Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
3
2.59k
type
stringclasses
20 values
library
stringclasses
4 values
imports
listlengths
0
18
filename
stringclasses
207 values
symbolic_name
stringlengths
1
36
docstring
stringclasses
269 values
bool : Set := true : bool | false : bool ]] We can define the boolean negation as follows: *) Equations neg (b : bool) : bool := neg true := false; neg false := true.
Inductive
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
bool
null
neg (b : bool) : bool := neg true := false; neg false := true.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
neg
* Inductive types In its simplest form, [Equations] allows to define functions on inductive datatypes. Take for example the booleans defined as an inductive type with two constructors [true] and [false]: [[ Inductive bool : Set := true : bool | false : bool ]] We can define the boolean negation as follows:
neg_inv : forall b, neg (neg b) = b.
Lemma
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
neg_inv
null
neg_ind : bool -> bool -> Prop := | neg_ind_equation_1 : neg_ind true false | neg_ind_equation_2 : neg_ind false true ]] Along with a proof of [Π b, neg_ind b (neg b)], we can eliminate any call to [neg] specializing its argument and result in a single command.
Inductive
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
neg_ind
null
list {A} : Type := nil : list | cons : A -> list -> list.
Inductive
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
list
* Reasoning principles In the setting of a proof assistant like Coq, we need not only the ability to define complex functions but also get good reasoning support for them. Practically, this translates to the ability to simplify applications of functions appearing in the goal and to give strong enough proof principles for (recursive) definitions. [Equations] provides this through an automatic generation of proofs related to the function. Namely, each defining equation gives rise to a lemma stating the equality between the left and right hand sides. These equations can be used as rewrite rules for simplification during proofs, without having to rely on the fragile simplifications implemented by raw reduction. We can also generate the inductive graph of any [Equations] definition, giving the strongest elimination principle on the function. I.e., for [neg] the inductive graph is defined as: [[ Inductive neg_ind : bool -> bool -> Prop := | neg_ind_equation_1 : neg_ind true false | neg_ind_equation_2 : neg_ind false true ]] Along with a proof of [Π b, neg_ind b (neg b)], we can eliminate any call to [neg] specializing its argument and result in a single command. Suppose we want to show that [neg] is involutive for example, our goal will look like: [[ b : bool ============================ neg (neg b) = b ]] An application of the tactic [funelim (neg b)] will produce two goals corresponding to the splitting done in [neg]: [neg false = true] and [neg true = false]. These correspond exactly to the rewriting lemmas generated for [neg]. In the following sections we will show how these ideas generalize to more complex types and definitions involving dependencies, overlapping clauses and recursion. * Building up ** Polymorphism Coq's inductive types can be parameterized by types, giving polymorphic datatypes. For example the list datatype is defined as:
tail {A} (l : list A) : list A := tail nil := nil ; tail (cons a v) := v.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
tail
No special support for polymorphism is needed, as type arguments are treated like regular arguments in dependent type theories. Note however that one cannot match on type arguments, there is no intensional type analysis. We can write the polymorphic [tail] function as follows:
app {A} (l l' : list A) : list A := app nil l' := l' ; app (cons a l) l' := cons a (app l l').
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
app
** Recursive inductive types Of course with inductive types comes recursion. Coq accepts a subset of the structurally recursive definitions by default (it is incomplete due to its syntactic nature). We will use this as a first step towards a more robust treatment of recursion via well-founded relations. A classical example is list concatenation:
filter {A} (l : list A) (p : A -> bool) : list A := filter nil p := nil ; filter (cons a l) p with p a => { filter (cons a l) p true := a :: filter l p ; filter (cons a l) p false := filter l p }.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
filter
** Moving to the left The structure of real programs is richer than a simple case tree on the original arguments in general. In the course of a computation, we might want to scrutinize intermediate results (e.g. coming from function calls) to produce an answer. This literally means adding a new pattern to the left of our equations made available for further refinement. This concept is know as with clauses in the Agda %\cite{norell:thesis}% community and was first presented and implemented in the Epigram language %\cite{DBLP:journals/jfp/McBrideM04}%. The compilation of with clauses and its treatment for generating equations and the induction principle are quite involved in the presence of dependencies, but the basic idea is to add a new case analysis to the program. To compute the type of the new subprogram, we actually abstract the discriminee term from the expected type of the clause, so that the type can get refined in the subprogram. In the non-dependent case this does not change anything though. Each [with] node generates an auxiliary definition from the clauses in the curly brackets, taking the additional object as argument. The equation for the with node will simply be an indirection to the auxiliary definition and simplification will continue as usual with the auxiliary definition's rewrite rules.
filter' {A} (l : list A) (p : A -> bool) : list A := | [], p => [] | a :: l, p with p a => { | true => a :: filter' l p | false => filter' l p }.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
filter
A more compact syntax can be used to avoid repeating the same patterns in multiple clauses and focus on the patterns that matter. When a clause starts with `|`, a list of patterns separated by "," or "|" can be provided in open syntax, without parentheses. They should match the explicit arguments of the current problem. Under a `with` node, they should match the variable(s) introduced by the `with` construct. When using "|", the ";" at the end of a clause becomes optional.
unzip {A B} (l : list (A * B)) : list A * list B := unzip nil := (nil, nil) ; unzip (cons p l) with unzip l => { unzip (cons (pair a b) l) (pair la lb) := (a :: la, b :: lb) }.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
unzip
A common use of with clauses is to scrutinize recursive results like the following:
equal (n m : nat) : { n = m } + { n <> m } := equal O O := left eq_refl ; equal (S n) (S m) with equal n m := { equal (S n) (S ?(n)) (left eq_refl) := left eq_refl ; equal (S n) (S m) (right p) := right _ } ; equal x y := right _.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
equal
* Dependent types Coq supports writing dependent functions, in other words, it gives the ability to make the results _type_ depend on actual _values_, like the arguments of the function. A simple example is given below of a function which decides the equality of two natural numbers, returning a sum type carrying proofs of the equality or disequality of the arguments. The sum type [{ A } + { B }] is a constructive variant of disjunction that can be used in programs to give at the same time a boolean algorithmic information (are we in branch [A] or [B]) and a _logical_ information (a proof witness of [A] or [B]). Hence its constructors [left] and [right] take proofs as arguments. The [eq_refl] proof term is the single proof of [x = x] (the [x] is generaly infered automatically).
head {A} (l : list A) (pf : l <> nil) : A := head nil pf with pf eq_refl := { | ! }; head (cons a v) _ := a.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
head
Of particular interest here is the inner program refining the recursive result. As [equal n m] is of type [{ n = m } + { n <> m }] we have two cases to consider: - Either we are in the [left p] case, and we know that [p] is a proof of [n = m], in which case we can do a nested match on [p]. The result of matching this equality proof is to unify [n] and [m], hence the left hand side patterns become [S n] and [S ?(n)] and the return type of this branch is refined to [{ n = n } + { n <> n }]. We can easily provide a proof for the left case. - In the right case, we mark the proof unfilled with an underscore. This will generate an obligation for the hole, that can be filled automatically by a predefined tactic or interactively by the user in proof mode (this uses the same obligation mechanism as the Program extension %\cite{sozeau.Coq/FingerTrees/article}%). In this case the automatic tactic is able to derive by itself that [n <> m -> S n <> S m]. Dependent types are also useful to turn partial functions into total functions by restricting their domain. Typically, we can force the list passed to [head] to be non-empty using the specification:
eq (A : Type) (x : A) : A -> Prop := eq_refl : eq A x x.
Inductive
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
eq
null
eqt {A} (x y z : A) (p : x = y) (q : y = z) : x = z := eqt x ?(x) ?(x) eq_refl eq_refl := eq_refl.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
eqt
** Inductive families The next step is to make constraints such as non-emptiness part of the datatype itself. This capability is provided through inductive families in Coq %\cite{paulin93tlca}%, which are a similar concept to the generalization of algebraic datatypes to GADTs in functional languages like Haskell %\cite{GADTcomplete}%. Families provide a way to associate to each constructor a different type, making it possible to give specific information about a value in its type. *** Equality The alma mater of inductive families is the propositional equality [eq] defined as: [[ Inductive eq (A : Type) (x : A) : A -> Prop := eq_refl : eq A x x. ]] Equality is a polymorphic relation on [A]. (The [Prop] sort (or kind) categorizes propositions, while the [Set] sort, equivalent to $\star$ in Haskell categorizes computational types.) Equality is _parameterized_ by a value [x] of type [A] and _indexed_ by another value of type [A]. Its single constructor states that equality is reflexive, so the only way to build an object of [eq x y] is if [x ~= y], that is if [x] is definitionaly equal to [y]. Now what is the elimination principle associated to this inductive family? It is the good old Leibniz substitution principle: [[ forall (A : Type) (x : A) (P : A -> Type), P x -> forall y : A, x = y -> P y ]] Provided a proof that [x = y], we can create on object of type [P y] from an existing object of type [P x]. This substitution principle is enough to show that equality is symmetric and transitive. For example we can use pattern-matching on equality proofs to show:
vmap {A B} (f : A -> B) {n} (v : vector A n) : vector B n := vmap f (n:=?(0)) Vnil := Vnil ; vmap f (Vcons a v) := Vcons (f a) (vmap f v).
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
vmap
null
vtail {A n} (v : vector A (S n)) : vector A n := vtail (Vcons a v') := v'.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
vtail
Here the value of the index representing the size of the vector is directly determined by the constructor, hence in the case tree we have no need to eliminate [n]. This means in particular that the function [vmap] does not do any computation with [n], and the argument could be eliminated in the extracted code. In other words, it provides only _logical_ information about the shape of [v] but no computational information. The [vmap] function works on every member of the [vector] family, but some functions may work only for some subfamilies, for example [vtail]:
NoConfusion for nat.
Derive
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
NoConfusion
** Derived notions, No-Confusion For this to work smoothlty, the package requires some derived definitions on each (indexed) family, which can be generated automatically using the generic [Derive] command. Here we ask to generate the signature, heterogeneous no-confusion and homogeneous no-confusion principles for vectors:
Signature NoConfusion NoConfusionHom for vector.
Derive
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
Signature
null
diag {A n} (v : vector (vector A n) n) : vector A n := diag (n:=O) Vnil := Vnil ; diag (n:=S _) (Vcons (Vcons a v) v') := Vcons a (diag (vmap vtail v')).
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
diag
The precise specification of these derived definitions can be found in the manual section %(\S \ref{manual})%. Signature is used to "pack" a value in an inductive family with its index, e.g. the "total space" of every index and value of the family. This can be used to derive the heterogeneous no-confusion principle for the family, which allows to discriminate between objects in potentially different instances/fibers of the family, or deduce injectivity of each constructor. The [NoConfusionHom] variant derives the homogeneous no-confusion principle between two objects in the _same_ instance of the family, e.g. to simplify equations of the form [Vnil = Vnil :> vector A 0]. This last principle can only be defined when pattern-matching on the inductive family does not require the [K] axiom and will otherwise fail. ** Unification and indexed datatypes Back to our example, of course the equations and the induction principle are simplified in a similar way. If we encounter a call to [vtail] in a proof, we can use the following elimination principle to simplify both the call and the argument which will be automatically substituted by an object of the form [Vcons _ _ _]:[[ forall P : forall (A : Type) (n : nat), vector A (S n) -> vector A n -> Prop, (forall (A : Type) (n : nat) (a : A) (v : vector A n), P A n (Vcons a v) v) -> forall (A : Type) (n : nat) (v : vector A (S n)), P A n v (vtail v) ]] As a witness of the power of the unification, consider the following function which computes the diagonal of a square matrix of size [n * n].
id (n : nat) : nat by wf n lt := id 0 := 0; id (S n') := S (id n').
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
id
Indeed, Coq cannot guess the decreasing argument of this fixpoint using its limited syntactic guard criterion: [vmap vtail v'] cannot be seen to be a (large) subterm of [v'] using this criterion, even if it is clearly "smaller". In general, it can also be the case that the compilation algorithm introduces decorations to the proof term that prevent the syntactic guard check from seeing that the definition is structurally recursive. To aleviate this problem, [Equations] provides support for _well-founded_ recursive definitions which do not rely on syntactic checks. The simplest example of this is using the [lt] order on natural numbers to define a recursive definition of identity:
Subterm for vector.
Derive
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
Subterm
Here [id] is defined by well-founded recursion on [lt] on the (only) argument [n] using the [by wf] annotation. At recursive calls of [id], obligations are generated to show that the arguments effectively decrease according to this relation. Here the proof that [n' < S n'] is discharged automatically. Wellfounded recursion on arbitrary dependent families is not as easy to use, as in general the relations on families are _heterogeneous_, as they must relate inhabitants of potentially different instances of the family. [Equations] provides a [Derive] command to generate the subterm relation on any such inductive family and derive the well-foundedness of its transitive closure. This provides course-of-values or so-called "mathematical" induction on these objects, reflecting the structural recursion criterion in the logic.
t_direct_subterm (A : Type) : forall n n0 : nat, vector A n -> vector A n0 -> Prop := t_direct_subterm_1_1 : forall (h : A) (n : nat) (H : vector A n), t_direct_subterm A n (S n) H (Vcons h H) ]] That is, there is only one recursive subterm, for the subvector in the [Vcons] constructor.
Inductive
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
t_direct_subterm
null
unzip {n} (v : vector (A * B) n) : vector A n * vector B n by wf (signature_pack v) (@t_subterm (A * B)) := unzip Vnil := (Vnil, Vnil) ; unzip (Vector.cons (pair x y) v) with unzip v := { | pair xs ys := (Vector.cons x xs, Vector.cons y ys) }.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
unzip
We can use the packed relation to do well-founded recursion on the vector. Note that we do a recursive call on a substerm of type [vector A n] which must be shown smaller than a [vector A (S n)]. They are actually compared at the packed type [{ n : nat & vector A n}]. The default obligation tactic defined in [Equations.Init] includes a proof-search for [subterm] proofs which can resolve the recursive call obligation automatically in this case.
diag' {A n} (v : vector (vector A n) n) : vector A n by wf n := diag' Vnil := Vnil ; diag' (Vcons (Vcons a v) v') := Vcons a (diag' (vmap vtail v')).
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
diag
For the diagonal, it is easier to give [n] as the decreasing argument of the function, even if the pattern-matching itself is on vectors:
uipa : forall A, UIP A.
Axiom
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
uipa
The user must declare this axiom itself, as an instance of the [UIP] class.
Instance uipa.
Existing
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
Instance
null
K {A} (x : A) (P : x = x -> Type) (p : P eq_refl) (H : x = x) : P H := K x P p eq_refl := p.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
K
In this case the following definition uses the [UIP] axiom just declared.
allows however to use constructive proofs of UIP for types enjoying decidable equality.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
allows
null
K' (x : nat) (P : x = x -> Type) (p : P eq_refl) (H : x = x) : P H := K' x P p eq_refl := p.
Equations
doc
[ "Coq.Arith", "Coq.Lia", "Coq.Program", "Equations.Equations", "Bvector" ]
doc/equations_intro.v
K
Note that the definition loses its computational content: it will get stuck on an axiom. We hence do not recommend its use. Equations allows however to use constructive proofs of UIP for types enjoying decidable equality. The following example relies on an instance of the [EqDec] typeclass for natural numbers, from which we can automatically derive a [UIP nat] instance. Note that the computational behavior of this definition on open terms is not to reduce to [p] but pattern-matches on the decidable equality proof. However the defining equation still holds as a _propositional_ equality, and the definition of K' is axiom-free.
rev_acc {A} (l : list A) : list A := rev_acc l := go [] l where go : list A -> list A -> list A := go acc [] := acc; go acc (hd :: tl) := go (hd :: acc) tl.
Equations
examples
[ "Equations.Equations", "Coq.List", "Coq.Program", "ExtrOcamlBasic" ]
examples/accumulator.v
rev_acc
** Worker/wrapper The most standard example is an efficient implementation of list reversal. Instead of growing the stack by the size of the list, we accumulate a partially reverted list as a new argument of our function. We implement this using a [go] auxilliary function defined recursively and pattern matching on the list.
rev_acc_eq : forall {A} (l : list A), rev_acc l = rev l.
Lemma
examples
[ "Equations.Equations", "Coq.List", "Coq.Program", "ExtrOcamlBasic" ]
examples/accumulator.v
rev_acc_eq
A typical issue with such accumulating functions is that one has to write lemmas in two versions, once about the internal [go] function and then on its wrapper. Using the functional elimination principle associated to [rev_acc], we can show both properties simultaneously.
indexes : list nat -> list nat := indexes l := go [] (length l) where go : list nat -> nat -> list nat := go acc 0 := acc; go acc (S n) := go (n :: acc) n.
Equations
examples
[ "Equations.Equations", "Coq.List", "Coq.Program", "ExtrOcamlBasic" ]
examples/accumulator.v
indexes
** Programm equivalence with worker/wrappers Finally we show how the eliminator can be used to prove program equivalences involving a worker/wrapper definition. Here [indexes l] computes the list [0..|l|-1] of valid indexes in the list [l].
indexes_spec (l : list nat) : Forall (fun x => x < length l) (indexes l).
Lemma
examples
[ "Equations.Equations", "Coq.List", "Coq.Program", "ExtrOcamlBasic" ]
examples/accumulator.v
indexes_spec
Clearly, all indexes in the resulting list should be smaller than [length l]:
interval_large x y : ~ x < y -> interval x y = [].
Lemma
examples
[ "Equations.Equations", "Coq.List", "Coq.Program", "ExtrOcamlBasic" ]
examples/accumulator.v
interval_large
We prove a simple lemmas on [interval]:
indexes_interval l : indexes l = interval 0 (length l).
Lemma
examples
[ "Equations.Equations", "Coq.List", "Coq.Program", "ExtrOcamlBasic" ]
examples/accumulator.v
indexes_interval
One can show that [indexes l] produces the interval [0..|l|-1] using [indexes_elim]. The recursion invariant for [indexes_go] records that [acc] corresponds to a partial interval [n..|l|-1] during the computation, and is finally completed into [0..|l|-1] by the end of the computation. We use the previous lemmas as helpers.
Eq (A : Type) := { eqb : A -> A -> bool; eqb_spec : forall x y, reflect (x = y) (eqb x y) }.
Class
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
Eq
null
fin_eq {k} (f f' : fin k) : bool := fin_eq fz fz => true; fin_eq (fs f) (fs f') => fin_eq f f'; fin_eq _ _ => false.
Equations
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
fin_eq
null
fin_Eq k : Eq (fin k).
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
fin_Eq
null
bool_Eq : Eq bool.
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
bool_Eq
null
prod_eq A B : Eq A -> Eq B -> Eq (A * B).
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
prod_eq
null
option_eq {A : Type} {E:Eq A} (o o' : option A) : bool := option_eq None None := true; option_eq (Some o) (Some o') := eqb o o'; option_eq _ _ := false.
Equations
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
option_eq
null
option_Eq A : Eq A -> Eq (option A).
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
option_Eq
null
eq_fin_fn {k} (f g : fin k -> A) : bool := eq_fin_fn (k:=0) f g := true; eq_fin_fn (k:=S k) f g := eqb (f fz) (g fz) && eq_fin_fn (fun n => f (fs n)) (fun n => g (fs n)).
Equations
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
eq_fin_fn
null
Eq_graph k : Eq (fin k -> A).
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
Eq_graph
null
dec_rel {X:Type} (R : X → X → Prop) := ∀ x y, {R x y} + {not (R x y)}.
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
dec_rel
null
WFT : Type := | ZT : WFT | SUP : (X -> WFT) -> WFT.
Inductive
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
WFT
null
NoConfusion Subterm for WFT.
Derive
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
NoConfusion
null
sec_disj (R : X -> X -> Prop) x y z := R y z \/ R x y.
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
sec_disj
null
SecureBy (R : X -> X -> Prop) (p : WFT) : Prop := match p with | ZT => forall x y, R x y | SUP f => forall x, SecureBy (fun y z => R y z \/ R x y) (f x) end.
Fixpoint
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
SecureBy
null
SecureBy_mon p (R' S : X -> X -> Prop) (H : forall x y, R' x y -> S x y) : SecureBy R' p -> SecureBy S p.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
SecureBy_mon
null
almost_full (R : X -> X -> Prop) := exists p, SecureBy R p.
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
almost_full
null
af_tree_iter {x : X} (accX : Acc R x) := match accX with | Acc_intro f => SUP (fun y => match decR y x with | left Ry => af_tree_iter (f y Ry) | right _ => ZT end) end.
Fixpoint
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
af_tree_iter
null
af_tree : X → WFT := fun x => af_tree_iter (wfR x).
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
af_tree
null
secure_from_wf : SecureBy (fun x y => not (R y x)) (SUP af_tree).
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
secure_from_wf
null
af_from_wf : almost_full (fun x y => not (R y x)).
Corollary
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
af_from_wf
null
AlmostFull {X} (R : X -> X -> Prop) := is_almost_full : almost_full R.
Class
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
AlmostFull
null
#[export] Instance proper_af X : Proper (relation_equivalence ==> iff) (@AlmostFull X).
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
proper_af
null
#[export] Instance almost_full_le : AlmostFull Peano.le.
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
almost_full_le
null
clos_trans_n1_left {R : X -> X -> Prop} x y z : R x y -> clos_trans_n1 _ R y z -> clos_trans_n1 _ R x z.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
clos_trans_n1_left
null
clos_trans_1n_n1 {R : X -> X -> Prop} x y : clos_trans_1n _ R x y -> clos_trans_n1 _ R x y.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
clos_trans_1n_n1
null
clos_refl_trans_right {R : X -> X -> Prop} x y z : R y z -> clos_refl_trans _ R x y -> clos_trans_n1 _ R x z.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
clos_refl_trans_right
null
clos_trans_1n_right {R : X -> X -> Prop} x y z : R y z -> clos_trans_1n _ R x y -> clos_trans_1n _ R x z.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
clos_trans_1n_right
null
clos_trans_n1_1n {R : X -> X -> Prop} x y : clos_trans_n1 _ R x y -> clos_trans_1n _ R x y.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
clos_trans_n1_1n
null
acc_from_af (p : WFT X) (T R : X → X → Prop) y : (∀ x z, clos_refl_trans X T z y -> clos_trans_1n X T x z ∧ R z x → False) → SecureBy R p → Acc T y.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
acc_from_af
null
wf_from_af (p : WFT X) (T R : X → X → Prop) : (∀ x y, clos_trans_1n X T x y ∧ R y x → False) → SecureBy R p → well_founded T.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
wf_from_af
null
compose_rel {X} (R S : X -> X -> Prop) : relation X := fun x y => exists z, R x z /\ S z y.
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
compose_rel
null
power (k : nat) (T : X -> X -> Prop) : X -> X -> Prop := power 0 T := T; power (S k) T := fun x y => exists z, power k T x z /\ T z y.
Equations
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
power
null
acc_incl (T T' : X -> X -> Prop) x : (forall x y, T' x y -> T x y) -> Acc T x -> Acc T' x.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
acc_incl
null
power_clos_trans (T : X -> X -> Prop) k : inclusion _ (power k T) (clos_trans _ T).
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
power_clos_trans
null
clos_trans_power (T : X -> X -> Prop) x y : clos_trans _ T x y -> exists k, power k T x y.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
clos_trans_power
null
acc_power (T : X -> X -> Prop) x k : Acc T x -> Acc (power k T) x.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
acc_power
null
secure_power (k : nat) (p : WFT X) : WFT X := secure_power 0 p := p; secure_power (S k) p := SUP (fun x => secure_power k p).
Equations
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
secure_power
null
secure_by_power R p (H : SecureBy R p) k : SecureBy R (secure_power k p).
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
secure_by_power
null
acc_from_power_af (p : WFT X) (T R : X → X → Prop) y k : (∀ x z, clos_refl_trans _ T z y -> clos_trans_1n X (power k T) x z ∧ R z x → False) → SecureBy R (secure_power k p) → Acc T y.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
acc_from_power_af
null
wf_from_power_af (p : WFT X) (T R : X → X → Prop) k : (∀ x y, clos_trans_1n X (power k T) x y ∧ R y x → False) → SecureBy R p → well_founded T.
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
wf_from_power_af
null
af_wf : WellFounded T.
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
af_wf
null
af_power_wf : WellFounded T.
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
af_power_wf
null
cofmap {X Y : Type} (f : Y -> X) (p : WFT X) : WFT Y := cofmap f ZT := ZT; cofmap f (SUP w) := SUP (fun y => cofmap f (w (f y))).
Equations
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
cofmap
null
cofmap_secures {X Y : Type} (f : Y -> X) (p : WFT X) (R : X -> X -> Prop) : SecureBy R p -> SecureBy (fun x y => R (f x) (f y)) (cofmap f p).
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
cofmap_secures
null
#[export] Instance AlmostFull_MR {X Y} R (f : Y -> X) : AlmostFull R -> AlmostFull (Wf.MR R f).
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
AlmostFull_MR
null
oplus_nullary {X:Type} (p:WFT X) (q:WFT X) := match p with | ZT => q | SUP f => SUP (fun x => oplus_nullary (f x) q) end.
Fixpoint
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
oplus_nullary
null
oplus_nullary_sec_intersection {X} (p : WFT X) (q: WFT X) (C : X → X → Prop) (A : Prop) (B : Prop) : SecureBy (fun y z => C y z ∨ A) p → SecureBy (fun y z => C y z ∨ B) q → SecureBy (fun y z => C y z ∨ (A ∧ B)) (oplus_nullary p q).
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
oplus_nullary_sec_intersection
null
oplus_unary_sec_intersection {X} (p q : WFT X) (C : X -> X -> Prop) (A B : X -> Prop) : SecureBy (fun y z => C y z \/ A y) p -> SecureBy (fun y z => C y z \/ B y) q -> SecureBy (fun y z => C y z \/ (A y /\ B y)) (oplus_unary p q).
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
oplus_unary_sec_intersection
null
oplus_binary_sec_intersection' {X} (p q : WFT X) (C : X -> X -> Prop) (A B : X -> X -> Prop) : SecureBy (fun y z => C y z \/ A y z) p -> SecureBy (fun y z => C y z \/ B y z) q -> SecureBy (fun y z => C y z \/ (A y z /\ B y z)) (oplus_binary p q).
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
oplus_binary_sec_intersection
null
oplus_binary_sec_intersection {X} (p q : WFT X) (A B : X -> X -> Prop) : SecureBy A p -> SecureBy B q -> SecureBy (fun y z => A y z /\ B y z) (oplus_binary p q).
Lemma
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
oplus_binary_sec_intersection
null
inter_rel {X : Type} (A B : X -> X -> Prop) := fun x y => A x y /\ B x y.
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
inter_rel
null
af_interesection {X : Type} (A B : X -> X -> Prop) : AlmostFull A -> AlmostFull B -> AlmostFull (inter_rel A B).
Corollary
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
af_interesection
null
af_bool : AlmostFull (@eq bool).
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
af_bool
null
product_rel {X Y : Type} (A : X -> X -> Prop) (B : Y -> Y -> Prop) := fun x y => A (fst x) (fst y) /\ B (snd x) (snd y).
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
product_rel
null
#[export] Instance af_product {X Y : Type} (A : X -> X -> Prop) (B : Y -> Y -> Prop) : AlmostFull A -> AlmostFull B -> AlmostFull (product_rel A B).
Instance
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
af_product
null
T (x y : nat * nat) : Prop := (fst x = snd y /\ snd x < snd y) \/ (fst x = snd y /\ snd x < fst y).
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
T
null
Tl (x y : nat * (nat * unit)) : Prop := (fst x = fst (snd y) /\ fst (snd x) < fst (snd y)).
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
Tl
null
Tr (x y : nat * (nat * unit)) : Prop := (fst x = fst (snd y) /\ fst (snd x) < fst y).
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
Tr
null
subgraph k k' := fin k -> option (bool * fin k').
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
subgraph
null
graph k := subgraph k k.
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
graph
null
strict {k} (f : fin k) := Some (true, f).
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
strict
null
large {k} (f : fin k) := Some (false, f).
Definition
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
large
null
T_graph_l (x : fin 2) : option (bool * fin 2) := { T_graph_l fz := large (fs fz); T_graph_l (fs fz) := strict (fs fz) }.
Equations
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
T_graph_l
null
T_graph_r (x : fin 2) : option (bool * fin 2) := { T_graph_r fz := large (fs fz); T_graph_r (fs fz) := strict fz }.
Equations
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
T_graph_r
null
graph_compose {k} (g1 g2 : graph k) : graph k := graph_compose g1 g2 arg0 with g1 arg0 := { | Some (weight, arg1) with g2 arg1 := { | Some (weight', arg2) => Some (weight || weight', arg2); | None => None }; | None => None }.
Equations
examples
[ "Equations.Equations", "Examples", "Relations", "Utf8", "Relations", "Wellfounded", "Setoid", "RelationClasses", "Morphisms", "Lia", "Bool", "List", "Arith", "String", "Coq.FunctionalExtensionality", "ssreflect", "Lia", "ExtrOcamlBasic" ]
examples/AlmostFull.v
graph_compose
null
End of preview. Expand in Data Studio

Coq-Equations

Structured dataset from Coq-Equations, a library for dependent pattern matching and well-founded recursion.

Schema

Column Type Description
fact string Full declaration (name, signature, body)
type string Equations, Lemma, Definition, Derive, etc.
library string Component (theories, examples, test-suite, doc)
imports list Import statements
filename string Source file path
symbolic_name string Declaration identifier
docstring string Documentation comment (14% coverage)

Statistics

By Type

Type Count
Lemma 834
Equations 735
Definition 518
Inductive 300
Derive 234
Instance 129
Theorem 58
Fixpoint 57
Class 55
Other 175

Key Feature

This dataset uniquely contains 735 declarations - the signature feature of Coq-Equations for dependent pattern matching:

Example Entry

Use Cases

  • Dependent pattern matching research
  • Well-founded recursion examples
  • Training models on advanced Coq features

Citation

Downloads last month
15

Collection including phanerozoic/Coq-Equations