Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
6
40.2k
type
stringclasses
14 values
library
stringclasses
2 values
imports
listlengths
2
4
filename
stringclasses
28 values
symbolic_name
stringlengths
1
36
docstring
stringclasses
1 value
pos_rat := repeat ( apply Rdiv_lt_0_compat || apply Rplus_lt_0_compat || apply Rmult_lt_0_compat) ; try by apply Rlt_0_1.
Ltac
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
pos_rat
sign_0_lt : forall x, 0 < x <-> 0 < sign x. Proof. intros x. unfold sign. destruct total_order_T as [[H|H]|H] ; lra. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
sign_0_lt
sign_lt_0 : forall x, x < 0 <-> sign x < 0. Proof. intros x. unfold sign. destruct total_order_T as [[H|H]|H] ; lra. Qed. (** * Exercice 2 *) (* 8:14 *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
sign_lt_0
fab (a b x : R) : R := (a + b * ln x) / x. (** ** Questions 1 *) (** 1.a. On voit sur le graphique que l'image de 1 par f correspond au point B(1,2). On a donc f(1) = 2. Comme la tangente (BC) à la courbe en ce point admet pour coefficient directeur 0, f'(1) = 0 *) (** 1.b *)
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
fab
Dfab (a b : R) : forall x, 0 < x -> is_derive (fab a b) x (((b - a) - b * ln x) / x ^ 2). Proof. move => x Hx. evar_last. apply is_derive_div. apply @is_derive_plus. apply is_derive_const. apply is_derive_scal. now apply is_derive_Reals, derivable_pt_lim_ln. apply is_derive_id. by apply Rgt_not_eq. rewrite /Rdiv /plus /zero /one /=. field. by apply Rgt_not_eq. Qed. (** 1.c *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Dfab
Val_a_b (a b : R) : fab a b 1 = 2 -> Derive (fab a b) 1 = 0 -> a = 2 /\ b = 2. Proof. move => Hf Hdf. rewrite /fab in Hf. rewrite ln_1 in Hf. rewrite Rdiv_1 in Hf. rewrite Rmult_0_r in Hf. rewrite Rplus_0_r in Hf. rewrite Hf in Hdf |- * => {a Hf}. split. reflexivity. replace (Derive (fab 2 b) 1) with (((b - 2) - b * ln 1) / 1 ^ 2) in Hdf. rewrite ln_1 /= in Hdf. field_simplify in Hdf. rewrite ?Rdiv_1 in Hdf. by apply Rminus_diag_uniq. apply sym_eq, is_derive_unique. apply Dfab. by apply Rlt_0_1. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Val_a_b
f (x : R) : R := fab 2 2 x. (** ** Questions 2 *) (* 8:38 *) (** 2.a. *)
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
f
Signe_df : forall x, 0 < x -> sign (Derive f x) = sign (- ln x). Proof. move => x Hx. rewrite (is_derive_unique f x _ (Dfab 2 2 x Hx)). replace ((2 - 2 - 2 * ln x) / x ^ 2) with (2 / x ^ 2 * (- ln x)) by (field ; now apply Rgt_not_eq). rewrite sign_mult sign_eq_1. apply Rmult_1_l. apply Rdiv_lt_0_compat. apply Rlt_0_2. apply pow2_gt_0. by apply Rgt_not_eq. Qed. (** 2.b. *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Signe_df
filterlim_f_0 : filterlim f (at_right 0) (Rbar_locally m_infty). Proof. unfold f, fab. eapply (filterlim_comp_2 _ _ Rmult). eapply filterlim_comp_2. apply filterlim_const. eapply filterlim_comp_2. apply filterlim_const. by apply is_lim_ln_0. apply (filterlim_Rbar_mult 2 m_infty m_infty). unfold is_Rbar_mult, Rbar_mult'. case: Rle_dec (Rlt_le _ _ Rlt_0_2) => // H _ ; case: Rle_lt_or_eq_dec (Rlt_not_eq _ _ Rlt_0_2) => //. apply (filterlim_Rbar_plus 2 _ m_infty). by []. by apply filterlim_Rinv_0_right. by apply (filterlim_Rbar_mult m_infty p_infty). Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
filterlim_f_0
Lim_f_p_infty : is_lim f p_infty 0. Proof. apply is_lim_ext_loc with (fun x => 2 / x + 2 * (ln x / x)). exists 0. move => y Hy. rewrite /f /fab. field. by apply Rgt_not_eq. eapply is_lim_plus. apply is_lim_scal_l. apply is_lim_inv. by apply is_lim_id. by []. apply is_lim_scal_l. by apply is_lim_div_ln_p. unfold is_Rbar_plus, Rbar_plus' ; apply f_equal, f_equal ; ring. Qed. (** 2.c. *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Lim_f_p_infty
Variation_1 : forall x y, 0 < x -> x < y -> y < 1 -> f x < f y. Proof. apply (incr_function _ 0 1 (fun x => (2 - 2 - 2 * ln x) / x ^ 2)). move => x H0x Hx1. by apply (Dfab 2 2 x). move => x H0x Hx1. apply sign_0_lt. rewrite -(is_derive_unique _ _ _ (Dfab 2 2 x H0x)). rewrite Signe_df. apply -> sign_0_lt. apply Ropp_lt_cancel ; rewrite Ropp_0 Ropp_involutive. rewrite -ln_1. by apply ln_increasing. by apply H0x. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Variation_1
Variation_2 : forall x y, 1 < x -> x < y -> f x > f y. Proof. move => x y H1x Hxy. apply Ropp_lt_cancel. apply (incr_function (fun x => - f x) 1 p_infty (fun z => - ((2 - 2 - 2 * ln z) / z ^ 2))). move => z H1z _. apply: is_derive_opp. apply (Dfab 2 2 z). by apply Rlt_trans with (1 := Rlt_0_1). move => z H1z _. apply Ropp_lt_cancel ; rewrite Ropp_0 Ropp_involutive. apply sign_lt_0. rewrite -(is_derive_unique _ _ _ (Dfab 2 2 z (Rlt_trans _ _ _ Rlt_0_1 H1z))). rewrite Signe_df. apply -> sign_lt_0. apply Ropp_lt_cancel ; rewrite Ropp_0 Ropp_involutive. rewrite -ln_1. apply ln_increasing. by apply Rlt_0_1. by apply H1z. by apply Rlt_trans with (1 := Rlt_0_1). by []. by []. by []. Qed. (** ** Questions 3 *) (* 9:40 *) (** 3.a *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Variation_2
f_eq_1_0_1 : exists x, 0 < x <= 1 /\ f x = 1. Proof. case: (IVT_Rbar_incr (fun x => f (Rabs x)) 0 1 m_infty 2 1). eapply filterlim_comp. apply filterlim_Rabs_0. by apply filterlim_f_0. apply is_lim_comp with 1. replace 2 with (f 1). apply is_lim_continuity. apply derivable_continuous_pt. exists (((2 - 2) - 2 * ln 1) / 1 ^ 2) ; apply is_derive_Reals, Dfab. by apply Rlt_0_1. rewrite /f /fab ln_1 /= ; field. rewrite -{2}(Rabs_pos_eq 1). apply (is_lim_continuity Rabs 1). by apply continuity_pt_filterlim, continuous_Rabs. by apply Rle_0_1. exists (mkposreal _ Rlt_0_1) => /= x H0x Hx. rewrite /ball /= /AbsRing_ball /= in H0x. apply Rabs_lt_between' in H0x. rewrite Rminus_eq_0 in H0x. contradict Hx. rewrite -(Rabs_pos_eq x). by apply Rbar_finite_eq. by apply Rlt_le, H0x. move => x H0x Hx1. apply (continuity_pt_comp Rabs). by apply continuity_pt_filterlim, continuous_Rabs. rewrite Rabs_pos_eq. apply derivable_continuous_pt. exists (((2 - 2) - 2 * ln x) / x ^ 2) ; apply is_derive_Reals, Dfab. by []. by apply Rlt_le. by apply Rlt_0_1. split => //. apply Rminus_lt_0 ; ring_simplify ; by apply Rlt_0_1. move => x [H0x [Hx1 Hfx]]. rewrite Rabs_pos_eq in Hfx. exists x ; repeat split. by apply H0x. by apply Rlt_le. by apply Hfx. by apply Rlt_le. Qed. (** 3.b. *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
f_eq_1_0_1
f_eq_1_1_p_infty : exists x, 1 <= x /\ f x = 1. Proof. case: (IVT_Rbar_incr (fun x => - f x) 1 p_infty (-2) 0 (-1)). replace (-2) with (-f 1). apply (is_lim_continuity (fun x => - f x)). apply continuity_pt_opp. apply derivable_continuous_pt. exists (((2 - 2) - 2 * ln 1) / 1 ^ 2) ; apply is_derive_Reals, Dfab. by apply Rlt_0_1. rewrite /f /fab ln_1 /= ; field. evar_last. apply is_lim_opp. by apply Lim_f_p_infty. simpl ; by rewrite Ropp_0. move => x H0x Hx1. apply continuity_pt_opp. apply derivable_continuous_pt. exists (((2 - 2) - 2 * ln x) / x ^ 2) ; apply is_derive_Reals, Dfab. by apply Rlt_trans with (1 := Rlt_0_1). by []. split ; apply Rminus_lt_0 ; ring_simplify ; by apply Rlt_0_1. move => x [H0x [Hx1 Hfx]]. exists x ; split. by apply Rlt_le. rewrite -(Ropp_involutive (f x)) Hfx ; ring. Qed. (** ** Questions 5 *) (* 10:08 *) (** 5.a. *) (** 5.b. *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
f_eq_1_1_p_infty
If : forall x, 0 < x -> is_derive (fun y : R => 2 * ln y + (ln y) ^ 2) x (f x). Proof. move => y Hy. evar_last. apply @is_derive_plus. apply is_derive_Reals. apply derivable_pt_lim_scal. by apply derivable_pt_lim_ln. apply is_derive_pow. by apply is_derive_Reals, derivable_pt_lim_ln. rewrite /f /fab /plus /= ; field. by apply Rgt_not_eq. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
If
RInt_f : is_RInt f ( / exp 1) 1 1. Proof. have Haux1: (0 < /exp 1). apply Rinv_0_lt_compat. apply exp_pos. evar_last. apply: is_RInt_derive. move => x Hx. apply If. apply Rlt_le_trans with (2 := proj1 Hx). apply Rmin_case. by apply Haux1. by apply Rlt_0_1. move => x Hx. apply continuity_pt_filterlim. apply derivable_continuous_pt. exists (((2 - 2) - 2 * ln x) / x ^ 2) ; apply is_derive_Reals, Dfab. apply Rlt_le_trans with (2 := proj1 Hx). apply Rmin_case. by apply Haux1. by apply Rlt_0_1. rewrite /minus /= /plus /opp /= -[eq]/(@eq R). rewrite ln_Rinv. rewrite ln_exp. rewrite ln_1. ring. by apply exp_pos. Qed. (** * Exercice 4 *) (* 10:36 *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
RInt_f
u (n : nat) : R := match n with | O => 2 | S n => 2/3 * u n + 1/3 * (INR n) + 1 end. (** ** Questions 1 *) (** 1.a. *) (** 1.b. *) (** ** Questions 2 *) (* 10:40 *) (** 2.a *)
Fixpoint
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
u
Q2a : forall n, u n <= INR n + 3. Proof. elim => [ | n IH] ; rewrite ?S_INR /=. apply Rminus_le_0 ; ring_simplify ; apply Rle_0_1. eapply Rle_trans. apply Rplus_le_compat_r. apply Rplus_le_compat_r. apply Rmult_le_compat_l. lra. by apply IH. lra. Qed. (** 2.b. *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Q2a
Q2b : forall n, u (S n) - u n = 1/3 * (INR n + 3 - u n). Proof. move => n ; simpl. field. Qed. (** 2.c. *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Q2b
Q2c : forall n, u n <= u (S n). Proof. move => n. apply Rminus_le_0. rewrite Q2b. apply Rmult_le_pos. lra. apply (Rminus_le_0 (u n)). by apply Q2a. Qed. (** ** Question 3 *) (* 10:49 *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Q2c
v (n : nat) : R := u n - INR n. (** 3.a. *)
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
v
Q3a : forall n, v n = 2 * (2/3) ^ n. Proof. elim => [ | n IH]. rewrite /v /u /= ; ring. replace (2 * (2 / 3) ^ S n) with (v n * (2/3)) by (rewrite IH /= ; ring). rewrite /v S_INR /=. field. Qed. (** 3.b. *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Q3a
Q3b : forall n, u n = 2 * (2/3)^n + INR n. Proof. move => n. rewrite -Q3a /v ; ring. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Q3b
Q3c : is_lim_seq u p_infty. Proof. apply is_lim_seq_ext with (fun n => 2 * (2/3)^n + INR n). move => n ; by rewrite Q3b. eapply is_lim_seq_plus. eapply is_lim_seq_mult. by apply is_lim_seq_const. apply is_lim_seq_geom. rewrite Rabs_pos_eq. lra. lra. by []. apply is_lim_seq_INR. by []. Qed. (** ** Questions 4 *) (* 11:00 *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Q3c
Su (n : nat) : R := sum_f_R0 u n.
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Su
Tu (n : nat) : R := Su n / (INR n) ^ 2. (** 4.a. *)
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Tu
Q4a : forall n, Su n = 6 - 4 * (2/3)^n + INR n * (INR n + 1) / 2. Proof. move => n. rewrite /Su. rewrite -(sum_eq (fun n => (2/3)^n * 2 + INR n)). rewrite sum_plus. rewrite -scal_sum. rewrite tech3. rewrite sum_INR. simpl ; field. apply Rlt_not_eq, Rlt_div_l. repeat apply Rplus_lt_0_compat ; apply Rlt_0_1. apply Rminus_lt_0 ; ring_simplify ; by apply Rlt_0_1. move => i _. rewrite Q3b ; ring. Qed. (** 4.b. *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Q4a
Q4b : is_lim_seq Tu (1/2). Proof. apply is_lim_seq_ext_loc with (fun n => (6 - 4 * (2/3)^n) / (INR n ^2) + / (2 * INR n) + /2). exists 1%nat => n Hn ; rewrite /Tu Q4a. simpl ; field. apply Rgt_not_eq, (lt_INR O) ; intuition. eapply is_lim_seq_plus. eapply is_lim_seq_plus. eapply is_lim_seq_div. eapply is_lim_seq_minus. apply is_lim_seq_const. eapply is_lim_seq_mult. by apply is_lim_seq_const. apply is_lim_seq_geom. rewrite Rabs_pos_eq. lra. lra. by []. rewrite /is_Rbar_minus /is_Rbar_plus /=. now ring_simplify (6 + - (4 * 0)). repeat eapply is_lim_seq_mult. apply is_lim_seq_INR. apply is_lim_seq_INR. apply is_lim_seq_const. apply is_Rbar_mult_p_infty_pos. by apply Rlt_0_1. by []. by []. by apply is_Rbar_div_p_infty. apply is_lim_seq_inv. eapply is_lim_seq_mult. by apply is_lim_seq_const. by apply is_lim_seq_INR. by apply is_Rbar_mult_sym, is_Rbar_mult_p_infty_pos, Rlt_0_2. by []. by []. apply is_lim_seq_const. apply (f_equal (@Some _)), f_equal. field. Qed. (* 11:33 *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive RInt Continuity Lim_seq ElemFct RInt_analysis." ]
examples/BacS2013.v
Q4b
v (n : nat) : R := match n with | O => 7 / 10 * 250000 | S n => 95 / 100 * v n + 1 / 100 * c n end with c (n : nat) : R := match n with | O => 3 / 10 * 250000 | S n => 5 / 100 * v n + 99 / 100 * c n end. (** 2. Définition de la matrice A *)
Fixpoint
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
v
A : matrix 2 2 := [[95/100, 1/100 ] , [ 5/100, 99/100]].
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
A
X (n : nat) : matrix 2 1 := [[v n],[c n]].
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
X
Q2 : forall n, X (S n) = scal A (X n). Proof. intros n. rewrite /scal /= /Mmult. apply (coeff_mat_ext 0). case ; [ | case => //]. case ; [ | case => //] ; rewrite coeff_mat_bij /= ; (try lia) ; rewrite sum_Sn sum_O /plus /mult //=. case ; [ | case => //] ; rewrite coeff_mat_bij /= ; (try lia) ; rewrite sum_Sn sum_O /plus /mult //=. Qed. (** 3. Diagonalisation *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
Q2
P : matrix 2 2 := [[1,-1], [5,1]].
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
P
Q : matrix 2 2 := [[1,1],[-5,1]]. Goal mult P Q = [[6,0],[0,6]]. apply (coeff_mat_ext_aux 0 0) => i j Hi Hj. rewrite coeff_mat_bij => //. rewrite /coeff_mat /= /mult /plus /=. (destruct i as [ | i] ; destruct j as [ | j] ; rewrite /zero /= ; try ring) ; (try (destruct i as [ | i]) ; try (destruct j as [ | j]) ; rewrite /zero /= ; try ring) ; rewrite sum_Sn sum_O /= /plus /= ; ring. Qed. Goal mult Q P = [[6,0],[0,6]]. apply (coeff_mat_ext_aux 0 0) => i j Hi Hj. rewrite coeff_mat_bij => //. rewrite /coeff_mat /= /mult /plus /=. (destruct i as [ | i] ; destruct j as [ | j] ; rewrite /zero /= ; try ring) ; (try (destruct i as [ | i]) ; try (destruct j as [ | j]) ; rewrite /zero /= ; try ring) ; rewrite sum_Sn sum_O /= /plus /= ; ring. Qed.
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
Q
P' : matrix 2 2 := [[1 / 6,1 / 6],[-5 / 6,1 / 6]].
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
P'
Q3a : mult P P' = Mone /\ mult P' P = Mone. Proof. split. apply (coeff_mat_ext_aux 0 0) => i j Hi Hj. rewrite coeff_mat_bij => //. rewrite /coeff_mat /= /mult /plus /=. (destruct i as [ | i] ; destruct j as [ | j] ; rewrite /zero /= ; try field) ; (try (destruct i as [ | i]) ; try (destruct j as [ | j]) ; rewrite /zero /one /= ; try field) ; rewrite sum_Sn sum_O /= /plus /= ; field. apply (coeff_mat_ext_aux 0 0) => i j Hi Hj. rewrite coeff_mat_bij => //. rewrite /coeff_mat /= /mult /plus /=. (destruct i as [ | i] ; destruct j as [ | j] ; rewrite /zero /= ; try field) ; (try (destruct i as [ | i]) ; try (destruct j as [ | j]) ; rewrite /zero /one /= ; try field) ; rewrite sum_Sn sum_O /= /plus /= ; field. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
Q3a
D : matrix 2 2 := [[1,0],[0,94 / 100]].
Definition
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
D
Q3b : mult P' (mult A P) = D. Proof. apply (coeff_mat_ext_aux 0 0) => i j Hi Hj. rewrite coeff_mat_bij => //. rewrite /coeff_mat /= /mult /plus /=. (destruct i as [ | i] ; destruct j as [ | j] ; rewrite /zero /= ; try field) ; (try (destruct i as [ | i]) ; try (destruct j as [ | j]) ; rewrite /zero /one /= ; try field) ; rewrite sum_Sn sum_O /= /plus /= ; (try field) ; rewrite !sum_Sn !sum_O /= /plus /coeff_mat /= ; field. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
Q3b
Q3c : forall n, pow_n A n = mult P (mult (pow_n D n) P'). Proof. elim => /= [ | n IH]. rewrite mult_one_l. apply sym_eq, Q3a. by rewrite -{1}Q3b !mult_assoc (proj1 Q3a) mult_one_l -!mult_assoc IH. Qed. (** 4. Terme général et limite de la suite v n *)
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
Q3c
Q4 : forall n, v n = 1 / 6 * (1 + 5 * (94 / 100) ^ n) * v 0 + 1 / 6 * (1 - (94 / 100) ^ n) * c 0. Proof. intros n. assert (X n = scal (pow_n A n) (X 0)). elim: n => [ | n IH] /=. by rewrite scal_one. rewrite -scal_assoc -IH. by apply Q2. assert (pow_n D n = [[1,0], [0,(94 / 100)^n]]). elim: (n) => [ | m IH] //=. rewrite IH. apply (coeff_mat_ext_aux 0 0) => i j Hi Hj. rewrite coeff_mat_bij => //=. rewrite /plus /mult /= /coeff_mat /=. (destruct i as [ | i] ; destruct j as [ | j] ; rewrite /zero /one /=) ; (try (destruct i as [ | i]) ; try (destruct j as [ | j]) ; rewrite /zero /one /= ; try field) ; rewrite sum_Sn sum_O /= /plus /= ; field. rewrite Q3c H0 in H. apply (proj1 (coeff_mat_ext 0 _ _)) with (i := O) (j := O) in H. rewrite {1}/coeff_mat /= in H. rewrite H ; repeat (rewrite !/coeff_mat /=). rewrite !sum_Sn !sum_O /= /plus /mult /= ; field. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
Q4
lim_v : is_lim_seq v (41666 + 2 / 3). Proof. eapply is_lim_seq_ext. intros n ; apply sym_eq, Q4. eapply is_lim_seq_plus. eapply is_lim_seq_mult. eapply is_lim_seq_mult. apply is_lim_seq_const. eapply is_lim_seq_plus. apply is_lim_seq_const. eapply is_lim_seq_mult. apply is_lim_seq_const. apply is_lim_seq_geom. rewrite Rabs_pos_eq ; lra. by []. by []. by []. apply is_lim_seq_const. by []. eapply is_lim_seq_mult. eapply is_lim_seq_mult. apply is_lim_seq_const. eapply is_lim_seq_minus. apply is_lim_seq_const. apply is_lim_seq_geom. rewrite Rabs_pos_eq ; lra. by []. by []. apply is_lim_seq_const. by []. apply (f_equal (fun x => Some (Finite x))) ; simpl ; field. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
lim_v
lim_c : is_lim_seq c (208333 + 1 / 3). Proof. assert (forall n, c n = 250000 - v n). elim => [ | n /= ->] /= ; field. eapply is_lim_seq_ext. intros n ; apply sym_eq, H. eapply is_lim_seq_minus. apply is_lim_seq_const. by apply lim_v. apply (f_equal (fun x => Some (Finite x))) ; simpl ; field. Qed.
Lemma
examples
[ "From Coq Require Import Reals Psatz ssreflect.", "From Coquelicot Require Import Hierarchy PSeries Rbar Lim_seq." ]
examples/BacS2013_bonus.v
lim_c
Bessel1_seq (n k : nat) := (-1)^(k)/(INR (fact (k)) * INR (fact (n + (k)))).
Definition
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1_seq
Bessel1_seq_neq_0 (n : nat) : forall k, Bessel1_seq n k <> 0. Proof. move => k. apply Rmult_integral_contrapositive_currified. apply pow_nonzero, Ropp_neq_0_compat, R1_neq_R0. apply Rinv_neq_0_compat, Rmult_integral_contrapositive_currified ; apply INR_fact_neq_0. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1_seq_neq_0
CV_Bessel1 (n : nat) : CV_radius (Bessel1_seq n) = p_infty. Proof. apply CV_radius_infinite_DAlembert. by apply Bessel1_seq_neq_0. apply is_lim_seq_ext with (fun p => / (INR (S p) * INR (S (n + p)))). move => p ; rewrite /Bessel1_seq -plus_n_Sm /fact -/fact !mult_INR. simpl ((-1)^(S p)). field_simplify (-1 * (-1) ^ p / (INR (S p) * INR (fact p) * (INR (S (n + p)) * INR (fact (n + p)))) / ((-1) ^ p / (INR (fact p) * INR (fact (n + p))))). rewrite Rabs_div. rewrite Rabs_Ropp Rabs_R1 /Rdiv Rmult_1_l Rabs_pos_eq. by []. apply Rmult_le_pos ; apply pos_INR. apply Rgt_not_eq, Rmult_lt_0_compat ; apply lt_0_INR, Nat.lt_0_succ. repeat split. by apply INR_fact_neq_0. by apply INR_fact_neq_0. by apply Rgt_not_eq, lt_0_INR, Nat.lt_0_succ. by apply Rgt_not_eq, lt_0_INR, Nat.lt_0_succ. by apply pow_nonzero, Rlt_not_eq, (IZR_lt (-1) 0). replace (Finite 0) with (Rbar_inv p_infty) by auto. apply is_lim_seq_inv. eapply is_lim_seq_mult. apply -> is_lim_seq_incr_1. by apply is_lim_seq_INR. apply is_lim_seq_ext with (fun k => INR (k + S n)). intros k. by rewrite (Nat.add_comm n k) plus_n_Sm. apply is_lim_seq_incr_n. by apply is_lim_seq_INR. by []. by []. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
CV_Bessel1
ex_Bessel1 (n : nat) (x : R) : ex_pseries (Bessel1_seq n) x. Proof. apply CV_radius_inside. by rewrite CV_Bessel1. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
ex_Bessel1
Bessel1 (n : nat) (x : R) := (x/2)^n * PSeries (Bessel1_seq n) ((x/2)^2).
Definition
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1
is_derive_Bessel1 (n : nat) (x : R) : is_derive (Bessel1 n) x ((x / 2) ^ S n * PSeries (PS_derive (Bessel1_seq n)) ((x / 2) ^ 2) + (INR n)/2 * (x / 2) ^ pred n * PSeries (Bessel1_seq n) ((x / 2) ^ 2)). Proof. rewrite /Bessel1. auto_derive. apply ex_derive_PSeries. by rewrite CV_Bessel1. rewrite Derive_PSeries. rewrite /Rdiv ; simpl ; field. by rewrite CV_Bessel1. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
is_derive_Bessel1
is_derive_2_Bessel1 (n : nat) (x : R) : is_derive_n (Bessel1 n) 2 x (((x/2)^(S (S n)) * PSeries (PS_derive (PS_derive (Bessel1_seq n))) ((x / 2) ^ 2)) + ((INR (2*n+1)/2) * (x/2)^n * PSeries (PS_derive (Bessel1_seq n)) ((x / 2) ^ 2)) + (INR (n * pred n) / 4 * (x / 2) ^ pred (pred n) * PSeries (Bessel1_seq n) ((x / 2) ^ 2))). Proof. rewrite plus_INR ?mult_INR ; simpl INR. eapply is_derive_ext. move => y ; by apply sym_eq, is_derive_unique, is_derive_Bessel1. auto_derive. repeat split. apply ex_derive_PSeries. by rewrite CV_radius_derive CV_Bessel1. apply ex_derive_PSeries. by rewrite CV_Bessel1. rewrite !Derive_PSeries. case: n => [ | n] ; rewrite ?S_INR /Rdiv /= ; field. by rewrite CV_Bessel1. by rewrite CV_radius_derive CV_Bessel1. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
is_derive_2_Bessel1
Bessel1_correct (n : nat) (x : R) : x^2 * Derive_n (Bessel1 n) 2 x + x * Derive (Bessel1 n) x + (x^2 - (INR n)^2) * Bessel1 n x = 0. Proof. rewrite (is_derive_unique _ _ _ (is_derive_Bessel1 _ _)) ; rewrite /Derive_n (is_derive_unique _ _ _ (is_derive_2_Bessel1 _ _)) ; rewrite /Bessel1 plus_INR ?mult_INR ; simpl INR. set y := x/2 ; replace x with (2 * y) by (unfold y ; field). replace (_ + _) with (4 * y^S (S n) * (y^2 * PSeries (PS_derive (PS_derive (Bessel1_seq n))) (y ^ 2) + (INR n + 1) * PSeries (PS_derive (Bessel1_seq n)) (y ^ 2) + PSeries (Bessel1_seq n) (y ^ 2))). 2: { case: n => [|[|n]] ; rewrite ?S_INR /= ; field. } apply Rmult_eq_0_compat_l. rewrite -PSeries_incr_1 -PSeries_scal -?PSeries_plus. unfold PS_derive, PS_incr_1, PS_scal, PS_plus. rewrite -(PSeries_const_0 (y^2)). apply PSeries_ext. case => [ | p] ; rewrite /Bessel1_seq ; rewrite -?plus_n_Sm ?Nat.add_0_r /fact -/fact ?mult_INR ?S_INR ?plus_INR ; simpl INR ; simpl pow ; rewrite ?Rplus_0_l ?Rmult_1_l. rewrite /plus /zero /scal /= /mult /=. field. split ; rewrite -?S_INR ; apply Rgt_not_eq. by apply INR_fact_lt_0. by apply (lt_INR 0), Nat.lt_0_succ. rewrite /plus /scal /= /mult /=. field. repeat split ; rewrite -?plus_INR -?S_INR ; apply Rgt_not_eq. by apply INR_fact_lt_0. by apply (lt_INR 0), Nat.lt_0_succ. by apply INR_fact_lt_0. by apply (lt_INR 0), Nat.lt_0_succ. by apply (lt_INR 0), Nat.lt_0_succ. by apply (lt_INR 0), Nat.lt_0_succ. apply CV_radius_inside. apply Rbar_lt_le_trans with (2 := CV_radius_plus _ _). apply Rbar_min_case. by rewrite CV_radius_incr_1 ?CV_radius_derive CV_Bessel1. rewrite CV_radius_scal. by rewrite CV_radius_derive CV_Bessel1. now rewrite -S_INR ; apply not_0_INR, sym_not_eq, O_S. by apply ex_Bessel1. apply ex_pseries_R, ex_series_Rabs, CV_disk_inside. by rewrite CV_radius_incr_1 ?CV_radius_derive CV_Bessel1. apply ex_pseries_R, ex_series_Rabs, CV_disk_inside. rewrite CV_radius_scal. by rewrite CV_radius_derive CV_Bessel1. now rewrite -S_INR ; apply not_0_INR, sym_not_eq, O_S. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1_correct
Bessel1_equality_1 (n : nat) (x : R) : x <> 0 -> Bessel1 (S n)%nat x = INR n * Bessel1 n x / x - Derive (Bessel1 n) x. Proof. move => Hx. rewrite (is_derive_unique _ _ _ (is_derive_Bessel1 _ _)) /Bessel1. set y := (x / 2). replace x with (2 * y) by (unfold y ; field). (* Supprimer les PSeries *) have Hy : y <> 0. unfold y ; contradict Hx. replace x with (2 * (x/2)) by field ; rewrite Hx ; ring. case: n => [ | n] ; simpl ; field_simplify => // ; rewrite ?Rdiv_1 -/(pow _ 2). (* * cas n = 0 *) replace (- 2 * y ^ 2 * PSeries (PS_derive (Bessel1_seq 0)) (y ^ 2) / (2 * y)) with (y * ((-1) * PSeries (PS_derive (Bessel1_seq 0)) (y ^ 2))) by (simpl ; unfold y ; field => //). apply f_equal. rewrite -PSeries_scal. apply PSeries_ext => k. rewrite /Bessel1_seq /PS_scal /PS_derive Nat.add_0_l. replace (1+k)%nat with (S k) by ring. rewrite /fact -/fact mult_INR /pow -/pow. change scal with Rmult. field ; split. exact: INR_fact_neq_0. by apply not_0_INR, not_eq_sym, O_S. (* * cas S n *) replace (-2 * y ^ 2 * y ^ n * PSeries (PS_derive (Bessel1_seq (S n))) (y ^ 2) / 2) with (y^2 * y^n * (((-1)* PSeries (PS_derive (Bessel1_seq (S n))) (y ^ 2)))) by (unfold y ; field => //). apply f_equal. rewrite -PSeries_scal. apply PSeries_ext => k. rewrite /Bessel1_seq /PS_scal /PS_derive -?plus_n_Sm ?plus_Sn_m. rewrite /pow -/pow /fact -/fact ?mult_INR ?S_INR plus_INR. change scal with Rmult. field. rewrite -plus_INR -?S_INR. repeat split ; try by [exact: INR_fact_neq_0 | apply not_0_INR, not_eq_sym, O_S]. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1_equality_1
Bessel1_equality_2 (n : nat) (x : R) : (0 < n)%nat -> x<>0 -> Bessel1 (S n)%nat x + Bessel1 (pred n)%nat x = (2*INR n)/x * Bessel1 n x. Proof. case: n => [ | n] Hn Hx. by apply Nat.lt_irrefl in Hn. clear Hn ; simpl pred. rewrite /Bessel1 S_INR. replace ((x / 2) ^ S (S n) * PSeries (Bessel1_seq (S (S n))) ((x / 2) ^ 2) + (x / 2) ^ n * PSeries (Bessel1_seq n) ((x / 2) ^ 2)) with ((x/2)^n * ((x/2)^2 * PSeries (Bessel1_seq (S (S n))) ((x / 2) ^ 2) + PSeries (Bessel1_seq n) ((x / 2) ^ 2))) by (simpl ; ring). replace (2 * (INR n + 1) / x * ((x / 2) ^ S n * PSeries (Bessel1_seq (S n)) ((x / 2) ^ 2))) with ((x/2)^n * ((INR n + 1) * PSeries (Bessel1_seq (S n)) ((x / 2) ^ 2))) by (simpl ; field ; exact: Hx). apply f_equal. rewrite -PSeries_incr_1 -PSeries_scal -PSeries_plus. 2: (* ex_pseries (PS_incr_1 (Bessel1_seq (S (S n))) (S (S n))) ((x / 2) ^ 2) *) by apply ex_pseries_incr_1, ex_Bessel1. 2: (* ex_pseries (PS_incr_n (Bessel1_seq n) n) ((x / 2) ^ 2) *) by apply ex_Bessel1. apply PSeries_ext => k. (* egalité *) rewrite /PS_plus /PS_scal /PS_incr_1 /Bessel1_seq ; case: k => [ | k] ; rewrite ?Nat.add_0_r -?plus_n_Sm ?plus_Sn_m /fact -/fact ?mult_INR ?S_INR ?plus_INR /=. rewrite plus_zero_l /scal /= /mult /=. field. rewrite -S_INR ; split ; by [apply not_0_INR, sym_not_eq, O_S | apply INR_fact_neq_0]. rewrite /plus /scal /= /mult /=. field ; rewrite -?plus_INR -?S_INR ; repeat split ; by [apply INR_fact_neq_0 | apply not_0_INR, sym_not_eq, O_S]. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1_equality_2
Bessel1_equality_3 (n : nat) (x : R) : (0 < n)%nat -> Bessel1 (S n)%nat x - Bessel1 (pred n)%nat x = - 2 * Derive (Bessel1 n) x. Proof. move => Hn. rewrite (is_derive_unique _ _ _ (is_derive_Bessel1 _ _)) /Bessel1. case: n Hn => [ | n] Hn. by apply Nat.lt_irrefl in Hn. clear Hn ; simpl pred. replace ((x / 2) ^ S (S n) * PSeries (Bessel1_seq (S (S n))) ((x / 2) ^ 2) - (x / 2) ^ n * PSeries (Bessel1_seq n) ((x / 2) ^ 2)) with ((x/2)^n * ((x/2)^2 * PSeries (Bessel1_seq (S (S n))) ((x / 2) ^ 2) - PSeries (Bessel1_seq n) ((x / 2) ^ 2))) by (simpl ; ring). replace (-2 *((x / 2) ^ S (S n) * PSeries (PS_derive (Bessel1_seq (S n))) ((x / 2) ^ 2) + INR (S n) / 2 * (x / 2) ^ n * PSeries (Bessel1_seq (S n)) ((x / 2) ^ 2))) with ((x/2)^n * (-2 * ((x/2)^2 * PSeries (PS_derive (Bessel1_seq (S n))) ((x / 2) ^ 2)) - INR (S n) * PSeries (Bessel1_seq (S n)) ((x / 2) ^ 2))) by (rewrite S_INR ; simpl ; field). set y := (x / 2). apply f_equal. rewrite -?PSeries_incr_1 -?PSeries_scal -?PSeries_minus. apply PSeries_ext => k. rewrite /PS_minus /PS_incr_1 /PS_scal /PS_derive /Bessel1_seq. case: k => [ | k] ; rewrite -?plus_n_Sm ?plus_Sn_m /fact -/fact ?mult_INR ?S_INR -?plus_n_O ?plus_INR /= ; rewrite /plus /opp /zero /scal /= /mult /= ; field ; rewrite -?plus_INR -?S_INR. split ; (apply INR_fact_neq_0 || apply not_0_INR, sym_not_eq, O_S). repeat split ; (apply INR_fact_neq_0 || apply not_0_INR, sym_not_eq, O_S). apply @ex_pseries_scal, @ex_pseries_incr_1, ex_pseries_derive. by apply Rmult_comm. by rewrite CV_Bessel1. apply ex_pseries_scal, ex_Bessel1. by apply Rmult_comm. by apply ex_pseries_incr_1, ex_Bessel1. by apply ex_Bessel1. Qed. (** * Unicity *)
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1_equality_3
Bessel1_uniqueness_aux_0 (a : nat -> R) (n : nat) : Rbar_lt 0 (CV_radius a) -> (forall x : R, Rbar_lt (Rabs x) (CV_radius a) -> x^2 * Derive_n (PSeries a) 2 x + x * Derive (PSeries a) x + (x^2 - (INR n)^2) * PSeries a x = 0) -> (a 0%nat = 0 \/ n = O) /\ (a 1%nat = 0 \/ n = 1%nat) /\ (forall k, (INR (S (S k)) ^ 2 - INR n ^ 2) * a (S (S k)) + a k = 0). Proof. move => Ha H. cut (forall k, (PS_plus (PS_plus (PS_incr_n (PS_derive_n 2 a) 2) (PS_incr_1 (PS_derive a))) (PS_plus (PS_incr_n a 2) (PS_scal (- INR n ^ 2) a))) k = 0). intros Haux. split ; [move: (Haux 0%nat) | move: (fun k => Haux (S k))] => {} Haux. (* n = 0 *) rewrite /PS_plus /= /PS_incr_1 /PS_derive_n /PS_scal /PS_derive in Haux. rewrite /plus /zero /scal /= /mult /= in Haux. ring_simplify in Haux. apply Rmult_integral in Haux ; case: Haux => Haux. right. suff : ~ n <> 0%nat. by intuition. contradict Haux. apply Ropp_neq_0_compat. apply pow_nonzero. by apply not_0_INR. by left. split ; [move: (Haux 0%nat) | move: (fun k => Haux (S k))] => {} Haux. (* n = 1 *) rewrite /PS_plus /= /PS_incr_1 /PS_derive_n /PS_scal /PS_derive /= in Haux. rewrite /plus /zero /scal /= /mult /= in Haux. ring_simplify in Haux. replace (- a 1%nat * INR n ^ 2 + a 1%nat) with ((1 - INR n ^ 2) * a 1%nat) in Haux. apply Rmult_integral in Haux ; case: Haux => Haux. right. suff : ~ n <> 1%nat. by intuition. contradict Haux. replace (1 - INR n ^ 2) with ((1-INR n) * (1 + INR n)) by ring. apply Rmult_integral_contrapositive_currified. apply Rminus_eq_contra. apply sym_not_eq. by apply not_1_INR. apply Rgt_not_eq, Rlt_le_trans with (1 := Rlt_0_1). apply Rminus_le_0 ; ring_simplify. by apply pos_INR. by left. ring. (* n >= 2 *) move => k ; rewrite ?S_INR /= ; move: (Haux k) ; rewrite /PS_plus /= /PS_incr_1 /PS_derive_n /PS_scal /PS_derive -?S_INR. replace (k + 2)%nat with (S (S k)) by ring. rewrite /fact -/fact ?mult_INR ?S_INR => {} Haux. rewrite /plus /scal /= /mult /= in Haux. field_simplify in Haux. field_simplify. by rewrite (Rmult_comm (INR n ^ 2)). try revert Haux. by apply INR_fact_neq_0. move => k. apply (PSeries_ext_recip _ (fun _ => 0)). apply Rbar_lt_le_trans with (2 := CV_radius_plus _ _). apply Rbar_min_case. apply Rbar_lt_le_trans with (2 := CV_radius_plus _ _). apply Rbar_min_case. rewrite /PS_incr_n ?CV_radius_incr_1. by rewrite CV_radius_derive_n. rewrite CV_radius_incr_1. by rewrite CV_radius_derive. apply Rbar_lt_le_trans with (2 := CV_radius_plus _ _). apply Rbar_min_case. by rewrite /PS_incr_n ?CV_radius_incr_1. destruct n. rewrite -(CV_radius_ext (fun _ => 0)) ?CV_radius_const_0. by []. intros n ; rewrite /PS_scal /= /scal /= /mult /= ; ring. rewrite CV_radius_scal ?Ha //. apply Ropp_neq_0_compat, pow_nonzero, not_0_INR, sym_not_eq, O_S. by rewrite CV_radius_const_0. assert (0 < Rbar_min 1 (CV_radius a)). destruct (CV_radius a) as [ca | | ] ; try by auto. apply Rbar_min_case => //. by apply Rlt_0_1. apply Rbar_min_case_strong => // _. by apply Rlt_0_1. exists (mkposreal _ H0) => x Hx. assert (Rbar_lt (Rabs x) (CV_radius a)). destruct (CV_radius a) as [ca | | ] ; try by auto. simpl. eapply Rlt_le_trans. rewrite -(Rminus_0_r x). by apply Hx. simpl. apply Rmin_case_strong => // H1. by apply Req_le. rewrite PSeries_const_0 ?PSeries_plus. rewrite ?PSeries_incr_n PSeries_incr_1 PSeries_scal -Derive_n_PSeries. rewrite -Derive_PSeries. rewrite -Rmult_plus_distr_r. apply H. by apply H1. by apply H1. by apply H1. apply ex_pseries_incr_n, CV_radius_inside, H1. apply ex_pseries_scal, CV_radius_inside. by apply Rmult_comm. by apply H1. apply ex_pseries_incr_n. apply CV_radius_inside. rewrite CV_radius_derive_n. by apply H1. apply ex_pseries_incr_1, ex_pseries_derive. by apply H1. apply ex_pseries_plus. apply ex_pseries_incr_n. apply CV_radius_inside. by rewrite CV_radius_derive_n ; apply H1. apply ex_pseries_incr_1, ex_pseries_derive. by apply H1. apply ex_pseries_plus. apply ex_pseries_incr_n. apply CV_radius_inside. by apply H1. apply ex_pseries_scal. by apply Rmult_comm. apply CV_radius_inside ; by apply H1. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1_uniqueness_aux_0
Bessel1_uniqueness_aux_1 (a : nat -> R) (n : nat) : (a 0%nat = 0 \/ n = O) -> (a 1%nat = 0 \/ n = 1%nat) -> (forall k, (INR (S (S k)) ^ 2 - INR n ^ 2) * a (S (S k)) + a k = 0) -> (forall k : nat, (k < n)%nat -> a k = 0) /\ (forall p : nat, a (n + 2 * p + 1)%nat = 0) /\ (forall p : nat, a (n + 2 * p)%nat = Bessel1_seq n p * / 2 ^ (2 * p) * INR (fact n) * a n). Proof. intros Ha0 Ha1 Ha. assert (forall k, S (S k) <> n -> a (S (S k)) = - a k / (INR (S (S k)) ^ 2 - INR n ^ 2)). intros k Hk. replace (a k) with (- (INR (S (S k)) ^ 2 - INR n ^ 2) * a (S (S k))). field. replace (INR (S (S k)) ^ 2 - INR n ^ 2) with ((INR (S (S k)) - INR n) * (INR (S (S k)) + INR n)) by ring. apply Rmult_integral_contrapositive_currified. apply Rminus_eq_contra. by apply not_INR. rewrite -plus_INR plus_Sn_m. by apply (not_INR _ O), sym_not_eq, O_S. replace (a k) with ((INR (S (S k)) ^ 2 - INR n ^ 2) * a (S (S k)) + a k - (INR (S (S k)) ^ 2 - INR n ^ 2) * a (S (S k))) by ring. rewrite Ha ; ring. assert (forall k : nat, (k < n)%nat -> a k = 0). destruct n => k Hk. by apply Nat.nlt_0_r in Hk. case: Ha0 => // Ha0. destruct n. destruct k => //. by apply Nat.succ_lt_mono, Nat.nlt_0_r in Hk. case: Ha1 => // Ha1. move: k Hk. apply (MyNat.ind_0_1_SS (fun k => (k < S (S n))%nat -> a k = 0)) => // k IH Hk. rewrite H. rewrite IH /Rdiv. ring. eapply Nat.lt_trans, Hk. eapply Nat.lt_trans ; apply Nat.lt_succ_diag_r. by apply MyNat.lt_neq. repeat split. by []. elim => [ | p IH]. replace (n + 2 * 0 + 1)%nat with (S n) by ring. destruct n => //=. case: Ha1 => // Ha1. case: Ha0 => // Ha0. rewrite H ; try by intuition. rewrite H0 /Rdiv. ring. by apply Nat.lt_succ_diag_r. replace (n + 2 * S p + 1)%nat with (S (S (n + 2 * p + 1)%nat)) by ring. rewrite H ; try by intuition. rewrite IH /Rdiv. ring. elim => [ | p IH]. replace (n + 2 * 0)%nat with (n) by ring. rewrite /Bessel1_seq /= -plus_n_O. field ; by apply INR_fact_neq_0. replace (n + 2 * S p)%nat with (S (S (n + 2 * p)%nat)) by ring. rewrite H ; try by intuition. rewrite IH /Rdiv. rewrite /Bessel1_seq -plus_n_Sm. rewrite !pow_sqr /fact -/fact !mult_INR !S_INR !plus_INR /=. field ; rewrite -!plus_INR -!S_INR ; repeat split ; try (by apply INR_fact_neq_0) ; try (by apply (not_INR _ 0), sym_not_eq, O_S). apply pow_nonzero, Rgt_not_eq ; apply Rmult_lt_0_compat ; by apply Rlt_0_2. rewrite -Rsqr_plus_minus. apply Rmult_integral_contrapositive_currified. rewrite -plus_INR. apply Rgt_not_eq, lt_0_INR. lia. apply Rminus_eq_contra, not_INR. lia. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1_uniqueness_aux_1
Bessel1_uniqueness (a : nat -> R) (n : nat) : (Rbar_lt 0 (CV_radius a)) -> (forall x : R, x^2 * Derive_n (PSeries a) 2 x + x * Derive (PSeries a) x + (x^2 - (INR n)^2) * PSeries a x = 0) -> {b : R | forall x, PSeries a x = b * Bessel1 n x}. Proof. intros Hcv_a Ha. assert ((a 0%nat = 0 \/ n = O) /\ (a 1%nat = 0 \/ n = 1%nat) /\ (forall k, (INR (S (S k)) ^ 2 - INR n ^ 2) * a (S (S k)) + a k = 0)). by apply Bessel1_uniqueness_aux_0. assert ((forall k : nat, (k < n)%nat -> a k = 0) /\ (forall p : nat, a (n + 2 * p + 1)%nat = 0) /\ (forall p : nat, a (n + 2 * p)%nat = Bessel1_seq n p * / 2 ^ (2 * p) * INR (fact n) * a n)). apply Bessel1_uniqueness_aux_1 ; by apply H. exists (2^n * INR (fact n) * a n) => x. rewrite /Bessel1 (PSeries_decr_n_aux _ n). case: H0 => _ H0. rewrite Rpow_mult_distr -Rinv_pow. field_simplify ; rewrite ?Rdiv_1. rewrite !(Rmult_assoc (x ^ n)). apply Rmult_eq_compat_l. rewrite PSeries_odd_even. replace (PSeries (fun n0 : nat => PS_decr_n a n (2 * n0 + 1)) (x ^ 2)) with 0. case: H0 => _ H0. rewrite Rmult_0_r Rplus_0_r. rewrite -PSeries_scal. apply Series_ext => k. rewrite /PS_decr_n /PS_scal. rewrite H0. rewrite -!pow_mult. rewrite Rpow_mult_distr -Rinv_pow. rewrite /scal /= /mult /=. ring. by apply Rgt_not_eq, Rlt_0_2. apply sym_eq. rewrite -(PSeries_const_0 (x^2)). apply PSeries_ext => k. rewrite /PS_decr_n. replace (n + (2 * k + 1))%nat with (n + 2 * k + 1)%nat by ring. by apply H0. eapply ex_pseries_ext. move => p ; apply sym_eq. apply H0. eapply ex_pseries_ext. intros p ; rewrite Rmult_assoc ; apply Rmult_comm. apply @ex_pseries_scal. by apply Rmult_comm. case: (Req_dec x 0) => Hx0. rewrite Hx0. rewrite /= Rmult_0_l. by apply @ex_pseries_0. apply ex_series_Rabs. apply ex_series_DAlembert with 0. by apply Rlt_0_1. intros p. apply Rmult_integral_contrapositive_currified. rewrite pow_n_pow. by apply pow_nonzero, pow_nonzero. apply Rmult_integral_contrapositive_currified. by apply Bessel1_seq_neq_0. apply Rinv_neq_0_compat. apply pow_nonzero. by apply Rgt_not_eq, Rlt_0_2. apply is_lim_seq_ext with (fun p => x^2 / 4 * / (INR (S p) * INR (S (n + p)))). intros p ; rewrite !pow_n_pow !pow_mult. rewrite /Bessel1_seq -plus_n_Sm /fact -/fact !mult_INR. replace (@scal R_AbsRing R_NormedModule) with Rmult by auto. simpl (_^(S p)) ; rewrite -!/(pow _ 2) ; ring_simplify (2^2). field_simplify (x ^ 2 * (x ^ 2) ^ p * (-1 * (-1) ^ p / (INR (S p) * INR (fact p) * (INR (S (n + p)) * INR (fact (n + p)))) * / (4 * 4 ^ p)) / ((x ^ 2) ^ p * ((-1) ^ p / (INR (fact p) * INR (fact (n + p))) * / 4 ^ p))). rewrite Rabs_div. rewrite Rabs_Ropp /Rdiv !Rabs_pos_eq. field. split ; apply (not_INR _ 0), sym_not_eq, O_S. change 4 with (INR 2 * INR 2). repeat apply Rmult_le_pos ; apply pos_INR. by apply pow2_ge_0. change 4 with (INR 2 * INR 2). apply Rgt_not_eq ; repeat apply Rmult_lt_0_compat ; apply lt_0_INR, Nat.lt_0_succ. repeat split. apply pow_nonzero, Rgt_not_eq ; repeat apply Rmult_lt_0_compat ; apply Rlt_0_2. by apply INR_fact_neq_0. by apply INR_fact_neq_0. by apply Rgt_not_eq, lt_0_INR, Nat.lt_0_succ. by apply Rgt_not_eq, lt_0_INR, Nat.lt_0_succ. by apply pow_nonzero, Rlt_not_eq, (IZR_lt (-1) 0). rewrite -pow_mult ; by apply pow_nonzero. evar_last. apply is_lim_seq_scal_l. apply is_lim_seq_inv. eapply is_lim_seq_mult. apply -> is_lim_seq_incr_1. by apply is_lim_seq_INR. apply is_lim_seq_ext with (fun k => INR (k + S n)). intros k. by rewrite (Nat.add_comm n k) plus_n_Sm. apply is_lim_seq_incr_n. by apply is_lim_seq_INR. by []. by []. simpl ; apply f_equal ; ring. apply ex_pseries_ext with (fun _ => 0). intros k. rewrite /PS_decr_n /=. replace (n + (k + (k + 0) + 1))%nat with (n + 2 * k + 1)%nat by ring. by rewrite (proj1 H0). eapply ex_series_ext. intros k. rewrite /scal /= /mult /= Rmult_0_r. reflexivity. exists 0 ; apply filterlim_ext with (fun _ => 0). elim => /= [ | k IH]. by rewrite sum_O. by rewrite sum_Sn plus_zero_r. by apply filterlim_const. by apply pow_nonzero, Rgt_not_eq, Rlt_0_2. by apply Rgt_not_eq, Rlt_0_2. by apply H0. Qed.
Lemma
examples
[ "From Coq Require Import Arith Reals Psatz ssreflect.", "From Coquelicot Require Import Rcomplements Rbar Hierarchy Derive Series PSeries Lim_seq AutoDerive." ]
examples/Bessel.v
Bessel1_uniqueness
auto_derive_2 := match goal with | |- is_derive_n ?f 2 ?x ?d => auto_derive_fun f ; match goal with | |- (forall x, _ -> is_derive _ x (@?d x)) -> _ => let H := fresh "H" in let u := fresh "u" in intro H ; apply (is_derive_ext d) ; [ intro u ; apply sym_eq, is_derive_unique ; apply H | auto_derive ] ; clear H end end.
Ltac
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
auto_derive_2
c : R. Hypothesis Zc : c <> 0.
Parameter
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
c
u0 : R -> R. Hypothesis Du0 : forall x, ex_derive (fun u => u0 u) x. Hypothesis D2u0 : forall x, ex_derive_n (fun u => u0 u) 2 x.
Parameter
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
u0
alpha x t := 1/2 * (u0 (x + c * t) + u0 (x - c * t)).
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
alpha
alpha20 x t := 1/2 * (Derive_n u0 2 (x + c * t) + Derive_n u0 2 (x - c * t)).
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
alpha20
alpha02 x t := c^2/2 * (Derive_n u0 2 (x + c * t) + Derive_n u0 2 (x - c * t)).
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
alpha02
alpha_20_lim : forall x t, is_derive_n (fun u => alpha u t) 2 x (alpha20 x t). Proof. intros x t. unfold alpha. auto_derive_2. repeat split ; apply Du0. repeat split ; apply D2u0. unfold alpha20, Derive_n, Rminus. ring. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
alpha_20_lim
alpha_02_lim : forall x t, is_derive_n (fun u => alpha x u) 2 t (alpha02 x t). Proof. intros x t. unfold alpha. auto_derive_2. repeat split ; apply Du0. repeat split ; apply D2u0. unfold alpha02, Derive_n, Rminus, Rdiv. ring. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
alpha_02_lim
u1 : R -> R. Hypothesis Du1 : forall x, ex_derive (fun u => u1 u) x.
Parameter
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
u1
Cu1 : forall x, continuity_pt (fun u => u1 u) x. intros x. destruct (Du1 x) as (l,Hl). apply derivable_continuous_pt. unfold derivable_pt, derivable_pt_abs. exists l. now apply is_derive_Reals. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
Cu1
continuity_implies_ex_Rint : forall f a b, (forall x, continuity_pt f x) -> ex_RInt f a b. intros f a b H. case (Rle_or_lt a b); intros H1. apply ex_RInt_Reals_1. apply continuity_implies_RiemannInt. exact H1. intros x _; apply H. apply ex_RInt_swap. apply ex_RInt_Reals_1. apply continuity_implies_RiemannInt. left; exact H1. intros x _; apply H. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
continuity_implies_ex_Rint
Iu1 : forall a b, ex_RInt (fun u => u1 u) a b. intros a b. apply continuity_implies_ex_Rint. apply Cu1. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
Iu1
beta (x t : R) := 1/(2*c) * RInt (fun u => u1 u) (x - c * t) (x + c * t).
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
beta
beta20 x t := 1/(2*c) * (Derive (fun u => u1 u) (x + c * t) - Derive (fun u => u1 u) (x - c * t)).
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
beta20
beta01 x t := 1/2 * (u1 (x + c * t) + u1 (x - c * t)).
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
beta01
beta02 x t := c/2 * (Derive (fun u => u1 u) (x + c * t) - Derive (fun u => u1 u) (x - c * t)).
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
beta02
beta20_lim : forall x t, is_derive_n (fun u => beta u t) 2 x (beta20 x t). Proof. intros x t. unfold beta. auto_derive_2. (* . *) split. apply Iu1. repeat split. apply filter_forall. apply Cu1. apply filter_forall. apply Cu1. repeat split ; apply Du1. unfold beta20, Rminus. ring. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
beta20_lim
beta01_lim : forall x t, is_derive (fun u => beta x u) t (beta01 x t). Proof. intros x t. unfold beta. auto_derive. split. apply Iu1. repeat split. apply filter_forall. apply Cu1. apply filter_forall. apply Cu1. unfold beta01, Rminus, Rdiv. now field. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
beta01_lim
beta02_lim : forall x t, is_derive_n (fun u => beta x u) 2 t (beta02 x t). Proof. intros x t. unfold beta. auto_derive_2. split. apply Iu1. repeat split. apply filter_forall. apply Cu1. apply filter_forall. apply Cu1. repeat split ; apply Du1. unfold beta02, Rminus, Rdiv. now field. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
beta02_lim
gamma x t := 1/(2*c) * RInt (fun tau => RInt (fun xi => f xi tau) (x - c * (t - tau)) (x + c * (t - tau))) 0 t.
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
gamma
gamma20 x t := 1/(2*c) * RInt (fun tau => Derive (fun u => f u tau) (x + c * (t - tau)) - Derive (fun u => f u tau) (x - c * (t - tau))) 0 t.
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
gamma20
gamma02 x t := (f x t + c/2 * RInt (fun tau => Derive (fun u => f u tau) (x + c * (t - tau)) - Derive (fun u => f u tau) (x - c * (t - tau))) 0 t).
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
gamma02
gamma20_lim : forall x t, is_derive_n (fun u => gamma u t) 2 x (gamma20 x t). Proof. intros x t. unfold gamma. auto_derive_2. repeat split. exists (mkposreal _ Rlt_0_1). simpl. intros t' u' _ _. repeat split. apply continuity_implies_ex_Rint => y. admit. (* cont 2D -> 1D *) apply filter_forall => y. admit. (* cont 2D -> 1D *) apply filter_forall => y. admit. (* cont 2D -> 1D *) apply filter_forall => y. apply continuity_implies_ex_Rint => z. apply derivable_continuous_pt. admit. (* ??? *) intros t' _. admit. repeat split. exists (mkposreal _ Rlt_0_1). intros t' u' _ _. repeat split. admit. admit. apply filter_forall => y. admit. intros t' _. admit. unfold gamma20. apply f_equal. apply RInt_ext => z _. now rewrite 4!Rmult_1_l. Admitted.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
gamma20_lim
gamma02_lim : forall x t, is_derive_n (fun u => gamma x u) 2 t (gamma02 x t). Proof. intros x t. unfold gamma. auto_derive_2. repeat split. apply locally_2d_forall => y z. admit. intros t' _. admit. apply filter_forall => y. admit. apply filter_forall => y. apply continuity_implies_ex_Rint => z. admit. exists (mkposreal _ Rlt_0_1). simpl. apply filter_forall => y. apply continuity_implies_ex_Rint => z. admit. exists (mkposreal _ Rlt_0_1). simpl. intros t' u' _ _. repeat split. apply continuity_implies_ex_Rint => y. admit. apply filter_forall => y. admit. apply filter_forall => y. admit. repeat split. apply locally_2d_forall => y z. admit. apply locally_2d_forall => y z. admit. intros x' _. admit. apply filter_forall => y. admit. apply filter_forall => y. admit. apply filter_forall => y. apply continuity_implies_ex_Rint => z. admit. exists (mkposreal _ Rlt_0_1). apply filter_forall => y. apply continuity_implies_ex_Rint => z. admit. exists (mkposreal _ Rlt_0_1). apply filter_forall => y. apply continuity_implies_ex_Rint => z. admit. exists (mkposreal _ Rlt_0_1). intros t' u' _ _. admit. apply locally_2d_forall => y z. admit. intros t' _. admit. apply filter_forall => y. admit. apply filter_forall => y. apply continuity_implies_ex_Rint => z. admit. exists (mkposreal _ Rlt_0_1). apply filter_forall => y. apply continuity_implies_ex_Rint => z. admit. exists (mkposreal _ Rlt_0_1). intros t' u' _ _. repeat split. admit. admit. unfold gamma02. ring_simplify. rewrite Rplus_opp_r Rmult_0_r Ropp_0 Rplus_0_r. rewrite RInt_point Rmult_0_r Rplus_0_r. apply Rplus_eq_reg_l with (- f x t). field_simplify. 2: exact Zc. rewrite Rmult_1_r. rewrite /Rdiv Rmult_comm. rewrite Rmult_assoc (Rmult_comm _ (/2)) -Rmult_assoc. rewrite -[Rmult]/(@scal _ R_ModuleSpace) -RInt_scal. rewrite -RInt_scal. apply RInt_ext => u _. rewrite /scal /= /mult /= /Rminus. now field. admit. admit. Admitted.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Rcomplements Derive RInt Hierarchy Derive_2d AutoDerive." ]
examples/DAlembert.v
gamma02_lim
is_linear_C_R (l : C -> C) : is_linear (U := C_NormedModule) (V := C_NormedModule) l -> is_linear (U := C_R_NormedModule) (V := C_R_NormedModule) l. Proof. intros Lf. - split. intros ; apply Lf. simpl ; intros. rewrite !scal_R_Cmult ; by apply Lf. case: Lf => _ _ [M Lf]. exists M ; split. by apply Lf. intros. rewrite -!Cmod_norm. apply Lf. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
is_linear_C_R
is_linear_C_id_1 : is_linear (U := C_NormedModule) (V := AbsRing_NormedModule C_AbsRing) (fun y : C => y). Proof. split => //. exists 1 ; split. by apply Rlt_0_1. intros x ; apply Req_le. rewrite Rmult_1_l ; reflexivity. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
is_linear_C_id_1
is_linear_C_id_2 : is_linear (U := AbsRing_NormedModule C_AbsRing) (V := C_NormedModule) (fun y : C_NormedModule => y). Proof. split => //. exists 1 ; split. by apply Rlt_0_1. intros x ; apply Req_le. rewrite Rmult_1_l ; reflexivity. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
is_linear_C_id_2
is_linear_RtoC : is_linear RtoC. Proof. split => //=. by intros ; rewrite RtoC_plus. intros ; rewrite {2}/scal /= /prod_scal /= scal_zero_r. reflexivity. exists (sqrt 2) ; split. apply Rlt_sqrt2_0. intros. eapply Rle_trans. rewrite -Cmod_norm. apply Cmod_2Rmax. simpl. rewrite Rabs_R0. rewrite Rmax_left. apply Rle_refl. apply Rabs_pos. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
is_linear_RtoC
continuous_RtoC x : continuous RtoC x. Proof. apply filterlim_locally. intros eps ; exists eps => /= y Hy. split => //=. by apply ball_center. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
continuous_RtoC
continuous_C_id_1 (x : C) : continuous (T := C_UniformSpace) (U := AbsRing_UniformSpace C_AbsRing) (fun y => y) x. Proof. intros P HP. by apply locally_C. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
continuous_C_id_1
continuous_C_id_2 (x : C) : continuous (T := AbsRing_UniformSpace C_AbsRing) (U := C_UniformSpace) (fun y => y) x. Proof. intros P HP. by apply locally_C. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
continuous_C_id_2
continuous_C (f : C -> C) (x : C) : continuous (T := C_UniformSpace) (U := C_UniformSpace) f x <-> continuous (T := AbsRing_UniformSpace C_AbsRing) (U := AbsRing_UniformSpace C_AbsRing) f x. Proof. split => H. - intros P HP. by apply locally_C, H, locally_C. - intros P HP. by apply locally_C, H, locally_C. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
continuous_C
is_derive_filterdiff_C_R (f : C -> C) (x : C) (df : C -> C) : is_linear df -> is_derive (V := C_NormedModule) f x (df 1) -> filterdiff (U := C_R_NormedModule) (V := C_R_NormedModule) f (locally x) df. Proof. move => Hdf [Lf Hf]. split => //. apply is_linear_C_R. split ; apply Hdf. intros y Hy eps. apply: locally_le_locally_norm. case: (fun Hy => locally_norm_le_locally _ _ (Hf y Hy eps)) => {Hf} /= delta Hf => //. apply locally_C, Hy. by apply locally_C, Hf. exists delta => /= z Hz. rewrite -!Cmod_norm. rewrite -{1}(Cmult_1_r (minus (G := C_R_NormedModule) z y)). rewrite linear_scal. by apply Hf. by apply Hdf. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
is_derive_filterdiff_C_R
filterdiff_C_R_is_derive (f : C -> C) (x : C) (df : C) : filterdiff (U := C_R_NormedModule) (V := C_R_NormedModule) f (locally x) (fun u => mult u df) -> is_derive (V := C_NormedModule) f x df. Proof. intros (Lf,Df). split. apply is_linear_scal_l. intros y Hy eps. apply: locally_le_locally_norm. case: (fun Hy => locally_norm_le_locally _ _ (Df y Hy eps)) => {Df} /= delta Df => //. apply locally_C, Hy. by apply locally_C, Df. exists delta => /= z Hz. rewrite /norm /= /abs /= !Cmod_norm. apply Df, Hz. Qed. (** * Intégrale le long d’un segment *)
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
filterdiff_C_R_is_derive
C_RInt (f : R -> C) (a b : R) : C := (RInt (fun t => fst (f t)) a b, RInt (fun t => snd (f t)) a b).
Definition
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
C_RInt
is_C_RInt_unique (f : R -> C) (a b : R) (l : C) : is_RInt f a b l -> C_RInt f a b = l. Proof. intros Hf. apply RInt_fct_extend_pair with (3 := Hf). by apply is_RInt_unique. by apply is_RInt_unique. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
is_C_RInt_unique
C_RInt_correct (f : R -> C) (a b : R) : ex_RInt f a b -> is_RInt f a b (C_RInt f a b). Proof. case => l Hf. replace (C_RInt f a b) with l. by []. by apply sym_eq, is_C_RInt_unique. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
C_RInt_correct
C_RInt_ext (f g : R -> C) (a b : R) : (forall x, Rmin a b <= x <= Rmax a b -> g x = f x) -> C_RInt g a b = C_RInt f a b. Proof. intros Heq. apply injective_projections ; simpl ; apply RInt_ext => x Hx ; by rewrite Heq. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
C_RInt_ext
C_RInt_swap (f : R -> C) (a b : R) : - C_RInt f a b = C_RInt f b a. Proof. apply injective_projections ; simpl ; apply RInt_swap. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
C_RInt_swap
C_RInt_scal_R (f : R -> C) (a b : R) (k : R) : C_RInt (fun t => scal k (f t)) a b = scal k (C_RInt f a b). Proof. apply injective_projections ; simpl ; apply RInt_scal. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
C_RInt_scal_R
C_RInt_const c a b : C_RInt (fun _ => c) a b = scal (b - a) c. Proof. apply injective_projections ; simpl ; rewrite RInt_const ; ring. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
C_RInt_const
is_C_RInt_scal f a b (k : C) l : is_RInt f a b l -> is_RInt (fun t => k * f t) a b (k * l). Proof. intros H. move: (is_RInt_fct_extend_fst _ _ _ _ H) => /= H1. move: (is_RInt_fct_extend_snd _ _ _ _ H) => /= {H} H2. apply is_RInt_fct_extend_pair ; simpl. by apply: is_RInt_minus ; apply: is_RInt_scal. by apply: is_RInt_plus ; apply: is_RInt_scal. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
is_C_RInt_scal
ex_C_RInt_scal f k a b : ex_RInt f a b -> ex_RInt (fun t => k * f t) a b. Proof. intros [lf If]. eexists. apply is_C_RInt_scal ; eassumption. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
ex_C_RInt_scal
C_RInt_scal (f : R -> C) (k : C) (a b : R) : ex_RInt f a b -> C_RInt (fun t => k * f t) a b = k * C_RInt f a b. Proof. intros Hf. apply is_C_RInt_unique. apply is_C_RInt_scal. by apply C_RInt_correct. Qed.
Lemma
examples
[ "From Coq Require Import Reals ssreflect.", "From Coquelicot Require Import Coquelicot." ]
examples/Wasow.v
C_RInt_scal
End of preview. Expand in Data Studio

Coq-Coquelicot

Structured dataset from Coquelicot — Classical real analysis.

2,448 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
21

Collection including phanerozoic/Coq-Coquelicot