Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
9
12.1k
type
stringclasses
25 values
library
stringclasses
6 values
imports
listlengths
0
15
filename
stringclasses
105 values
symbolic_name
stringlengths
1
50
docstring
stringclasses
1 value
continuity_pt_nbhs (f : R -> R) x : continuity_pt f x <-> forall eps : {posnum R}, nbhs x (fun u => `|f u - f x| < eps%:num). Proof. split=> [fcont e|fcont _/RltP/posnumP[e]]; last first. have [_/posnumP[d] xd_fxe] := fcont e. exists d%:num; split; first by apply/RltP; have := [gt0 of d%:num]. by move=> y [_ /RltP yxd]; apply/RltP/xd_fxe; rewrite /= distrC. have /RltP egt0 := [gt0 of e%:num]. have [_ [/RltP/posnumP[d] dx_fxe]] := fcont e%:num egt0. exists d%:num => //= y xyd; case: (eqVneq x y) => [->|xney]. by rewrite subrr normr0. apply/RltP/dx_fxe; split; first by split=> //; apply/eqP. by have /RltP := xyd; rewrite distrC. Qed.
Lemma
analysis_stdlib
[ "Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.", "Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.", "Require Import Rtrigo1 Reals.", "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect ssralg ssrnum archimedean.", "From mathcomp Require Import boolp classical_sets reals interval_inference.", "From mathcomp Require Export Rstruct.", "From mathcomp Require Import topology.", "From mathcomp Require normedtype sequences." ]
analysis_stdlib/Rstruct_topology.v
continuity_pt_nbhs
continuity_pt_cvg (f : R -> R) (x : R) : continuity_pt f x <-> {for x, continuous f}. Proof. eapply iff_trans; first exact: continuity_pt_nbhs. apply iff_sym. have FF : Filter (f @ x)%classic. by typeclasses eauto. (*by apply fmap_filter; apply: @filter_filter' (locally_filter _).*) case: (@fcvg_ballP _ _ (f @ x)%classic FF (f x)) => {FF}H1 H2. (* TODO: in need for lemmas and/or refactoring of already existing lemmas (ball vs. Rabs) *) split => [{H2} - /H1 {}H1 eps|{H1} H]. - have {H1} [//|_/posnumP[x0] Hx0] := H1 eps%:num. exists x0%:num => //= Hx0' /Hx0 /=. by rewrite /= distrC; apply. - apply H2 => _ /posnumP[eps]; move: (H eps) => {H} [_ /posnumP[x0] Hx0]. exists x0%:num => //= y /Hx0 /= {}Hx0. by rewrite /ball /= distrC. Qed.
Lemma
analysis_stdlib
[ "Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.", "Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.", "Require Import Rtrigo1 Reals.", "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect ssralg ssrnum archimedean.", "From mathcomp Require Import boolp classical_sets reals interval_inference.", "From mathcomp Require Export Rstruct.", "From mathcomp Require Import topology.", "From mathcomp Require normedtype sequences." ]
analysis_stdlib/Rstruct_topology.v
continuity_pt_cvg
continuity_ptE (f : R -> R) (x : R) : continuity_pt f x <-> {for x, continuous f}. Proof. exact: continuity_pt_cvg. Qed. Local Open Scope classical_set_scope.
Lemma
analysis_stdlib
[ "Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.", "Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.", "Require Import Rtrigo1 Reals.", "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect ssralg ssrnum archimedean.", "From mathcomp Require Import boolp classical_sets reals interval_inference.", "From mathcomp Require Export Rstruct.", "From mathcomp Require Import topology.", "From mathcomp Require normedtype sequences." ]
analysis_stdlib/Rstruct_topology.v
continuity_ptE
continuity_pt_cvg' f x : continuity_pt f x <-> f @ x^' --> f x. Proof. by rewrite continuity_ptE continuous_withinNx. Qed.
Lemma
analysis_stdlib
[ "Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.", "Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.", "Require Import Rtrigo1 Reals.", "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect ssralg ssrnum archimedean.", "From mathcomp Require Import boolp classical_sets reals interval_inference.", "From mathcomp Require Export Rstruct.", "From mathcomp Require Import topology.", "From mathcomp Require normedtype sequences." ]
analysis_stdlib/Rstruct_topology.v
continuity_pt_cvg'
continuity_pt_dnbhs f x : continuity_pt f x <-> forall eps, 0 < eps -> x^' (fun u => `|f x - f u| < eps). Proof. by rewrite continuity_pt_cvg' -filter_fromP cvg_ballP -filter_fromP. Qed.
Lemma
analysis_stdlib
[ "Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.", "Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.", "Require Import Rtrigo1 Reals.", "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect ssralg ssrnum archimedean.", "From mathcomp Require Import boolp classical_sets reals interval_inference.", "From mathcomp Require Export Rstruct.", "From mathcomp Require Import topology.", "From mathcomp Require normedtype sequences." ]
analysis_stdlib/Rstruct_topology.v
continuity_pt_dnbhs
nbhs_pt_comp (P : R -> Prop) (f : R -> R) (x : R) : nbhs (f x) P -> continuity_pt f x -> \near x, P (f x). Proof. by move=> Lf /continuity_pt_cvg; apply. Qed.
Lemma
analysis_stdlib
[ "Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.", "Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.", "Require Import Rtrigo1 Reals.", "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect ssralg ssrnum archimedean.", "From mathcomp Require Import boolp classical_sets reals interval_inference.", "From mathcomp Require Export Rstruct.", "From mathcomp Require Import topology.", "From mathcomp Require normedtype sequences." ]
analysis_stdlib/Rstruct_topology.v
nbhs_pt_comp
RexpE (x : R) : Rtrigo_def.exp x = expR x. Proof. apply/esym; rewrite /exp /exist_exp; case: Alembert_C3 => y. rewrite /Pser /infinite_sum /= => exp_ub. rewrite /expR /exp_coeff /series/=; apply: (@cvg_lim R^o) => //. rewrite -cvg_shiftS /=; apply/cvgrPdist_lt => /= e /RltP /exp_ub[N Nexp_ub]. near=> n. have nN : (n >= N)%coq_nat by apply/ssrnat.leP; near: n; exact: nbhs_infty_ge. move: Nexp_ub => /(_ _ nN) /[!RdistE] /RltP /=. rewrite distrC sum_f_R0E; congr (`| _ - _ | < e). by apply: eq_bigr=> k _; rewrite RinvE RpowE mulrC factE INRE. Unshelve. all: by end_near. Qed.
Lemma
analysis_stdlib
[ "Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.", "Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.", "Require Import Rtrigo1 Reals.", "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect ssralg ssrnum archimedean.", "From mathcomp Require Import boolp classical_sets reals interval_inference.", "From mathcomp Require Export Rstruct.", "From mathcomp Require Import topology.", "From mathcomp Require normedtype sequences." ]
analysis_stdlib/Rstruct_topology.v
RexpE
RexpE := RexpE.RexpE.
Definition
analysis_stdlib
[ "Require Import Rdefinitions Raxioms RIneq Rbasic_fun Zwf.", "Require Import Epsilon FunctionalExtensionality Ranalysis1 Rsqrt_def.", "Require Import Rtrigo1 Reals.", "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect ssralg ssrnum archimedean.", "From mathcomp Require Import boolp classical_sets reals interval_inference.", "From mathcomp Require Export Rstruct.", "From mathcomp Require Import topology.", "From mathcomp Require normedtype sequences." ]
analysis_stdlib/Rstruct_topology.v
RexpE
functional_extensionality_dep : forall (A : Type) (B : A -> Type) (f g : forall x : A, B x), (forall x : A, f x = g x) -> f = g.
Axiom
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
functional_extensionality_dep
propositional_extensionality : forall P Q : Prop, P <-> Q -> P = Q.
Axiom
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
propositional_extensionality
constructive_indefinite_description : forall (A : Type) (P : A -> Prop), (exists x : A, P x) -> {x : A | P x}.
Axiom
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
constructive_indefinite_description
cid := constructive_indefinite_description.
Notation
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
cid
cid2 (A : Type) (P Q : A -> Prop) : (exists2 x : A, P x & Q x) -> {x : A | P x & Q x}. Proof. move=> PQA; suff: {x | P x /\ Q x} by move=> [a [*]]; exists a. by apply: cid; case: PQA => x; exists x. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
cid2
existT_inj1 (T : Type) (P : T -> Type) (x y : T) (Px : P x) (Py : P y) : existT P x Px = existT P y Py -> x = y. Proof. by case. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
existT_inj1
existT_inj2 (T : eqType) (P : T -> Type) (x : T) (Px1 Px2 : P x) : existT P x Px1 = existT P x Px2 -> Px1 = Px2. Proof. apply: internal_Eqdep_dec.inj_pair2_eq_dec => y z. by have [|/eqP] := eqVneq y z; [left|right]. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
existT_inj2
surjective_existT (T : Type) (P : T -> Type) (p : {x : T & P x}): existT [eta P] (projT1 p) (projT2 p) = p. Proof. by case: p. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
surjective_existT
mextensionality := { _ : forall (P Q : Prop), (P <-> Q) -> (P = Q); _ : forall {T U : Type} (f g : T -> U), (forall x, f x = g x) -> f = g; }.
Record
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
mextensionality
extensionality : mextensionality. Proof. split. - exact: propositional_extensionality. - by move=> T U f g; apply: functional_extensionality_dep. Qed.
Fact
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
extensionality
propext (P Q : Prop) : (P <-> Q) -> (P = Q). Proof. by have [propext _] := extensionality; apply: propext. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
propext
eqProp := apply: propext; split.
Ltac
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eqProp
funext {T U : Type} (f g : T -> U) : (f =1 g) -> f = g. Proof. by case: extensionality=> _; apply. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
funext
propeqE (P Q : Prop) : (P = Q) = (P <-> Q). Proof. by apply: propext; split=> [->|/propext]. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
propeqE
propeqP (P Q : Prop) : (P = Q) <-> (P <-> Q). Proof. by rewrite propeqE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
propeqP
funeqE {T U : Type} (f g : T -> U) : (f = g) = (f =1 g). Proof. by rewrite propeqE; split=> [->//|/funext]. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
funeqE
funeq2E {T U V : Type} (f g : T -> U -> V) : (f = g) = (f =2 g). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite funeqE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
funeq2E
funeq3E {T U V W : Type} (f g : T -> U -> V -> W) : (f = g) = (forall x y z, f x y z = g x y z). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> x y; rewrite funeqE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
funeq3E
funeqP {T U : Type} (f g : T -> U) : (f = g) <-> (f =1 g). Proof. by rewrite funeqE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
funeqP
funeq2P {T U V : Type} (f g : T -> U -> V) : (f = g) <-> (f =2 g). Proof. by rewrite funeq2E. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
funeq2P
funeq3P {T U V W : Type} (f g : T -> U -> V -> W) : (f = g) <-> (forall x y z, f x y z = g x y z). Proof. by rewrite funeq3E. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
funeq3P
predeqE {T} (P Q : T -> Prop) : (P = Q) = (forall x, P x <-> Q x). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeqE=> x; rewrite propeqE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
predeqE
predeq2E {T U} (P Q : T -> U -> Prop) : (P = Q) = (forall x y, P x y <-> Q x y). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeq2E=> ??; rewrite propeqE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
predeq2E
predeq3E {T U V} (P Q : T -> U -> V -> Prop) : (P = Q) = (forall x y z, P x y z <-> Q x y z). Proof. by rewrite propeqE; split=> [->//|?]; rewrite funeq3E=> ???; rewrite propeqE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
predeq3E
predeqP {T} (A B : T -> Prop) : (A = B) <-> (forall x, A x <-> B x). Proof. by rewrite predeqE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
predeqP
predeq2P {T U} (P Q : T -> U -> Prop) : (P = Q) <-> (forall x y, P x y <-> Q x y). Proof. by rewrite predeq2E. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
predeq2P
predeq3P {T U V} (P Q : T -> U -> V -> Prop) : (P = Q) <-> (forall x y z, P x y z <-> Q x y z). Proof. by rewrite predeq3E. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
predeq3P
propT {P : Prop} : P -> P = True. Proof. by move=> p; rewrite propeqE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
propT
Prop_irrelevance (P : Prop) (x y : P) : x = y. Proof. by move: x (x) y => /propT-> [] []. Qed. #[global] Hint Resolve Prop_irrelevance : core.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
Prop_irrelevance
mclassic := { _ : forall (P : Prop), {P} + {~P}; _ : forall T, hasChoice T }.
Record
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
mclassic
choice X Y (P : X -> Y -> Prop) : (forall x, exists y, P x y) -> {f & forall x, P x (f x)}. Proof. by move=> /(_ _)/constructive_indefinite_description -/all_tag. Qed. (* Diaconescu Theorem *)
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
choice
EM P : P \/ ~ P. Proof. pose U val := fun Q : bool => Q = val \/ P. have Uex val : exists b, U val b by exists val; left. pose f val := projT1 (cid (Uex val)). pose Uf val : U val (f val) := projT2 (cid (Uex val)). have : f true != f false \/ P. have [] := (Uf true, Uf false); rewrite /U. by move=> [->|?] [->|?] ; do ?[by right]; left. move=> [/eqP fTFN|]; [right=> p|by left]; apply: fTFN. have UTF : U true = U false by rewrite predeqE /U => b; split=> _; right. rewrite /f; move: (Uex true) (Uex false); rewrite UTF => p1 p2. by congr (projT1 (cid _)). Qed.
Theorem
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
EM
pselect (P : Prop): {P} + {~P}. Proof. have : exists b, if b then P else ~ P. by case: (EM P); [exists true|exists false]. by move=> /cid [[]]; [left|right]. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
pselect
pselectT T : (T -> False) + T. Proof. have [/cid[]//|NT] := pselect (exists t : T, True); first by right. by left=> t; case: NT; exists t. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
pselectT
classic : mclassic. Proof. split=> [|T]; first exact: pselect. exists (fun (P : pred T) (n : nat) => if pselect (exists x, P x) isn't left ex then None else Some (projT1 (cid ex))) => [P n x|P [x Px]|P Q /funext -> //]. by case: pselect => // ex [<- ]; case: cid. by exists 0; case: pselect => // -[]; exists x. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
classic
gen_choiceMixin (T : Type) : hasChoice T. Proof. by case: classic. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
gen_choiceMixin
lem (P : Prop): P \/ ~P. Proof. by case: (pselect P); tauto. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
lem
trueE : true = True :> Prop. Proof. by rewrite propeqE; split. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
trueE
falseE : false = False :> Prop. Proof. by rewrite propeqE; split. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
falseE
propF (P : Prop) : ~ P -> P = False. Proof. by move=> p; rewrite propeqE; tauto. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
propF
eq_fun T rT (U V : T -> rT) : (forall x : T, U x = V x) -> (fun x => U x) = (fun x => V x). Proof. by move=> /funext->. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_fun
eq2_fun T1 T2 rT (U V : T1 -> T2 -> rT) : (forall x y, U x y = V x y) -> (fun x y => U x y) = (fun x y => V x y). Proof. by move=> UV; rewrite funeq2E => x y; rewrite UV. Qed. #[deprecated(since="mathcomp-analysis 1.10.0", note="renamed to `eq2_fun`.")]
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq2_fun
eq_fun2 := eq2_fun (only parsing).
Notation
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_fun2
eq3_fun T1 T2 T3 rT (U V : T1 -> T2 -> T3 -> rT) : (forall x y z, U x y z = V x y z) -> (fun x y z => U x y z) = (fun x y z => V x y z). Proof. by move=> UV; rewrite funeq3E => x y z; rewrite UV. Qed. #[deprecated(since="mathcomp-analysis 1.10.0", note="renamed to `eq3_fun`.")]
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq3_fun
eq_fun3 := eq3_fun (only parsing).
Notation
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_fun3
eq_forall T (U V : T -> Prop) : (forall x : T, U x = V x) -> (forall x, U x) = (forall x, V x). Proof. by move=> e; rewrite propeqE; split=> ??; rewrite (e,=^~e). Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_forall
eq2_forall T S (U V : forall x : T, S x -> Prop) : (forall x y, U x y = V x y) -> (forall x y, U x y) = (forall x y, V x y). Proof. by move=> UV; apply/eq_forall => x; exact/eq_forall. Qed. #[deprecated(since="mathcomp-analysis 1.10.0", note="renamed to `eq2_forall`.")]
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq2_forall
eq_forall2 := eq2_forall (only parsing).
Notation
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_forall2
eq3_forall T S R (U V : forall (x : T) (y : S x), R x y -> Prop) : (forall x y z, U x y z = V x y z) -> (forall x y z, U x y z) = (forall x y z, V x y z). Proof. by move=> UV; apply/eq2_forall => x y; exact/eq_forall. Qed. #[deprecated(since="mathcomp-analysis 1.10.0", note="renamed to `eq3_forall`.")]
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq3_forall
eq_forall3 := eq3_forall (only parsing).
Notation
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_forall3
eq_exists T (U V : T -> Prop) : (forall x : T, U x = V x) -> (exists x, U x) = (exists x, V x). Proof. by move=> e; rewrite propeqE; split=> - [] x ?; exists x; rewrite (e,=^~e). Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_exists
eq2_exists T S (U V : forall x : T, S x -> Prop) : (forall x y, U x y = V x y) -> (exists x y, U x y) = (exists x y, V x y). Proof. by move=> UV; apply/eq_exists => x; exact/eq_exists. Qed. #[deprecated(since="mathcomp-analysis 1.10.0", note="renamed to `eq2_exists`.")]
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq2_exists
eq_exists2 := eq2_exists (only parsing).
Notation
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_exists2
eq3_exists T S R (U V : forall (x : T) (y : S x), R x y -> Prop) : (forall x y z, U x y z = V x y z) -> (exists x y z, U x y z) = (exists x y z, V x y z). Proof. by move=> UV; apply/eq2_exists => x y; exact/eq_exists. Qed. #[deprecated(since="mathcomp-analysis 1.10.0", note="renamed to `eq3_exists`.")]
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq3_exists
eq_exists3 := eq3_exists (only parsing).
Notation
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_exists3
eq_exist T (P : T -> Prop) (s t : T) (p : P s) (q : P t) : s = t -> exist P s p = exist P t q. Proof. by move=> st; case: _ / st in q *; apply/congr1. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_exist
forall_swap T S (U : forall (x : T) (y : S), Prop) : (forall x y, U x y) = (forall y x, U x y). Proof. by rewrite propeqE; split. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
forall_swap
exists_swap T S (U : forall (x : T) (y : S), Prop) : (exists x y, U x y) = (exists y x, U x y). Proof. by rewrite propeqE; split => -[x [y]]; exists y, x. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
exists_swap
reflect_eq (P : Prop) (b : bool) : reflect P b -> P = b. Proof. by rewrite propeqE; exact: rwP. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
reflect_eq
asbool (P : Prop) := if pselect P then true else false.
Definition
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asbool
asboolE (P : Prop) : `[<P>] = P :> Prop. Proof. by rewrite propeqE /asbool; case: pselect; split. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asboolE
asboolP (P : Prop) : reflect P `[<P>]. Proof. by apply: (equivP idP); rewrite asboolE. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asboolP
asboolb (b : bool) : `[< b >] = b. Proof. by apply/asboolP/idP. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asboolb
asboolPn (P : Prop) : reflect (~ P) (~~ `[<P>]). Proof. by rewrite /asbool; case: pselect=> h; constructor. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asboolPn
asboolW (P : Prop) : `[<P>] -> P. Proof. by case: asboolP. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asboolW
orW A B : A \/ B -> A + B. Proof. have [|NA] := asboolP A; first by left. have [|NB] := asboolP B; first by right. by move=> AB; exfalso; case: AB. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
orW
or3W A B C : [\/ A, B | C] -> A + B + C. Proof. have [|NA] := asboolP A; first by left; left. have [|NB] := asboolP B; first by left; right. have [|NC] := asboolP C; first by right. by move=> ABC; exfalso; case: ABC. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
or3W
or4W A B C D : [\/ A, B, C | D] -> A + B + C + D. Proof. have [|NA] := asboolP A; first by left; left; left. have [|NB] := asboolP B; first by left; left; right. have [|NC] := asboolP C; first by left; right. have [|ND] := asboolP D; first by right. by move=> ABCD; exfalso; case: ABCD. Qed. (* Shall this be a coercion ?*)
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
or4W
asboolT (P : Prop) : P -> `[<P>]. Proof. by case: asboolP. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asboolT
asboolF (P : Prop) : ~ P -> `[<P>] = false. Proof. by apply/introF/asboolP. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asboolF
eq_opE (T : eqType) (x y : T) : (x == y : Prop) = (x = y). Proof. by apply/propext; split=> /eqP. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eq_opE
is_true_inj : injective is_true. Proof. by move=> [] []; rewrite ?(trueE, falseE) ?propeqE; tauto. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
is_true_inj
gen_eq (T : Type) (u v : T) := `[<u = v>].
Definition
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
gen_eq
gen_eqP (T : Type) : Equality.axiom (@gen_eq T). Proof. by move=> x y; apply: (iffP (asboolP _)). Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
gen_eqP
gen_eqMixin (T : Type) : hasDecEq T := hasDecEq.Build T (@gen_eqP T). HB.instance Definition _ (T : Type) (T' : T -> eqType) := gen_eqMixin (forall t : T, T' t). HB.instance Definition _ (T : Type) (T' : T -> choiceType) := gen_choiceMixin (forall t : T, T' t). HB.instance Definition _ := gen_eqMixin Prop. HB.instance Definition _ := gen_choiceMixin Prop.
Definition
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
gen_eqMixin
classicType := T. HB.instance Definition _ := gen_eqMixin classicType. HB.instance Definition _ := gen_choiceMixin classicType.
Definition
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
classicType
eclassicType : Type := T. HB.instance Definition _ := Equality.copy eclassicType T. HB.instance Definition _ := gen_choiceMixin eclassicType.
Definition
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eclassicType
canonical_of T U (sort : U -> T) := forall (G : T -> Type), (forall x', G (sort x')) -> forall x, G x.
Definition
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
canonical_of
canonical_ sort := (@canonical_of _ _ sort).
Notation
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
canonical_
canonical T E := (@canonical_of T E id).
Notation
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
canonical
canon T U (sort : U -> T) : (forall x, exists y, sort y = x) -> canonical_ sort. Proof. by move=> + G Gs x => /(_ x)/cid[x' <-]. Qed. Arguments canon {T U sort} x.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
canon
Peq : canonical Type eqType. Proof. by apply: canon => T; exists {classic T}. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
Peq
Pchoice : canonical Type choiceType. Proof. by apply: canon => T; exists {classic T}. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
Pchoice
eqPchoice : canonical eqType choiceType. Proof. by apply: canon => T; exists {eclassic T}; case: T => //= T [?]//. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
eqPchoice
not_True : (~ True) = False. Proof. exact/propext. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
not_True
not_False : (~ False) = True. Proof. by apply/propext; split=> _. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
not_False
asbool_equiv_eq {P Q : Prop} : (P <-> Q) -> `[<P>] = `[<Q>]. Proof. by rewrite -propeqE => ->. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asbool_equiv_eq
asbool_equiv_eqP {P Q : Prop} b : reflect Q b -> (P <-> Q) -> `[<P>] = b. Proof. by move=> Q_b [PQ QP]; apply/asboolP/Q_b. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asbool_equiv_eqP
asbool_equiv {P Q : Prop} : (P <-> Q) -> (`[<P>] <-> `[<Q>]). Proof. by move/asbool_equiv_eq->. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asbool_equiv
asbool_eq_equiv {P Q : Prop} : `[<P>] = `[<Q>] -> (P <-> Q). Proof. by move=> eq; split=> /asboolP; rewrite (eq, =^~ eq) => /asboolP. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
asbool_eq_equiv
and_asboolP (P Q : Prop) : reflect (P /\ Q) (`[< P >] && `[< Q >]). Proof. apply: (iffP idP); first by case/andP => /asboolP p /asboolP q. by case=> /asboolP-> /asboolP->. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
and_asboolP
and3_asboolP (P Q R : Prop) : reflect [/\ P, Q & R] [&& `[< P >], `[< Q >] & `[< R >]]. Proof. apply: (iffP idP); first by case/and3P => /asboolP p /asboolP q /asboolP r. by case => /asboolP -> /asboolP -> /asboolP ->. Qed.
Lemma
classical
[ "From HB Require Import structures.", "From mathcomp Require Import all_ssreflect.", "From mathcomp Require Import mathcomp_extra.", "From mathcomp Require internal_Eqdep_dec." ]
classical/boolp.v
and3_asboolP
End of preview. Expand in Data Studio

Coq-Analysis

Structured dataset from MathComp Analysis — MathComp-compatible classical real analysis.

9,300 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
20

Collection including phanerozoic/Coq-Analysis