Dataset Viewer
Auto-converted to Parquet Duplicate
fact
string
type
string
library
string
imports
list
filename
string
symbolic_name
string
docstring
string
PredType : forall T pT, (pT -> pred T) -> predType T. exact PredType || exact mkPredType. Defined. Arguments PredType [T pT] toP. Local Notation predOfType T := (pred_of_simpl (@pred_of_argType T)).
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
PredType
oextract (T : Type) (o : option T) : o -> T := if o is Some t return o -> T then fun=> t else False_rect T \o notF.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
oextract
oextractE (T : Type) (x : T) (xP : Some x) : oextract xP = x. Proof. by []. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
oextractE
Some_oextract T (x : option T) (x_ex : x) : Some (oextract x_ex) = x. Proof. by case: x x_ex. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
Some_oextract
ojoin T (x : option (option T)) := if x is Some y then y else None.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
ojoin
Some_ojoin T (x : option (option T)) : x -> Some (ojoin x) = x. Proof. by case : x. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
Some_ojoin
ojoinT T (x : option (option T)) : ojoin x -> x. Proof. by case: x. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
ojoinT
TaggedP (T1 : Type) (T2 : T1 -> Type) (P : forall x, T2 x -> Type) : (forall t : {x : T1 & T2 x}, P _ (tagged t)) -> forall (x : T1) (y : T2 x), P x y. Proof. by move=> /(_ (Tagged _ _)). Qed. Arguments TaggedP {T1} T2.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
TaggedP
f : seq K -> seq K.
Axiom
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
f
perm : forall s, perm_eq (f s) (undup s).
Axiom
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
perm
uniq : forall s, uniq (f s).
Axiom
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
uniq
E : forall (s : seq K), f s =i s.
Axiom
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
E
eq : forall (s s' : seq K), s =i s' <-> f s = f s'.
Axiom
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
eq
f (s : seq K) := choose (perm_eq (undup s)) (undup s).
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
f
perm s : perm_eq (f s) (undup s). Proof. by rewrite perm_sym chooseP. Qed.
Fact
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
perm
uniq s : uniq (f s). Proof. by rewrite (perm_uniq (perm _)) undup_uniq. Qed.
Fact
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
uniq
E (s : seq K) : f s =i s. Proof. by move=> x; rewrite (perm_mem (perm _)) mem_undup. Qed.
Fact
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
E
eq (s s' : seq K) : s =i s' <-> f s = f s'. Proof. split=> [eq_ss'|eq_ss' k]; last by rewrite -E eq_ss' E. rewrite /f; have peq_ss' : perm_eq (undup s) (undup s'). by apply: uniq_perm; rewrite ?undup_uniq // => x; rewrite !mem_undup. rewrite (@choose_id _ _ _ (undup s')) //=; apply: eq_choose => x /=. by apply: sym_left_transitive; [exact: perm_sym | exact: (@perm_trans)|]. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
eq
sort_keys := SortKeys.f.
Notation
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
sort_keys
sort_keys_perm := SortKeys.perm.
Notation
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
sort_keys_perm
sort_keys_uniq := SortKeys.uniq.
Notation
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
sort_keys_uniq
sort_keysE := SortKeys.E.
Notation
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
sort_keysE
eq_sort_keys := SortKeys.eq.
Notation
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
eq_sort_keys
mem_sort_keys ks k : k \in ks -> k \in sort_keys ks. Proof. by rewrite sort_keysE. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
mem_sort_keys
mem_sort_keys_intro ks k : k \in sort_keys ks -> k \in ks. Proof. by rewrite sort_keysE. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
mem_sort_keys_intro
sort_keys_nil : sort_keys [::] = [::] :> seq K. Proof. have := sort_keysE ([::] : seq K). by case: sort_keys => //= a l /(_ a); rewrite mem_head. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
sort_keys_nil
sort_keys_id ks : sort_keys (sort_keys ks) = sort_keys ks. Proof. by have /eq_sort_keys := sort_keysE ks. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
sort_keys_id
canonical_keys ks := sort_keys ks == ks.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
canonical_keys
canonical_uniq ks : canonical_keys ks -> uniq ks. Proof. by move=> /eqP <-; exact: sort_keys_uniq. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
canonical_uniq
canonical_sort_keys ks : canonical_keys (sort_keys ks). Proof. by rewrite /canonical_keys sort_keys_id. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
canonical_sort_keys
canonical_eq_keys ks ks' : canonical_keys ks -> canonical_keys ks' -> ks =i ks' -> ks = ks'. Proof. move=> /eqP; case: _ /; move=> /eqP; case: _ / => eq_ks_ks'. by apply/eq_sort_keys => x; rewrite -sort_keysE eq_ks_ks' sort_keysE. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
canonical_eq_keys
size_sort_keys ks : size (sort_keys ks) = size (undup ks). Proof. exact: perm_size. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
size_sort_keys
finset_of (_ : phant K) := finSet.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
finset_of
pred_of_finset (K : choiceType) (f : finSet K) : pred K := fun k => k \in (enum_fset f).
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
pred_of_finset
finSetPredType (K : choiceType) := PredType (@pred_of_finset K).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
finSetPredType
keys_canonical : canonical_keys (enum_fset A). Proof. by case: A. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
keys_canonical
fset_uniq : uniq (enum_fset A). Proof. by rewrite canonical_uniq // keys_canonical. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_uniq
fset_sub_type : predArgType := FSetSub {fsval : K; fsvalP : in_mem fsval (@mem K _ A)}. HB.instance Definition _ := [isSub for fsval]. HB.instance Definition _ := [Choice of fset_sub_type by <:]. HB.instance Definition _ (T : countType) := [Countable of {fset T} by <:].
Record
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_sub_type
fset_sub_enum : seq fset_sub_type := undup (pmap insub (enum_fset A)).
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_sub_enum
mem_fset_sub_enum x : x \in fset_sub_enum. Proof. by rewrite mem_undup mem_pmap -valK map_f // fsvalP. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
mem_fset_sub_enum
val_fset_sub_enum : map val fset_sub_enum = enum_fset A. Proof. rewrite /fset_sub_enum undup_id ?pmap_sub_uniq ?fset_uniq//. rewrite (pmap_filter (@insubK _ _ _)); apply/all_filterP. by apply/allP => x; rewrite isSome_insub. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
val_fset_sub_enum
fset_sub_pickle x := index x fset_sub_enum.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_sub_pickle
fset_sub_unpickle n := nth None (map some fset_sub_enum) n.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_sub_unpickle
fset_sub_pickleK : pcancel fset_sub_pickle fset_sub_unpickle. Proof. rewrite /fset_sub_unpickle => x. by rewrite (nth_map x) ?nth_index ?index_mem ?mem_fset_sub_enum. Qed. HB.instance Definition _ := Countable.copy fset_sub_type (pcan_type fset_sub_pickleK). HB.instance Definition _ := isFinite.Build fset_sub_type (Finite.uniq_enumP (undup_uniq _) mem_fset_sub_enum).
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_sub_pickleK
enum_fsetE : enum_fset A = [seq val i | i <- enum fset_sub_type]. Proof. by rewrite enumT unlock val_fset_sub_enum. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_fsetE
cardfE : size (enum_fset A) = #|fset_sub_type|. Proof. by rewrite cardE enum_fsetE size_map. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
cardfE
fset_sub_type : finSet >-> predArgType. #[global] Hint Resolve fsvalP fset_uniq mem_fset_sub_enum : core. Declare Scope fset_scope. Delimit Scope fset_scope with fset. Local Open Scope fset_scope.
Coercion
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_sub_type
fsetsubE (T : choiceType) (A : {fset T}) (x : A) (xA : val x \in A) : [` xA] = x. Proof. by apply/val_inj => /=. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fsetsubE
fset_predT {T : choiceType} {A : {fset T}} : simpl_pred A := @predT A.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_predT
set_of_fset (K : choiceType) (A : {fset K}) : {set A} := [set x in {: A}]. Arguments pred_of_finset : simpl never.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
set_of_fset
seq_fset : forall K : choiceType, seq K -> {fset K} := locked_with finset_key (fun K s => mkFinSet (@canonical_sort_keys K s)). Variable (K : choiceType) (s : seq K).
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
seq_fset
seq_fsetE : seq_fset s =i s. Proof. by move=> a; rewrite [seq_fset]unlock sort_keysE. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
seq_fsetE
size_seq_fset : size (seq_fset s) = size (undup s). Proof. by rewrite [seq_fset]unlock /= size_sort_keys. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
size_seq_fset
seq_fset_uniq : uniq (seq_fset s). Proof. by rewrite [seq_fset]unlock /= sort_keys_uniq. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
seq_fset_uniq
seq_fset_perm : perm_eq (seq_fset s) (undup s). Proof. by rewrite [seq_fset]unlock //= sort_keys_perm. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
seq_fset_perm
finpredType_predType (T : eqType) (fpT : finpredType T) := @PredType T (finpred_sort fpT) (@tofinpred T fpT).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
finpredType_predType
enum_finpred (T : eqType) (fpT : finpredType T) : fpT -> seq T := let: FinPredType _ _ (exist s _) := fpT in s.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_finpred
enum_finpred_uniq (T : eqType) (fpT : finpredType T) (p : fpT) : uniq (enum_finpred p). Proof. by case: fpT p => ?? [s sE] p; rewrite sE. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_finpred_uniq
enum_finpredE (T : eqType) (fpT : finpredType T) (p : fpT) : enum_finpred p =i p. Proof. by case: fpT p => ?? [s sE] p x; rewrite sE -topredE. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_finpredE
mkFinPredType_of_subproof (T : eqType) (pT : predType T) (fpred_seq : pT -> seq T) (pred_fsetE : forall p, fpred_seq p =i p) : forall p x, x \in fpred_seq p = topred p x. Proof. by move=> p x; rewrite topredE pred_fsetE. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
mkFinPredType_of_subproof
mkFinPredType_of (T : eqType) (U : Type) := fun (pT : predType T) & pred_sort pT -> U => fun a (pT' := @PredType T U a) & phant_id pT' pT => fun (fpred_seq : pT' -> seq T) (fpred_seq_uniq : forall p, uniq (fpred_seq p)) (fpred_seqE : forall p, fpred_seq p =i p) => @FinPredType T U a (exist _ fpred_seq (fpred_seq_uniq, (mkFinPredType_of_subproof fpred_seqE))).
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
mkFinPredType_of
clone_finpredType (T : eqType) (U : Type) := fun (pT : finpredType T) & finpred_sort pT -> U => fun a pP (pT' := @FinPredType T U a pP) & phant_id pT' pT => pT'. Structure is_finite (T : eqType) (P : pred T) := IsFinite { seq_of_is_finite :> seq T; _ : uniq seq_of_is_finite; _ : forall x, x \in seq_of_is_finite = P x; }.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
clone_finpredType
is_finite_uniq (T : eqType) (P : pred T) (p : is_finite P) : uniq p. Proof. by case: p. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
is_finite_uniq
is_finiteE (T : eqType) (P : pred T) (p : is_finite P) x : x \in (seq_of_is_finite p) = P x. Proof. by case: p. Qed. Structure finpred (T : eqType) (pT : predType T) := FinPred { pred_of_finpred :> pT; _ : is_finite [pred x in pred_of_finpred] }.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
is_finiteE
enum_fin (T : eqType) (pT : predType T) (p : finpred pT) : seq T := let: FinPred _ fp := p in fp.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_fin
enum_fin_uniq (T : eqType) (pT : predType T) (p : finpred pT) : uniq (enum_fin p). Proof. by case: p => ?[]. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_fin_uniq
enum_finE (T : eqType) (pT : predType T) (p : finpred pT) : enum_fin p =i (pred_of_finpred p). Proof. by case: p => ?[]. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_finE
fin_finpred (T : eqType) (pT : finpredType T) (p : pT) := @FinPred _ _ p (@IsFinite _ _ (enum_finpred p) (enum_finpred_uniq p) (enum_finpredE p)).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fin_finpred
finpred_of (T : eqType) (pT : predType T) (p : pT) (fp : finpred pT) & phantom pT fp : finpred pT := fp. Structure finmempred (T : eqType) := FinMemPred { pred_of_finmempred :> mem_pred T; _ : is_finite (fun x => in_mem x pred_of_finmempred) }.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
finpred_of
enum_finmem (T : eqType) (p : finmempred T) : seq T := let: FinMemPred _ fp := p in fp.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_finmem
enum_finmem_uniq (T : eqType) (p : finmempred T) : uniq (enum_finmem p). Proof. by case: p => ?[]. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_finmem_uniq
enum_finmemE (T : eqType) (p : finmempred T) : enum_finmem p =i p. Proof. by case: p => ?[]. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
enum_finmemE
finmempred_of (T : eqType) (P : pred T) (mP : finmempred T) & phantom (mem_pred T) mP : finmempred T := mP.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
finmempred_of
mem_fin (T : eqType) (pT : predType T) (p : finpred pT) := @FinMemPred _ (mem p) (@IsFinite _ _ (enum_fin p) (enum_fin_uniq p) (enum_finE p)).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
mem_fin
mkFinPredType T s s_uniq sE := (@mkFinPredType_of _ T _ id _ id s s_uniq sE).
Notation
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
mkFinPredType
fset_finpredType (T: choiceType) := mkFinPredType (finSet T) (@enum_fset T) (@fset_uniq T) (fun _ _ => erefl).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_finpredType
pred_finpredType (T : finType) := mkFinPredType (pred T) (fun P => enum_mem (mem P)) (@enum_uniq T) (@mem_enum T).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
pred_finpredType
simpl_pred_finpredType (T : finType) := mkFinPredType (simpl_pred T) (fun P => enum_mem (mem P)) (@enum_uniq T) (@mem_enum T).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
simpl_pred_finpredType
fset_finpred (T: choiceType) (A : finSet T) := @FinPred _ _ (enum_fset A) (@IsFinite _ _ (enum_fset A) (fset_uniq _) (fun=> erefl)).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset_finpred
Canonical subfinset_finpred (T : choiceType) (A : finmempred T) (Q : pred T) := @FinPred _ _ [pred x in A | Q x] (@IsFinite _ _ [seq x <- enum_finmem A | Q x] _ _).
Program
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
Canonical
Obligation . by rewrite filter_uniq// enum_finmem_uniq. Qed.
Next
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
Obligation
Obligation . by rewrite !inE !mem_filter andbC enum_finmemE. Qed.
Next
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
Obligation
seq_finpredType (T : eqType) := mkFinPredType (seq T) undup (@undup_uniq T) (@mem_undup T).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
seq_finpredType
imfset : forall (key : unit) (T K : choiceType) (f : T -> K) (p : finmempred T), phantom (mem_pred T) p -> {fset K}.
Parameter
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset
imfset2 : forall (key : unit) (K T1 : choiceType) (T2 : T1 -> choiceType)(f : forall x : T1, T2 x -> K) (p1 : finmempred T1) (p2 : forall x : T1, finmempred (T2 x)), phantom (mem_pred T1) p1 -> phantom (forall x, mem_pred (T2 x)) p2 -> {fset K}.
Parameter
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset2
imfsetE : forall key, imfset key = imfset_def key.
Axiom
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfsetE
imfset2E : forall key, imfset2 key = imfset2_def key.
Axiom
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset2E
imfset key := imfset_def key.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset
imfset2 key := imfset2_def key.
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset2
imfsetE key : imfset key = imfset_def key. Proof. by []. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfsetE
imfset2E key : imfset2 key = imfset2_def key. Proof. by []. Qed.
Lemma
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset2E
imfset key f p := (Imfset.imfset key f (Phantom _ (pred_of_finmempred p))).
Notation
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset
imfset2 key f p q := (Imfset.imfset2 key f (Phantom _ (pred_of_finmempred p)) (Phantom _ (fun x => (pred_of_finmempred (q x))))).
Notation
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset2
imfset_unlock k := Unlockable (Imfset.imfsetE k).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset_unlock
imfset2_unlock k := Unlockable (Imfset.imfset2E k).
Canonical
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset2_unlock
imfset_key : unit. Proof. exact: tt. Qed.
Fact
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
imfset_key
fset0 : {fset K} := @mkFinSet K [::] (introT eqP (@sort_keys_nil K)). (* very transparent, to ensure x \in fset0 is convertible to false *)
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset0
fset1_key : unit. Proof. exact: tt. Qed.
Fact
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset1_key
fset1 a : {fset K} := [fset[fset1_key] x in [:: a]].
Definition
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fset1
fsetU_key : unit. Proof. exact: tt. Qed.
Fact
root
[ "From Corelib Require Import Setoid.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrbool ssrnat eqtype ssrfun seq.", "From mathcomp Require Import choice finset finfun fintype bigop." ]
finmap.v
fsetU_key
End of preview. Expand in Data Studio

Coq-Finmap

Structured dataset from Finmap — Finite sets, maps, and multisets for MathComp.

910 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
26

Collection including phanerozoic/Coq-Finmap