Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
7
17.4k
type
stringclasses
23 values
library
stringclasses
22 values
imports
listlengths
0
26
filename
stringclasses
369 values
symbolic_name
stringlengths
1
47
docstring
stringclasses
1 value
Ring R : (CRing_Ring R) (preprocess [unfold cg_minus;simpl]).
Add
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
Ring
Ring cpolycring_th : (CRing_Ring (cpoly_cring R)) (preprocess [unfold cg_minus;simpl]). (** [Bernstein n i] is the ith element of the n dimensional Bernstein basis *)
Add
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
Ring
Bernstein (n i:nat) {struct n}: (i <= n) -> cpoly_cring R := match n return (i <= n) -> cpoly_cring R with O => fun _ => [1] |S n' => match i return (i <= S n') -> cpoly_cring R with O => fun _ => ([1][-]_X_)[*](Bernstein (Nat.le_0_l n')) |S i' => fun p => match (le_lt_eq_dec _ _ p) with | left p' => ([1][-]_X_)[*](Bernstein (proj1 (Nat.lt_succ_r _ _) p'))[+]_X_[*](Bernstein (le_S_n _ _ p)) | right _ => _X_[*](Bernstein (proj1 (Nat.lt_succ_r _ _) p)) end end end. (** These lemmas provide an induction principle for polynomials using the Bernstien basis *)
Fixpoint
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
Bernstein
Bernstein_inv1 : forall n i (H:i < n) (H0:S i <= S n), Bernstein H0[=]([1][-]_X_)[*](Bernstein (proj1 (Nat.lt_succ_r _ _) (proj1 (Nat.succ_lt_mono _ _) H)))[+]_X_[*](Bernstein (le_S_n _ _ H0)). Proof. intros n i H H0. simpl (Bernstein H0). destruct (le_lt_eq_dec _ _ H0). replace (proj1 (Nat.lt_succ_r (S i) n) l) with (proj1 (Nat.lt_succ_r _ _) (proj1 (Nat.succ_lt_mono _ _) H)) by apply le_irrelevent. reflexivity. exfalso; lia. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
Bernstein_inv1
Bernstein_inv2 : forall n (H:S n <= S n), Bernstein H[=]_X_[*](Bernstein (le_S_n _ _ H)). Proof. intros n H. simpl (Bernstein H). destruct (le_lt_eq_dec _ _ H). exfalso; lia. replace (proj1 (Nat.lt_succ_r n n) H) with (le_S_n n n H) by apply le_irrelevent. reflexivity. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
Bernstein_inv2
Bernstein_ind : forall n i (H:i<=n) (P : nat -> nat -> cpoly_cring R -> Prop), P 0 0 [1] -> (forall n p, P n 0 p -> P (S n) 0 (([1][-]_X_)[*]p)) -> (forall n p, P n n p -> P (S n) (S n) (_X_[*]p)) -> (forall i n p q, (i < n) -> P n i p -> P n (S i) q -> P (S n) (S i) (([1][-]_X_)[*]q[+]_X_[*]p)) -> P n i (Bernstein H). Proof. intros n i H P H0 H1 H2 H3. revert n i H. induction n; intros [|i] H. apply H0. exfalso; auto with *. apply H1. apply IHn. simpl. destruct (le_lt_eq_dec (S i) (S n)). apply H3; auto with *. inversion e. revert H. rewrite H5. intros H. apply H2. auto with *. Qed. (** [1] important property of the Bernstein basis is that its elements form a partition of unity *)
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
Bernstein_ind
partitionOfUnity : forall n, @Sumx (cpoly_cring R) _ (fun i H => Bernstein (proj1 (Nat.lt_succ_r i n) H)) [=][1]. Proof. induction n. reflexivity. set (A:=(fun (i : nat) (H : i < S n) => Bernstein (proj1 (Nat.lt_succ_r i n) H))) in *. set (B:=(fun i => ([1][-]_X_)[*](part_tot_nat_fun (cpoly_cring R) _ A i)[+]_X_[*]match i with O => [0] | S i' => (part_tot_nat_fun _ _ A i') end)). rewrite -> (fun a b => Sumx_Sum0 _ a b B). unfold B. rewrite -> Sum0_plus_Sum0. do 2 rewrite -> mult_distr_sum0_lft. rewrite -> Sumx_to_Sum in IHn; auto with *. setoid_replace (Sum0 (S (S n)) (part_tot_nat_fun (cpoly_cring R) (S n) A)) with (Sum0 (S (S n)) (part_tot_nat_fun (cpoly_cring R) (S n) A)[-][0]) using relation (@st_eq (cpoly_cring R)) by ring. change (Sum0 (S (S n)) (part_tot_nat_fun (cpoly_cring R) (S n) A)[-][0]) with (Sum 0 (S n) (part_tot_nat_fun (cpoly_cring R) (S n) A)). set (C:=(fun i : nat => match i with | 0 => ([0] : cpoly_cring R) | S i' => part_tot_nat_fun (cpoly_cring R) (S n) A i' end)). setoid_replace (Sum0 (S (S n)) C) with (Sum0 (S (S n)) C[-][0]) using relation (@st_eq (cpoly_cring R)) by ring. change (Sum0 (S (S n)) C[-][0]) with (Sum 0 (S n) C). rewrite -> Sum_last. rewrite -> IHn. replace (part_tot_nat_fun (cpoly_cring R) (S n) A (S n)) with ([0]:cpoly_cring R). rewrite -> Sum_first. change (C 0) with ([0]:cpoly_cring R). rewrite <- (Sum_shift _ (part_tot_nat_fun (cpoly_cring R) (S n) A)) by reflexivity. rewrite -> IHn by ring. ring. unfold part_tot_nat_fun. destruct (le_lt_dec (S n) (S n)). reflexivity. exfalso; lia. intros i j Hij. subst. intros Hi Hj. unfold A. replace (proj1 (Nat.lt_succ_r j n) Hi) with (proj1 (Nat.lt_succ_r j n) Hj) by apply le_irrelevent. apply eq_reflexive. destruct i; intros Hi; unfold B, A, part_tot_nat_fun. simpl. symmetry. rewrite <- (le_irrelevent _ _ (Nat.le_0_l _) _). ring. destruct (le_lt_dec (S n) i). exfalso; lia. destruct (le_lt_dec (S n) (S i)); simpl (Bernstein (proj1 (Nat.lt_succ_r (S i) (S n)) Hi)); destruct (le_lt_eq_dec (S i) (S n) (proj1 (Nat.lt_succ_r (S i) (S n)) Hi)). exfalso; lia. replace (proj1 (Nat.lt_succ_r i n) (proj1 (Nat.lt_succ_r (S i) (S n)) Hi)) with (proj1 (Nat.lt_succ_r i n) l) by apply le_irrelevent. ring. replace (le_S_n i n (proj1 (Nat.lt_succ_r (S i) (S n)) Hi)) with (proj1 (Nat.lt_succ_r i n) l) by apply le_irrelevent. replace l1 with l0 by apply le_irrelevent. reflexivity. exfalso; lia. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
partitionOfUnity
RaiseDegreeA : forall n i (H:i<=n), (nring (S n))[*]_X_[*]Bernstein H[=](nring (S i))[*]Bernstein (le_n_S _ _ H). Proof. induction n. intros [|i] H; [|exfalso; lia]. repeat split; ring. intros i H. change (nring (S (S n)):cpoly_cring R) with (nring (S n)[+][1]:cpoly_cring R). rstepl (nring (S n)[*]_X_[*]Bernstein H[+]_X_[*]Bernstein H). destruct i as [|i]. simpl (Bernstein H) at 1. rstepl (([1][-]_X_)[*](nring (S n)[*]_X_[*]Bernstein (Nat.le_0_l n))[+] _X_[*]Bernstein H). rewrite -> IHn. rstepl ((([1][-]_X_)[*]Bernstein (le_n_S _ _ (Nat.le_0_l n))[+]_X_[*]Bernstein H)). rstepr (Bernstein (le_n_S 0 (S n) H)). set (le_n_S 0 n (Nat.le_0_l n)). rewrite (Bernstein_inv1 l). rewrite (le_irrelevent _ _ (proj1 (Nat.lt_succ_r 1 (S n)) (proj1 (Nat.succ_lt_mono 0 (S n)) l)) l). rewrite (le_irrelevent _ _ H (le_S_n 0 (S n) (le_n_S 0 (S n) H))). reflexivity. simpl (Bernstein H) at 1. destruct (le_lt_eq_dec _ _ H). rstepl (([1][-]_X_)[*](nring (S n)[*]_X_[*]Bernstein (proj1 (Nat.lt_succ_r (S i) n) l))[+] _X_[*](nring (S n)[*]_X_[*]Bernstein (le_S_n i n H))[+] _X_[*]Bernstein H). do 2 rewrite -> IHn. change (nring (S (S i)):cpoly_cring R) with (nring (S i)[+][1]:cpoly_cring R). set (l0:= (le_n_S (S i) n (proj1 (Nat.lt_succ_r (S i) n) l))). replace (le_n_S i n (le_S_n i n H)) with H by apply le_irrelevent. rstepl ((nring (S i)[+][1])[*](([1][-]_X_)[*]Bernstein l0[+]_X_[*]Bernstein H)). rewrite (Bernstein_inv1 l). replace (proj1 (Nat.lt_succ_r (S (S i)) (S n)) (proj1 (Nat.succ_lt_mono (S i) (S n)) l)) with l0 by apply le_irrelevent. replace (le_S_n (S i) (S n) (le_n_S (S i) (S n) H)) with H by apply le_irrelevent. reflexivity. rstepl (_X_[*](nring (S n)[*]_X_[*]Bernstein (proj1 (Nat.lt_succ_r _ _) H))[+] _X_[*]Bernstein H). rewrite IHn. replace (le_n_S i n (proj1 (Nat.lt_succ_r i n) H)) with H by apply le_irrelevent. revert H. inversion_clear e. intros H. rewrite -> (Bernstein_inv2 (le_n_S _ _ H)). replace (le_S_n (S n) (S n) (le_n_S (S n) (S n) H)) with H by apply le_irrelevent. change (nring (S (S n)):cpoly_cring R) with (nring (S n)[+][1]:cpoly_cring R). ring. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
RaiseDegreeA
RaiseDegreeB : forall n i (H:i<=n), (nring (S n))[*]([1][-]_X_)[*]Bernstein H[=](nring (S n - i))[*]Bernstein (le_S _ _ H). Proof. induction n. intros [|i] H; [|exfalso; lia]. repeat split; ring. intros i H. change (nring (S (S n)):cpoly_cring R) with (nring (S n)[+][1]:cpoly_cring R). set (X0:=([1][-](@cpoly_var R))) in *. rstepl (nring (S n)[*]X0[*]Bernstein H[+]X0[*]Bernstein H). destruct i as [|i]. simpl (Bernstein H) at 1. fold X0. rstepl (X0[*](nring (S n)[*]X0[*]Bernstein (Nat.le_0_l n))[+] X0[*]Bernstein H). rewrite -> IHn. replace (le_S 0 n (Nat.le_0_l n)) with H by apply le_irrelevent. simpl (S n - 0). change (nring (S (S n) - 0):cpoly_cring R) with (nring (S n)[+][1]:cpoly_cring R). rstepl ((nring (S n))[*](X0[*]Bernstein H)[+]X0[*]Bernstein H). change (Bernstein (le_S _ _ H)) with (X0[*]Bernstein (Nat.le_0_l (S n))). replace (Nat.le_0_l (S n)) with H by apply le_irrelevent. ring. simpl (Bernstein H) at 1. destruct (le_lt_eq_dec _ _ H). fold X0. rstepl (X0[*](nring (S n)[*]X0[*]Bernstein (proj1 (Nat.lt_succ_r (S i) n) l))[+] _X_[*](nring (S n)[*]X0[*]Bernstein (le_S_n i n H))[+] X0[*]Bernstein H). do 2 rewrite -> IHn. rewrite (Nat.sub_succ_l i n) by auto with *. rewrite (Nat.sub_succ_l (S i) (S n)) by auto with *. replace (S n - S i) with (n - i) by auto with *. change (nring (S (n - i)):cpoly_cring R) with (nring (n - i)[+][1]:cpoly_cring R). replace (le_S (S i) n (proj1 (Nat.lt_succ_r (S i) n) l)) with H by apply le_irrelevent. set (l0:= (le_S i n (le_S_n i n H))). rstepl ((nring (n - i)[+][1])[*](X0[*]Bernstein H[+]_X_[*]Bernstein l0)). rewrite -> (Bernstein_inv1 H). fold X0. replace (proj1 (Nat.lt_succ_r _ _) (proj1 (Nat.succ_lt_mono _ _) H)) with H by apply le_irrelevent. replace (le_S_n _ _ (le_S (S i) (S n) H)) with l0 by apply le_irrelevent. reflexivity. revert H. inversion e. clear - IHn. intros H. assert (l:(n < (S n))) by auto. rewrite -> (Bernstein_inv1 l). fold X0. rstepl (_X_[*](nring (S n)[*]X0[*]Bernstein (proj1 (Nat.lt_succ_r _ _) H))[+] X0[*]Bernstein H). rewrite -> IHn. replace (S n - n) with 1 by auto with *. replace (S (S n) - S n) with 1 by auto with *. replace (le_S_n n (S n) (le_S (S n) (S n) H)) with (le_S n n (proj1 (Nat.lt_succ_r n n) H)) by apply le_irrelevent. replace (proj1 (Nat.lt_succ_r (S n) (S n)) (proj1 (Nat.succ_lt_mono n (S n)) l)) with H by apply le_irrelevent. ring. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
RaiseDegreeB
RaiseDegree : forall n i (H: i<=n), (nring (S n))[*]Bernstein H[=](nring (S n - i))[*]Bernstein (le_S _ _ H)[+](nring (S i))[*]Bernstein (le_n_S _ _ H). Proof. intros n i H. rstepl ((nring (S n))[*]([1][-]_X_)[*]Bernstein H[+](nring (S n))[*]_X_[*]Bernstein H). rewrite RaiseDegreeA, RaiseDegreeB. reflexivity. Qed. Opaque Bernstein. (** Given a vector of coefficents for a polynomial in the Bernstein basis, return the polynomial *) Arguments Vector.nil {A}. Arguments Vector.cons [A].
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
RaiseDegree
evalBernsteinBasisH (n i:nat) (v:Vector.t R i) : i <= n -> cpoly_cring R := match v in Vector.t _ i return i <= n -> cpoly_cring R with |Vector.nil => fun _ => [0] |Vector.cons a i' v' => match n as n return (S i' <= n) -> cpoly_cring R with | O => fun p => False_rect _ (Nat.nle_succ_0 _ p) | S n' => fun p => _C_ a[*]Bernstein (le_S_n _ _ p)[+]evalBernsteinBasisH v' (Nat.lt_le_incl _ _ p) end end.
Fixpoint
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
evalBernsteinBasisH
evalBernsteinBasis (n:nat) (v:Vector.t R n) : cpoly_cring R := evalBernsteinBasisH v (Nat.le_refl n). (** The coefficents are linear *) Opaque polyconst.
Definition
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
evalBernsteinBasis
Vbinary : forall (n : nat), Vector.t A n -> Vector.t A n -> Vector.t A n. Proof. induction n as [| n h]; intros v v0. apply Vector.nil. inversion v as [| a n0 H0 H1]; inversion v0 as [| a0 n1 H2 H3]. exact (Vector.cons (g a a0) n (h H0 H2)). Defined.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
Vbinary
Vid n : Vector.t A n -> Vector.t A n := match n with | O => fun _ => Vector.nil | S n' => fun v : Vector.t A (S n') => Vector.cons (Vector.hd v) _ (Vector.tl v) end.
Definition
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
Vid
Vid_eq : forall (n:nat) (v:Vector.t A n), v = Vid v. Proof. destruct v; auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
Vid_eq
VSn_eq : forall (n : nat) (v : Vector.t A (S n)), v = Vector.cons (Vector.hd v) _ (Vector.tl v). Proof. intros. exact (Vid_eq v). Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
VSn_eq
V0_eq : forall (v : Vector.t A 0), v = Vector.nil. Proof. intros. exact (Vid_eq v). Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
V0_eq
evalBernsteinBasisPlus : forall n (v1 v2: Vector.t R n), evalBernsteinBasis (Vbinary (fun (x y:R)=>x[+]y) v1 v2)[=]evalBernsteinBasis v1[+]evalBernsteinBasis v2. Proof. unfold evalBernsteinBasis. intros n. generalize (Nat.le_refl n). generalize n at 1 3 4 6 7 9 11. intros i. induction i. intros l v1 v2. rewrite (V0_eq v1), (V0_eq v2). ring. intros l v1 v2. destruct n as [|n]. exfalso; auto with *. rewrite (VSn_eq v1), (VSn_eq v2). simpl. rewrite IHi. rewrite -> c_plus. ring. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
evalBernsteinBasisPlus
evalBernsteinBasisConst : forall n c, evalBernsteinBasis (Vector.const c (S n))[=]_C_ c. Proof. intros n c. stepr (evalBernsteinBasis (Vector.const c (S n))[+]_C_ c[*]Sum (S n) n (part_tot_nat_fun _ _ (fun (i : nat) (H : i < S n) => Bernstein (proj1 (Nat.lt_succ_r i n) H)))). rewrite -> Sum_empty by auto with *. ring. unfold evalBernsteinBasis. generalize (Nat.le_refl (S n)). generalize (S n) at 1 4 5 6. intros i l. induction i. rstepr (_C_ c[*][1]). rewrite <- (partitionOfUnity n). rewrite -> Sumx_to_Sum; auto with *. intros i j Hij. rewrite Hij. intros H H'. replace (proj1 (Nat.lt_succ_r j n) H) with (proj1 (Nat.lt_succ_r j n) H') by apply le_irrelevent. reflexivity. rstepl (evalBernsteinBasisH (Vector.const c i) (Nat.lt_le_incl i (S n) l)[+] _C_ c[*](Bernstein (le_S_n i n l)[+] Sum (S i) n (part_tot_nat_fun (cpoly_cring R) (S n) (fun (i0 : nat) (H : i0 < S n) => Bernstein (proj1 (Nat.lt_succ_r i0 n) H))))). replace (Bernstein (le_S_n _ _ l)) with (part_tot_nat_fun (cpoly_cring R) (S n) (fun (i0 : nat) (H : i0 < S n) => Bernstein (proj1 (Nat.lt_succ_r i0 n) H)) i). rewrite <- Sum_first. apply IHi. clear - i. unfold part_tot_nat_fun. destruct (le_lt_dec (S n) i). exfalso; auto with *. simpl. replace (proj1 (Nat.lt_succ_r _ _) l0) with (le_S_n _ _ l) by apply le_irrelevent. reflexivity. Qed. Variable eta : RingHom Q_as_CRing R. Opaque Qred. Opaque Q_as_CRing. Opaque Vbinary. Opaque Vector.const. (** To convert a polynomial to the Bernstein basis, we need to know how to multiply a bernstein basis element by [_X_] can convert it to the Bernstein basis. At this point we must work with rational coeffients. So we assume there is a ring homomorphism from [Q] to R *)
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
evalBernsteinBasisConst
BernsteinBasisTimesXH (n i:nat) (v:Vector.t R i) : i <= n -> Vector.t R (S i) := match v in Vector.t _ i return i <= n -> Vector.t R (S i) with | Vector.nil => fun _ => Vector.cons [0] _ Vector.nil | Vector.cons a i' v' => match n as n return S i' <= n -> Vector.t R (S (S i')) with | O => fun p => False_rect _ (Nat.nle_succ_0 _ p) | S n' => fun p => Vector.cons (eta(Qred (i#P_of_succ_nat n'))[*]a) _ (BernsteinBasisTimesXH v' (Nat.lt_le_incl _ _ p)) end end.
Fixpoint
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
BernsteinBasisTimesXH
BernsteinBasisTimesX (n:nat) (v:Vector.t R n) : Vector.t R (S n) := BernsteinBasisTimesXH v (Nat.le_refl n).
Definition
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
BernsteinBasisTimesX
evalBernsteinBasisTimesX : forall n (v:Vector.t R n), evalBernsteinBasis (BernsteinBasisTimesX v)[=]_X_[*]evalBernsteinBasis v. Proof. intros n. unfold evalBernsteinBasis, BernsteinBasisTimesX. generalize (Nat.le_refl (S n)) (Nat.le_refl n). generalize n at 1 3 5 7 9 11. intros i. induction i. intros l l0 v. rewrite (V0_eq v). simpl. rewrite <- c_zero. ring. intros l l0 v. destruct n as [|n]. exfalso; auto with *. rewrite (VSn_eq v). simpl. rewrite -> IHi. rewrite -> c_mult. rewrite -> ring_dist_unfolded. apply csbf_wd; try reflexivity. set (A:= (_C_ (eta (Qred (Qmake (Zpos (P_of_succ_nat i)) (P_of_succ_nat n)))))). rstepl (_C_ (Vector.hd v)[*](A[*]Bernstein (le_S_n (S i) (S n) l))). rstepr (_C_ (Vector.hd v)[*](_X_[*]Bernstein (le_S_n i n l0))). apply mult_wdr. unfold A; clear A. assert (Hn : (nring (S n):Q)[#][0]). stepl (S n:Q). simpl. unfold Qap, Qeq. auto with *. symmetry; apply nring_Q. setoid_replace (Qred (P_of_succ_nat i # P_of_succ_nat n)) with (([1][/](nring (S n))[//]Hn)[*](nring (S i))). set (eta':=RHcompose _ _ _ _C_ eta). change (_C_ (eta (([1][/]nring (S n)[//]Hn)[*]nring (S i)))) with ((eta' (([1][/]nring (S n)[//]Hn)[*]nring (S i))):cpoly_cring R). rewrite -> rh_pres_mult. rewrite -> rh_pres_nring. rewrite <- mult_assoc_unfolded. replace (le_S_n (S i) (S n) l) with (le_n_S _ _ (le_S_n i n l0)) by apply le_irrelevent. rewrite <- RaiseDegreeA. rewrite <- (@rh_pres_nring _ _ eta'). rewrite <- mult_assoc_unfolded. rewrite -> mult_assoc_unfolded. rewrite <- rh_pres_mult. setoid_replace (eta' (([1][/]nring (S n)[//]Hn)[*]nring (S n))) with ([1]:cpoly_cring R). ring. rewrite <- (@rh_pres_unit _ _ eta'). apply csf_wd. apply (@div_1 Q_as_CField). rewrite -> Qred_correct. rewrite -> Qmake_Qdiv. change (Zpos (P_of_succ_nat n)) with ((S n):Z). rewrite <- (nring_Q (S n)). change (Zpos (P_of_succ_nat i)) with ((S i):Z). rewrite <- (nring_Q (S i)). change (nring (S i)/nring (S n) == (1/(nring (S n)))*nring (S i))%Q. field. apply Hn. Qed. (** Convert a polynomial to the Bernstein basis *)
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
evalBernsteinBasisTimesX
BernsteinCoefficents (p:cpoly_cring R) : sigT (Vector.t R) := match p with | cpoly_zero _ => existT _ _ Vector.nil | cpoly_linear _ c p' => let (n', b') := (BernsteinCoefficents p') in existT _ _ (Vbinary (fun (x y:R)=>x[+]y) (Vector.const c _) (BernsteinBasisTimesX b')) end.
Fixpoint
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
BernsteinCoefficents
evalBernsteinCoefficents : forall p, (let (n,b) := BernsteinCoefficents p in evalBernsteinBasis b)[=]p. Proof. induction p. reflexivity. simpl. destruct (BernsteinCoefficents p). rewrite -> evalBernsteinBasisPlus. rewrite -> evalBernsteinBasisConst. rewrite -> evalBernsteinBasisTimesX. rewrite -> IHp. rewrite -> poly_linear. ring. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
evalBernsteinCoefficents
BernsteinNonNeg : forall x:F, [0] [<=] x -> x [<=] [1] -> forall n i (p:Nat.le i n), [0][<=](Bernstein F p)!x. Proof. intros x Hx0 Hx1. induction n. intros i p. simpl (Bernstein F p). autorewrite with apply. auto with *. intros [|i] p; simpl (Bernstein F p). autorewrite with apply. auto with *. destruct (le_lt_eq_dec (S i) (S n) p); autorewrite with apply; auto with *. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "Require Import CoRN.", "From Coq Require Import Lia." ]
algebra/Bernstein.v
BernsteinNonNeg
is_CAbGroup (G : CGroup) := commutes (csg_op (c:=G)).
Definition
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
is_CAbGroup
CAbGroup : Type := {cag_crr : CGroup; cag_proof : is_CAbGroup cag_crr}. Local Coercion cag_crr : CAbGroup >-> CGroup.
Record
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
CAbGroup
CAbGroup_is_CAbGroup : is_CAbGroup G. Proof. elim G; auto. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
CAbGroup_is_CAbGroup
cag_commutes : commutes (csg_op (c:=G)). Proof. exact CAbGroup_is_CAbGroup. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
cag_commutes
cag_commutes_unfolded : forall x y : G, x[+]y [=] y[+]x. Proof cag_commutes.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
cag_commutes_unfolded
subcrr : CGroup := Build_SubCGroup _ _ Punit op_pres_P inv_pres_P.
Let
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
subcrr
isabgrp_scrr : is_CAbGroup subcrr. Proof. red in |- *. intros x y. case x. case y. intros. simpl in |- *. apply cag_commutes_unfolded. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
isabgrp_scrr
Build_SubCAbGroup : CAbGroup := Build_CAbGroup subcrr isabgrp_scrr.
Definition
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
Build_SubCAbGroup
cag_op_inv : forall x y : G, [--] (x[+]y) [=] [--]x[+] [--]y. Proof. intros x y. astepr ([--]y[+] [--]x). apply cg_inv_op. Qed. Hint Resolve cag_op_inv: algebra.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
cag_op_inv
assoc_1 : forall x y z : G, x[-] (y[-]z) [=] x[-]y[+]z. Proof. intros x y z; unfold cg_minus in |- *. astepr (x[+]([--]y[+]z)). Step_final (x[+]([--]y[+] [--][--]z)). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
assoc_1
minus_plus : forall x y z : G, x[-] (y[+]z) [=] x[-]y[-]z. Proof. intros x y z. unfold cg_minus in |- *. Step_final (x[+]([--]y[+] [--]z)). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
minus_plus
op_lft_resp_ap : forall x y z : G, y [#] z -> x[+]y [#] x[+]z. Proof. intros x y z H. astepl (y[+]x). astepr (z[+]x). apply op_rht_resp_ap; assumption. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
op_lft_resp_ap
cag_ap_cancel_lft : forall x y z : G, x[+]y [#] x[+]z -> y [#] z. Proof. intros x y z H. apply ap_symmetric_unfolded. apply cg_ap_cancel_rht with x. apply ap_symmetric_unfolded. astepl (x[+]y). astepr (x[+]z). auto. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
cag_ap_cancel_lft
plus_cancel_ap_lft : forall x y z : G, z[+]x [#] z[+]y -> x [#] y. Proof. intros x y z H. apply cag_ap_cancel_lft with z. assumption. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
plus_cancel_ap_lft
cag_crr : CAbGroup >-> CGroup.
Coercion
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
cag_crr
plus_rext : forall x y z : S, plus x y [#] plus x z -> y [#] z. Proof. intros x y z H. apply plus_lext with x. astepl (plus x y). astepr (plus x z). auto. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
plus_rext
plus_runit : forall x : S, plus x unit [=] x. Proof. intro x. Step_final (plus unit x). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
plus_runit
plus_is_fun : bin_fun_strext _ _ _ plus. Proof. intros x x' y y' H. elim (ap_cotransitive_unfolded _ _ _ H (plus x y')); intro H'. right; apply plus_lext with x. astepl (plus x y); astepr (plus x y'); auto. left; eauto. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
plus_is_fun
inv_inv' : forall x : S, plus (inv x) x [=] unit. Proof. intro. Step_final (plus x (inv x)). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
inv_inv'
plus_fun : CSetoid_bin_op S := Build_CSetoid_bin_fun _ _ _ plus plus_is_fun.
Definition
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
plus_fun
Build_CSemiGroup' : CSemiGroup. Proof. apply Build_CSemiGroup with S plus_fun. exact plus_assoc. Defined.
Definition
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
Build_CSemiGroup'
Build_CMonoid' : CMonoid. Proof. apply Build_CMonoid with Build_CSemiGroup' unit. apply Build_is_CMonoid. exact plus_runit. exact plus_lunit. Defined.
Definition
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
Build_CMonoid'
Build_CGroup' : CGroup. Proof. apply Build_CGroup with Build_CMonoid' inv. split. auto. apply inv_inv'. Defined.
Definition
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
Build_CGroup'
Build_CAbGroup' : CAbGroup. Proof. apply Build_CAbGroup with Build_CGroup'. exact plus_comm. Defined.
Definition
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
Build_CAbGroup'
nmult (a:G) (n:nat) {struct n} : G := match n with | O => [0] | S p => a[+]nmult a p end.
Fixpoint
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
nmult
nmult_wd : forall (x y:G) (n m:nat), (x [=] y) -> n = m -> nmult x n [=] nmult y m. Proof. simple induction n; intros. rewrite <- H0; algebra. rewrite <- H1; simpl in |- *; algebra. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
nmult_wd
nmult_one : forall x:G, nmult x 1 [=] x. Proof. simpl in |- *; algebra. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
nmult_one
nmult_Zero : forall n:nat, nmult [0] n [=] [0]. Proof. intro n. induction n. algebra. simpl in |- *; Step_final (([0]:G)[+][0]). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
nmult_Zero
nmult_plus : forall m n x, nmult x m[+]nmult x n [=] nmult x (m + n). Proof. simple induction m. simpl in |- *; algebra. clear m; intro m. intros. simpl in |- *. Step_final (x[+](nmult x m[+]nmult x n)). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
nmult_plus
nmult_mult : forall n m x, nmult (nmult x m) n [=] nmult x (m * n). Proof. simple induction n. intro. rewrite Nat.mul_0_r. algebra. clear n; intros. simpl in |- *. rewrite Nat.mul_comm. simpl in |- *. eapply eq_transitive_unfolded. 2: apply nmult_plus. rewrite Nat.mul_comm. algebra. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
nmult_mult
nmult_inv : forall n x, nmult [--]x n [=] [--] (nmult x n). Proof. intro; induction n; simpl in |- *. algebra. intros. Step_final ([--]x[+] [--](nmult x n)). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
nmult_inv
nmult_plus' : forall n x y, nmult x n[+]nmult y n [=] nmult (x[+]y) n. Proof. intro; induction n; simpl in |- *; intros. algebra. astepr (x[+]y[+](nmult x n[+]nmult y n)). astepr (x[+](y[+](nmult x n[+]nmult y n))). astepr (x[+](y[+]nmult x n[+]nmult y n)). astepr (x[+](nmult x n[+]y[+]nmult y n)). Step_final (x[+](nmult x n[+](y[+]nmult y n))). Qed. Hint Resolve nmult_wd nmult_Zero nmult_inv nmult_plus nmult_plus': algebra.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
nmult_plus'
zmult a z := caseZ_diff z (fun n m => nmult a n[-]nmult a m). (*
Definition
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult
Zeq_imp_nat_eq : forall m n:nat, m = n -> m = n. auto. intro m; induction m. intro n; induction n; auto. intro; induction n. intro. inversion H. intros. rewrite (IHm n). auto. repeat rewrite inj_S in H. auto with zarith. Qed. *)
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
Zeq_imp_nat_eq
zmult_char : forall (m n:nat) z, z = (m - n)%Z -> forall x, zmult x z [=] nmult x m[-]nmult x n. Proof. simple induction z; intros. simpl in |- *. replace m with n. Step_final ([0]:G). auto with zarith. simpl in |- *. astepl (nmult x (nat_of_P p)). apply cg_cancel_rht with (nmult x n). astepr (nmult x m). astepl (nmult x (nat_of_P p + n)). apply nmult_wd; algebra. rewrite <- convert_is_POS in H. auto with zarith. simpl in |- *. astepl [--](nmult x (nat_of_P p)). unfold cg_minus in |- *. astepr ([--][--](nmult x m)[+] [--](nmult x n)). astepr [--]([--](nmult x m)[+]nmult x n). apply un_op_wd_unfolded. apply cg_cancel_lft with (nmult x m). astepr (nmult x m[+] [--](nmult x m)[+]nmult x n). astepr ([0][+]nmult x n). astepr (nmult x n). astepl (nmult x (m + nat_of_P p)). apply nmult_wd; algebra. rewrite <- min_convert_is_NEG in H. auto with zarith. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult_char
zmult_wd : forall (x y:G) (n m:Z), (x [=] y) -> n = m -> zmult x n [=] zmult y m. Proof. do 3 intro. case n; intros; inversion H0. algebra. unfold zmult in |- *. simpl in |- *. astepl (nmult x (nat_of_P p)); Step_final (nmult y (nat_of_P p)). simpl in |- *. astepl [--](nmult x (nat_of_P p)). Step_final [--](nmult y (nat_of_P p)). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult_wd
zmult_one : forall x:G, zmult x 1 [=] x. Proof. simpl in |- *; algebra. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult_one
zmult_min_one : forall x:G, zmult x (-1) [=] [--]x. Proof. intros; simpl in |- *; Step_final ([0][-]x). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult_min_one
zmult_zero : forall x:G, zmult x 0 [=] [0]. Proof. simpl in |- *; algebra. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult_zero
zmult_Zero : forall k:Z, zmult [0] k [=] [0]. Proof. intro; induction k; simpl in |- *. algebra. Step_final (([0]:G)[-][0]). Step_final (([0]:G)[-][0]). Qed. Hint Resolve zmult_zero: algebra.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult_Zero
zmult_plus : forall m n x, zmult x m[+]zmult x n [=] zmult x (m + n). Proof. intros; case m; case n; intros. simpl in |- *; Step_final ([0][+]([0][-][0]):G). simpl in |- *; Step_final ([0][+](nmult x (nat_of_P p)[-][0])). simpl in |- *; Step_final ([0][+]([0][-]nmult x (nat_of_P p))). simpl in |- *; Step_final (nmult x (nat_of_P p)[-][0][+][0]). simpl in |- *. astepl (nmult x (nat_of_P p0)[+]nmult x (nat_of_P p)). astepr (nmult x (nat_of_P (p0 + p))). rewrite nat_of_P_plus_morphism. apply nmult_plus. simpl (zmult x (Zpos p0)[+]zmult x (Zneg p)) in |- *. astepl (nmult x (nat_of_P p0)[+] [--](nmult x (nat_of_P p))). astepl (nmult x (nat_of_P p0)[-]nmult x (nat_of_P p)). apply eq_symmetric_unfolded; apply zmult_char with (z := (Zpos p0 + Zneg p)%Z). rewrite convert_is_POS. unfold Zminus in |- *. rewrite min_convert_is_NEG; auto. rewrite <- Zplus_0_r_reverse. Step_final (zmult x (Zneg p)[+][0]). simpl (zmult x (Zneg p0)[+]zmult x (Zpos p)) in |- *. astepl ([--](nmult x (nat_of_P p0))[+]nmult x (nat_of_P p)). astepl (nmult x (nat_of_P p)[+] [--](nmult x (nat_of_P p0))). astepl (nmult x (nat_of_P p)[-]nmult x (nat_of_P p0)). rewrite Zplus_comm. apply eq_symmetric_unfolded; apply zmult_char with (z := (Zpos p + Zneg p0)%Z). rewrite convert_is_POS. unfold Zminus in |- *. rewrite min_convert_is_NEG; auto. simpl in |- *. astepl ([--](nmult x (nat_of_P p0))[+] [--](nmult x (nat_of_P p))). astepl [--](nmult x (nat_of_P p0)[+]nmult x (nat_of_P p)). astepr [--](nmult x (nat_of_P (p0 + p))). apply un_op_wd_unfolded. rewrite nat_of_P_plus_morphism. apply nmult_plus. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult_plus
zmult_mult : forall m n x, zmult (zmult x m) n [=] zmult x (m * n). Proof. simple induction m; simple induction n; simpl in |- *; intros. Step_final ([0][-][0][+]([0]:G)). astepr ([0]:G). astepl (nmult ([0][-][0]) (nat_of_P p)). Step_final (nmult [0] (nat_of_P p)). astepr [--]([0]:G). astepl [--](nmult ([0][-][0]) (nat_of_P p)). Step_final [--](nmult [0] (nat_of_P p)). algebra. astepr (nmult x (nat_of_P (p * p0))). astepl (nmult (nmult x (nat_of_P p)) (nat_of_P p0)[-][0]). astepl (nmult (nmult x (nat_of_P p)) (nat_of_P p0)). rewrite nat_of_P_mult_morphism. apply nmult_mult. astepr [--](nmult x (nat_of_P (p * p0))). astepl ([0][-]nmult (nmult x (nat_of_P p)) (nat_of_P p0)). astepl [--](nmult (nmult x (nat_of_P p)) (nat_of_P p0)). rewrite nat_of_P_mult_morphism. apply un_op_wd_unfolded. apply nmult_mult. algebra. astepr [--](nmult x (nat_of_P (p * p0))). astepl (nmult [--](nmult x (nat_of_P p)) (nat_of_P p0)[-][0]). astepl (nmult [--](nmult x (nat_of_P p)) (nat_of_P p0)). rewrite nat_of_P_mult_morphism. eapply eq_transitive_unfolded. apply nmult_inv. apply un_op_wd_unfolded. apply nmult_mult. astepr (nmult x (nat_of_P (p * p0))). astepr [--][--](nmult x (nat_of_P (p * p0))). astepl ([0][-]nmult [--](nmult x (nat_of_P p)) (nat_of_P p0)). astepl [--](nmult [--](nmult x (nat_of_P p)) (nat_of_P p0)). rewrite nat_of_P_mult_morphism. apply un_op_wd_unfolded. eapply eq_transitive_unfolded. apply nmult_inv. apply un_op_wd_unfolded. apply nmult_mult. Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult_mult
zmult_plus' : forall z x y, zmult x z[+]zmult y z [=] zmult (x[+]y) z. Proof. intro z; pattern z in |- *. apply nats_Z_ind. intro n; case n. intros; simpl in |- *. Step_final (([0]:G)[+]([0][-][0])). clear n; intros. rewrite POS_anti_convert; simpl in |- *. set (p := nat_of_P (P_of_succ_nat n)) in *. astepl (nmult x p[+]nmult y p). Step_final (nmult (x[+]y) p). intro n; case n. intros; simpl in |- *. Step_final (([0]:G)[+]([0][-][0])). clear n; intros. rewrite NEG_anti_convert; simpl in |- *. set (p := nat_of_P (P_of_succ_nat n)) in *. astepl ([--](nmult x p)[+] [--](nmult y p)). astepr [--](nmult (x[+]y) p). Step_final [--](nmult x p[+]nmult y p). Qed.
Lemma
algebra
[ "Require Export CoRN." ]
algebra/CAbGroups.v
zmult_plus'
is_CAbMonoid (G : CMonoid) := commutes (csg_op (c:=G)).
Definition
algebra
[ "Require Export CoRN.", "Require Import CoRN." ]
algebra/CAbMonoids.v
is_CAbMonoid
CAbMonoid : Type := {cam_crr :> CMonoid; cam_proof : is_CAbMonoid cam_crr}.
Record
algebra
[ "Require Export CoRN.", "Require Import CoRN." ]
algebra/CAbMonoids.v
CAbMonoid
CAbMonoid_is_CAbMonoid : is_CAbMonoid M. Proof. elim M; auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN." ]
algebra/CAbMonoids.v
CAbMonoid_is_CAbMonoid
cam_commutes : commutes (csg_op (c:=M)). Proof. exact CAbMonoid_is_CAbMonoid. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN." ]
algebra/CAbMonoids.v
cam_commutes
cam_commutes_unfolded : forall x y : M, x[+]y [=] y[+]x. Proof cam_commutes.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN." ]
algebra/CAbMonoids.v
cam_commutes_unfolded
subcrr : CMonoid := Build_SubCMonoid _ _ Punit op_pres_P.
Let
algebra
[ "Require Export CoRN.", "Require Import CoRN." ]
algebra/CAbMonoids.v
subcrr
isabgrp_scrr : is_CAbMonoid subcrr. Proof. red in |- *. intros x y. case x. case y. intros. simpl in |- *. apply cam_commutes_unfolded. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Import CoRN." ]
algebra/CAbMonoids.v
isabgrp_scrr
Build_SubCAbMonoid : CAbMonoid := Build_CAbMonoid _ isabgrp_scrr.
Definition
algebra
[ "Require Export CoRN.", "Require Import CoRN." ]
algebra/CAbMonoids.v
Build_SubCAbMonoid
R_Set := CauchySeq F.
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_Set
R_lt (x y : R_Set) := {N : nat | {e : F | [0] [<] e | forall n, N <= n -> e [<=] CS_seq _ y n[-]CS_seq _ x n}}.
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_lt
R_ap (x y : R_Set) := R_lt x y or R_lt y x.
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_ap
R_eq (x y : R_Set) := Not (R_ap x y).
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_eq
R_lt_cotrans : cotransitive R_lt. Proof. red in |- *. intros x y. elim x; intros x_ px. elim y; intros y_ py. intros Hxy z. elim z; intros z_ pz. elim Hxy; intros N H. elim H; clear Hxy H; intros e He HN. simpl in HN. set (e3 := e [/]ThreeNZ) in *. cut ([0] [<] e3); [ intro He3 | unfold e3 in |- *; apply pos_div_three; auto ]. set (e6 := e [/]SixNZ) in *. cut ([0] [<] e6); [ intro He6 | unfold e6 in |- *; apply pos_div_six; auto ]. set (e12 := e [/]TwelveNZ) in *. cut ([0] [<] e12); [ intro He12 | unfold e12 in |- *; apply pos_div_twelve; auto ]. set (e24 := e [/]TwentyFourNZ) in *. cut ([0] [<] e24); [ intro He24 | unfold e24 in |- *; apply pos_div_twentyfour; auto ]. elim (px e24 He24); intros Nx HNx. elim (py e24 He24); intros Ny HNy. elim (pz e24 He24); intros Nz HNz. set (NN := Nat.max N (Nat.max Nx (Nat.max Ny Nz))) in *. set (x0 := x_ NN) in *. set (y0 := y_ NN) in *. set (z0 := z_ NN) in *. elim (less_cotransitive_unfolded _ (x0[+]e3) (y0[-]e3)) with z0. intro Hyz. left. exists NN; exists e6; auto. intros n Hn; simpl in |- *. apply leEq_wdl with (e3[-] (e24[+]e24[+]e24[+]e24)). 2: unfold e3, e6, e12, e24 in |- *; rational. apply leEq_transitive with (e3[-] (z0[-]z_ Nz[+] (z_ Nz[-]z_ n) [+] (x_ n[-]x_ Nx) [+] (x_ Nx[-]x0))). apply minus_resp_leEq_rht. repeat apply plus_resp_leEq_both. unfold z0 in |- *; elim (HNz NN); auto; unfold NN in |- *; eauto with arith. apply shift_minus_leEq; apply shift_leEq_plus'. unfold cg_minus in |- *; apply shift_plus_leEq'. elim (HNz n); auto; apply Nat.le_trans with NN; auto; unfold NN in |- *; eauto with arith. elim (HNx n); auto; apply Nat.le_trans with NN; auto; unfold NN in |- *; eauto with arith. apply shift_minus_leEq; apply shift_leEq_plus'. unfold cg_minus in |- *; apply shift_plus_leEq'. unfold x0 in |- *; elim (HNx NN); auto; unfold NN in |- *; eauto with arith. apply shift_minus_leEq. rstepr (z0[-]x0). apply shift_leEq_minus; astepl (x0[+]e3); apply less_leEq; auto. intro Hzx. right. exists NN; exists e6; auto. intros n Hn; simpl in |- *. apply leEq_wdl with (e3[-] (e24[+]e24[+]e24[+]e24)). 2: unfold e3, e6, e12, e24 in |- *; rational. apply leEq_transitive with (e3[-] (z_ Nz[-]z0[+] (z_ n[-]z_ Nz) [+] (y_ Ny[-]y_ n) [+] (y0[-]y_ Ny))). apply minus_resp_leEq_rht. repeat apply plus_resp_leEq_both. apply shift_minus_leEq; apply shift_leEq_plus'. unfold cg_minus in |- *; apply shift_plus_leEq'. unfold z0 in |- *; elim (HNz NN); auto; unfold NN in |- *; eauto with arith. elim (HNz n); auto; apply Nat.le_trans with NN; auto; unfold NN in |- *; eauto with arith. apply shift_minus_leEq; apply shift_leEq_plus'. unfold cg_minus in |- *; apply shift_plus_leEq'. elim (HNy n); auto; apply Nat.le_trans with NN; auto; unfold NN in |- *; eauto with arith. unfold y0 in |- *; elim (HNy NN); auto; unfold NN in |- *; eauto with arith. apply shift_minus_leEq. rstepr (y0[-]z0). apply shift_leEq_minus; apply shift_plus_leEq'; apply less_leEq; auto. apply shift_less_minus. astepl (x0[+] (e3[+]e3)); apply shift_plus_less'. apply less_leEq_trans with e. apply shift_plus_less. apply less_wdl with ((e[-]e3) [/]TwoNZ). 2: unfold e3 in |- *; rational. apply pos_div_two'. apply shift_less_minus; astepl e3; unfold e3 in |- *; apply pos_div_three'; auto. unfold x0, y0, NN in |- *; apply HN; eauto with arith. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_lt_cotrans
R_ap_cotrans : cotransitive R_ap. Proof. red in |- *; intros x y Hxy z. elim Hxy; intro H; elim (R_lt_cotrans _ _ H z); unfold R_ap in |- *; auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_ap_cotrans
R_ap_symmetric : Csymmetric R_ap. Proof. red in |- *; intros x y Hxy. elim Hxy; unfold R_ap in |- *; auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_ap_symmetric
R_lt_irreflexive : irreflexive R_lt. Proof. red in |- *; intros x Hx. elim Hx; intros N HN. elim HN; clear Hx HN; intros e He HN. apply (ap_irreflexive_unfolded _ (x N)). apply less_imp_ap. apply less_leEq_trans with (x N[+]e). astepl (x N[+][0]); apply plus_resp_less_lft; auto. apply shift_plus_leEq'; auto with arith. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_lt_irreflexive
R_ap_irreflexive : irreflexive R_ap. Proof. red in |- *; intros x Hx. elim (R_lt_irreflexive x). elim Hx; auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_ap_irreflexive
R_ap_eq_tight : tight_apart R_eq R_ap. Proof. split; auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_ap_eq_tight
R_CSetoid : CSetoid. Proof. apply Build_CSetoid with R_Set R_eq R_ap. split. exact R_ap_irreflexive. exact R_ap_symmetric. exact R_ap_cotrans. exact R_ap_eq_tight. Defined.
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_CSetoid
R_plus (x y : R_CSetoid) : R_CSetoid := Build_CauchySeq _ _ (CS_seq_plus F _ _ (CS_proof _ x) (CS_proof _ y)).
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_plus
R_zero := Build_CauchySeq _ _ (CS_seq_const F [0]).
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_zero
R_plus_lft_ext : forall x y z, R_plus x z [#] R_plus y z -> x [#] y. Proof. intros x y z Hxy. elim Hxy; clear Hxy; intro H; [ left | right ]; elim H; intros N HN; elim HN; clear H HN; intros e He HN; exists N; exists e; auto; intros n Hn; simpl in HN. rstepr (CS_seq _ y n[+]CS_seq _ z n[-] (CS_seq _ x n[+]CS_seq _ z n)); auto. rstepr (CS_seq _ x n[+]CS_seq _ z n[-] (CS_seq _ y n[+]CS_seq _ z n)); auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_plus_lft_ext
R_plus_assoc : associative R_plus. Proof. intros x y z Hap. elim Hap; clear Hap; intro H; elim H; intros N HN; elim HN; clear H HN; intros e He HN; simpl in HN; apply (less_irreflexive_unfolded _ e). apply leEq_less_trans with (CS_seq _ x N[+]CS_seq _ y N[+]CS_seq _ z N[-] (CS_seq _ x N[+] (CS_seq _ y N[+]CS_seq _ z N))); auto. rstepl ([0]:F); auto. apply leEq_less_trans with (CS_seq _ x N[+] (CS_seq _ y N[+]CS_seq _ z N) [-] (CS_seq _ x N[+]CS_seq _ y N[+]CS_seq _ z N)); auto. rstepl ([0]:F); auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_plus_assoc
R_zero_lft_unit : forall x, R_plus R_zero x [=] x. Proof. intro x; intro x_ap. apply (R_lt_irreflexive x). elim x_ap; clear x_ap; intro x_lt; elim x_lt; intros N H; elim H; clear x_lt H; intros e He HN; exists N; exists e; auto; simpl in HN; intros n Hn. astepr (CS_seq _ x n[-] ([0][+]CS_seq _ x n)); auto. astepr ([0][+]CS_seq _ x n[-]CS_seq _ x n); auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_zero_lft_unit
R_plus_comm : forall x y, R_plus x y [=] R_plus y x. Proof. intros x y Hxy. elim Hxy; clear Hxy; intro H; elim H; intros N HN; elim HN; clear H HN; intros e He HN; simpl in HN; apply (less_irreflexive_unfolded _ e). apply leEq_less_trans with (CS_seq _ y N[+]CS_seq _ x N[-] (CS_seq _ x N[+]CS_seq _ y N)); auto. rstepl ([0]:F); auto. apply leEq_less_trans with (CS_seq _ x N[+]CS_seq _ y N[-] (CS_seq _ y N[+]CS_seq _ x N)); auto. rstepl ([0]:F); auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_plus_comm
R_inv (x : R_CSetoid) : R_CSetoid := Build_CauchySeq _ _ (CS_seq_inv F _ (CS_proof _ x)).
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_inv
R_inv_is_inv : forall x, R_plus x (R_inv x) [=] R_zero. Proof. intro x; intro x_ap. apply (R_lt_irreflexive R_zero). elim x_ap; clear x_ap; intro x_lt; elim x_lt; intros N H; elim H; clear x_lt H; intros e He HN; exists N; exists e; auto; simpl in HN; intros n Hn. simpl in |- *; astepr ([0][-] (CS_seq _ x n[+][--] (CS_seq _ x n))); auto. simpl in |- *; astepr (CS_seq _ x n[+][--] (CS_seq _ x n) [-][0]); auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_inv_is_inv
R_inv_ext : un_op_strext _ R_inv. Proof. intros x y Hxy. elim Hxy; clear Hxy; intro x_lt; [ right | left ]; elim x_lt; intros N H; elim H; clear x_lt H; intros e He HN; exists N; exists e; auto; simpl in HN; intros n Hn. rstepr ([--] (CS_seq _ y n) [-][--] (CS_seq _ x n)); auto. rstepr ([--] (CS_seq _ x n) [-][--] (CS_seq _ y n)); auto. Qed.
Lemma
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_inv_ext
Rinv : CSetoid_un_op R_CSetoid. Proof. red in |- *. apply Build_CSetoid_un_op with R_inv. exact R_inv_ext. Defined.
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
Rinv
R_CAbGroup : CAbGroup. Proof. apply Build_CAbGroup' with R_CSetoid R_zero R_plus Rinv. exact R_plus_lft_ext. exact R_zero_lft_unit. exact R_plus_comm. exact R_plus_assoc. exact R_inv_is_inv. Defined.
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_CAbGroup
R_mult (x y : R_CAbGroup) : R_CAbGroup := Build_CauchySeq _ _ (CS_seq_mult F _ _ (CS_proof _ x) (CS_proof _ y)).
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_mult
R_one : R_CAbGroup := Build_CauchySeq _ _ (CS_seq_const F [1]).
Definition
algebra
[ "Require Export CoRN.", "Require Export CoRN." ]
algebra/Cauchy_COF.v
R_one
End of preview. Expand in Data Studio

Coq-CoRN

Structured dataset from CoRN (Coq Repository at Nijmegen) — Constructive real analysis and algebra.

11,138 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
29

Collection including phanerozoic/Coq-Corn