Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
16
1.35k
type
stringclasses
10 values
library
stringclasses
1 value
imports
listlengths
1
4
filename
stringclasses
5 values
symbolic_name
stringlengths
1
23
docstring
stringclasses
1 value
sigma := PositiveMap.t.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
sigma
sigma_get A (null : A) (map : sigma A) (n : positive) : A := match PositiveMap.find n map with | None => null | Some x => x end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
sigma_get
sigma_add := @PositiveMap.add.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
sigma_add
sigma_empty := @PositiveMap.empty. Register sigma_get as aac_tactics.sigma.get. Register sigma_add as aac_tactics.sigma.add. Register sigma_empty as aac_tactics.sigma.empty.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
sigma_empty
Associative (X : Type) (R : relation X) (dot : X -> X -> X) := law_assoc : forall x y z, R (dot x (dot y z)) (dot (dot x y) z).
Class
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
Associative
Commutative (X : Type) (R : relation X) (plus : X -> X -> X) := law_comm: forall x y, R (plus x y) (plus y x).
Class
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
Commutative
Idempotent (X : Type) (R : relation X) (plus : X -> X -> X) := law_idem: forall x, R (plus x x) x.
Class
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
Idempotent
Unit (X : Type) (R : relation X) (op : X -> X -> X) (unit : X) := { law_neutral_left: forall x, R (op unit x) x; law_neutral_right: forall x, R (op x unit) x }. Register Associative as aac_tactics.classes.Associative. Register Commutative as aac_tactics.classes.Commutative. Register Idempotent as aac_tactics.classes.Idempotent. Register Unit as aac_tactics.classes.Unit. (**
Class
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
Unit
used to find the equivalence relation on which operations are A or AC, starting from the relation appearing in the goal *)
Class
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
used
AAC_lift (X : Type) (R : relation X) (E : relation X) := { aac_lift_equivalence : Equivalence E; aac_list_proper : Proper (E ==> E ==> iff) R }. Register AAC_lift as aac_tactics.internal.AAC_lift. Register aac_lift_equivalence as aac_tactics.internal.aac_lift_equivalence. (** Simple instances for when we have a subrelation or an equivalence *) #[export] Instance aac_lift_subrelation {X} {R} {E} {HE: Equivalence E} {HR: @Transitive X R} {HER: subrelation E R} : AAC_lift R E | 3. Proof. constructor; trivial. intros ? ? H ? ? H'. split; intro G. rewrite <- H, G. apply HER, H'. rewrite H, G. apply HER. symmetry. apply H'. Qed. #[export] Instance aac_lift_proper {X} {R : relation X} {E} {HE: Equivalence E} {HR: Proper (E==>E==>iff) R} : AAC_lift R E | 4 := {}. (** ** Utilities for the evaluation function *)
Class
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
AAC_lift
copy' n x := match n with | xH => x | xI n => let xn := copy' n x in plus (plus xn xn) x | xO n => let xn := copy' n x in (plus xn xn) end.
Fixpoint
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy'
copy n x := Prect (fun _ => X) x (fun _ xn => plus x xn) n.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy
copy_plus : forall n m x, R (copy (n+m) x) (plus (copy n x) (copy m x)). Proof. unfold copy. induction n using Pind; intros m x. rewrite Prect_base. rewrite <- Pplus_one_succ_l. rewrite Prect_succ. reflexivity. rewrite Pplus_succ_permute_l. rewrite 2Prect_succ. rewrite IHn. apply op. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy_plus
copy_xH : forall x, R (copy 1 x) x. Proof. intros; unfold copy; rewrite Prect_base. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy_xH
copy_Psucc : forall n x, R (copy (Pos.succ n) x) (plus x (copy n x)). Proof. intros; unfold copy; rewrite Prect_succ. reflexivity. Qed. #[export] Instance copy_compat n : Proper (R ==> R) (copy n). Proof. unfold copy. induction n using Pind; intros x y H. rewrite 2Prect_base. assumption. rewrite 2Prect_succ. apply po; auto. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy_Psucc
type_of (n: nat) := match n with | O => X | S n => X -> type_of n end. (** Relation to be preserved at an arity *)
Fixpoint
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
type_of
rel_of n : relation (type_of n) := match n with | O => R | S n => respectful R (rel_of n) end. Register type_of as aac_tactics.internal.sym.type_of. Register rel_of as aac_tactics.internal.sym.rel_of. (** A symbol package contains: - an arity, - a value of the corresponding type, and - a proof that the value is a proper morphism *)
Fixpoint
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
rel_of
pack : Type := mkPack { ar : nat; value :> type_of ar; morph : Proper (rel_of ar) value }. Register pack as aac_tactics.sym.pack. Register mkPack as aac_tactics.sym.mkPack. (** Helper to build default values, when filling reification environments *)
Record
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
pack
null : pack := mkPack 1 (fun x => x) (fun _ _ H => H). Register null as aac_tactics.sym.null.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
null
pack := mk_pack { value:> X -> X -> X; compat: Proper (R ==> R ==> R) value; assoc: Associative R value; comm: option (Commutative R value); idem: option (Idempotent R value) }. Register pack as aac_tactics.bin.pack. Register mk_pack as aac_tactics.bin.mkPack.
Record
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
pack
unit_of u := mk_unit_for { uf_idx: idx; uf_desc: Unit R (Bin.value (e_bin uf_idx)) u }.
Record
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
unit_of
unit_pack := mk_unit_pack { u_value:> X; u_desc: list (unit_of u_value) }. Register unit_of as aac_tactics.internal.unit_of. Register mk_unit_for as aac_tactics.internal.mk_unit_for. Register unit_pack as aac_tactics.internal.unit_pack. Register mk_unit_pack as aac_tactics.internal.mk_unit_pack. Variable e_unit: positive -> unit_pack. #[local] Hint Resolve e_bin e_unit: typeclass_instances. (** *** Almost normalised syntax A term in [T] is in normal form if: - sums do not contain sums - products do not contain products - there are no unary sums or products - lists and msets are lexicographically sorted according to the order we define below [vT n] denotes the set of term vectors of size <<n>> (the mutual dependency could be removed). Note that [T] and [vT] depend on the [e_sym] environment (which contains, among other things, the arity of symbols). *)
Record
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
unit_pack
T : Type := | sum: idx -> mset T -> T | prd: idx -> nelist T -> T | sym: forall i, vT (Sym.ar (e_sym i)) -> T | unit : idx -> T with vT: nat -> Type := | vnil: vT O | vcons: forall n, T -> vT n -> vT (S n). Register T as aac_tactics.internal.T. Register sum as aac_tactics.internal.sum. Register prd as aac_tactics.internal.prd. Register sym as aac_tactics.internal.sym. Register unit as aac_tactics.internal.unit. Register vnil as aac_tactics.internal.vnil. Register vcons as aac_tactics.internal.vcons. (** Lexicographic rpo over the normalised syntax *)
Inductive
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
T
compare (u v: T) := match u,v with | sum i l, sum j vs => lex (Pos.compare i j) (mset_compare compare l vs) | prd i l, prd j vs => lex (Pos.compare i j) (list_compare compare l vs) | sym i l, sym j vs => lex (Pos.compare i j) (vcompare l vs) | unit i , unit j => Pos.compare i j | unit _ , _ => Lt | _ , unit _ => Gt | sym _ _, _ => Lt | _ , sym _ _ => Gt | prd _ _, _ => Lt | _ , prd _ _ => Gt end with vcompare i j (us: vT i) (vs: vT j) := match us,vs with | vnil, vnil => Eq | vnil, _ => Lt | _, vnil => Gt | vcons _ u us, vcons _ v vs => lex (compare u v) (vcompare us vs) end. (** *** Evaluation from syntax to the abstract domain *)
Fixpoint
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compare
eval u: X := match u with | sum i l => let o := Bin.value (e_bin i) in fold_map (fun un => let '(u,n):=un in @copy _ o n (eval u)) o l | prd i l => fold_map eval (Bin.value (e_bin i)) l | sym i v => eval_aux v (Sym.value (e_sym i)) | unit i => e_unit i end with eval_aux i (v: vT i): Sym.type_of i -> X := match v with | vnil => fun f => f | vcons _ u v => fun f => eval_aux v (f (eval u)) end. Register eval as aac_tactics.internal.eval. (** We need to show that [compare] reflects equality (this is because we work with msets rather than with lists with arities) *)
Fixpoint
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval
tcompare_weak_spec u : forall (v : T), compare_weak_spec u v (compare u v) with vcompare_reflect_eqdep i us : forall j vs (H: i=j), vcompare us vs = Eq -> cast vT H us = vs. Proof. induction u. - destruct v; simpl; try constructor. case (pos_compare_weak_spec p p0); intros; try constructor. case (mset_compare_weak_spec compare tcompare_weak_spec m m0); intros; try constructor. - destruct v; simpl; try constructor. case (pos_compare_weak_spec p p0); intros; try constructor. case (list_compare_weak_spec compare tcompare_weak_spec n n0); intros; try constructor. - destruct v0; simpl; try constructor. case_eq (Pos.compare i i0); intro Hi; try constructor. (* the [symmetry] is required *) apply pos_compare_reflect_eq in Hi. symmetry in Hi. subst. case_eq (vcompare v v0); intro Hv; try constructor. rewrite <- (vcompare_reflect_eqdep _ _ _ _ eq_refl Hv). constructor. - destruct v; simpl; try constructor. case_eq (Pos.compare p p0); intro Hi; try constructor. apply pos_compare_reflect_eq in Hi. symmetry in Hi. subst. constructor. - induction us; destruct vs; simpl; intros H Huv; try discriminate. apply cast_eq, eq_nat_dec. injection H; intro Hn. revert Huv; case (tcompare_weak_spec t t0); intros; try discriminate. (* the [symmetry] is required *) symmetry in Hn. subst. rewrite <- (IHus _ _ eq_refl Huv). apply cast_eq, eq_nat_dec. Qed.
Fixpoint
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
tcompare_weak_spec
eval_aux_compat i (l: vT i): Proper (@Sym.rel_of X R i ==> R) (eval_aux l). Proof. induction l; simpl; repeat intro. assumption. apply IHl, H. reflexivity. Qed. (** Is <<i>> a unit for <<j>>? *)
Instance
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_aux_compat
is_unit_of j i := List.existsb (fun p => eq_idx_bool j (uf_idx p)) (u_desc (e_unit i)). (** Is <<i>> commutative? *)
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_unit_of
is_commutative i := match Bin.comm (e_bin i) with Some _ => true | None => false end. (** Is <<i>> idempotent? *)
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_commutative
is_idempotent i := match Bin.idem (e_bin i) with Some _ => true | None => false end. (** *** Normalisation *) #[universes(template)]
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_idempotent
discr {A} : Type := | Is_op : A -> discr | Is_unit : idx -> discr | Is_nothing : discr. (** This is called [Datatypes.sum] in the stdlib *) #[universes(template)]
Inductive
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
discr
m {A} {B} := | left : A -> m | right : B -> m.
Inductive
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
m
comp A B (merge : B -> B -> B) (l : B) (l' : @m A B) : @m A B := match l' with | left _ => right l | right l' => right (merge l l') end. (** Auxiliary functions, to clean up sums *)
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
comp
sum' (u: mset T): T := match u with | nil (u,xH) => u | _ => sum i u end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
sum'
is_sum (u: T) : @discr (mset T) := match u with | sum j l => if eq_idx_bool j i then Is_op l else Is_nothing | unit j => if is_unit j then Is_unit j else Is_nothing | _ => Is_nothing end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_sum
copy_mset n (l: mset T): mset T := match n with | xH => l | _ => nelist_map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy_mset
return_sum u n := match is_sum u with | Is_nothing => right (nil (u,n)) | Is_op l' => right (copy_mset n l') | Is_unit j => left j end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
return_sum
add_to_sum u n (l : @m idx (mset T)) := match is_sum u with | Is_nothing => comp (merge_msets compare) (nil (u,n)) l | Is_op l' => comp (merge_msets compare) (copy_mset n l') l | Is_unit _ => l end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
add_to_sum
norm_msets_ norm (l: mset T) := fold_map' (fun un => let '(u,n) := un in return_sum (norm u) n) (fun un l => let '(u,n) := un in add_to_sum (norm u) n l) l.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
norm_msets_
prd' (u: nelist T): T := match u with | nil u => u | _ => prd i u end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
prd'
is_prd (u: T) : @discr (nelist T) := match u with | prd j l => if eq_idx_bool j i then Is_op l else Is_nothing | unit j => if is_unit j then Is_unit j else Is_nothing | _ => Is_nothing end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_prd
return_prd u := match is_prd u with | Is_nothing => right (nil (u)) | Is_op l' => right (l') | Is_unit j => left j end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
return_prd
add_to_prd u (l : @m idx (nelist T)) := match is_prd u with | Is_nothing => comp (@appne T) (nil (u)) l | Is_op l' => comp (@appne T) (l') l | Is_unit _ => l end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
add_to_prd
norm_lists_ norm (l : nelist T) := fold_map' (fun u => return_prd (norm u)) (fun u l => add_to_prd (norm u) l) l.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
norm_lists_
run_list x := match x with | left n => nil (unit n) | right l => l end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
run_list
norm_lists norm i l := let is_unit := is_unit_of i in run_list (norm_lists_ i is_unit norm l).
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
norm_lists
run_msets x := match x with | left n => nil (unit n, xH) | right l => l end.
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
run_msets
norm_msets norm i l := let is_unit := is_unit_of i in run_msets (norm_msets_ i is_unit norm l).
Definition
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
norm_msets
norm u {struct u}:= match u with | sum i l => if is_commutative i then if is_idempotent i then sum' i (reduce_mset (norm_msets norm i l)) else sum' i (norm_msets norm i l) else u | prd i l => prd' i (norm_lists norm i l) | sym i l => sym i (vnorm l) | unit i => unit i end with vnorm i (l: vT i): vT i := match l with | vnil => vnil | vcons _ u l => vcons (norm u) (vnorm l) end. (** *** Correctness *)
Fixpoint
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
norm
is_unit_of_Unit : forall i j : idx, is_unit_of i j = true -> Unit R (Bin.value (e_bin i)) (eval (unit j)). Proof. intros. unfold is_unit_of in H. rewrite existsb_exists in H. destruct H as [x [H H']]. revert H' ; case (eq_idx_spec); [intros H' _ ; subst| intros _ H'; discriminate]. simpl. destruct x. simpl. auto. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_unit_of_Unit
Binvalue_Commutative i (H : is_commutative i = true) : Commutative R (@Bin.value _ _ (e_bin i) ). Proof. unfold is_commutative in H. destruct (Bin.comm (e_bin i)); auto. discriminate. Qed.
Instance
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
Binvalue_Commutative
Binvalue_Idempotent i (H : is_idempotent i = true) : Idempotent R (@Bin.value _ _ (e_bin i)). Proof. unfold is_idempotent in H. destruct (Bin.idem (e_bin i)); auto. discriminate. Qed.
Instance
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
Binvalue_Idempotent
Binvalue_Associative i : Associative R (@Bin.value _ _ (e_bin i)). Proof. destruct ((e_bin i)); auto. Qed.
Instance
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
Binvalue_Associative
Binvalue_Proper i : Proper (R ==> R ==> R) (@Bin.value _ _ (e_bin i) ). Proof. destruct ((e_bin i)); auto. Qed. #[local] Hint Resolve Binvalue_Proper Binvalue_Associative Binvalue_Commutative : core. #[local] Hint Resolve is_unit_of_Unit : core. (** Auxiliary lemmas about sums *)
Instance
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
Binvalue_Proper
is_sum_spec_ind : T -> @discr (mset T) -> Prop := | is_sum_spec_op : forall j l, j = i -> is_sum_spec_ind (sum j l) (Is_op l) | is_sum_spec_unit : forall j, is_unit j = true -> is_sum_spec_ind (unit j) (Is_unit j) | is_sum_spec_nothing : forall u, is_sum_spec_ind u (Is_nothing).
Inductive
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_sum_spec_ind
is_sum_spec u : is_sum_spec_ind u (is_sum i is_unit u). Proof. unfold is_sum; case u; intros; try constructor. case_eq (eq_idx_bool p i); intros; subst; try constructor; auto. revert H. case eq_idx_spec; try discriminate. auto. case_eq (is_unit p); intros; try constructor. auto. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_sum_spec
assoc : @Associative X R (Bin.value (e_bin i)). Proof. destruct (e_bin i). simpl. assumption. Qed.
Instance
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
assoc
proper : Proper (R ==> R ==> R)(Bin.value (e_bin i)). Proof. destruct (e_bin i). simpl. assumption. Qed. Hypothesis comm : @Commutative X R (Bin.value (e_bin i)).
Instance
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
proper
sum'_sum : forall (l: mset T), eval (sum' i l) == eval (sum i l). Proof. intros [[a n] | [a n] l]; destruct n; simpl; reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
sum'_sum
eval_sum_nil x : eval (sum i (nil (x,xH))) == (eval x). Proof. rewrite <- sum'_sum. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_sum_nil
eval_sum_cons : forall n a (l: mset T), (eval (sum i ((a,n)::l))) == (@Bin.value _ _ (e_bin i) (@copy _ (@Bin.value _ _ (e_bin i)) n (eval a)) (eval (sum i l))). Proof. intros n a [[? ? ]|[b m] l]; simpl; reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_sum_cons
compat_sum_unit : @m idx (mset T) -> Prop := | csu_left : forall x, is_unit x = true-> compat_sum_unit (left x) | csu_right : forall m, compat_sum_unit (right m).
Inductive
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compat_sum_unit
compat_sum_unit_return x n : compat_sum_unit (return_sum i is_unit x n). Proof. unfold return_sum. case is_sum_spec; intros; try constructor; auto. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compat_sum_unit_return
compat_sum_unit_add : forall x n h, compat_sum_unit h -> compat_sum_unit (add_to_sum i (is_unit_of i) x n h). Proof. unfold add_to_sum;intros; inversion H; case_eq (is_sum i (is_unit_of i) x); intros; simpl; try constructor || eauto. apply H0. Qed. (* Hint Resolve copy_plus. : this lags because of the inference of the implicit arguments *) #[local] Hint Extern 5 (copy (?n + ?m) (eval ?a) == Bin.value (copy ?n (eval ?a)) (copy ?m (eval ?a))) => apply copy_plus : core. #[local] Hint Extern 5 (?x == ?x) => reflexivity : core. #[local] Hint Extern 5 ( Bin.value ?x ?y == Bin.value ?y ?x) => apply Bin.comm : core.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compat_sum_unit_add
eval_merge_bin : forall (h k: mset T), eval (sum i (merge_msets compare h k)) == @Bin.value _ _ (e_bin i) (eval (sum i h)) (eval (sum i k)). Proof. induction h as [[a n]|[a n] h IHh]; intro k. - simpl; induction k as [[b m]|[b m] k IHk]; simpl. * destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl; auto. apply copy_plus; auto. * destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl; auto. rewrite copy_plus,law_assoc; auto. rewrite IHk; clear IHk. rewrite 2 law_assoc. apply proper; [apply law_comm|reflexivity]. - induction k as [[b m]|[b m] k IHk]; simpl; simpl in IHh. * destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl. rewrite (law_comm _ (copy m (eval a))). rewrite law_assoc, <- copy_plus, Pplus_comm; auto. rewrite <- law_assoc, IHh. reflexivity. rewrite law_comm. reflexivity. * simpl in IHk. destruct (tcompare_weak_spec a b) as [a|a b|a b]; simpl. rewrite IHh; clear IHh. rewrite 2 law_assoc. rewrite (law_comm _ (copy m (eval a))). rewrite law_assoc, <- copy_plus, Pplus_comm; auto. rewrite IHh; clear IHh. simpl. rewrite law_assoc. reflexivity. rewrite 2 (law_comm (copy m (eval b))). rewrite law_assoc. apply proper; [ | reflexivity]. rewrite <- IHk. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_merge_bin
copy_mset' n (l: mset T) : copy_mset n l = nelist_map (fun vm => let '(v,m):=vm in (v,Pmult n m)) l. Proof. unfold copy_mset. destruct n; try reflexivity. simpl. induction l as [|[a l] IHl]; simpl; try congruence. destruct a; reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy_mset'
copy_mset_succ n (l: mset T) : eval (sum i (copy_mset (Pos.succ n) l)) == @Bin.value _ _ (e_bin i) (eval (sum i l)) (eval (sum i (copy_mset n l))). Proof. rewrite 2 copy_mset'. induction l as [[a m]|[a m] l IHl]. simpl eval. rewrite <- copy_plus; auto. rewrite Pmult_Sn_m. reflexivity. simpl nelist_map. rewrite ! eval_sum_cons. rewrite IHl. clear IHl. rewrite Pmult_Sn_m. rewrite copy_plus; auto. rewrite <- !law_assoc. apply Binvalue_Proper; try reflexivity. rewrite law_comm . rewrite <- !law_assoc. apply proper; try reflexivity. apply law_comm. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy_mset_succ
copy_mset_copy : forall n (m : mset T), eval (sum i (copy_mset n m)) == @copy _ (@Bin.value _ _ (e_bin i)) n (eval (sum i m)). Proof. induction n using Pind; intros. - unfold copy_mset. rewrite copy_xH. reflexivity. - rewrite copy_mset_succ. rewrite copy_Psucc. rewrite IHn. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy_mset_copy
compat_sum_unit_Unit : forall p, compat_sum_unit (left p) -> @Unit X R (Bin.value (e_bin i)) (eval (unit p)). Proof. intros; inversion H; subst; auto. Qed.
Instance
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compat_sum_unit_Unit
copy_n_unit : forall j n, is_unit j = true -> eval (unit j) == @copy _ (Bin.value (e_bin i)) n (eval (unit j)). Proof. intros; induction n using Prect. rewrite copy_xH. reflexivity. rewrite copy_Psucc. rewrite <- IHn. apply is_unit_sum_Unit in H. rewrite law_neutral_left. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy_n_unit
z0 l r (H : compat_sum_unit r) : eval (sum i (run_msets (comp (merge_msets compare) l r))) == eval (sum i ((merge_msets compare) (l) (run_msets r))). Proof. unfold comp. unfold run_msets. case_eq r; intros; subst; [|reflexivity]. rewrite eval_merge_bin; auto. rewrite eval_sum_nil. apply compat_sum_unit_Unit in H. rewrite law_neutral_right. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
z0
z1 : forall n x, eval (sum i (run_msets (return_sum i (is_unit) x n ))) == @copy _ (@Bin.value _ _ (e_bin i)) n (eval x). Proof. intros; unfold return_sum, run_msets. case (is_sum_spec); intros; subst. - rewrite copy_mset_copy; reflexivity. - rewrite eval_sum_nil. apply copy_n_unit. auto. - reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
z1
z2 : forall u n x, compat_sum_unit x -> eval (sum i (run_msets (add_to_sum i (is_unit) u n x))) == @Bin.value _ _ (e_bin i) (@copy _ (@Bin.value _ _ (e_bin i)) n (eval u)) (eval (sum i (run_msets x))). Proof. intros u n x Hix. unfold add_to_sum. case is_sum_spec; intros; subst. - rewrite z0 by auto. rewrite eval_merge_bin, copy_mset_copy. reflexivity. - rewrite <- copy_n_unit by assumption. apply is_unit_sum_Unit in H. rewrite law_neutral_left. reflexivity. - rewrite z0 by auto. rewrite eval_merge_bin. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
z2
eval_norm_msets i norm (Comm : Commutative R (Bin.value (e_bin i))) (Hnorm: forall u, eval (norm u) == eval u) : forall h, eval (sum i (norm_msets norm i h)) == eval (sum i h). Proof. unfold norm_msets. assert (H : forall h : mset T, eval (sum i (run_msets (norm_msets_ i (is_unit_of i) norm h))) == eval (sum i h) /\ compat_sum_unit (is_unit_of i) (norm_msets_ i (is_unit_of i) norm h)). induction h as [[a n] | [a n] h [IHh IHh']]; simpl norm_msets_; split. - rewrite z1 by auto. rewrite Hnorm. reflexivity. - apply compat_sum_unit_return. - rewrite z2 by auto. rewrite IHh, eval_sum_cons, Hnorm. reflexivity. - apply compat_sum_unit_add, IHh'. - apply H. Defined.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_norm_msets
copy_idem i (Idem : Idempotent R (Bin.value (e_bin i))) n x : copy (plus:=(Bin.value (e_bin i))) n x == x. Proof. induction n using Pos.peano_ind; simpl. - apply copy_xH. - rewrite copy_Psucc, IHn; apply law_idem. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
copy_idem
eval_reduce_msets i (Idem : Idempotent R (Bin.value (e_bin i))) m : eval (sum i (reduce_mset m)) == eval (sum i m). Proof. induction m as [[a n]|[a n] m IH]. - simpl. now rewrite 2copy_idem. - simpl. rewrite IH. now rewrite 2copy_idem. Qed. (** Auxiliary lemmas about products *)
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_reduce_msets
is_prd_spec_ind : T -> @discr (nelist T) -> Prop := | is_prd_spec_op : forall j l, j = i -> is_prd_spec_ind (prd j l) (Is_op l) | is_prd_spec_unit : forall j, is_unit j = true -> is_prd_spec_ind (unit j) (Is_unit j) | is_prd_spec_nothing : forall u, is_prd_spec_ind u (Is_nothing).
Inductive
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_prd_spec_ind
is_prd_spec u : is_prd_spec_ind u (is_prd i is_unit u). Proof. unfold is_prd; case u; intros; try constructor. case (eq_idx_spec); intros; subst; try constructor; auto. case_eq (is_unit p); intros; try constructor; auto. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
is_prd_spec
prd'_prd : forall (l: nelist T), eval (prd' i l) == eval (prd i l). Proof. intros [?|? [|? ?]]; simpl; reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
prd'_prd
eval_prd_nil x: eval (prd i (nil x)) == eval x. Proof. rewrite <- prd'_prd. simpl. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_prd_nil
eval_prd_cons a : forall (l: nelist T), eval (prd i (a::l)) == @Bin.value _ _ (e_bin i) (eval a) (eval (prd i l)). Proof. intros [|b l]; simpl; reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_prd_cons
eval_prd_app : forall (h k: nelist T), eval (prd i (h++k)) == @Bin.value _ _ (e_bin i) (eval (prd i h)) (eval (prd i k)). Proof. induction h; intro k. simpl; try reflexivity. simpl appne. rewrite 2 eval_prd_cons, IHh, law_assoc. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_prd_app
compat_prd_unit : @m idx (nelist T) -> Prop := | cpu_left : forall x, is_unit x = true -> compat_prd_unit (left x) | cpu_right : forall m, compat_prd_unit (right m).
Inductive
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compat_prd_unit
compat_prd_unit_return x : compat_prd_unit (return_prd i is_unit x). Proof. unfold return_prd. case (is_prd_spec); intros; try constructor; auto. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compat_prd_unit_return
compat_prd_unit_add : forall x h, compat_prd_unit h -> compat_prd_unit (add_to_prd i is_unit x h). Proof. intros; unfold add_to_prd, comp. case (is_prd_spec); intros; try constructor; auto. - unfold comp; case h; try constructor. - unfold comp; case h; try constructor. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compat_prd_unit_add
compat_prd_Unit : forall p, compat_prd_unit (left p) -> @Unit X R (Bin.value (e_bin i)) (eval (unit p)). Proof. intros. inversion H; subst. apply is_unit_prd_Unit. assumption. Qed.
Instance
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compat_prd_Unit
z0' : forall l (r: @m idx (nelist T)), compat_prd_unit r -> eval (prd i (run_list (comp (@appne T) l r))) == eval (prd i ((appne (l) (run_list r)))). Proof. intros. unfold comp. unfold run_list. case_eq r; intros; auto; subst. rewrite eval_prd_app. rewrite eval_prd_nil. apply compat_prd_Unit in H. rewrite law_neutral_right. reflexivity. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
z0'
z1' a : eval (prd i (run_list (return_prd i is_unit a))) == eval (prd i (nil a)). Proof. intros. unfold return_prd. unfold run_list. case (is_prd_spec); intros; subst; reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
z1'
z2' : forall u x, compat_prd_unit x -> eval (prd i (run_list (add_to_prd i is_unit u x))) == @Bin.value _ _ (e_bin i) (eval u) (eval (prd i (run_list x))). Proof. intros u x Hix. unfold add_to_prd. case (is_prd_spec); intros; subst. rewrite z0' by auto. rewrite eval_prd_app. reflexivity. apply is_unit_prd_Unit in H. rewrite law_neutral_left. reflexivity. rewrite z0' by auto. rewrite eval_prd_app. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
z2'
eval_norm_lists i (Hnorm: forall u, eval (norm u) == eval u) : forall h, eval (prd i (norm_lists norm i h)) == eval (prd i h). Proof. unfold norm_lists. assert (H : forall h : nelist T, eval (prd i (run_list (norm_lists_ i (is_unit_of i) norm h))) == eval (prd i h) /\ compat_prd_unit (is_unit_of i) (norm_lists_ i (is_unit_of i) norm h)). { induction h as [a | a h [IHh IHh']]; simpl norm_lists_; split. rewrite z1'. simpl. apply Hnorm. apply compat_prd_unit_return. rewrite z2'. rewrite IHh. rewrite eval_prd_cons. rewrite Hnorm. reflexivity. apply is_unit_of_Unit. auto. apply compat_prd_unit_add. auto. } apply H. Defined. (** Correctness of the normalisation function *)
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_norm_lists
eval_norm u: eval (norm u) == eval u with eval_norm_aux i l : forall (f: Sym.type_of i), Proper (@Sym.rel_of X R i) f -> eval_aux (vnorm l) f == eval_aux l f. Proof. induction u as [ p m | p l | ? | ?]; simpl norm. - case_eq (is_commutative p); intros. case_eq (is_idempotent p); intros. rewrite sum'_sum. rewrite eval_reduce_msets. 2: eauto with typeclass_instances. apply eval_norm_msets; auto. rewrite sum'_sum. apply eval_norm_msets; auto. reflexivity. - rewrite prd'_prd. apply eval_norm_lists; auto. - apply eval_norm_aux, Sym.morph. - reflexivity. - induction l; simpl; intros f Hf. reflexivity. rewrite eval_norm. apply IHl, Hf; reflexivity. Qed. (** Corollaries, for goal normalisation or decision *)
Fixpoint
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
eval_norm
normalise : forall (u v: T), eval (norm u) == eval (norm v) -> eval u == eval v. Proof. intros u v. rewrite 2 eval_norm. trivial. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
normalise
compare_reflect_eq : forall u v, compare u v = Eq -> eval u == eval v. Proof. intros u v. case (tcompare_weak_spec u v); intros; try congruence. reflexivity. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
compare_reflect_eq
decide : forall (u v: T), compare (norm u) (norm v) = Eq -> eval u == eval v. Proof. intros u v H. apply normalise. apply compare_reflect_eq. apply H. Qed. Register decide as aac_tactics.internal.decide.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
decide
lift_normalise {S} {H : AAC_lift S R} : forall (u v: T), (let x := norm u in let y := norm v in S (eval x) (eval y)) -> S (eval u) (eval v). Proof. destruct H. intros u v; simpl; rewrite 2 eval_norm. trivial. Qed. Register lift_normalise as aac_tactics.internal.lift_normalise.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
lift_normalise
lift_transitivity_left (y x z : X): E x y -> R y z -> R x z. Proof. destruct H as [Hequiv Hproper]; intros G;rewrite G. trivial. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
lift_transitivity_left
lift_transitivity_right (y x z : X): E y z -> R x y -> R x z. Proof. destruct H as [Hequiv Hproper]; intros G. rewrite G. trivial. Qed.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
lift_transitivity_right
lift_reflexivity {HR :Reflexive R}: forall x y, E x y -> R x y. Proof. destruct H. intros ? ? G. rewrite G. reflexivity. Qed. Register lift_transitivity_left as aac_tactics.internal.lift_transitivity_left. Register lift_transitivity_right as aac_tactics.internal.lift_transitivity_right. Register lift_reflexivity as aac_tactics.internal.lift_reflexivity.
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
lift_reflexivity
transitivity4 {A R} {H: @Equivalence A R} a b a' b': R a a' -> R b b' -> R a b -> R a' b'. Proof. now intros -> ->. Qed. Tactic Notation "aac_normalise" "in" hyp(H) := eapply transitivity4 in H; [| aac_normalise; reflexivity | aac_normalise; reflexivity].
Lemma
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
transitivity4
aac_normalise_all := aac_normalise; repeat match goal with | H: _ |- _ => aac_normalise in H end. Tactic Notation "aac_normalise" "in" "*" := aac_normalise_all.
Ltac
theories
[ "From Stdlib Require Import Arith NArith List.", "From Stdlib Require Import FMapPositive Relations RelationClasses.", "From Stdlib Require Export Morphisms.", "From AAC_tactics Require Import Utils Constants." ]
theories/AAC.v
aac_normalise_all
End of preview. Expand in Data Studio

Coq-AACTactics

Structured dataset from AAC Tactics — Rewriting modulo associativity and commutativity.

141 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
17

Collection including phanerozoic/Coq-AACTactics