Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
7
47.5k
type
stringclasses
15 values
library
stringclasses
5 values
imports
listlengths
0
49
filename
stringclasses
182 values
symbolic_name
stringlengths
1
54
docstring
stringclasses
1 value
Z__range_adda0 a a1 (Ha: a0 <= a < a1) b0 b b1 (Hb : b0 <= b < b1) : a0+b0 <= a+b < a1 + b1 - 1. Proof. Lia.nia. Qed.
Lemma
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
Z__range_add
Z__range_suba0 a a1 (Ha: a0 <= a < a1) b0 b b1 (Hb : b0 <= b < b1) : a0-b1+1 <= a-b < a1 - b0. Proof. Lia.nia. Qed.
Lemma
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
Z__range_sub
Z__range_div_pos_const_rn0 n n1 (Hn : n0 <= n < n1) d (Hd : 0 < d) : n0/d <= n/d < n1/d + 1. Proof. Z.div_mod_to_equations. Lia.nia. Qed.
Lemma
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
Z__range_div_pos_const_r
Z__range_mul_nonnega0 a a1 (Ha: a0 <= a < a1) b0 b b1 (Hb : b0 <= b < b1) (Ha0 : 0 <= a0) (Hb0 : 0 <= b0) : a0*b0 <= a*b < (a1-1)*(b1-1) + 1. Proof. Lia.nia. Qed.
Lemma
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
Z__range_mul_nonneg
boundscheck{x0 x x1} (H: x0 <= x < x1) {X0 X1} (Hcheck : andb (X0 <=? x0) (x1 <=? X1) = true) : X0 <= x < X1. Proof. eapply andb_prop in Hcheck; case Hcheck; intros H1 H2; eapply Z.leb_le in H1; eapply Z.leb_le in H2. blia. Qed.
Lemma
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
boundscheck
boundscheck_lt{x0 x x1} (H: x0 <= x < x1) {X1} (Hcheck: Z.ltb x1 X1 = true) : x < X1. Proof. eapply Z.ltb_lt in Hcheck. blia. Qed.
Lemma
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
boundscheck_lt
bounded_constantc : c <= c < c+1. Proof. blia. Qed.
Lemma
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
bounded_constant
named_pose_proofpf := let H := fresh in let __ := match constr:(Set) with _ => pose proof pf as H end in H.
Ltac
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
named_pose_proof
named_posepf := let H := fresh in let __ := match constr:(Set) with _ => pose pf as H end in H.
Ltac
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
named_pose
named_pose_asfreshpf x := let H := fresh x in let __ := match constr:(Set) with _ => pose pf as H end in H.
Ltac
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
named_pose_asfresh
named_pose_asfresh_or_idx n := let y := match constr:(Set) with _ => named_pose_asfresh x n | _ => x end in y.
Ltac
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
named_pose_asfresh_or_id
requireZcstz := lazymatch Coq.setoid_ring.InitialRing.isZcst z with | true => idtac end.
Ltac
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
requireZcst
requireZcstExpre := match e with | Z.pred ?x => requireZcstExpr x | Z.succ ?x => requireZcstExpr x | Z.ones ?x => requireZcstExpr x | Z.opp ?x => requireZcstExpr x | Z.lnot ?x => requireZcstExpr x | Z.log2 ?x => requireZcstExpr x | Z.log2_up ?x => requireZcstExpr x | Z.add ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.sub ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.mul ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.div ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.modulo ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.quot ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.rem ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.pow ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.shiftl ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.shiftr ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.land ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.lor ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.lxor ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.ldiff ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.clearbit ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.setbit ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.min ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.max ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.gcd ?x ?y => requireZcstExpr x; requireZcstExpr y | Z.lcm ?x ?y => requireZcstExpr x; requireZcstExpr y | _ => requireZcst e end.
Ltac
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
requireZcstExpr
zsimpx := match constr:(Set) with | _ => let __ := requireZcstExpr x in let y := eval cbv in x in y | _ => x end. Local Notation "zbsimp! H" := (ltac:( lazymatch type of H with ?L <= ?X < ?R => let L := zsimp L in let R := zsimp R in exact ((H : L <= X < R)) end )) (at level 10, only parsing).
Ltac
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
zsimp
rboundede := let re := rdelta e in match goal with | H : _ <= e < _ |- _ => H | _ => match re with | word.unsigned ?a => named_pose_proof (zbsimp! (Properties.word.unsigned_range a : _ <= e < _)) | Z.div ?a ?b => (* TODO: non-constant denominator? *) let __ := match constr:(Set) with _ => requireZcstExpr b end in let Ha := rbounded a in named_pose_proof (zbsimp! (Z__range_div_pos_const_r _ a _ Ha b ltac:(eapply Z.ltb_lt; exact eq_refl) : _ <= e < _)) | Z.modulo ?a ?b => (* TODO: non-constant denominator? *) let __ := match constr:(Set) with _ => requireZcstExpr b end in named_pose_proof (zbsimp! (Z.mod_pos_bound a b ltac:(eapply Z.ltb_lt; exact eq_refl) : _ <= e < _)) | ?op ?a ?b => let Ha := rbounded a in let Hb := rbounded b in let a0 := match type of Ha with ?a0 <= _ < ?a1 => a0 end in let a1 := match type of Ha with ?a0 <= _ < ?a1 => a1 end in let b0 := match type of Hb with ?b0 <= _ < ?b1 => b0 end in let b1 := match type of Hb with ?b0 <= _ < ?b1 => b1 end in match op with | Z.add => named_pose_proof (zbsimp! (Z__range_add a0 a a1 Ha b0 b b1 Hb : a0 + b0 <= e < a1 + b1 - 1)) | Z.sub => named_pose_proof (zbsimp! (Z__range_sub a0 a a1 Ha b0 b b1 Hb : a0-b1+1 <= e < a1-b0)) | Z.mul => named_pose_proof (zbsimp! (Z__range_mul_nonneg a0 a a1 Ha b0 b b1 Hb (Zle_bool_imp_le 0 a0 eq_refl) (Zle_bool_imp_le 0 b0 eq_refl) : _ <= e < _)) end end | _ => let __ := match constr:(Set) with _ => requireZcstExpr re end in constr:(zbsimp! (bounded_constant e)) end.
Ltac
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
rbounded
absint_eq{T} := @eq T.
Definition
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
absint_eq
absint_eq_refl{T} v := ((@eq_refl T v) : @absint_eq T v v). Local Infix "=~>" := absint_eq (at level 70, no associativity).
Definition
bedrock2
[ "Require Import Coq.Strings.String Coq.ZArith.ZArith", "From coqutil Require Import Word.Interface Word.Properties", "From coqutil Require Import Tactics.rdelta Z.div_mod_to_equations", "Require Import coqutil.Z.Lia" ]
bedrock2/src/bedrock2/AbsintWordToZ.v
absint_eq_refl
anyval{word mem T: Type}(p: T -> word -> mem -> Prop)(a: word): mem -> Prop := ex1 (fun v => p v a). (* makes __ a keyword, so "let __ := uselessvalue in blah" in Ltac doesn't parse any more! Notation "p '__' a" := (anyval p a) (at level 20, a at level 9). Infix "__" := anyval (at level 20). *) Notation "p ? a" := (anyval p a) (at level 20, a at level 9).
Definition
bedrock2
[ "Require Import bedrock2.Lift1Prop" ]
bedrock2/src/bedrock2/anyval.v
anyval
recis_positive_literal(e: constr): bool := lazy_match! e with | xI ?p => is_positive_literal p | xO ?p => is_positive_literal p | xH => true | _ => false end. (* Note: Not the same as Coq.setoid_ring.InitialRing.isZcst, because isZcst considers (Z.of_nat n) and (Z.of_N n) constant if n is constant *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
is_Z_literal(n: constr): bool := lazy_match! n with | 0 => true | Z.pos ?p => is_positive_literal p | Z.neg ?p => is_positive_literal p | _ => false end. (* needed for compatibility with simplification strategies that choose not to simplify powers of 2 *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
is_Z_literal
is_Z_const(n: constr): bool := lazy_match! n with | 2 ^ ?x => is_Z_literal x | _ => is_Z_literal n end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
is_Z_const
recis_nat_const(n: constr): bool := lazy_match! n with | O => true | S ?p => is_nat_const p | _ => false end. (* To be treated opaquely and only manipulated through the API that follows. Alternative representations to try out: - Ltac2 records - uconstr - resulting term of simplification as constr, proof term as uconstr or custom type *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
Typeres := [ ResNop(constr) (* new and old term *) | ResConvertible(constr) (* new term *) | ResRewrite(constr, constr) (* new term, proof *) ].
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
Type
new_term(r: res): constr := match r with | ResNop t => t | ResConvertible t => t | ResRewrite t _ => t end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
new_term
eq_proof(r: res): constr := match r with | ResNop t => '(@eq_refl _ $t) | ResConvertible t => '(@eq_refl _ $t) | ResRewrite _ pf => pf end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
eq_proof
did_something(r: res): bool := match r with | ResNop _ => false | ResConvertible _ => true | ResRewrite _ _ => true end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
did_something
is_convertible(r: res): bool := match r with | ResNop _ => true | ResConvertible _ => true | ResRewrite _ _ => false end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
is_convertible
res_convertible(new_term: constr): res := ResConvertible new_term.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
res_convertible
res_rewrite_to(new_term: constr)(eq_proof: constr): res := ResRewrite new_term eq_proof.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
res_rewrite_to
res_rewrite(eq_proof: constr): res := lazy_match! Constr.type eq_proof with | _ = ?rhs => ResRewrite rhs eq_proof end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
res_rewrite
res_nothing_to_simpl(original_term: constr): res := ResNop original_term. (* original: term of shape (f a) f: constr r: result whose lhs is a *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
res_nothing_to_simpl
lift_res1(original: constr)(f: constr)(r: res): res := if did_something r then let t := new_term r in if is_convertible r then res_convertible '($f $t) else let pf := eq_proof r in res_rewrite '(@f_equal _ _ $f _ $t $pf) else res_nothing_to_simpl original. (* If we just used f_equal with f := (fun x => g (h x)), the RHS would be ((fun x => g (h x)) a') instead of (g (h a')). *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
lift_res1
f_equal11[A B C: Type](h: A -> B)(g: B -> C)[a a': A]: a = a' -> g (h a) = g (h a'). Proof. exact (@f_equal A C (fun x => g (h x)) a a'). Qed. (* original: term of shape (f (g a)) f: constr g: constr r: result whose lhs is a *)
Lemma
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
f_equal11
lift_res11(original: constr)(f: constr)(g: constr)(r: res): res := if did_something r then let t := new_term r in if is_convertible r then res_convertible '($f ($g $t)) else let pf := eq_proof r in res_rewrite '(f_equal11 $f $g $pf) else res_nothing_to_simpl original. (* original: term of shape (f a1 a2) f: constr r1: result whose lhs is a1 r2: result whose lhs is a2 *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
lift_res11
lift_res2(original: constr)(f: constr)(r1: res)(r2: res): res := let t1 := new_term r1 in let t2 := new_term r2 in if did_something r1 then if is_convertible r1 then if is_convertible r2 then res_convertible '($f $t1 $t2) else let pf1 := eq_proof r1 in let pf2 := eq_proof r2 in res_rewrite '(@f_equal2 _ _ _ $f _ $t1 _ $t2 $pf1 $pf2) else let pf1 := eq_proof r1 in let pf2 := eq_proof r2 in res_rewrite '(@f_equal2 _ _ _ $f _ $t1 _ $t2 $pf1 $pf2) else if did_something r2 then if is_convertible r2 then res_convertible '($f $t1 $t2) else let pf2 := eq_proof r2 in res_rewrite '(@f_equal _ _ ($f $t1) _ $t2 $pf2) else res_nothing_to_simpl original.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
lift_res2
app_cong[A B: Type][f g: A -> B][x y: A]: f = g -> x = y -> f x = g y. Proof. intros. subst. reflexivity. Qed. (* original: term of shape (f a) r1: result whose lhs is f r2: result whose lhs is a *)
Lemma
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
app_cong
lift_res_app(original: constr)(r1: res)(r2: res): res := let t1 := new_term r1 in let t2 := new_term r2 in if did_something r1 then if is_convertible r1 then if is_convertible r2 then res_convertible '($t1 $t2) else let pf1 := eq_proof r1 in let pf2 := eq_proof r2 in res_rewrite '(@app_cong _ _ _ $t1 _ $t2 $pf1 $pf2) else let pf1 := eq_proof r1 in let pf2 := eq_proof r2 in res_rewrite '(@app_cong _ _ _ $t1 _ $t2 $pf1 $pf2) else if did_something r2 then if is_convertible r2 then res_convertible '($t1 $t2) else let pf2 := eq_proof r2 in res_rewrite '(@f_equal _ _ $t1 _ $t2 $pf2) else res_nothing_to_simpl original.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
lift_res_app
if_cong[A: Type][b b': bool][thn thn' els els': A]: b = b' -> thn = thn' -> els = els' -> (if b then thn else els) = (if b' then thn' else els'). Proof. intros. subst. reflexivity. Qed. (* original: term of shape (if b then a1 else a2) r0: result whose lhs is b r1: result whose lhs is a1 r2: result whose lhs is a2 *)
Lemma
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
if_cong
lift_res_if(original: constr)(r0: res)(r1: res)(r2: res): res := let t0 := new_term r0 in let t1 := new_term r1 in let t2 := new_term r2 in if did_something r0 || did_something r1 || did_something r2 then if is_convertible r0 && is_convertible r1 && is_convertible r2 then res_convertible '(if $t0 then $t1 else $t2) else let pf0 := eq_proof r0 in let pf1 := eq_proof r1 in let pf2 := eq_proof r2 in res_rewrite '(if_cong $pf0 $pf1 $pf2) else res_nothing_to_simpl original.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
lift_res_if
impl_cong[P P' Q Q': Prop]: P = P' -> Q = Q' -> (P -> Q) = (P' -> Q'). Proof. intros. subst. reflexivity. Qed. (* original: term of shape (P -> Q) r1: result whose lhs is P r2: result whose lhs is Q *)
Lemma
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
impl_cong
lift_res_impl(original: constr)(r1: res)(r2: res): res := let t1 := new_term r1 in let t2 := new_term r2 in if did_something r1 || did_something r2 then if is_convertible r1 && is_convertible r2 then res_convertible '($t1 -> $t2) else let pf1 := eq_proof r1 in let pf2 := eq_proof r2 in res_rewrite '(impl_cong $pf1 $pf2) else res_nothing_to_simpl original.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
lift_res_impl
chain_rewrite_res(r1: res)(r2: res): res := let t1 := new_term r1 in let pf1 := eq_proof r1 in let t2 := new_term r2 in let pf2 := eq_proof r2 in res_rewrite '(@eq_trans _ _ $t1 $t2 $pf1 $pf2).
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
chain_rewrite_res
chain_res(r1: res)(r2: res): res := if did_something r1 then if did_something r2 then if is_convertible r1 then r2 else if is_convertible r2 then res_rewrite_to (new_term r2) (eq_proof r1) else chain_rewrite_res r1 r2 else r1 else r2.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
chain_res
xlia(P: Prop){pf: P}: P := pf.
Definition
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
xlia
mutablebottom_up_simpl_sidecond_hook () := ltac1:(lia). (* OR xlia zchecker if already zified *) (* local_X_simpl tactics: Given a term with already simplified subterms, produce new simplified term and equality proof (or set flag indicating that it's convertible). Failing means no simplification opportunity. *) (* inh: inhabited instance l: any number of cons followed by nil or an abstract tail i: fully simplified Z literal Returns an element or a List.get with a smaller index *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
mutable
recconvertible_list_get inh l i := lazy_match! l with | nil => '(@Inhabited.default _ $inh) | cons ?h ?t => lazy_match! i with | Z0 => h | Zpos _ => let j := eval cbv in (Z.pred $i) in convertible_list_get inh t j | Zneg _ => '(@Inhabited.default _ $inh) end | _ => '(@List.get _ $inh $l $i) end. (* l: any number of cons followed by nil or an abstract tail i: fully simplified Z literal Returns a prefix of l or a few cons followed by a List.upto with a smaller index, eg (a :: b :: c :: l)[:5] --> a :: b :: c :: (l[:2]) *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recconvertible_list_upto(i: constr)(l: constr): constr := lazy_match! l with | nil => l | @cons ?tp ?h ?t => lazy_match! i with | Zpos _ => let j := eval cbv in (Z.pred $i) in let r := convertible_list_upto j t in '(@cons $tp $h $r) | _ => '(@nil $tp) end | _ => lazy_match! i with | Zpos _ => '(List.upto $i $l) | Z0 => '(@nil _) | Zneg _ => '(@nil _) end end. (* l: any number of cons followed by nil or an abstract tail i: fully simplified Z literal Returns a suffix of l or a List.from with a smaller index *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recconvertible_list_from i l := lazy_match! l with | nil => l | @cons ?tp ?h ?t => lazy_match! i with | Zpos _ => let j := eval cbv in (Z.pred $i) in convertible_list_from j t | _ => l end | _ => lazy_match! i with | Zpos _ => '(List.from $i $l) | Z0 => l | Zneg _ => l end end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recprepend_concrete_list l1 l2 := lazy_match! l1 with | cons ?h ?t => let r := prepend_concrete_list t l2 in '(cons $h $r) | nil => l2 end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
is_concrete_enough(i: constr)(l: constr)(is_nonpos_concrete_enough: bool): bool := lazy_match! l with | nil => is_Z_literal i | cons _ _ => is_Z_literal i | _ => lazy_match! i with | Z0 => is_nonpos_concrete_enough | Zneg _ => is_nonpos_concrete_enough | _ => false end end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
is_concrete_enough
non_ring_expr_size(e: constr): int := lazy_match! e with | Zneg _ => 2 | _ => if is_Z_const e then 1 else 2 end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
non_ring_expr_size
recring_expr_size(e: constr): int := let r1 x := let s := ring_expr_size x in Int.add 1 s in let r2 x y := let s1 := ring_expr_size x in let s2 := ring_expr_size y in Int.add 1 (Int.add s1 s2) in lazy_match! e with | Z.add ?x ?y => r2 x y | Z.sub ?x ?y => r2 x y | Z.mul ?x ?y => r2 x y | Z.opp ?x => r1 x | word.add ?x ?y => r2 x y | word.sub ?x ?y => r2 x y | word.mul ?x ?y => r2 x y | word.opp ?x => r1 x | word.of_Z ?x => non_ring_expr_size x | _ => non_ring_expr_size e end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
Typeexpr_kind := [ WordRingExpr | ZRingExpr | OtherExpr ].
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
Type
expr_kind_eqk1 k2 := match k1 with | WordRingExpr => match k2 with WordRingExpr => true | _ => false end | ZRingExpr => match k2 with ZRingExpr => true | _ => false end | OtherExpr => match k2 with OtherExpr => true | _ => false end end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
expr_kind_eq
get_expr_kind(e: constr): expr_kind := lazy_match! e with | Z.add _ _ => ZRingExpr | Z.sub _ _ => ZRingExpr | Z.mul _ _ => ZRingExpr | Z.opp _ => ZRingExpr | word.add _ _ => WordRingExpr | word.sub _ _ => WordRingExpr | word.mul _ _ => WordRingExpr | word.opp _ => WordRingExpr | _ => OtherExpr end. (* To hide the ring_simplify proof when printing the proof term, and to provide a let so that the preprocessing of ring_simplify doesn't mess with the evar, while also making sure that the type as seen from the outside is a (_ = _) rather than a let. *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
get_expr_kind
ring_simplify_proof[A: Type](lhs rhs: A){pf: let x := rhs in lhs = x}: lhs = rhs. Proof. exact pf. Qed.
Lemma
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
ring_simplify_proof
ring_simplify_res_forcing_progress(e: constr): res := let rhs := '(_) in res_rewrite '(@ring_simplify_proof _ $e $rhs (* to invoke ring_simplify, we need to switch to Ltac1 anyways, so we just do this whole line in Ltac1 *) ltac:(let x := fresh "x" in intro x; progress ring_simplify; subst x; reflexivity)).
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
ring_simplify_res_forcing_progress
ring_simplify_res_or_nothing_to_simpl(e: constr): res := first_val [ ring_simplify_res_forcing_progress e | res_nothing_to_simpl e ].
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
ring_simplify_res_or_nothing_to_simpl
local_ring_simplify(parent: expr_kind)(e: constr): res := if expr_kind_eq (get_expr_kind e) parent then gfail "nothing to do here because parent will be ring_simplified too" else let r := ring_simplify_res_forcing_progress e in if Int.lt (ring_expr_size (new_term r)) (ring_expr_size e) then r else gfail "ring_simplify does not shrink the expression size".
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
local_ring_simplify
try_elset1 t2 := orelse t1 (fun _ => t2 ()).
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
try_else
Notation"try" t1(thunk(tactic(5))) "else" t2(thunk(tactic(5))) := try_else t1 t2.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
Notation
Notation"try" t1(thunk(tactic(5))) := try0 t1. Goal True. try fail "nope". try fail "ooh" else pose 1. try (pose 2; fail) else pose 3. try () else pose 1; pose 2. let r := try '(1%nat + 1%Z) else '(tt) in pose $r. Fail let r := try '(1%nat + 1%Z) else 2 in pose $r. Fail try fail "msg1" else fail "msg2". (* msg2 *) Fail first [ fail "msg1" | fail "msg2" ]. (* Tactic_failure (None) *) Abort. (* gen_stmt: ltac function taking a nat and returning a Prop tac: tactic to prove stmt, takes a dummy unit lower: min n to try upper: max n to try Returns the biggest possible n and the associated proof term *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
Notation
max_n_st(gen_stmt: constr -> constr)(tac: unit -> unit) (lower: constr)(upper: constr): (constr * constr) := let rec loop n := let stmt := gen_stmt n in try (n, '(ltac2:(tac ()) : $stmt)) else if Constr.equal n lower then gfail "stmt does not hold for any n within the bounds" else lazy_match! n with | S ?m => loop m | _ => anomaly "expected a nat above %t, got %t" lower n end in loop upper. Goal forall (b: nat), b = 12%nat -> (3 * 3 < b)%nat. intros. let tac := (fun _ => lazy_match! goal with | [ |- ?g ] => () (* printf "goal: %t" g *) end; cbn; lia) in let (_, pf) := max_n_st (fun n => '(($n * $n < b)%nat)) tac '2%nat '7%nat in pose $pf as A. exact A. Succeed Qed. Abort.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
max_n_st
reclist_length_as_nat(l: constr): constr := lazy_match! l with | nil => '(0%nat) | cons _ ?tail => let r := list_length_as_nat tail in '((S $r)) end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
panic_if_failure(f: unit -> 'a): 'a := match Control.case f with | Val p => let (r, _) := p in r | Err e => Control.throw e end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
panic_if_failure
mutablebottom_up_simpl_recurse(e: constr): res := Control.throw Assertion_failure. (* returns a proof whose LHS is (List.upto i l) and an RHS where the upto has been pushed down as far as nicely possible *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
mutable
recpush_down_upto(force_progress: bool)(treat_app: bool) (tp: constr)(i: constr)(l: constr): res := let nop := fun (_: unit) => if force_progress then gfail "no progress" else res_nothing_to_simpl '(@List.upto $tp $i $l) in match! l with | _ => res_rewrite '(List.upto_beginning $l $i ltac2:(bottom_up_simpl_sidecond_hook ())) | _ => res_rewrite '(List.upto_pastend $l $i ltac2:(bottom_up_simpl_sidecond_hook ())) | List.app _ _ => if treat_app then let xss := List.reify_apps l in let (nL, nL_pf) := max_n_st (* might fail *) (fun n => '(List.cbn_len_sum (List.cbn_firstn $n $xss) <= $i)) (fun _ => cbn [List.cbn_len_sum List.cbn_firstn]; bottom_up_simpl_sidecond_hook ()) '0%nat (list_length_as_nat xss) in let (nR, nR_pf) := max_n_st (* might fail *) (fun n => '($i <= List.cbn_len_sum (List.cbn_dropRight $n $xss))) (fun _ => cbn [List.cbn_len_sum List.cbn_dropRight]; bottom_up_simpl_sidecond_hook ()) '0%nat (list_length_as_nat xss) in if Constr.equal nL '0%nat && Constr.equal nR '0%nat then nop () else match Control.case (fun _ => '(eq_refl: Nat.add $nL $nR = length $xss)) with | Val p => let (pf, _) := p in res_rewrite '(List.upto_apps_at_boundary $nL $nR $i _ _ $xss _ $pf $nL_pf $nR_pf ltac2:(cbn [List.cbn_firstn]; reflexivity) ltac2:(cbn [List.cbn_concat]; reflexivity) ltac2:(cbn [List.cbn_concat]; reflexivity)) | Err _ => res_rewrite '(List.upto_apps $nL $nR $i _ $l _ _ $xss _ _ _ _ $nL_pf $nR_pf ltac2:(cbn [List.cbn_firstn]; reflexivity) ltac2:(cbn [List.cbn_len_sum]; lazy_match! goal with | [ |- ?diff = _ ] => let res := bottom_up_simpl_recurse diff in let pf := eq_proof res in exact $pf end) ltac2:(cbn [List.cbn_dropRight List.cbn_skipn]; reflexivity) ltac2:(cbn [List.cbn_concat]; reflexivity) ltac2:(cbn [List.cbn_concat]; reflexivity) ltac2:(lazy_match! goal with | [ |- List.upto ?j ?xs2 = _] => let res_rec := push_down_upto false false tp j xs2 in let pf := eq_proof res_rec in exact $pf end) ltac2:(cbn [List.cbn_app]; reflexivity) ltac2:(cbn [List.cbn_concat]; reflexivity)) end else gfail "try next match branch" | List.from ?j ?l => let n := i in (* sized slice of size n: l[j:][:n] *) let r_sum := ring_simplify_res_or_nothing_to_simpl '(Z.add $j $n) in let sum := new_term r_sum in if Int.lt (ring_expr_size sum) (ring_expr_size n) then let pf_sum := eq_proof r_sum in res_rewrite '(sized_slice_to_indexed_slice $l $j $n $sum ltac2:(bottom_up_simpl_sidecond_hook ()) $pf_sum) else gfail "ring_simplify does not shrink the expression size" | List.upto ?j ?ll => let r1 := res_rewrite '(List.upto_upto_subsume $j $i $ll ltac2:(bottom_up_simpl_sidecond_hook ())) in let r2 := push_down_upto false true tp i ll in chain_res r1 r2 | List.repeatz ?x ?n => res_rewrite '(List.push_down_upto_repeatz $i $x $n ltac2:(bottom_up_simpl_sidecond_hook ())) (* might fail! *) | _ => if is_concrete_enough i l true then let l' := convertible_list_upto i l in res_convertible l' else nop () end. (* returns a proof whose LHS is (List.from i l) and an RHS where the from has been pushed down as far as nicely possible. *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recpush_down_from(force_progress: bool)(treat_app: bool) (tp: constr)(i: constr)(l: constr): res := (*non-lazy*)match! l with | _ => res_rewrite '(List.from_beginning $l $i ltac2:(bottom_up_simpl_sidecond_hook ())) | _ => res_rewrite '(List.from_pastend $l $i ltac2:(bottom_up_simpl_sidecond_hook ())) | List.app _ _ => if treat_app then let xss := List.reify_apps l in let (nL, nL_pf) := max_n_st (* might fail *) (fun n => '(List.cbn_len_sum (List.cbn_firstn $n $xss) <= $i)) (fun _ => cbn [List.cbn_len_sum List.cbn_firstn]; bottom_up_simpl_sidecond_hook ()) '0%nat (list_length_as_nat xss) in let (nR, nR_pf) := max_n_st (* might fail *) (fun n => '($i <= List.cbn_len_sum (List.cbn_dropRight $n $xss))) (fun _ => cbn [List.cbn_len_sum List.cbn_dropRight]; bottom_up_simpl_sidecond_hook ()) '0%nat (list_length_as_nat xss) in match Control.case (fun _ => '(eq_refl: Nat.add $nL $nR = length $xss)) with | Val p => let (pf, _) := p in res_rewrite '(List.from_apps_at_boundary $nL $nR $i _ _ $xss _ $pf $nL_pf $nR_pf ltac2:(cbn [List.cbn_skipn]; reflexivity) ltac2:(cbn [List.cbn_concat]; reflexivity) ltac2:(cbn [List.cbn_concat]; reflexivity)) | Err _ => lazy_match! nL with | O => lazy_match! nR with | O => gfail "fall-through to last default case at end of match" | S _ => res_rewrite '(List.from_apps_pullout_r $nR $i _ _ _ _ $xss _ _ $nR_pf ltac2:(cbn[List.cbn_dropRight]; reflexivity) ltac2:(cbn[List.cbn_takeRight]; reflexivity) ltac2:(cbn[List.cbn_concat]; reflexivity) ltac2:(cbn[List.cbn_concat]; reflexivity) ltac2:(cbn[List.cbn_concat]; reflexivity) ltac2:(lazy_match! goal with | [ |- List.from _ ?xs1 = _] => let res_rec := push_down_from false false tp i xs1 in let pf := eq_proof res_rec in exact $pf end)) end | S _ => lazy_match! nR with | O => res_rewrite '(List.from_apps_drop_l $nL $i _ _ _ _ $xss _ $nL_pf ltac2:(cbn [List.cbn_len_sum List.cbn_firstn]; lazy_match! goal with | [ |- ?diff = _ ] => let res := bottom_up_simpl_recurse diff in let pf := eq_proof res in exact $pf end) ltac2:(cbn[List.cbn_skipn]; reflexivity) ltac2:(cbn[List.cbn_concat]; reflexivity) ltac2:(cbn[List.cbn_concat]; reflexivity) ltac2:( lazy_match! goal with | [ |- List.from ?j ?xs2 = _] => let res_rec := push_down_from false false tp j xs2 in let pf := eq_proof res_rec in exact $pf end)) | S _ => res_rewrite '(List.from_apps $nL $nR $i _ _ _ _ _ $xss _ _ $nL_pf $nR_pf ltac2:(cbn [List.cbn_len_sum List.cbn_firstn]; lazy_match! goal with | [ |- ?diff = _ ] => let res := bottom_up_simpl_recurse diff in let pf := eq_proof res in exact $pf end) ltac2:(cbn[List.cbn_skipn List.cbn_dropRight]; reflexivity) ltac2:(cbn[List.cbn_takeRight]; reflexivity) ltac2:(cbn[List.cbn_concat]; reflexivity) ltac2:(cbn[List.cbn_concat]; reflexivity) ltac2:(cbn[List.cbn_concat]; reflexivity) ltac2:( lazy_match! goal with | [ |- List.from ?j ?xs2 = _] => let res_rec := push_down_from false false tp j xs2 in let pf := eq_proof res_rec in exact $pf end)) end end end else gfail "try next match branch" | List.upto ?j ?l => let r_diff := ring_simplify_res_or_nothing_to_simpl '(Z.sub $j $i) in let diff := new_term r_diff in if Int.lt (ring_expr_size diff) (ring_expr_size j) then let pf_diff := eq_proof r_diff in res_rewrite '(indexed_slice_to_sized_slice $l $i $j $diff ltac2:(bottom_up_simpl_sidecond_hook ()) $pf_diff) else gfail "ring_simplify does not shrink the expression size" | List.from ?j ?ll => let r1 := res_rewrite '(List.from_from $ll $j $i ltac2:(bottom_up_simpl_sidecond_hook ()) ltac2:(bottom_up_simpl_sidecond_hook ())) in let r2 := push_down_from false true tp '($j + $i) ll in chain_res r1 r2 | List.repeatz ?x ?n => res_rewrite '(List.push_down_from_repeatz $i $x $n _ ltac2:(bottom_up_simpl_sidecond_hook ()) (* <- might fail! *) ltac2:(lazy_match! goal with | [ |- ?diff = _ ] => let res := bottom_up_simpl_recurse diff in let pf := eq_proof res in exact $pf end)) | _ => if is_concrete_enough i l true then let l' := convertible_list_from i l in res_convertible l' else if force_progress then gfail "no progress" else res_nothing_to_simpl '(@List.from $tp $i $l) end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recpush_down_get(inh: constr)(l0: constr)(n: constr): res := let with_sidecond_pf := fun (c: constr) (k: constr -> res) => match Control.case (fun _ => '(ltac2:(bottom_up_simpl_sidecond_hook ()): $c)) with | Val p => let (s, _) := p in k s | Err _ => res_nothing_to_simpl '(@List.get _ $inh $l0 $n) end in let with_sidecond_pf2 := fun (c1: constr) (k1: constr -> res) (c2: constr) (k2: constr -> res) => match Control.case (fun _ => '(ltac2:(bottom_up_simpl_sidecond_hook ()): $c1)) with | Val p => let (s, _) := p in k1 s | Err _ => match Control.case (fun _ => '(ltac2:(bottom_up_simpl_sidecond_hook ()): $c2)) with | Val p => let (s, _) := p in k2 s | Err _ => res_nothing_to_simpl '(@List.get _ $inh $l0 $n) end end in lazy_match! l0 with | List.from ?i ?l => with_sidecond_pf '(0 <= $i < Z.of_nat (List.length $l) /\ 0 <= $n < Z.of_nat (List.length $l) - $i) (fun s => let res := push_down_get inh l '($i + $n) in let rhs := new_term res in let pf := eq_proof res in res_rewrite '(@push_down_get_from _ $inh $l $n $i $rhs $s $pf)) | List.upto ?i ?l => with_sidecond_pf '(0 <= $n < $i) (fun s => let res := push_down_get inh l n in let rhs := new_term res in let pf := eq_proof res in res_rewrite '(@push_down_get_upto _ $inh $l $n $i $rhs $s $pf)) | cons ?h ?t => with_sidecond_pf2 '($n = 0) (fun s => res_rewrite '(@push_down_get_head _ $inh $h $t $n $s)) '(0 < $n) (fun s => let res := push_down_get inh t '($n - 1) in let rhs := new_term res in let pf := eq_proof res in res_rewrite '(@push_down_get_tail _ $inh $h $t $n $rhs $s $pf)) | List.app ?l1 ?l2 => with_sidecond_pf2 '(0 <= $n < Z.of_nat (length $l1)) (fun s => let res := push_down_get inh l1 n in let rhs := new_term res in let pf := eq_proof res in res_rewrite '(@push_down_get_app_l _ $inh $l1 $l2 $n $rhs $s $pf)) '(Z.of_nat (length $l1) <= $n) (fun s => let res := push_down_get inh l2 '($n - Z.of_nat (length $l1)) in let rhs := new_term res in let pf := eq_proof res in res_rewrite '(@push_down_get_app_r _ $inh $l1 $l2 $n $rhs $s $pf)) | List.set ?l ?i ?x => with_sidecond_pf '(0 <= $i < Z.of_nat (length $l)) (fun b => with_sidecond_pf2 '($n = $i) (fun s => res_rewrite '(@push_down_get_set_same _ $inh $l $i $n $x $b $s)) '($n <> $i) (fun s => let res := push_down_get inh l n in let rhs := new_term res in let pf := eq_proof res in res_rewrite '(@push_down_get_set_diff _ $inh $l $i $n $x $rhs $b $s $pf))) | List.repeatz ?x ?c => with_sidecond_pf '(0 <= $n < $c) (fun s => res_rewrite '(@push_down_get_repeatz _ $inh $x $c $n $s)) | _ => res_nothing_to_simpl '(@List.get _ $inh $l0 $n) end. (* We view the push_down_get procedure as computing a new index At the end of the toplevel call, if the index changed, we ring_simplify it once. *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recpush_down_get_top(inh: constr)(l0: constr)(n: constr): res := panic_if_failure (fun _ => let res := push_down_get inh l0 n in if did_something res then let rhs := new_term res in lazy_match! rhs with | @List.get ?tp2 ?inh2 ?l2 ?i2 => let resi := ring_simplify_res_or_nothing_to_simpl i2 in let resiLifted := lift_res1 rhs '(@List.get $tp2 $inh2 $l2) resi in chain_res res resiLifted | _ => res end else res).
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recis_concrete_list(e: constr): bool := lazy_match! e with | nil => true | cons _ ?tl => is_concrete_list tl | _ => false end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recconstr_list_length(e: constr): int := lazy_match! e with | nil => 0 | cons _ ?tl => Int.add 1 (constr_list_length tl) end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recunsnoc_constr_list(e: constr): constr * constr := lazy_match! e with | cons ?x (@nil ?tp) => ('(@nil $tp), x) | cons ?h ?tl => let (l, last) := unsnoc_constr_list tl in ('(cons $h $l), last) end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
uncons_constr_list(e: constr): constr * constr := lazy_match! e with | cons ?h ?tl => (h, tl) end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
uncons_constr_list
local_zlist_simpl(e: constr): res := match! e with | @List.upto ?tp ?i ?l => push_down_upto true true tp i l | @List.from ?tp ?i ?l => push_down_from true true tp i l | @List.get _ ?inh ?l ?i => if is_concrete_enough i l false then res_convertible (convertible_list_get inh l i) else push_down_get_top inh l i | @List.repeatz ?tp _ Z0 => res_convertible '(@nil $tp) | List.app ?xs nil => res_rewrite '(List.app_nil_r $xs) | List.app nil ?xs => res_convertible xs | List.app (cons ?x nil) (List.repeatz ?x ?n) => res_rewrite '(List.repeatz_singleton_l $x $n ltac2:(bottom_up_simpl_sidecond_hook ())) | List.app (List.repeatz ?x ?n) (cons ?x nil) => res_rewrite '(List.repeatz_singleton_r $x $n ltac2:(bottom_up_simpl_sidecond_hook ())) | List.app ?xs ?ys => if is_concrete_list xs && is_concrete_list ys then (* Note: (is_concrete_list ys) is not necessary for prepend_concrete_list to work, but we want to use cons only for list literals, ie. we don't want lists like (e1 :: e2 :: non_concrete_tail) *) res_convertible (prepend_concrete_list xs ys) else let xss := List.reify_apps_and_cons xs in let yss := List.reify_apps_and_cons ys in if Int.lt 2 (Int.add (constr_list_length xss) (constr_list_length yss)) then let (xss', last_xs) := unsnoc_constr_list xss in let (first_ys, yss') := uncons_constr_list yss in let res := bottom_up_simpl_recurse '(List.app $last_xs $first_ys) in let combined := new_term res in let pf := eq_proof res in if Int.equal 1 (constr_list_length (List.reify_apps_and_cons combined)) then res_rewrite '(List.reassoc_app_mergeable_in_middle $xss' $yss' $last_xs $first_ys $combined $xs $ys _ eq_refl eq_refl $pf ltac2:(cbn[List.cbn_concat List.cbn_app]; reflexivity)) else lazy_match! xss' with | nil => gfail "nothing to simplify" (* already a right-leaning ++ *) | cons _ _ => (* reassociate ((xss1 ++ .. ++ xssN) ++ (yss1 ++ .. ++ yssN)) into (xss1 ++ .. ++ xssN ++ yss1 ++ .. ++ yssN) *) res_rewrite '(List.reassoc_app $xss $yss $xs $ys _ eq_refl eq_refl ltac2:(cbn [List.cbn_concat List.cbn_app]; reflexivity)) end else (* xss and yss both consist of only one listlet *) gfail "nothing to simplify" | @cons ?tp ?x ?xs => if is_concrete_list xs then gfail "nothing to simplify" else lazy_match! xs with | List.app ?xs1 ?xs2 => if is_concrete_list xs1 then res_convertible '(List.app (cons $x $xs1) $xs2) else res_convertible '(List.app (cons $x nil) $xs) | _ => res_convertible '(List.app (cons $x nil) $xs) end end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
local_zlist_simpl
is_unary_Z_op(op: constr): bool := lazy_match! op with | Z.of_nat => true | Z.to_nat => true | Z.succ => true | Z.pred => true | Z.opp => true | Z.log2 => true | Z.log2_up => true | _ => false end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
is_unary_Z_op
is_unary_nat_op(op: constr): bool := lazy_match! op with | Nat.succ => true | Nat.pred => true | _ => false end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
is_unary_nat_op
is_binary_Z_op(op: constr): bool := lazy_match! op with | Z.add => true | Z.sub => true | Z.mul => true | Z.div => true | Z.modulo => true | Z.quot => true | Z.rem => true | Z.pow => true | Z.shiftl => true | Z.shiftr => true | Z.land => true | Z.lor => true | Z.lxor => true | Z.ldiff => true | Z.clearbit => true | Z.setbit => true | Z.min => true | Z.max => true | _ => false end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
is_binary_Z_op
is_binary_nat_op(op: constr): bool := lazy_match! op with | Nat.add => true | Nat.sub => true | Nat.mul => true | Nat.div => true | Nat.min => true | Nat.max => true | _ => false end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
is_binary_nat_op
local_ground_number_simpl(e: constr): res := lazy_match! e with | ?f ?x ?y => if Constr.is_const f then if is_binary_Z_op f then lazy_match! e with | Z.pow 2 _ => gfail "not simplifying powers of 2" | _ => if is_Z_const x && is_Z_const y then res_convertible (eval cbv in $e) else gfail "not constant" end else if is_binary_nat_op f && is_nat_const x && is_nat_const y then res_convertible (eval cbv in $e) else gfail "not constant" else gfail "not constant" | ?f ?x => if Constr.is_const f && (is_unary_Z_op f && is_Z_const x || is_unary_nat_op f && is_nat_const x) then res_convertible (eval cbv in $e) else gfail "not constant" end. Goal forall (a b c: Z), a + b - 2 * a = c -> -a + b = c. Proof. intros. lazy_match! Constr.type 'H with | ?e = _ => let r := local_ring_simplify OtherExpr e in let n := new_term r in let pf := eq_proof r in eassert ($n = c) as H' by (etransitivity > [symmetry; exact $pf | exact H]) end. exact H'. Succeed Qed. Abort. Goal forall (a b: Z), True. Proof. intros. Fail let e := '(a + b) in let r := local_ring_simplify OtherExpr e in (). Abort.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
local_ground_number_simpl
mutablerec is_substitutable_rhs(rhs: constr): bool := Constr.is_var rhs || Constr.is_const rhs || is_Z_const rhs || lazy_match! rhs with | word.of_Z ?x => is_substitutable_rhs x | word.unsigned ?x => is_substitutable_rhs x | _ => false end. (* After following a series of `var1 = var2` equations, we arrive at an equation of the form `var = rhs` with `rhs` not a var, but potentially small enough to be substituted. This function tells if `rhs` is indeed "small enough". *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
mutable
mutableis_small_terminal_rhs(rhs: constr): bool := neg (Constr.is_var rhs) && is_substitutable_rhs rhs.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
mutable
constr_to_var_ref(c: constr): Std.reference option := match Constr.Unsafe.kind c with | Constr.Unsafe.Var id => Some (Std.VarRef id) | _ => None end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
constr_to_var_ref
recunfold_to_const(seen: constr list)(e: constr): res := let exploit_eq := fun (new: constr)(r: res) => if List.exist (Constr.equal new) seen then Control.zero Not_applicable else if is_small_terminal_rhs new then r else chain_res r (unfold_to_const (new :: seen) new) in match constr_to_var_ref e with | Some ref => (* Beware: Ltac2's Std.eval_cbv does not match Ltac1's `eval cbv in`! https://github.com/coq/coq/issues/14303 Ltac2 silently does nothing if r is not unfoldable. *) let e' := Std.eval_cbv_delta [ref] e in if Constr.equal e e' then match! goal with | [ h: ?lhs = ?rhs |- _ ] => if Constr.equal lhs e then exploit_eq rhs (res_rewrite (Control.hyp h)) else if Constr.equal rhs e then exploit_eq lhs (res_rewrite (let h := Control.hyp h in constr:(eq_sym $h))) else Control.zero Not_applicable end else exploit_eq e' (res_convertible e') | None => Control.zero Not_applicable end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
local_follow_eqs_until_const_val(e: constr): res := unfold_to_const [] e.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
local_follow_eqs_until_const_val
local_nonring_nonground_Z_simple := lazy_match! e with | Z.div ?x 1 => res_rewrite '(Z.div_1_r $x) | Z.div ?x ?d => let x_eq_prod_pf := cancel_div_rec d x in res_rewrite '(cancel_div_done $d $x _ ltac2:(bottom_up_simpl_sidecond_hook ()) $x_eq_prod_pf) end. (* Note: we use '(...) most of the time, but when we rely on typeclass search, (eg to find a word.ok), we have to use constr:(...), because '(...) does not run typeclass search, and instead just creates and shelves an evar. *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
local_nonring_nonground_Z_simpl
recpush_down_unsigned(w: constr): res := lazy_match! w with | ?f1 ?a0 => lazy_match! f1 with | @word.of_Z ?width ?word => first_val [ res_rewrite constr:(@word.unsigned_of_Z_nowrap $width $word _ $a0 ltac2:(bottom_up_simpl_sidecond_hook ())) | res_rewrite constr:(@word.unsigned_of_Z_modwrap $width $word _ $a0) ] | @word.opp ?width ?word => let r_a0 := push_down_unsigned a0 in let pf0 := eq_proof r_a0 in lazy_match! new_term r_a0 with | 0 => res_rewrite constr:(word.unsigned_opp_0 $a0 $pf0) | _ => first_val [ res_rewrite constr:(word.unsigned_opp_eq_nowrap $pf0 ltac2:(bottom_up_simpl_sidecond_hook ())) | res_nothing_to_simpl constr:(word.unsigned $w) ] end | ?f2 ?a1 => lazy_match! f2 with | word.add => push_down_unsigned_app2 w 'word.unsigned_add_eq_nowrap a1 a0 | word.sub => push_down_unsigned_app2 w 'word.unsigned_sub_eq_nowrap a1 a0 | word.mul => push_down_unsigned_app2 w 'word.unsigned_mul_eq_nowrap a1 a0 | _ => res_nothing_to_simpl constr:(word.unsigned $w) end | _ => res_nothing_to_simpl constr:(word.unsigned $w) end | _ => res_nothing_to_simpl constr:(word.unsigned $w) end with push_down_unsigned_app2(w: constr)(lem: constr)(a1: constr)(a0: constr): res := let pf0 := eq_proof (push_down_unsigned a0) in let pf1 := eq_proof (push_down_unsigned a1) in first_val [ res_rewrite constr:($lem _ _ _ _ _ _ _ $pf1 $pf0 ltac2:(bottom_up_simpl_sidecond_hook ())) | res_nothing_to_simpl constr:(word.unsigned $w) ].
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
local_word_simpl(e: constr): res := lazy_match! e with | word.unsigned ?w => push_down_unsigned w (* Not sure if we want this one: It's useful as a preprocessing step for ring_simplify on words, but if we have \[/[z1 + z2]] where 0 <= z1 + z2 < 2^32, we don't want to push down the of_Z, so we can do the unsigned_of_Z rewrite. --> TODO maybe reactivate, but then, also, in (word.of_Z (word.unsigned (a ^+ b))), prevent push_down of word.unsigned! (because here, we don't even need a sidecondition to get rid of the roundtrip | @word.of_Z ?width ?word ?z => push_down_of_Z width word z *) | @word.of_Z ?width ?word (?z mod 2 ^ ?width) => res_rewrite constr:(@word.of_Z_mod $width $word _ $z) | @word.of_Z ?width ?word (word.unsigned ?w) => res_rewrite constr:(@word.of_Z_unsigned $width $word _ $w) end. (* Nodes like eg (List.length (cons a (cons b (app (cons c xs) ys)))) can require an arbitrary number of simplification steps at the same node. ---> but that's more of a "push down List.length" algorithm, because once we have (len (cons c xs) + len ys), we need to recurse not at the current node, but down into the args of + !
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
local_word_simpl
saturate_local_simplparent_kind e := let r := local_simpl_hook parent_kind e in lazy_match! r SimplAgain with | true => saturate_local_simpl parent_kind e' | false => r end. --> treat push-down separately: - List.length/len - word.unsigned and don't treat them as push-down, but as "compute len/unsigned of given expression in a bottom-up way" OR treat them as "local_simpl has access to an API to indicate how/where to continue simplifying the new term"? (would also work for (xs ++ ys)[i:] = xs[i:] ++ ys[i - len xs :], where we have to indicate that (i - len xs) might need further simplification set, app, repeatz, from, upto Lemma len_set: forall (l: list A) i x, 0 <= i < len l -> len (set l i x) = len l. Lemma len_app: forall (l1 l2: list A), len (l1 ++ l2) = len l1 + len l2. Lemma len_repeatz: forall (x: A) (n: Z), 0 <= n -> len (repeatz x n) = n. Lemma len_from: forall (l: list A) i, 0 <= i <= len l -> len (from i l) = len l - i. Lemma len_upto: forall (l: list A) i, 0 <= i <= len l -> len (upto i l) = i. pre-order vs post-order traversal: len lemmas need to be applied before descending recursively, while others need to be applied after descending recursively some need intertwined application: len_from should first simplify i (so that it's already simplified in the sidecond solving), then simplify (len l) in a reusable way so that it appears simplified in the sidecondition and in the rhs, and then apply len_from, and then simplify locally the rhs (simplified_len_l - simplified_i) *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
saturate_local_simpl
recconcrete_list_length_err(l: constr): constr option := lazy_match! l with | nil => Some 'O | cons _ ?t => match concrete_list_length_err t with | Some r => Some '(S $r) | None => None end | _ => None end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
recpush_down_len(x: constr): res := lazy_match! x with | List.from ?i ?l => let r_len_l := push_down_len l in let len_l := new_term r_len_l in let pf_len_l := eq_proof r_len_l in first_val [ (* Case: index i is within bounds *) let sidecond := '(ltac2:(bottom_up_simpl_sidecond_hook ()): 0 <= $i <= $len_l) in let r_diff := ring_simplify_res_or_nothing_to_simpl '(Z.sub $len_l $i) in let diff := new_term r_diff in let pf_diff := eq_proof r_diff in res_rewrite '(push_down_len_from $l $i $len_l $diff $pf_len_l $sidecond $pf_diff) | (* Case: index i is too big *) let sidecond := '(ltac2:(bottom_up_simpl_sidecond_hook ()): $len_l <= $i) in res_rewrite '(push_down_len_from_pastend $l $i $len_l $pf_len_l $sidecond) | (* Case: index i is too small *) let sidecond := '(ltac2:(bottom_up_simpl_sidecond_hook ()): $i <= 0) in res_rewrite '(push_down_len_from_negative $l $i $len_l $pf_len_l $sidecond) | (* Case: unknown whether index is is within bounds, so the List.from remains *) res_nothing_to_simpl '(Z.of_nat (List.length $x)) ] | @List.upto ?tp ?i ?l => let r_len_l := push_down_len l in let len_l := new_term r_len_l in let pf_len_l := eq_proof r_len_l in first_val [ (* Case: index i is within bounds *) let sidecond := '(ltac2:(bottom_up_simpl_sidecond_hook ()): 0 <= $i <= $len_l) in res_rewrite '(push_down_len_upto $l $i $len_l $pf_len_l $sidecond) | (* Case: index i is too big *) let sidecond := '(ltac2:(bottom_up_simpl_sidecond_hook ()): $len_l <= $i) in res_rewrite '(push_down_len_upto_pastend $i $len_l $pf_len_l $sidecond) | (* Case: index i is too small *) let sidecond := '(ltac2:(bottom_up_simpl_sidecond_hook ()): $i <= 0) in res_rewrite '(push_down_len_upto_negative $l $i $len_l $pf_len_l $sidecond) | (* Case: unknown whether index is is within bounds, so the List.upto remains *) res_nothing_to_simpl '(Z.of_nat (List.length $x)) ] | nil => res_convertible 'Z0 | cons ?h ?t => match concrete_list_length_err t with | Some n => let z := eval cbv in (Z.of_nat (S $n)) in res_convertible z | None => let r_len_t := push_down_len t in let len_t := new_term r_len_t in let pf_len_t := eq_proof r_len_t in let r_oneplus := ring_simplify_res_or_nothing_to_simpl '(Z.add 1 $len_t) in let oneplus := new_term r_oneplus in let pf_oneplus := eq_proof r_oneplus in res_rewrite '(push_down_len_cons $h $t $oneplus $pf_oneplus) end | @List.app ?tp ?l1 ?l2 => let r_len_l1 := push_down_len l1 in let r_len_l2 := push_down_len l2 in let len_l1 := new_term r_len_l1 in let len_l2 := new_term r_len_l2 in let r_sum_lens := ring_simplify_res_or_nothing_to_simpl '(Z.add $len_l1 $len_l2) in let sum_lens := new_term r_sum_lens in let pf_len_l1 := eq_proof r_len_l1 in let pf_len_l2 := eq_proof r_len_l2 in let pf_sum_lens := eq_proof r_sum_lens in res_rewrite '(push_down_len_app $l1 $l2 $len_l1 $len_l2 $sum_lens $pf_len_l1 $pf_len_l2 $pf_sum_lens) | @List.set ?tp ?l ?i ?x => let r_len_l := push_down_len l in let len_l := new_term r_len_l in let pf_len_l := eq_proof r_len_l in let g := '(0 <= $i < $len_l) in first_val [ let s := '(ltac2:(bottom_up_simpl_sidecond_hook ()) : $g) in res_rewrite '(push_down_len_set $l $i $len_l $x $pf_len_l $s) | (* TODO Should we fail here (and in more places)? *) res_nothing_to_simpl '(Z.of_nat (List.length $x)) ] | List.repeatz ?a ?n => first_val [ (* Case: n is provably nonnegative *) let sidecond := '(ltac2:(bottom_up_simpl_sidecond_hook ()): 0 <= $n) in res_rewrite '(push_down_len_repeatz $a $n $sidecond) | (* Case: n might be negative *) res_rewrite '(push_down_len_repeatz_max $a $n) ] | _ => res_nothing_to_simpl '(Z.of_nat (List.length $x)) end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
push_down_len_top(e: constr): res := lazy_match! e with | Z.of_nat (List.length ?l) => push_down_len l end.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
push_down_len_top
mutablelocal_simpl_hook(parent_kind: expr_kind)(e: constr): res := first_val [ local_follow_eqs_until_const_val e | local_zlist_simpl e | local_ring_simplify parent_kind e | local_ground_number_simpl e | push_down_len_top e | local_word_simpl e (* <-- not strictly local, might do a whole traversal *) | local_nonring_nonground_Z_simpl e | res_nothing_to_simpl e ].
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
mutable
recbottom_up_simpl(parent_kind: expr_kind)(e: constr): res := let current_kind := get_expr_kind e in let r_rec := match current_kind with | OtherExpr => lazy_match! e with | ?f ?x => lift_res_app e (bottom_up_simpl OtherExpr f) (bottom_up_simpl OtherExpr x) | match ?b with | true => ?thn | false => ?els end => lift_res_if e (bottom_up_simpl OtherExpr b) (bottom_up_simpl OtherExpr thn) (bottom_up_simpl OtherExpr els) | ?p -> ?q => lift_res_impl e (bottom_up_simpl OtherExpr p) (bottom_up_simpl OtherExpr q) | _ => res_nothing_to_simpl e end | _ => (* head of app is a known function symbol that doesn't need to be simplified *) lazy_match! e with | ?f ?x ?y => lift_res2 e f (bottom_up_simpl current_kind x) (bottom_up_simpl current_kind y) | ?f ?x => lift_res1 e f (bottom_up_simpl current_kind x) | _ => res_nothing_to_simpl e end end in let r_loc := local_simpl_hook parent_kind (new_term r_rec) in chain_res r_rec r_loc.
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rec
Setbottom_up_simpl_recurse := fun e => bottom_up_simpl OtherExpr e. (* Consider `word.unsigned (foo (a + 0) ^+ x ^- foo a ^+ y)`: The argument of word.unsigned needs a first full bottom-up traversal to simplify it into `x ^+ y`, and after that, another push-down-word.unsigned traversal to obtain `word.unsigned x + word.unsigned y` (if no overflow). On the other hand, if you start pushing down len too early, not a problem, because list operations don't cancel like word.sub does. Therefore, pushing down len could be integrated into bottom_up_simpl, whereas pushing down word.unsigned runs *after* it in local_simpl_hook *)
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
Set
protect_conclusion(P: Prop) := P. (* protect_conclusion is needed because if P2 is an implication, `apply ... in ...` creates subgoals for everything on the left of a -> in P2 *)
Definition
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
protect_conclusion
rew_Prop_hyp: forall (P1 P2: Prop) (pf: P1 = P2), P1 -> protect_conclusion P2. Proof. intros. subst. assumption. Qed.
Lemma
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rew_Prop_hyp
rew_Prop_goal: forall (P1 P2: Prop) (pf: P1 = P2), P2 -> P1. Proof. intros. subst. assumption. Qed.
Lemma
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
rew_Prop_goal
forbidden(P: Prop) := P.
Definition
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
forbidden
Typeexn ::= [ Nothing_to_simplify ].
Ltac2
bedrock2
[ "Require Import coqutil.Ltac2Lib.Ltac2", "Require Import coqutil.Ltac2Lib.Failf coqutil.Ltac2Lib.rdelta coqutil.Ltac2Lib.Lia", "Require Import Coq.ZArith.ZArith. Local Open Scope Z_scope", "Require Import Coq.micromega.Lia", "Require Import coqutil.Word.Interface coqutil.Word.Properties", "Require Import coqutil.Datatypes.Inhabited", "Require Import coqutil.Datatypes.ZList", "Require Import coqutil.Tactics.Tactics", "Require Import coqutil.Tactics.ltac_list_ops", "Require Import coqutil.Tactics.rdelta", "Require Import coqutil.Tactics.foreach_hyp", "Require Import bedrock2.WordPushDownLemmas", "Require Import bedrock2.cancel_div", "Require Import bedrock2.LogSidecond" ]
bedrock2/src/bedrock2/bottom_up_simpl.v
Type
End of preview. Expand in Data Studio

Coq-Bedrock

A work-in-progress language and compiler for verified low-level programming targeting RISC-V.

Source

Statistics

Property Value
Total Entries 2,187
Files Processed 289

Type Distribution

Type Count
Definition 760
Ltac 702
Lemma 428
Ltac2 132
Fixpoint 46
Inductive 35
Record 27
Axiom 13
Class 11
Instance 11
Example 7
Coercion 5
Parameter 5
Remark 4
Theorem 1

Schema

Column Type Description
fact string Declaration body (name, signature, proof)
type string Declaration type
library string Library component
imports list[string] Import statements
filename string Source file path
symbolic_name string Declaration identifier
docstring string Documentation comment (if present)

Creator

Charles Norton (phanerozoic)

Downloads last month
28

Collection including phanerozoic/Coq-Bedrock