", "open import category-theory.precategories", "open import category-theory.strict-categories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels" ]
src/category-theory/initial-category.lagda.md
initial-Gaunt-Category
initial-obj-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → UU (l1 ⊔ l2)
function
src
[ "open import category-theory.precategories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.propositions", "open import foundation.universe-levels", "open import foundation-core.identity-types" ]
src/category-theory/initial-objects-precategories.lagda.md
initial-obj-Precategory
Large-Category (α : Level → Level) (β : Level → Level → Level) : UUω where constructor make-Large-Category field large-precategory-Large-Category : Large-Precategory α β is-large-category-Large-Category : is-large-category-Large-Precategory large-precategory-Large-Category
record
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-large-precategories", "open import category-theory.large-precategories", "open import category-theory.precategories", "open import foundation.action-on-identifications-binary-functions", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/large-categories.lagda.md
Large-Category
Large-Precategory (α : Level → Level) (β : Level → Level → Level) : UUω where field obj-Large-Precategory : (l : Level) → UU (α l) hom-set-Large-Precategory : {l1 l2 : Level} → obj-Large-Precategory l1 → obj-Large-Precategory l2 → Set (β l1 l2) hom-Large-Precategory : {l1 l2 : Level} → obj-Large-Precategory l1 → obj-Large-Precategory l2 → UU (β l1 l2) hom-Large-Precategory X Y = type-Set (hom-set-Large-Precategory X Y) is-set-hom-Large-Precategory : {l1 l2 : Level} (X : obj-Large-Precategory l1) (Y : obj-Large-Precategory l2) → is-set (hom-Large-Precategory X Y) is-set-hom-Large-Precategory X Y = is-set-type-Set (hom-set-Large-Precategory X Y) field comp-hom-Large-Precategory : {l1 l2 l3 : Level} {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2} {Z : obj-Large-Precategory l3} → hom-Large-Precategory Y Z → hom-Large-Precategory X Y → hom-Large-Precategory X Z id-hom-Large-Precategory : {l1 : Level} {X : obj-Large-Precategory l1} → hom-Large-Precategory X X involutive-eq-associative-comp-hom-Large-Precategory : {l1 l2 l3 l4 : Level} {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2} {Z : obj-Large-Precategory l3} {W : obj-Large-Precategory l4} → (h : hom-Large-Precategory Z W) (g : hom-Large-Precategory Y Z) (f : hom-Large-Precategory X Y) → ( comp-hom-Large-Precategory (comp-hom-Large-Precategory h g) f) =ⁱ ( comp-hom-Large-Precategory h (comp-hom-Large-Precategory g f)) left-unit-law-comp-hom-Large-Precategory : {l1 l2 : Level} {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2} (f : hom-Large-Precategory X Y) → ( comp-hom-Large-Precategory id-hom-Large-Precategory f) = f right-unit-law-comp-hom-Large-Precategory : {l1 l2 : Level} {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2} (f : hom-Large-Precategory X Y) → ( comp-hom-Large-Precategory f id-hom-Large-Precategory) = f associative-comp-hom-Large-Precategory : {l1 l2 l3 l4 : Level} {X : obj-Large-Precategory l1} {Y : obj-Large-Precategory l2} {Z : obj-Large-Precategory l3} {W : obj-Large-Precategory l4} → (h : hom-Large-Precategory Z W) (g : hom-Large-Precategory Y Z) (f : hom-Large-Precategory X Y) → ( comp-hom-Large-Precategory (comp-hom-Large-Precategory h g) f) = ( comp-hom-Large-Precategory h (comp-hom-Large-Precategory g f)) associative-comp-hom-Large-Precategory h g f = eq-involutive-eq ( involutive-eq-associative-comp-hom-Large-Precategory h g f)
record
src
[ "open import category-theory.precategories", "open import foundation.action-on-identifications-binary-functions", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/large-precategories.lagda.md
Large-Precategory
Large-Subprecategory {α : Level → Level} {β : Level → Level → Level} (γ : Level → Level) (δ : Level → Level → Level) (C : Large-Precategory α β) : UUω where field subtype-obj-Large-Subprecategory : (l : Level) → subtype (γ l) (obj-Large-Precategory C l) is-in-obj-Large-Subprecategory : {l : Level} → obj-Large-Precategory C l → UU (γ l) is-in-obj-Large-Subprecategory {l} = is-in-subtype (subtype-obj-Large-Subprecategory l) obj-Large-Subprecategory : (l : Level) → UU (α l ⊔ γ l) obj-Large-Subprecategory l = type-subtype (subtype-obj-Large-Subprecategory l) field subtype-hom-Large-Subprecategory : {l1 l2 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2) → is-in-obj-Large-Subprecategory X → is-in-obj-Large-Subprecategory Y → subtype (δ l1 l2) (hom-Large-Precategory C X Y) is-in-hom-is-in-obj-Large-Subprecategory : {l1 l2 : Level} {X : obj-Large-Precategory C l1} {Y : obj-Large-Precategory C l2} (x : is-in-obj-Large-Subprecategory X) (y : is-in-obj-Large-Subprecategory Y) → hom-Large-Precategory C X Y → UU (δ l1 l2) is-in-hom-is-in-obj-Large-Subprecategory {l1} {l2} {X} {Y} x y = is-in-subtype (subtype-hom-Large-Subprecategory X Y x y) field contains-id-Large-Subprecategory : {l : Level} (X : obj-Large-Precategory C l) → (H : is-in-obj-Large-Subprecategory X) → is-in-hom-is-in-obj-Large-Subprecategory H H (id-hom-Large-Precategory C) is-closed-under-composition-Large-Subprecategory : {l1 l2 l3 : Level} (X : obj-Large-Precategory C l1) (Y : obj-Large-Precategory C l2) (Z : obj-Large-Precategory C l3) (g : hom-Large-Precategory C Y Z) (f : hom-Large-Precategory C X Y) → (K : is-in-obj-Large-Subprecategory X) → (L : is-in-obj-Large-Subprecategory Y) → (M : is-in-obj-Large-Subprecategory Z) → is-in-hom-is-in-obj-Large-Subprecategory L M g → is-in-hom-is-in-obj-Large-Subprecategory K L f → is-in-hom-is-in-obj-Large-Subprecategory K M ( comp-hom-Large-Precategory C g f) hom-Large-Subprecategory : {l1 l2 : Level} (X : obj-Large-Subprecategory l1) (Y : obj-Large-Subprecategory l2) → UU (β l1 l2 ⊔ δ l1 l2) hom-Large-Subprecategory (X , x) (Y , y) = type-subtype (subtype-hom-Large-Subprecategory X Y x y) hom-set-Large-Subprecategory : {l1 l2 : Level} (X : obj-Large-Subprecategory l1) (Y : obj-Large-Subprecategory l2) → Set (β l1 l2 ⊔ δ l1 l2) hom-set-Large-Subprecategory (X , x) (Y , y) = set-subset ( hom-set-Large-Precategory C X Y) ( subtype-hom-Large-Subprecategory X Y x y) is-set-hom-Large-Subprecategory : {l1 l2 : Level} (X : obj-Large-Subprecategory l1) (Y : obj-Large-Subprecategory l2) → is-set (hom-Large-Subprecategory X Y) is-set-hom-Large-Subprecategory X Y = is-set-type-Set (hom-set-Large-Subprecategory X Y) id-hom-Large-Subprecategory : {l : Level} (X : obj-Large-Subprecategory l) → hom-Large-Subprecategory X X id-hom-Large-Subprecategory (X , x) = ( id-hom-Large-Precategory C , contains-id-Large-Subprecategory X x) comp-hom-Large-Subprecategory : {l1 l2 l3 : Level} (X : obj-Large-Subprecategory l1) (Y : obj-Large-Subprecategory l2) (Z : obj-Large-Subprecategory l3) → hom-Large-Subprecategory Y Z → hom-Large-Subprecategory X Y → hom-Large-Subprecategory X Z comp-hom-Large-Subprecategory (X , x) (Y , y) (Z , z) (G , g) (F , f) = ( comp-hom-Large-Precategory C G F , is-closed-under-composition-Large-Subprecategory X Y Z G F x y z g f) associative-comp-hom-Large-Subprecategory : {l1 l2 l3 l4 : Level} (X : obj-Large-Subprecategory l1) (Y : obj-Large-Subprecategory l2) (Z : obj-Large-Subprecategory l3) (W : obj-Large-Subprecategory l4) (h : hom-Large-Subprecategory Z W) (g : hom-Large-Subprecategory Y Z) (f : hom-Large-Subprecategory X Y) → comp-hom-Large-Subprecategory X Y W ( comp-hom-Large-Subprecategory Y Z W h g) ( f) = comp-hom-Large-Subprecategory X Z W ( h) ( comp-hom-Large-Subprecategory X Y Z g f) associative-comp-hom-Large-Subprecategory ( X , x) (Y , y) (Z , z) (W , w) (H , h) (G , g) (F , f) = eq-type-subtype ( subtype-hom-Large-Subprecategory X W x w) ( associative-comp-hom-Large-Precategory C H G F) involutive-eq-associative-comp-hom-Large-Subprecategory : {l1 l2 l3 l4 : Level} (X : obj-Large-Subprecategory l1) (Y : obj-Large-Subprecategory l2) (Z : obj-Large-Subprecategory l3) (W : obj-Large-Subprecategory l4) (h : hom-Large-Subprecategory Z W) (g : hom-Large-Subprecategory Y Z) (f : hom-Large-Subprecategory X Y) → comp-hom-Large-Subprecategory X Y W ( comp-hom-Large-Subprecategory Y Z W h g) ( f) =ⁱ comp-hom-Large-Subprecategory X Z W ( h) ( comp-hom-Large-Subprecategory X Y Z g f) involutive-eq-associative-comp-hom-Large-Subprecategory X Y Z W h g f = involutive-eq-eq (associative-comp-hom-Large-Subprecategory X Y Z W h g f) left-unit-law-comp-hom-Large-Subprecategory : {l1 l2 : Level} (X : obj-Large-Subprecategory l1) (Y : obj-Large-Subprecategory l2) (f : hom-Large-Subprecategory X Y) → comp-hom-Large-Subprecategory X Y Y (id-hom-Large-Subprecategory Y) f = f left-unit-law-comp-hom-Large-Subprecategory (X , x) (Y , y) (F , f) = eq-type-subtype ( subtype-hom-Large-Subprecategory X Y x y) ( left-unit-law-comp-hom-Large-Precategory C F) right-unit-law-comp-hom-Large-Subprecategory : {l1 l2 : Level} (X : obj-Large-Subprecategory l1) (Y : obj-Large-Subprecategory l2) (f : hom-Large-Subprecategory X Y) → comp-hom-Large-Subprecategory X X Y f (id-hom-Large-Subprecategory X) = f right-unit-law-comp-hom-Large-Subprecategory (X , x) (Y , y) (F , f) = eq-type-subtype ( subtype-hom-Large-Subprecategory X Y x y) ( right-unit-law-comp-hom-Large-Precategory C F) ``` ### The underlying large precategory of a large subprecategory ```agda large-precategory-Large-Subprecategory : Large-Precategory (λ l → α l ⊔ γ l) (λ l1 l2 → β l1 l2 ⊔ δ l1 l2) large-precategory-Large-Subprecategory = λ where .obj-Large-Precategory → obj-Large-Subprecategory .hom-set-Large-Precategory → hom-set-Large-Subprecategory .comp-hom-Large-Precategory {X = X} {Y} {Z} → comp-hom-Large-Subprecategory X Y Z .id-hom-Large-Precategory {X = X} → id-hom-Large-Subprecategory X .involutive-eq-associative-comp-hom-Large-Precategory {X = X} {Y} {Z} {W} → involutive-eq-associative-comp-hom-Large-Subprecategory X Y Z W .left-unit-law-comp-hom-Large-Precategory {X = X} {Y} → left-unit-law-comp-hom-Large-Subprecategory X Y .right-unit-law-comp-hom-Large-Precategory {X = X} {Y} → right-unit-law-comp-hom-Large-Subprecategory X Y
record
src
[ "open import category-theory.large-precategories", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/large-subprecategories.lagda.md
Large-Subprecategory
extensions : the identity map gives a left extension (with the identity natural
function
src
[ "open import category-theory.functors-precategories", "open import category-theory.natural-transformations-functors-precategories", "open import category-theory.precategories", "open import foundation.action-on-equivalences-functions", "open import foundation.action-on-identifications-functions", "open import foundation.contractible-types", "open import foundation.dependent-identifications", "open import foundation.dependent-pair-types", "open import foundation.equality-dependent-function-types", "open import foundation.equality-dependent-pair-types", "open import foundation.equivalences", "open import foundation.function-extensionality", "open import foundation.function-types", "open import foundation.functoriality-dependent-pair-types", "open import foundation.fundamental-theorem-of-identity-types", "open import foundation.homotopies", "open import foundation.homotopy-induction", "open import foundation.identity-types", "open import foundation.multivariable-homotopies", "open import foundation.propositions", "open import foundation.retractions", "open import foundation.sections", "open import foundation.sets", "open import foundation.structure-identity-principle", "open import foundation.torsorial-type-families", "open import foundation.unit-type", "open import foundation.universe-levels", "open import foundation-core.functoriality-dependent-function-types" ]
src/category-theory/left-extensions-precategories.lagda.md
extensions
Nonunital-Precategory : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.set-magmoids", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.truncated-types", "open import foundation.truncation-levels", "open import foundation.universe-levels" ]
src/category-theory/nonunital-precategories.lagda.md
Nonunital-Precategory
total-hom-Nonunital-Precategory : {l1 l2 : Level} (C : Nonunital-Precategory l1 l2) → UU (l1 ⊔ l2)
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.set-magmoids", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.truncated-types", "open import foundation.truncation-levels", "open import foundation.universe-levels" ]
src/category-theory/nonunital-precategories.lagda.md
total-hom-Nonunital-Precategory
is-one-object-prop-Precategory : {l1 l2 : Level} → Precategory l1 l2 → Prop l1
function
src
[ "open import category-theory.endomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels", "open import group-theory.monoids" ]
src/category-theory/one-object-precategories.lagda.md
is-one-object-prop-Precategory
is-one-object-Precategory : {l1 l2 : Level} → Precategory l1 l2 → UU l1
function
src
[ "open import category-theory.endomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels", "open import group-theory.monoids" ]
src/category-theory/one-object-precategories.lagda.md
is-one-object-Precategory
One-Object-Precategory : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import category-theory.endomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels", "open import group-theory.monoids" ]
src/category-theory/one-object-precategories.lagda.md
One-Object-Precategory
monoid-One-Object-Precategory : {l1 l2 : Level} → One-Object-Precategory l1 l2 → Monoid l2
function
src
[ "open import category-theory.endomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.contractible-types", "open import foundation.dependent-pair-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.unit-type", "open import foundation.universe-levels", "open import group-theory.monoids" ]
src/category-theory/one-object-precategories.lagda.md
monoid-One-Object-Precategory
is-involution-opposite-Category : {l1 l2 : Level} → is-involution (opposite-Category {l1} {l2})
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-categories.lagda.md
is-involution-opposite-Category
involution-opposite-Category : (l1 l2 : Level) → involution (Category l1 l2)
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-categories.lagda.md
involution-opposite-Category
is-equiv-opposite-Category : {l1 l2 : Level} → is-equiv (opposite-Category {l1} {l2})
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-categories.lagda.md
is-equiv-opposite-Category
equiv-opposite-Category : (l1 l2 : Level) → Category l1 l2 ≃ Category l1 l2
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-categories.lagda.md
equiv-opposite-Category
is-involution-opposite-Precategory : {l1 l2 : Level} → is-involution (opposite-Precategory {l1} {l2})
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/opposite-precategories.lagda.md
is-involution-opposite-Precategory
involution-opposite-Precategory : (l1 l2 : Level) → involution (Precategory l1 l2)
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/opposite-precategories.lagda.md
involution-opposite-Precategory
is-equiv-opposite-Precategory : {l1 l2 : Level} → is-equiv (opposite-Precategory {l1} {l2})
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/opposite-precategories.lagda.md
is-equiv-opposite-Precategory
equiv-opposite-Precategory : (l1 l2 : Level) → Precategory l1 l2 ≃ Precategory l1 l2
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/opposite-precategories.lagda.md
equiv-opposite-Precategory
is-involution-opposite-Preunivalent-Category : {l1 l2 : Level} → is-involution (opposite-Preunivalent-Category {l1} {l2})
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import category-theory.preunivalent-categories", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-preunivalent-categories.lagda.md
is-involution-opposite-Preunivalent-Category
involution-opposite-Preunivalent-Category : (l1 l2 : Level) → involution (Preunivalent-Category l1 l2)
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import category-theory.preunivalent-categories", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-preunivalent-categories.lagda.md
involution-opposite-Preunivalent-Category
is-equiv-opposite-Preunivalent-Category : {l1 l2 : Level} → is-equiv (opposite-Preunivalent-Category {l1} {l2})
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import category-theory.preunivalent-categories", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-preunivalent-categories.lagda.md
is-equiv-opposite-Preunivalent-Category
equiv-opposite-Preunivalent-Category : (l1 l2 : Level) → Preunivalent-Category l1 l2 ≃ Preunivalent-Category l1 l2
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import category-theory.preunivalent-categories", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-preunivalent-categories.lagda.md
equiv-opposite-Preunivalent-Category
involution-opposite-Strongly-Preunivalent-Category : (l1 l2 : Level) → involution (Strongly-Preunivalent-Category l1 l2)
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.equivalences", "open import foundation.functoriality-dependent-pair-types", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-strongly-preunivalent-categories.lagda.md
involution-opposite-Strongly-Preunivalent-Category
is-equiv-opposite-Strongly-Preunivalent-Category : {l1 l2 : Level} → is-equiv (opposite-Strongly-Preunivalent-Category {l1} {l2})
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import category-theory.strongly-preunivalent-categories", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.equivalences", "open import foundation.functoriality-dependent-pair-types", "open import foundation.identity-types", "open import foundation.involutions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.subtypes", "open import foundation.universe-levels" ]
src/category-theory/opposite-strongly-preunivalent-categories.lagda.md
is-equiv-opposite-Strongly-Preunivalent-Category
Precategory : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.nonunital-precategories", "open import category-theory.set-magmoids", "open import foundation.action-on-identifications-functions", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.truncated-types", "open import foundation.truncation-levels", "open import foundation.universe-levels" ]
src/category-theory/precategories.lagda.md
Precategory
total-hom-Precategory : {l1 l2 : Level} (C : Precategory l1 l2) → UU (l1 ⊔ l2)
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.nonunital-precategories", "open import category-theory.set-magmoids", "open import foundation.action-on-identifications-functions", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.function-types", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.truncated-types", "open import foundation.truncation-levels", "open import foundation.universe-levels" ]
src/category-theory/precategories.lagda.md
total-hom-Precategory
Pregroupoid : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.dependent-pair-types", "open import foundation.equivalences", "open import foundation.identity-types", "open import foundation.iterated-dependent-product-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.type-arithmetic-dependent-pair-types", "open import foundation.universe-levels" ]
src/category-theory/pregroupoids.lagda.md
Pregroupoid
Preunivalent-Category : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2)
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.1-types", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/preunivalent-categories.lagda.md
Preunivalent-Category
total-hom-Preunivalent-Category : {l1 l2 : Level} (𝒞 : Preunivalent-Category l1 l2) → UU (l1 ⊔ l2)
function
src
[ "open import category-theory.composition-operations-on-binary-families-of-sets", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.1-types", "open import foundation.cartesian-product-types", "open import foundation.dependent-pair-types", "open import foundation.embeddings", "open import foundation.identity-types", "open import foundation.propositions", "open import foundation.sets", "open import foundation.strictly-involutive-identity-types", "open import foundation.universe-levels" ]
src/category-theory/preunivalent-categories.lagda.md
total-hom-Preunivalent-Category
that : - sends an object `x` of `C` to the [set](foundation-core.sets.md) `hom c x` and
function
src
[ "open import category-theory.functors-large-precategories", "open import category-theory.large-precategories", "open import category-theory.natural-transformations-functors-large-precategories", "open import foundation.category-of-sets", "open import foundation.function-extensionality", "open import foundation.function-types", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.universe-levels" ]
src/category-theory/representable-functors-large-precategories.lagda.md
that
that : - sends an object `x` of `C` to the [set](foundation-core.sets.md) `hom c x` and
function
src
[ "open import category-theory.copresheaf-categories", "open import category-theory.functors-precategories", "open import category-theory.maps-precategories", "open import category-theory.natural-transformations-functors-precategories", "open import category-theory.opposite-precategories", "open import category-theory.precategories", "open import foundation.category-of-sets", "open import foundation.dependent-pair-types", "open import foundation.function-extensionality", "open import foundation.homotopies", "open import foundation.identity-types", "open import foundation.sets", "open import foundation.universe-levels" ]
src/category-theory/representable-functors-precategories.lagda.md
that
obj-representing-arrow-Category : UU lzero
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.booleans", "open import foundation.decidable-propositions", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.inequality-booleans", "open import foundation.logical-equivalences", "open import foundation.logical-operations-booleans", "open import foundation.propositions", "open import foundation.sets", "open import foundation.subtypes", "open import foundation.unit-type", "open import foundation.universe-levels", "open import order-theory.posets" ]
src/category-theory/representing-arrow-category.lagda.md
obj-representing-arrow-Category
hom-set-representing-arrow-Category : obj-representing-arrow-Category → obj-representing-arrow-Category → Set lzero
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.booleans", "open import foundation.decidable-propositions", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.inequality-booleans", "open import foundation.logical-equivalences", "open import foundation.logical-operations-booleans", "open import foundation.propositions", "open import foundation.sets", "open import foundation.subtypes", "open import foundation.unit-type", "open import foundation.universe-levels", "open import order-theory.posets" ]
src/category-theory/representing-arrow-category.lagda.md
hom-set-representing-arrow-Category
hom-representing-arrow-Category : obj-representing-arrow-Category → obj-representing-arrow-Category → UU lzero
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.booleans", "open import foundation.decidable-propositions", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.inequality-booleans", "open import foundation.logical-equivalences", "open import foundation.logical-operations-booleans", "open import foundation.propositions", "open import foundation.sets", "open import foundation.subtypes", "open import foundation.unit-type", "open import foundation.universe-levels", "open import order-theory.posets" ]
src/category-theory/representing-arrow-category.lagda.md
hom-representing-arrow-Category
id-hom-representing-arrow-Category : {x : obj-representing-arrow-Category} → hom-representing-arrow-Category x x
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.booleans", "open import foundation.decidable-propositions", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.inequality-booleans", "open import foundation.logical-equivalences", "open import foundation.logical-operations-booleans", "open import foundation.propositions", "open import foundation.sets", "open import foundation.subtypes", "open import foundation.unit-type", "open import foundation.universe-levels", "open import order-theory.posets" ]
src/category-theory/representing-arrow-category.lagda.md
id-hom-representing-arrow-Category
representing-arrow-Precategory : Precategory lzero lzero
function
src
[ "open import category-theory.categories", "open import category-theory.isomorphisms-in-precategories", "open import category-theory.precategories", "open import foundation.booleans", "open import foundation.decidable-propositions", "open import foundation.dependent-pair-types", "open import foundation.empty-types", "open import foundation.identity-types", "open import foundation.inequality-booleans", "open import foundation.logical-equivalences", "open import foundation.logical-operations-booleans", "open import foundation.propositions", "open import foundation.sets", "open import foundation.subtypes", "open import foundation.unit-type", "open import foundation.universe-levels", "open import order-theory.posets" ]
src/category-theory/representing-arrow-category.lagda.md
representing-arrow-Precategory
End of preview. Expand in Data Studio

Agda-UniMath

Structured dataset from agda-unimath — Univalent mathematics.

4,490 declarations extracted from Agda source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string data, record, function
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
26

Collection including phanerozoic/Agda-UniMath