Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
12
30.2k
type
stringclasses
14 values
library
stringclasses
2 values
imports
listlengths
1
5
filename
stringclasses
43 values
symbolic_name
stringlengths
1
38
docstring
stringclasses
1 value
Rmin_Rmax_overflow : forall x y z M, Rabs x <= M -> Rabs y <= M -> Rmin x y <= z <= Rmax x y -> Rabs z <= M. Proof. intros x y z M Hx Hy H. case (Rle_or_lt 0 z); intros Hz. rewrite Rabs_right. apply Rle_trans with (1:=proj2 H). generalize (proj2 H). apply Rmax_case_strong. intros; apply Rle_trans with (2:=Hx). apply RRle_abs. intros; apply Rle_trans with (2:=Hy). apply RRle_abs. now apply Rle_ge. rewrite Rabs_left; try assumption. apply Rle_trans with (Rmax (-x) (-y)). rewrite Rmax_opp. apply Ropp_le_contravar, H. apply Rmax_case_strong. intros; apply Rle_trans with (2:=Hx). rewrite <- Rabs_Ropp. apply RRle_abs. intros; apply Rle_trans with (2:=Hy). rewrite <- Rabs_Ropp. apply RRle_abs. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
Rmin_Rmax_overflow
radix2 := Build_radix 2 (refl_equal true).
Definition
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
radix2
bpow e := (bpow radix2 e). Variable emin prec : Z. Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
bpow
format := (generic_format radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
format
round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
round_flt
ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
ulp_flt
cexp := (cexp radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
cexp
pred_flt := (pred radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
pred_flt
FLT_format_double : forall u, format u -> format (2*u). Proof with auto with typeclass_instances. intros u Fu. apply generic_format_FLT. apply FLT_format_generic in Fu... destruct Fu as [uf H1 H2 H3]. exists (Float radix2 (Fnum uf) (Fexp uf+1)). rewrite H1; unfold F2R; simpl. rewrite bpow_plus, bpow_1. simpl;ring. easy. apply Z.le_trans with (1:=H3). apply Zle_succ. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
FLT_format_double
FLT_format_half : forall u, format u -> bpow (prec+emin) <= Rabs u -> format (u/2). Proof with auto with typeclass_instances. intros u Fu H. apply FLT_format_generic in Fu... destruct Fu as [[n e] H1 H2 H3]. simpl in H1, H2, H3. apply generic_format_FLT. exists (Float radix2 n (e-1)). rewrite H1; unfold F2R; simpl. unfold Zminus; rewrite bpow_plus. change (bpow (-(1))) with (/2). unfold Rdiv; ring. easy. cut (prec + emin < prec +e)%Z. simpl ; lia. apply lt_bpow with radix2. apply Rle_lt_trans with (1:=H). rewrite H1; unfold F2R; simpl. rewrite Rabs_mult; rewrite (Rabs_right (bpow e)). 2: apply Rle_ge, bpow_ge_0. rewrite bpow_plus. apply Rmult_lt_compat_r. apply bpow_gt_0. rewrite <- abs_IZR. rewrite <- IZR_Zpower. now apply IZR_lt. now apply Zlt_le_weak. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
FLT_format_half
FLT_round_half : forall z, bpow (prec+emin) <= Rabs z -> round_flt (z/2)= round_flt z /2. Proof with auto with typeclass_instances. intros z Hz. apply Rmult_eq_reg_l with 2. 2: apply sym_not_eq; auto with real. apply trans_eq with (round_flt z). 2: field. assert (z <> 0)%R. intros K; contradict Hz. rewrite K, Rabs_R0; apply Rlt_not_le. apply bpow_gt_0. assert (cexp (z/2) = cexp z -1)%Z. assert (prec+emin < mag radix2 z)%Z. apply lt_bpow with radix2. destruct mag as (e,He); simpl. apply Rle_lt_trans with (1:=Hz). now apply He. unfold cexp, FLT_exp. replace ((mag radix2 (z/2))-prec)%Z with ((mag radix2 z -1) -prec)%Z. rewrite Z.max_l; lia. apply Zplus_eq_compat; try reflexivity. apply sym_eq, mag_unique. destruct (mag radix2 z) as (e,He); simpl. unfold Rdiv; rewrite Rabs_mult. rewrite (Rabs_right (/2)). split. apply Rmult_le_reg_l with (bpow 1). apply bpow_gt_0. rewrite <- bpow_plus. replace (1+(e-1-1))%Z with (e-1)%Z by ring. apply Rle_trans with (Rabs z). now apply He. change (bpow 1) with 2%R. right; simpl; field. apply Rmult_lt_reg_l with (bpow 1). apply bpow_gt_0. rewrite <- bpow_plus. replace (1+(e-1))%Z with e by ring. apply Rle_lt_trans with (Rabs z). change (bpow 1) with 2. right; field. now apply He. lra. unfold round, scaled_mantissa, F2R. rewrite H0; simpl. rewrite Rmult_comm, Rmult_assoc. apply f_equal2. apply f_equal, f_equal. replace (-(cexp z -1))%Z with (-cexp z +1)%Z by ring. rewrite bpow_plus. change (bpow 1) with 2. field. unfold Zminus; rewrite bpow_plus. change (bpow (-(1))) with (/2). field. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
FLT_round_half
FLT_ulp_le_id : forall u, bpow emin <= u -> ulp_flt u <= u. Proof with auto with typeclass_instances. intros u H. rewrite ulp_neq_0. 2: apply Rgt_not_eq, Rlt_le_trans with (2:=H), bpow_gt_0. case (Rle_or_lt (bpow (emin+prec-1)) u); intros Hu. unfold ulp; rewrite cexp_FLT_FLX. unfold cexp, FLX_exp. destruct (mag radix2 u) as (e,He); simpl. apply Rle_trans with (bpow (e-1)). apply bpow_le. unfold Prec_gt_0 in prec_gt_0_; lia. rewrite <- (Rabs_right u). apply He. apply Rgt_not_eq, Rlt_gt. apply Rlt_le_trans with (2:=Hu). apply bpow_gt_0. apply Rle_ge, Rle_trans with (2:=Hu), bpow_ge_0. rewrite Rabs_right. assumption. apply Rle_ge, Rle_trans with (2:=Hu), bpow_ge_0. unfold ulp; rewrite cexp_FLT_FIX. apply H. apply Rgt_not_eq, Rlt_gt. apply Rlt_le_trans with (2:=H). apply bpow_gt_0. rewrite Rabs_right. apply Rlt_le_trans with (1:=Hu). apply bpow_le; lia. apply Rle_ge, Rle_trans with (2:=H), bpow_ge_0. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
FLT_ulp_le_id
FLT_ulp_double : forall u, ulp_flt (2*u) <= 2*ulp_flt(u). Proof. intros u. case (Req_bool_spec u 0); intros Hu'. rewrite Hu', Rmult_0_r. rewrite <- (Rmult_1_l (ulp_flt 0)) at 1. apply Rmult_le_compat_r. apply ulp_ge_0. left; apply Rlt_plus_1. rewrite 2!ulp_neq_0; trivial. 2: lra. change 2 with (bpow 1) at 2. rewrite <- bpow_plus. apply bpow_le. case (Rle_or_lt (bpow (emin+prec-1)) (Rabs u)); intros Hu. (* *) rewrite cexp_FLT_FLX. rewrite cexp_FLT_FLX; trivial. unfold cexp, FLX_exp. change 2 with (bpow 1). rewrite Rmult_comm, mag_mult_bpow. lia. intros H; contradict Hu. apply Rlt_not_le; rewrite H, Rabs_R0. apply bpow_gt_0. apply Rle_trans with (1:=Hu). rewrite Rabs_mult. pattern (Rabs u) at 1; rewrite <- (Rmult_1_l (Rabs u)). apply Rmult_le_compat_r. apply Rabs_pos. rewrite <- (abs_IZR 2). now apply IZR_le. (* *) rewrite cexp_FLT_FIX. rewrite cexp_FLT_FIX; trivial. unfold FIX_exp, cexp; lia. apply Rlt_le_trans with (1:=Hu). apply bpow_le; lia. lra. rewrite Rabs_mult. rewrite Rabs_pos_eq. 2: now apply IZR_le. apply Rlt_le_trans with (2*bpow (emin + prec - 1)). apply Rmult_lt_compat_l with (1 := Rlt_0_2). assumption. change 2 with (bpow 1). rewrite <- bpow_plus. apply bpow_le; lia. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
FLT_ulp_double
round_plus_small_id_aux : forall f h, format f -> (bpow (prec+emin) <= f) -> 0 < f -> Rabs h <= /4* ulp_flt f -> round_flt (f+h) = f. Proof with auto with typeclass_instances. intros f h Ff H1 H2 Hh. case (Rle_or_lt 0 h); intros H3;[destruct H3|idtac]. (* 0 < h *) rewrite Rabs_right in Hh. 2: now apply Rle_ge, Rlt_le. apply round_N_eq_DN_pt with (f+ ulp_flt f)... pattern f at 2; rewrite <- (round_DN_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=h); try assumption. apply round_DN_pt... now left. split. now left. apply Rle_lt_trans with (1:=Hh). rewrite <- (Rmult_1_l (ulp_flt f)) at 2. apply Rmult_lt_compat_r. rewrite ulp_neq_0; try now apply Rgt_not_eq. apply bpow_gt_0. lra. rewrite <- (round_UP_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=h); try assumption. apply round_UP_pt... now left. split; trivial. apply Rle_trans with (1:=Hh). rewrite <- (Rmult_1_l (ulp_flt f)) at 2. apply Rmult_le_compat_r. apply ulp_ge_0. lra. apply Rplus_lt_reg_l with (-f); ring_simplify. apply Rlt_le_trans with (/2*ulp_flt f). 2: right; field. apply Rle_lt_trans with (1:=Hh). apply Rmult_lt_compat_r. rewrite ulp_neq_0; try now apply Rgt_not_eq. apply bpow_gt_0. lra. (* h = 0 *) rewrite <- H, Rplus_0_r. apply round_generic... (* h < 0 *) (* - assertions *) rewrite Rabs_left in Hh; try assumption. assert (0 < pred_flt f). apply Rlt_le_trans with (bpow emin). apply bpow_gt_0. apply pred_ge_gt... apply generic_format_FLT_bpow... apply Z.le_refl. apply Rlt_le_trans with (2:=H1). apply bpow_lt. unfold Prec_gt_0 in prec_gt_0_; lia. assert (M:(prec + emin +1 <= mag radix2 f)%Z). apply mag_ge_bpow. replace (prec+emin+1-1)%Z with (prec+emin)%Z by ring. rewrite Rabs_right; try assumption. apply Rle_ge; now left. assert (T1:(ulp_flt (pred_flt f) = ulp_flt f) \/ ( ulp_flt (pred_flt f) = /2* ulp_flt f /\ f = bpow (mag radix2 f -1))). generalize H; rewrite pred_eq_pos; [idtac|now left]. unfold pred_pos; case Req_bool_spec; intros K HH. (**) right; split; try assumption. rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq]. apply trans_eq with (bpow (mag radix2 f- prec -1)). apply f_equal. unfold cexp. apply trans_eq with (FLT_exp emin prec (mag radix2 f -1)%Z). apply f_equal. unfold FLT_exp. rewrite Z.max_l by lia. apply mag_unique. rewrite Rabs_right. split. apply Rplus_le_reg_l with (bpow (mag radix2 f -1-prec)). ring_simplify. apply Rle_trans with (bpow (mag radix2 f - 1 - 1) + bpow (mag radix2 f - 1 - 1)). apply Rplus_le_compat_r. apply bpow_le. unfold Prec_gt_0 in prec_gt_0_; lia. apply Rle_trans with (bpow 1*bpow (mag radix2 f - 1 - 1)). change (bpow 1) with 2. right; ring. rewrite <- bpow_plus. apply Rle_trans with (bpow (mag radix2 f -1)). apply bpow_le; lia. rewrite <- K; now right. rewrite <- K. apply Rplus_lt_reg_l with (-f+bpow (mag radix2 f-1-prec)); ring_simplify. apply bpow_gt_0. apply Rle_ge. rewrite K at 1. apply Rplus_le_reg_l with (bpow (mag radix2 f - 1 - prec)). ring_simplify. apply bpow_le. unfold Prec_gt_0 in prec_gt_0_; lia. unfold FLT_exp. rewrite Z.max_l by lia. ring. replace (/2) with (bpow (-1)) by reflexivity. rewrite ulp_neq_0; try now apply Rgt_not_eq. rewrite <- bpow_plus. apply f_equal. unfold cexp, FLT_exp. rewrite Z.max_l by lia. ring. (**) left. assert (bpow (mag radix2 f -1) < f). destruct (mag radix2 f); simpl in *. destruct a. now apply Rgt_not_eq. rewrite Rabs_right in H0. destruct H0; try assumption. contradict H0. now apply sym_not_eq. apply Rle_ge; now left. assert (bpow (mag radix2 f -1) + ulp_flt (bpow (mag radix2 f-1)) <= f). rewrite <- succ_eq_pos;[idtac|apply bpow_ge_0]. apply succ_le_lt... apply generic_format_FLT_bpow... unfold Prec_gt_0 in prec_gt_0_;lia. rewrite ulp_bpow in H4. unfold FLT_exp in H4. rewrite Z.max_l in H4 by lia. replace (mag radix2 f - 1 + 1 - prec)%Z with (mag radix2 f - prec)%Z in H4 by ring. rewrite ulp_neq_0; try now apply Rgt_not_eq. rewrite ulp_neq_0 at 2; try now apply Rgt_not_eq. unfold cexp. apply f_equal; apply f_equal. replace (ulp_flt f) with (bpow (mag radix2 f -prec)). apply mag_unique. rewrite Rabs_right. split. apply Rplus_le_reg_l with (bpow (mag radix2 f -prec)). ring_simplify. apply Rle_trans with (2:=H4); right; ring. apply Rlt_trans with f. apply Rplus_lt_reg_l with (-f+bpow (mag radix2 f - prec)). ring_simplify. apply bpow_gt_0. apply Rle_lt_trans with (1:=RRle_abs _). apply bpow_mag_gt. apply Rle_ge. apply Rplus_le_reg_l with (bpow (mag radix2 f - prec)). ring_simplify. left; apply Rle_lt_trans with (2:=H0). apply bpow_le. unfold Prec_gt_0 in prec_gt_0_;lia. rewrite ulp_neq_0; try now apply Rgt_not_eq. unfold cexp, FLT_exp. rewrite Z.max_l. reflexivity. lia. assert (T: (ulp_flt (pred_flt f) = ulp_flt f \/ (ulp_flt (pred_flt f) = / 2 * ulp_flt f /\ - h < / 4 * ulp_flt f)) \/ (ulp_flt (pred_flt f) = / 2 * ulp_flt f /\ f = bpow (mag radix2 f - 1) /\ - h = / 4 * ulp_flt f) ). destruct T1. left; now left. case Hh; intros P. left; right. split; try apply H0; assumption. right. split; try split; try apply H0; assumption. clear T1. (* - end of assertions *) destruct T. (* normal case *) apply round_N_eq_UP_pt with (pred_flt f)... rewrite <- (round_DN_minus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=-h); try assumption. replace (f--h) with (f+h) by ring. apply round_DN_pt... split. auto with real. apply Rle_trans with (1:=Hh). apply Rle_trans with (/2*ulp_flt f). apply Rmult_le_compat_r. apply ulp_ge_0. lra. case H0. intros Y; rewrite Y. rewrite <- (Rmult_1_l (ulp_flt f)) at 2. apply Rmult_le_compat_r. apply ulp_ge_0. lra. intros Y; rewrite (proj1 Y); now right. replace (f+h) with (pred_flt f + (f-pred_flt f+h)) by ring. pattern f at 4; rewrite <- (round_UP_pred_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=(f - pred_flt f + h)); try assumption. apply round_UP_pt... replace (f-pred_flt f) with (ulp_flt (pred_flt f)). split. apply Rplus_lt_reg_l with (-h); ring_simplify. case H0; [intros Y|intros (Y1,Y2)]. apply Rle_lt_trans with (1:=Hh). rewrite Y. rewrite <- (Rmult_1_l (ulp_flt f)) at 2. apply Rmult_lt_compat_r. rewrite ulp_neq_0;[apply bpow_gt_0|now apply Rgt_not_eq]. lra. apply Rlt_le_trans with (1:=Y2). rewrite Y1. apply Rmult_le_compat_r. apply ulp_ge_0. lra. apply Rplus_le_reg_l with (-ulp_flt (pred_flt f)); ring_simplify. now left. rewrite pred_eq_pos; try now left. pattern f at 2; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f)... ring. apply Rplus_lt_reg_l with (-f); ring_simplify. apply Rle_lt_trans with (-(/2 * ulp_flt (pred_flt f))). right. apply trans_eq with ((pred_flt f - f) / 2). field. rewrite pred_eq_pos; try now left. pattern f at 2; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f)... field. replace h with (--h) by ring. apply Ropp_lt_contravar. case H0;[intros Y|intros (Y1,Y2)]. apply Rle_lt_trans with (1:=Hh). rewrite Y. apply Rmult_lt_compat_r. rewrite ulp_neq_0; try apply bpow_gt_0; now apply Rgt_not_eq. lra. apply Rlt_le_trans with (1:=Y2). rewrite Y1. right; field. (* complex case: even choosing *) elim H0; intros T1 (T2,T3); clear H0. assert (pred_flt f = bpow (mag radix2 f - 1) - bpow (mag radix2 f - 1 -prec)). rewrite pred_eq_pos; try now left. unfold pred_pos; case Req_bool_spec. intros _; rewrite <- T2. apply f_equal, f_equal. unfold FLT_exp. rewrite Z.max_l. ring. lia. intros Y; now contradict T2. assert (round radix2 (FLT_exp emin prec) Zfloor (f+h) = pred_flt f). replace (f+h) with (f-(-h)) by ring. apply round_DN_minus_eps_pos... split. auto with real. rewrite T3, T1. apply Rmult_le_compat_r. apply ulp_ge_0. lra. assert (round radix2 (FLT_exp emin prec) Zceil (f+h) = f). replace (f+h) with (pred_flt f + /2*ulp_flt (pred_flt f)). apply round_UP_pred_plus_eps_pos... split. apply Rmult_lt_0_compat. lra. rewrite ulp_neq_0; try now apply Rgt_not_eq. apply bpow_gt_0. rewrite <- (Rmult_1_l (ulp_flt (pred_flt f))) at 2. apply Rmult_le_compat_r. apply ulp_ge_0. lra. rewrite T1, H0, <- T2. replace h with (--h) by ring; rewrite T3. replace (bpow (mag radix2 f - 1 - prec)) with (/2*ulp_flt f). field. replace (/2) with (bpow (-1)) by reflexivity. rewrite T2 at 1. rewrite ulp_bpow, <- bpow_plus. apply f_equal; unfold FLT_exp. rewrite Z.max_l. ring. lia. assert ((Z.even (Zfloor (scaled_mantissa radix2 (FLT_exp emin prec) (f + h)))) = false). replace (Zfloor (scaled_mantissa radix2 (FLT_exp emin prec) (f + h))) with (Zpower radix2 prec -1)%Z. unfold Zminus; rewrite Z.even_add. rewrite Z.even_opp. rewrite Z.even_pow. reflexivity. unfold Prec_gt_0 in prec_gt_0_; lia. apply eq_IZR. rewrite <- scaled_mantissa_DN... 2: rewrite H4; assumption. rewrite H4. unfold scaled_mantissa. rewrite bpow_opp. rewrite <- ulp_neq_0; try now apply Rgt_not_eq. rewrite T1. rewrite Rinv_mult_distr. 2: apply Rgt_not_eq; lra. 2: apply Rgt_not_eq; rewrite ulp_neq_0; try apply bpow_gt_0. 2: now apply Rgt_not_eq. rewrite Rinv_involutive. 2: apply Rgt_not_eq; lra. rewrite T2 at 2. rewrite ulp_bpow. rewrite <- bpow_opp. unfold FLT_exp at 2. rewrite Z.max_l by lia. replace 2 with (bpow 1) by reflexivity. rewrite <- bpow_plus. rewrite H0. rewrite Rmult_minus_distr_r, <- 2!bpow_plus. rewrite minus_IZR. apply f_equal2. rewrite IZR_Zpower. apply f_equal. ring. unfold Prec_gt_0 in prec_gt_0_; lia. apply trans_eq with (bpow 0). reflexivity. apply f_equal. ring. rewrite round_N_middle. rewrite H5. rewrite H6. reflexivity. rewrite H5, H4. pattern f at 1; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f); try assumption. ring_simplify. rewrite <- pred_eq_pos;[idtac|now left]. rewrite T1. replace h with (--h) by ring. rewrite T3. field. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
round_plus_small_id_aux
round_plus_small_id : forall f h, format f -> (bpow (prec+emin) <= Rabs f) -> Rabs h <= /4* ulp_flt f -> round_flt (f+h) = f. intros f h Ff H1 H2. case (Rle_or_lt 0 f); intros V. case V; clear V; intros V. apply round_plus_small_id_aux; try assumption. rewrite Rabs_right in H1; try assumption. apply Rle_ge; now left. contradict H1. rewrite <- V, Rabs_R0. apply Rlt_not_le, bpow_gt_0. rewrite <- (Ropp_involutive f), <- (Ropp_involutive h). replace (--f + --h) with (-(-f+-h)) by ring. rewrite round_NE_opp. apply f_equal. apply round_plus_small_id_aux. now apply generic_format_opp. rewrite Rabs_left in H1; try assumption. auto with real. now rewrite Rabs_Ropp, ulp_opp. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
round_plus_small_id
avg_naive (x y : R) :=round_flt(round_flt(x+y)/2). Variables x y:R. Hypothesis Fx: format x. Hypothesis Fy: format y.
Definition
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive
a :=(x+y)/2.
Let
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
a
av :=avg_naive x y.
Let
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
av
avg_naive_correct : av = round_flt a. Proof with auto with typeclass_instances. case (Rle_or_lt (bpow (prec + emin)) (Rabs (x+y))). (* normal case: division by 2 is exact *) intros H. unfold av,a,avg_naive. rewrite round_generic... now apply sym_eq, FLT_round_half. apply FLT_format_half. apply generic_format_round... apply abs_round_ge_generic... apply generic_format_FLT_bpow... unfold Prec_gt_0 in prec_gt_0_; lia. (* subnormal case: addition is exact, but division by 2 is not *) intros H. unfold av, avg_naive. replace (round_flt (x + y)) with (x+y). reflexivity. apply sym_eq, round_generic... apply FLT_format_plus_small... left; assumption. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_correct
avg_naive_symmetry : forall u v, avg_naive u v = avg_naive v u. Proof. intros u v; unfold avg_naive. rewrite Rplus_comm; reflexivity. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_symmetry
avg_naive_symmetry_Ropp : forall u v, avg_naive (-u) (-v) = - avg_naive u v. Proof. intros u v; unfold avg_naive. replace (-u+-v) with (-(u+v)) by ring. rewrite round_NE_opp. replace (- round_flt (u + v) / 2) with (- (round_flt (u + v) / 2)) by (unfold Rdiv; ring). now rewrite round_NE_opp. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_symmetry_Ropp
avg_naive_same_sign_1 : 0 <= a -> 0 <= av. Proof with auto with typeclass_instances. intros H. rewrite avg_naive_correct. apply round_ge_generic... apply generic_format_0. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_same_sign_1
avg_naive_same_sign_2 : a <= 0-> av <= 0. Proof with auto with typeclass_instances. intros H. rewrite avg_naive_correct. apply round_le_generic... apply generic_format_0. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_same_sign_2
avg_naive_between : Rmin x y <= av <= Rmax x y. Proof with auto with typeclass_instances. rewrite avg_naive_correct. split. apply round_ge_generic... now apply P_Rmin. apply Rmult_le_reg_l with (1 := Rlt_0_2). replace (2 * Rmin x y) with (Rmin x y + Rmin x y) by ring. replace (2 * a) with (x + y) by (unfold a; field). apply Rplus_le_compat. apply Rmin_l. apply Rmin_r. (* *) apply round_le_generic... now apply Rmax_case. apply Rmult_le_reg_l with (1 := Rlt_0_2). replace (2 * a) with (x + y) by (unfold a; field). replace (2 * Rmax x y) with (Rmax x y + Rmax x y) by ring. apply Rplus_le_compat. apply Rmax_l. apply Rmax_r. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_between
avg_naive_zero : a = 0 -> av = 0. Proof with auto with typeclass_instances. intros H1; rewrite avg_naive_correct, H1. rewrite round_0... Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_zero
avg_naive_no_underflow : (bpow emin) <= Rabs a -> av <> 0. Proof with auto with typeclass_instances. intros H. (* *) cut (bpow emin <= Rabs av). intros H1 H2. rewrite H2 in H1; rewrite Rabs_R0 in H1. contradict H1. apply Rlt_not_le. apply bpow_gt_0. (* *) rewrite avg_naive_correct. apply abs_round_ge_generic... apply generic_format_FLT_bpow... lia. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_no_underflow
avg_naive_correct_weak1 : Rabs (av -a) <= /2*ulp_flt a. Proof with auto with typeclass_instances. rewrite avg_naive_correct. apply error_le_half_ulp... Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_correct_weak1
avg_naive_correct_weak2 : Rabs (av -a) <= 3/2*ulp_flt a. Proof with auto with typeclass_instances. apply Rle_trans with (1:=avg_naive_correct_weak1). apply Rmult_le_compat_r. unfold ulp; apply ulp_ge_0. lra. Qed. (* Hypothesis diff_sign: (0 <= x /\ y <= 0) \/ (x <= 0 /\ 0 <= y). is useless for properties: only useful for preventing overflow *)
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_naive_correct_weak2
avg_sum_half (x y : R) :=round_flt(round_flt(x/2) + round_flt(y/2)).
Definition
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_sum_half
av2 :=avg_sum_half x y.
Let
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
av2
avg_sum_half_correct : bpow (emin +prec+prec+1) <= Rabs x -> av2 = round_flt a. Proof with auto with typeclass_instances. intros Hx. assert (G:(0 < prec)%Z). unfold Prec_gt_0 in prec_gt_0_; assumption. unfold av2, avg_sum_half. replace (round_flt (x/2)) with (x/2). 2: apply sym_eq, round_generic... 2: apply FLT_format_half; try assumption. 2: apply Rle_trans with (2:=Hx). 2: apply bpow_le; lia. case (Rle_or_lt (bpow (prec + emin)) (Rabs y)). (* y is big enough so that y/2 is correct *) intros Hy. replace (round_flt (y/2)) with (y/2). apply f_equal; unfold a; field. apply sym_eq, round_generic... apply FLT_format_half; assumption. (* y is a subnormal, then it is too small to impact the result *) intros Hy. assert (format (x/2)). apply FLT_format_half. assumption. apply Rle_trans with (2:=Hx). apply bpow_le. lia. assert (bpow (prec+emin) <= Rabs (x/2)). apply Rmult_le_reg_l with (bpow 1). apply bpow_gt_0. rewrite <- bpow_plus. apply Rle_trans with (Rabs x). apply Rle_trans with (2:=Hx). apply bpow_le. lia. rewrite <- (Rabs_right (bpow 1)). rewrite <- Rabs_mult. right; apply f_equal. change (bpow 1) with 2. field. apply Rle_ge, bpow_ge_0. assert (K1: Rabs (y / 2) <= bpow (prec+emin-1)). unfold Rdiv; rewrite Rabs_mult. unfold Zminus; rewrite bpow_plus. simpl; rewrite (Rabs_pos_eq (/2)). apply (Rmult_le_compat_r (/2)). lra. now left. lra. assert (K2:bpow (prec+emin-1) <= / 4 * ulp_flt (x / 2)). assert (Z: x/2 <> 0). intros K; contradict H0. rewrite K, Rabs_R0. apply Rlt_not_le, bpow_gt_0. rewrite ulp_neq_0; trivial. replace (/4) with (bpow (-2)) by reflexivity. rewrite <- bpow_plus. apply bpow_le. unfold cexp, FLT_exp. assert (emin+prec+prec+1 -1 < mag radix2 (x/2))%Z. destruct (mag radix2 (x/2)) as (e,He). simpl. apply lt_bpow with radix2. apply Rle_lt_trans with (Rabs (x/2)). unfold Rdiv; rewrite Rabs_mult. unfold Zminus; rewrite bpow_plus. simpl; rewrite (Rabs_right (/2)). apply Rmult_le_compat_r. lra. exact Hx. lra. apply He; trivial. rewrite Z.max_l. lia. lia. (* . *) apply trans_eq with (x/2). apply round_plus_small_id; try assumption. apply Rle_trans with (2:=K2). apply abs_round_le_generic... apply generic_format_FLT_bpow... lia. unfold a; apply sym_eq. replace ((x+y)/2) with (x/2+y/2) by field. apply round_plus_small_id; try assumption. now apply Rle_trans with (2:=K2). Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_sum_half_correct
bpow e := (bpow radix2 e). Variable emin prec : Z. Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
bpow
format := (generic_format radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
format
round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
round_flt
ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
ulp_flt
cexp := (cexp radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
cexp
avg_half_sub (x y : R) :=round_flt(x+round_flt(round_flt(y-x)/2)). Variables x y:R. Hypothesis Fx: format x. Hypothesis Fy: format y.
Definition
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub
a :=(x+y)/2.
Let
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
a
av :=avg_half_sub x y.
Let
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
av
avg_half_sub_symmetry_Ropp : forall u v, avg_half_sub (-u) (-v) = - avg_half_sub u v. intros u v; unfold avg_half_sub. replace (-v--u) with (-(v-u)) by ring. rewrite round_NE_opp. replace (- round_flt (v-u) / 2) with (- (round_flt (v-u) / 2)) by (unfold Rdiv; ring). rewrite round_NE_opp. replace (- u + - round_flt (round_flt (v - u) / 2)) with (-(u+round_flt (round_flt (v - u) / 2))) by ring. apply round_NE_opp. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_symmetry_Ropp
avg_half_sub_same_sign_1 : 0 <= a -> 0 <= av. Proof with auto with typeclass_instances. intros H. apply round_ge_generic... apply generic_format_0. apply Rplus_le_reg_l with (-x). ring_simplify. apply round_ge_generic... now apply generic_format_opp. apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rle_trans with (-(2*x)). right; ring. apply Rle_trans with (round_flt (y - x)). 2: right; field. apply round_ge_generic... apply generic_format_opp. now apply FLT_format_double... apply Rplus_le_reg_l with (2*x). apply Rmult_le_reg_r with (/2). lra. apply Rle_trans with 0;[right; ring|idtac]. apply Rle_trans with (1:=H). right; unfold a, Rdiv; ring. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_same_sign_1
avg_half_sub_same_sign_2 : a <= 0-> av <= 0. Proof with auto with typeclass_instances. intros H. apply round_le_generic... apply generic_format_0. apply Rplus_le_reg_l with (-x). ring_simplify. apply round_le_generic... now apply generic_format_opp. apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rle_trans with (-(2*x)). 2: right; ring. apply Rle_trans with (round_flt (y - x)). right; field. apply round_le_generic... apply generic_format_opp. now apply FLT_format_double... apply Rplus_le_reg_l with (2*x). apply Rmult_le_reg_r with (/2). lra. apply Rle_trans with 0;[idtac|right; ring]. apply Rle_trans with (2:=H). right; unfold a, Rdiv; ring. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_same_sign_2
avg_half_sub_between_aux : forall u v, format u -> format v -> u <= v -> u <= avg_half_sub u v <= v. Proof with auto with typeclass_instances. clear Fx Fy a av x y. intros x y Fx Fy M. split. (* . *) apply round_ge_generic... apply Rplus_le_reg_l with (-x). ring_simplify. apply round_ge_generic... apply generic_format_0. unfold Rdiv; apply Rmult_le_pos. apply round_ge_generic... apply generic_format_0. apply Rplus_le_reg_l with x. now ring_simplify. lra. (* . *) apply round_le_generic... assert (H:(0 <= round radix2 (FLT_exp emin prec) Zfloor (y-x))). apply round_ge_generic... apply generic_format_0. apply Rplus_le_reg_l with x. now ring_simplify. destruct H as [H|H]. (* .. *) pattern y at 2; replace y with (x + (y-x)) by ring. apply Rplus_le_compat_l. case (generic_format_EM radix2 (FLT_exp emin prec) (y-x)); intros K. apply round_le_generic... rewrite round_generic... apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rplus_le_reg_l with (2*x-y). apply Rle_trans with x. right; field. apply Rle_trans with (1:=M). right; field. apply Rle_trans with (round radix2 (FLT_exp emin prec) Zfloor (y - x)). apply round_le_generic... apply generic_format_round... apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rle_trans with (round_flt (y - x)). right; field. case (round_DN_or_UP radix2 (FLT_exp emin prec) ZnearestE (y-x)); intros H1; rewrite H1. apply Rplus_le_reg_l with (-round radix2 (FLT_exp emin prec) Zfloor (y - x)). ring_simplify. now left. rewrite round_UP_DN_ulp. apply Rplus_le_reg_l with (-round radix2 (FLT_exp emin prec) Zfloor (y - x)); ring_simplify. apply round_DN_pt... apply generic_format_ulp... case (Rle_or_lt (bpow (emin + prec - 1)) (y-x)); intros P. apply FLT_ulp_le_id... apply Rle_trans with (2:=P). apply bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. contradict K. apply FLT_format_plus_small... now apply generic_format_opp. rewrite Rabs_right. apply Rle_trans with (bpow (emin+prec-1)). left; exact P. apply bpow_le; lia. apply Rle_ge; apply Rplus_le_reg_l with x; now ring_simplify. assumption. apply round_DN_pt... (* .. *) case M; intros H1. 2: rewrite H1; replace (y-y) with 0 by ring. 2: rewrite round_0... 2: unfold Rdiv; rewrite Rmult_0_l. 2: rewrite round_0... 2: right; ring. apply Rle_trans with (x+0). 2: rewrite Rplus_0_r; assumption. apply Rplus_le_compat_l. replace 0 with (round_flt (bpow emin/2)). apply round_le... unfold Rdiv; apply Rmult_le_compat_r. lra. apply round_le_generic... apply generic_format_FLT_bpow... lia. case (Rle_or_lt (y-x) (bpow emin)); trivial. intros H2. contradict H. apply Rlt_not_eq. apply Rlt_le_trans with (bpow emin). apply bpow_gt_0. apply round_DN_pt... apply generic_format_FLT_bpow... lia. now left. replace (bpow emin /2) with (bpow (emin-1)). unfold round, scaled_mantissa, cexp, FLT_exp. rewrite mag_bpow. replace (emin - 1 + 1 - prec)%Z with (emin-prec)%Z by ring. rewrite Z.max_r. 2: unfold Prec_gt_0 in prec_gt_0_; lia. rewrite <- bpow_plus. replace (emin-1+-emin)%Z with (-1)%Z by ring. replace (ZnearestE (bpow (-1))) with 0%Z. unfold F2R; simpl; ring. change (bpow (-1)) with (/2). simpl; unfold Znearest. replace (Zfloor (/2)) with 0%Z. rewrite Rcompare_Eq. reflexivity. simpl; ring. apply sym_eq, Zfloor_imp. simpl ; lra. unfold Zminus; rewrite bpow_plus. reflexivity. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_between_aux
avg_half_sub_between : Rmin x y <= av <= Rmax x y. Proof with auto with typeclass_instances. case (Rle_or_lt x y); intros M. (* x <= y *) rewrite Rmin_left; try exact M. rewrite Rmax_right; try exact M. now apply avg_half_sub_between_aux. (* y < x *) rewrite Rmin_right; try now left. rewrite Rmax_left; try now left. unfold av; rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y). rewrite avg_half_sub_symmetry_Ropp. split; apply Ropp_le_contravar. apply avg_half_sub_between_aux. now apply generic_format_opp. now apply generic_format_opp. apply Ropp_le_contravar; now left. apply avg_half_sub_between_aux. now apply generic_format_opp. now apply generic_format_opp. apply Ropp_le_contravar; now left. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_between
avg_half_sub_zero : a = 0 -> av = 0. Proof with auto with typeclass_instances. intros H. assert (y=-x). apply Rplus_eq_reg_l with x. apply Rmult_eq_reg_r with (/2). apply trans_eq with a. reflexivity. rewrite H; ring. lra. unfold av, avg_half_sub. rewrite H0. replace (-x-x) with (-(2*x)) by ring. rewrite round_generic with (x:=(-(2*x)))... replace (-(2*x)/2) with (-x) by field. rewrite round_generic with (x:=-x)... replace (x+-x) with 0 by ring. apply round_0... now apply generic_format_opp. apply generic_format_opp. now apply FLT_format_double. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_zero
avg_half_sub_no_underflow_aux_aux : forall z:Z, (0 < z)%Z -> (ZnearestE (IZR z / 2) < z)%Z. Proof. intros z H1. case (Zle_lt_or_eq 1 z); [lia|intros H2|intros H2]. apply lt_IZR. apply Rplus_lt_reg_r with (- ((IZR z)/2)). apply Rle_lt_trans with (-(((IZR z) /2) - IZR (ZnearestE (IZR z / 2)))). right; ring. apply Rle_lt_trans with (1:= RRle_abs _). rewrite Rabs_Ropp. apply Rle_lt_trans with (1:=Znearest_half (fun x => negb (Z.even x)) _). apply Rle_lt_trans with (1*/2);[right; ring|idtac]. apply Rlt_le_trans with ((IZR z)*/2);[idtac|right; field]. apply Rmult_lt_compat_r. lra. now apply IZR_lt. rewrite <- H2. unfold Znearest; simpl. replace (Zfloor (1 / 2)) with 0%Z. rewrite Rcompare_Eq. simpl; lia. simpl; field. unfold Rdiv; rewrite Rmult_1_l. apply sym_eq, Zfloor_imp. simpl; lra. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_no_underflow_aux_aux
avg_half_sub_no_underflow_aux1 : forall f, format f -> 0 < f -> f <= round_flt (f/2) -> False. Proof with auto with typeclass_instances. intros f Ff Hf1 Hf2. apply FLT_format_generic in Ff... destruct Ff as [g H1 H2 H3]. case (Zle_lt_or_eq emin (Fexp g)); try exact H3; intros H4. contradict Hf2. apply Rlt_not_le. rewrite round_generic... apply Rplus_lt_reg_l with (-(f/2)). apply Rle_lt_trans with 0;[right; ring|idtac]. apply Rlt_le_trans with (f*/2);[idtac|right;field]. apply Rmult_lt_0_compat; try assumption. lra. apply generic_format_FLT. exists (Float radix2 (Fnum g) (Fexp g-1)). rewrite H1; unfold F2R; simpl. unfold Zminus; rewrite bpow_plus. apply Rmult_assoc. easy. simpl; lia. contradict Hf2; apply Rlt_not_le. unfold round, scaled_mantissa. replace (cexp (f/2)) with emin. rewrite H1; unfold F2R; simpl. rewrite <- H4. apply Rmult_lt_compat_r. apply bpow_gt_0. apply IZR_lt. replace (IZR (Fnum g) * bpow emin / 2 * bpow (- emin)) with (IZR (Fnum g) /2). apply avg_half_sub_no_underflow_aux_aux. apply lt_IZR. apply Rmult_lt_reg_r with (bpow (Fexp g)). apply bpow_gt_0. rewrite Rmult_0_l. apply Rlt_le_trans with (1:=Hf1). right; rewrite H1; reflexivity. unfold Rdiv; apply trans_eq with (IZR (Fnum g) * / 2 * (bpow (- emin)*bpow emin)). rewrite <- bpow_plus. ring_simplify (-emin+emin)%Z. simpl; ring. ring. apply sym_eq, cexp_FLT_FIX. apply Rgt_not_eq, Rlt_gt. lra. rewrite H1; unfold F2R, Rdiv; simpl. replace (/2) with (bpow (-1)) by reflexivity. rewrite Rmult_assoc, <- bpow_plus. rewrite Rabs_mult. rewrite (Rabs_right (bpow _)). 2: apply Rle_ge, bpow_ge_0. rewrite (Zplus_comm emin _). rewrite (bpow_plus _ prec _). apply Rmult_lt_compat. apply Rabs_pos. apply bpow_ge_0. rewrite <- IZR_Zpower, <- abs_IZR. now apply IZR_lt. unfold Prec_gt_0 in prec_gt_0_; lia. rewrite <- H4; apply bpow_lt. lia. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_no_underflow_aux1
avg_half_sub_no_underflow_aux2 : forall u v, format u -> format v -> (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) -> u <= v -> (bpow emin) <= Rabs ((u+v)/2) -> avg_half_sub u v <> 0. Proof with auto with typeclass_instances. clear Fx Fy a av x y; intros x y Fx Fy same_sign xLey H; unfold avg_half_sub. apply round_plus_neq_0... apply generic_format_round... intros J. assert (H1:x <= 0). apply Rplus_le_reg_r with (round_flt (round_flt (y - x) / 2)). rewrite J, Rplus_0_l. apply round_ge_generic... apply generic_format_0. unfold Rdiv; apply Rmult_le_pos. apply round_ge_generic... apply generic_format_0. apply Rplus_le_reg_l with x; now ring_simplify. lra. destruct H1 as [H1|H1]. (* *) destruct same_sign as [(H2,H3)|(_,H2)]. contradict H2; now apply Rlt_not_le. apply avg_half_sub_no_underflow_aux1 with (-x). now apply generic_format_opp. rewrite <- Ropp_0; now apply Ropp_lt_contravar. apply Rle_trans with (round_flt (round_flt (y - x) / 2)). apply Rplus_le_reg_l with x. rewrite J; right; ring. apply round_le... unfold Rdiv; apply Rmult_le_compat_r. lra. apply round_le_generic... now apply generic_format_opp. apply Rplus_le_reg_l with x. now ring_simplify. (* *) rewrite H1 in J, H. rewrite Rplus_0_l in H. contradict J; apply Rgt_not_eq, Rlt_gt. rewrite Rplus_0_l. unfold Rminus; rewrite Ropp_0, Rplus_0_r. rewrite round_generic with (x:=y)... apply Rlt_le_trans with (bpow emin). apply bpow_gt_0. apply round_ge_generic... apply generic_format_FLT_bpow... lia. apply Rle_trans with (1:=H). right; apply Rabs_right. apply Rle_ge; unfold Rdiv; apply Rmult_le_pos. rewrite <- H1; assumption. lra. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_no_underflow_aux2
avg_half_sub_no_underflow_aux3 : forall u v, format u -> format v -> (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) -> (bpow emin) <= Rabs ((u+v)/2) -> avg_half_sub u v <> 0. Proof with auto with typeclass_instances. clear Fx Fy a av x y; intros x y Fx Fy. intros same_sign H. case (Rle_or_lt x y); intros H1. now apply avg_half_sub_no_underflow_aux2. rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y). rewrite avg_half_sub_symmetry_Ropp. apply Ropp_neq_0_compat. apply avg_half_sub_no_underflow_aux2. now apply generic_format_opp. now apply generic_format_opp. rewrite <- Ropp_0; case same_sign; intros (T1,T2). right; split; now apply Ropp_le_contravar. left; split; now apply Ropp_le_contravar. apply Ropp_le_contravar; now left. apply Rle_trans with (1:=H). rewrite <- Rabs_Ropp. right; apply f_equal. unfold Rdiv; ring. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_no_underflow_aux3
avg_half_sub_no_underflow : (0 <= x /\ 0 <= y) \/ (x <= 0 /\ y <= 0) -> (bpow emin) <= Rabs a -> av <> 0. Proof with auto with typeclass_instances. intros; now apply avg_half_sub_no_underflow_aux3. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_no_underflow
avg_half_sub_correct_aux : forall u v, format u -> format v -> u <= v -> (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) -> 0 < Rabs ((u+v)/2) < bpow emin -> Rabs (avg_half_sub u v -((u+v)/2)) <= 3/2 * ulp_flt ((u+v)/2). Proof with auto with typeclass_instances. clear Fx Fy x y a av. intros u v Fu Fv uLev same_sign. pose (b:=(u+v)/2); fold b. (* mostly forward proof *) intros (H1,H2). apply generic_format_FIX_FLT,FIX_format_generic in Fu. apply generic_format_FIX_FLT,FIX_format_generic in Fv. destruct Fu as [[nu eu] J1 J2]. destruct Fv as [[nv ev] J3 J4]; simpl in J2, J4. (* b is bpow emin /2 *) assert (b = IZR (nu+nv) * bpow (emin-1)). unfold b; rewrite J1, J3; unfold F2R; rewrite J2,J4; simpl. unfold Zminus; rewrite bpow_plus, plus_IZR. change (bpow (-(1))) with (/2). field. assert (Z.abs (nu+nv) = 1)%Z. cut (0 < Z.abs (nu+nv) < 2)%Z. lia. split; apply lt_IZR; simpl; rewrite abs_IZR; apply Rmult_lt_reg_l with (bpow (emin-1)); try apply bpow_gt_0. rewrite Rmult_0_r. apply Rlt_le_trans with (1:=H1). right; rewrite H, Rabs_mult. rewrite (Rabs_right (bpow (emin -1))). ring. apply Rle_ge, bpow_ge_0. apply Rle_lt_trans with (Rabs b). right; rewrite H, Rabs_mult. rewrite (Rabs_right (bpow (emin -1))). ring. apply Rle_ge, bpow_ge_0. apply Rlt_le_trans with (1:=H2). right; unfold Zminus; rewrite bpow_plus. change (bpow (-(1))) with (/2). field. (* only 2 possible values for u and v *) assert (((nu=0)/\ (nv=1)) \/ ((nu=-1)/\(nv=0)))%Z. assert (nu <= nv)%Z. apply le_IZR. apply Rmult_le_reg_r with (bpow emin). apply bpow_gt_0. apply Rle_trans with u. right; rewrite J1,J2; reflexivity. apply Rle_trans with (1:=uLev). right; rewrite J3,J4; reflexivity. case same_sign; intros (L1,L2). rewrite J1 in L1; apply Fnum_ge_0 in L1; simpl in L1. rewrite J3 in L2; apply Fnum_ge_0 in L2; simpl in L2. left. rewrite Z.abs_eq in H0. lia. lia. rewrite J1 in L1; apply Fnum_le_0 in L1; simpl in L1. rewrite J3 in L2; apply Fnum_le_0 in L2; simpl in L2. right. rewrite Z.abs_neq in H0. lia. lia. (* look into the 2 possible cases *) assert (G1:(round_flt (bpow emin/2) = 0)). replace (bpow emin /2) with (bpow (emin-1)). unfold round, scaled_mantissa. rewrite cexp_FLT_FIX. unfold cexp, FIX_exp; simpl. rewrite <- bpow_plus. replace (bpow (emin - 1 + - emin)) with (/2). replace (ZnearestE (/ 2)) with 0%Z. unfold F2R; simpl; ring. unfold Znearest. replace (Zfloor (/2)) with 0%Z. rewrite Rcompare_Eq. reflexivity. simpl; ring. apply sym_eq, Zfloor_imp. simpl; lra. ring_simplify (emin-1+-emin)%Z; reflexivity. apply Rgt_not_eq, Rlt_gt, bpow_gt_0. rewrite Rabs_right. apply bpow_lt. unfold Prec_gt_0 in prec_gt_0_; lia. apply Rle_ge, bpow_ge_0. unfold Zminus; rewrite bpow_plus. reflexivity. case H3; intros (T1,T2). unfold b, avg_half_sub. rewrite J1,J3,J2,J4,T1,T2; unfold F2R; simpl. rewrite Rmult_0_l, Rmult_1_l, 2!Rplus_0_l. unfold Rminus; rewrite Ropp_0, Rplus_0_r. rewrite (round_generic _ _ _ (bpow (emin)))... 2: apply generic_format_FLT_bpow... 2: lia. rewrite G1. rewrite round_0... rewrite Rplus_0_l, Rabs_Ropp. rewrite Rabs_right. 2: apply Rle_ge, Rmult_le_pos. 2: apply bpow_ge_0. 2: lra. apply Rle_trans with ((3*ulp_flt (bpow emin / 2))/2);[idtac|right; unfold Rdiv; ring]. unfold Rdiv; apply Rmult_le_compat_r. lra. apply Rle_trans with (3*bpow emin). apply Rle_trans with (1*bpow emin). right; ring. apply Rmult_le_compat_r. apply bpow_ge_0. now apply IZR_le. apply Rmult_le_compat_l. now apply IZR_le. rewrite ulp_neq_0. 2: apply Rmult_integral_contrapositive_currified. 2: apply Rgt_not_eq, bpow_gt_0. 2: apply Rinv_neq_0_compat, Rgt_not_eq; lra. apply bpow_le. unfold cexp, FLT_exp. apply Z.le_max_r. unfold b, avg_half_sub. rewrite J1,J3,J2,J4,T1,T2; unfold F2R; simpl. rewrite Rmult_0_l, Rplus_0_r. replace (0 - _ * bpow emin) with (bpow emin) by ring. rewrite (round_generic _ _ _ (bpow emin))... 2: apply generic_format_FLT_bpow... 2: lia. rewrite G1. replace (_ * bpow emin + 0) with (-bpow emin) by ring. rewrite round_generic... 2: apply generic_format_opp. 2: apply generic_format_FLT_bpow... 2: lia. replace (- bpow emin - _ * bpow emin / 2) with (-(bpow emin/2)) by field. rewrite Rabs_Ropp. rewrite Rabs_right. replace (_ * bpow emin / 2) with (-(bpow emin/2)) by field. rewrite ulp_opp. apply Rle_trans with ((3*ulp_flt (bpow emin / 2))/2);[idtac|right; unfold Rdiv; ring]. unfold Rdiv; apply Rmult_le_compat_r. lra. apply Rle_trans with (3*bpow emin). apply Rle_trans with (1*bpow emin). right; ring. apply Rmult_le_compat_r. apply bpow_ge_0. now apply IZR_le. apply Rmult_le_compat_l. now apply IZR_le. rewrite ulp_neq_0. 2: apply Rmult_integral_contrapositive_currified. 2: apply Rgt_not_eq, bpow_gt_0. 2: apply Rinv_neq_0_compat, Rgt_not_eq; lra. apply bpow_le. unfold cexp, FLT_exp. apply Z.le_max_r. apply Rle_ge, Rmult_le_pos. apply bpow_ge_0. lra. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_correct_aux
avg_half_sub_correct_aux2 : forall u v, format u -> format v -> u <= v -> (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) -> Rabs (avg_half_sub u v -((u+v)/2)) <= 3/2 * ulp_flt ((u+v)/2). Proof with auto with typeclass_instances. clear Fx Fy a av x y. intros u v Fu Fv uLev same_sign. pose (b:=(u+v)/2); fold b. assert (T: forall z, Rabs (2*z) = 2* Rabs z). intros z; rewrite Rabs_mult. rewrite Rabs_pos_eq; try reflexivity. apply Rlt_le, Rlt_0_2. destruct uLev as [uLtv|uEqv]. (* when u < v *) assert (B: u <= v) by now left. assert (K1: b <> 0). unfold b ; lra. (* . initial lemma *) assert (Y:(Rabs (round_flt (v - u) - (v-u)) <= ulp_flt b)). apply Rle_trans with (/2*ulp_flt (v-u)). apply error_le_half_ulp... apply Rmult_le_reg_l with (1 := Rlt_0_2). rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l. 2: apply Rgt_not_eq, Rlt_0_2. apply Rle_trans with (ulp_flt (2*b)). case same_sign; intros (T1,T2). apply ulp_le_pos... lra. unfold b ; lra. rewrite <- (ulp_opp _ _ (2*b)). apply ulp_le_pos... lra. unfold b ; lra. rewrite 2!ulp_neq_0; trivial. 2: lra. change 2 with (bpow 1). rewrite <- bpow_plus. apply bpow_le. unfold cexp, FLT_exp. rewrite Rmult_comm, mag_mult_bpow; trivial. rewrite <- Z.add_max_distr_l. replace (mag radix2 b + 1 - prec)%Z with (1 + (mag radix2 b - prec))%Z by ring. apply Z.max_le_compat_l. lia. (* . splitting case of av=0 *) case (Rle_or_lt (bpow emin) (Rabs b)); intros D. (* . main proof *) unfold avg_half_sub. case (Rle_or_lt (bpow (prec+emin)) (v-u)); intros H1. (* .. v-u is big enough: division by 2 is exact *) cut (round_flt (round_flt (v - u) / 2) = round_flt (v - u) / 2). intros Z; rewrite Z. replace (round_flt (u + round_flt (v - u) / 2) - b) with ((round_flt (u + round_flt (v - u) / 2) - (u + round_flt (v - u) / 2)) +/2*(round_flt (v - u)-(v-u))). 2: unfold b; field. apply Rle_trans with (1:=Rabs_triang _ _). apply Rle_trans with (ulp_flt b+/2*ulp_flt b);[idtac|right; field]. apply Rplus_le_compat. apply Rle_trans with (/2*ulp_flt (u + round_flt (v - u) / 2)). apply error_le_half_ulp... apply Rmult_le_reg_l with (1 := Rlt_0_2). rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l. 2: apply Rgt_not_eq, Rlt_0_2. apply Rle_trans with (2:=FLT_ulp_double _ _ _). apply ulp_le... replace (u + round_flt (v - u) / 2) with (b+/2*(round_flt (v - u) - (v - u))). 2: unfold b; field. rewrite (T b). replace (2 * Rabs b) with (Rabs b + Rabs b) by ring. apply Rle_trans with (1:=Rabs_triang _ _). apply Rplus_le_compat_l. rewrite Rabs_mult. rewrite Rabs_pos_eq. 2: lra. apply Rmult_le_reg_l with (1 := Rlt_0_2). rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l. 2: apply Rgt_not_eq, Rlt_0_2. apply Rle_trans with (1:=Y). apply Rle_trans with (ulp_flt (2*b)). apply ulp_le... rewrite <- (Rmult_1_l (Rabs b)). rewrite (T b). apply Rmult_le_compat_r. apply Rabs_pos. now apply IZR_le. rewrite <- (T b). rewrite <- ulp_abs. apply FLT_ulp_le_id... assert (H:generic_format radix2 (FIX_exp emin) (2*b)). replace (2*b) with (u+v). 2: unfold b; field. apply generic_format_FIX_FLT,FIX_format_generic in Fu. apply generic_format_FIX_FLT,FIX_format_generic in Fv. destruct Fu as [fu J1 J2]. destruct Fv as [fv J3 J4]. apply generic_format_FIX. exists (Float radix2 (Fnum fu+Fnum fv) emin). rewrite J1,J3; unfold F2R; simpl. rewrite J2,J4, plus_IZR; ring. easy. apply FIX_format_generic in H. destruct H as [[n e] J1 J2]. rewrite J1; unfold F2R; rewrite J2. simpl; rewrite Rabs_mult. pattern (bpow emin) at 1; rewrite <- (Rmult_1_l (bpow emin)). rewrite (Rabs_right (bpow emin)). 2: apply Rle_ge, bpow_ge_0. apply Rmult_le_compat_r. apply bpow_ge_0. rewrite <- abs_IZR. apply IZR_le. cut (0 < Z.abs n)%Z. lia. apply Z.abs_pos. intros M; apply K1. apply Rmult_eq_reg_l with 2. 2: apply Rgt_not_eq, Rlt_0_2. rewrite Rmult_0_r, J1, M. apply F2R_0. rewrite Rabs_mult. rewrite Rabs_right. 2: lra. apply Rmult_le_compat_l with (2 := Y). lra. apply round_generic... apply FLT_format_half... apply generic_format_round... apply abs_round_ge_generic... apply generic_format_FLT_bpow... unfold Prec_gt_0 in prec_gt_0_; lia. rewrite Rabs_right; try assumption. apply Rle_ge; left; apply Rplus_lt_reg_l with u; now ring_simplify. (* .. v-u is small: subtraction is exact *) cut ((round_flt (v - u)= (v-u))). intros Z; rewrite Z. replace (u + round_flt ((v-u) / 2)) with (b+((round_flt ((v-u) / 2) - (v-u)/2))). 2: unfold b; field. pose (eps:=(round_flt ((v - u) / 2) - (v - u) / 2)%R); fold eps. assert (Rabs eps <= /2*bpow emin). unfold eps. apply Rle_trans with (1:=error_le_half_ulp _ _ _ _)... right; apply f_equal. apply ulp_FLT_small... rewrite Zplus_comm; apply Rle_lt_trans with (2:=H1). rewrite Rabs_pos_eq ; lra. replace (round_flt (b + eps) - b) with ((round_flt (b+eps) -(b+eps)) + eps) by ring. apply Rle_trans with (1:=Rabs_triang _ _). apply Rle_trans with (/2*ulp_flt (b+eps) + /2*bpow emin). apply Rplus_le_compat. apply error_le_half_ulp... assumption. apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rle_trans with (ulp_flt (b + eps)+bpow emin). right; field. apply Rle_trans with (2*ulp_flt b + ulp_flt b). 2: right; field. apply Rplus_le_compat. apply Rle_trans with (2:=FLT_ulp_double _ _ _). apply ulp_le... rewrite (T b). replace (2 * Rabs b) with (Rabs b + Rabs b) by ring. apply Rle_trans with (1:=Rabs_triang _ _). apply Rplus_le_compat_l. apply Rle_trans with (2:=D). rewrite <- (Rmult_1_l (bpow emin)). apply Rle_trans with (1:=H). apply Rmult_le_compat_r. apply bpow_ge_0. lra. rewrite <- ulp_FLT_small with radix2 emin prec 0... apply ulp_ge_ulp_0... rewrite Rabs_R0; apply bpow_gt_0. apply round_generic... apply FLT_format_plus_small... now apply generic_format_opp. rewrite Rabs_right. now left. apply Rle_ge, Rplus_le_reg_l with u; now ring_simplify. (* . when b = bpow emin /2 *) apply avg_half_sub_correct_aux; trivial. split; trivial. now apply Rabs_pos_lt. (* . x = y *) unfold avg_half_sub,b. rewrite uEqv. replace (v-v) with 0 by ring. rewrite round_0... unfold Rdiv; rewrite Rmult_0_l. rewrite round_0... rewrite Rplus_0_r. rewrite round_generic... replace ((v+v)*/2) with v by field. replace (v-v) with 0 by ring. rewrite Rabs_R0. apply Rmult_le_pos. apply Rmult_le_pos. now apply IZR_le. lra. apply ulp_ge_0. Qed. (* tight example x=1/2 and y=2^p-1: error is 5/4 ulp *)
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_correct_aux2
avg_half_sub_correct : (0 <= x /\ 0 <= y) \/ (x <= 0 /\ y <= 0) -> Rabs (av-a) <= 3/2 * ulp_flt a. Proof with auto with typeclass_instances. intros same_sign; case (Rle_or_lt x y); intros H. now apply avg_half_sub_correct_aux2. unfold av, a. rewrite <- (Ropp_involutive x), <- (Ropp_involutive y). rewrite avg_half_sub_symmetry_Ropp. rewrite <- Rabs_Ropp. replace (- (- avg_half_sub (- x) (- y) - (- - x + - - y) / 2)) with (avg_half_sub (-x) (-y) - ((-x+-y)/2)). 2: unfold Rdiv; ring. apply Rle_trans with (3 / 2 * ulp_flt ((- x + - y) / 2)). apply avg_half_sub_correct_aux2. now apply generic_format_opp. now apply generic_format_opp. apply Ropp_le_contravar; now left. rewrite <- Ropp_0; case same_sign; intros (T1,T2). right; split; now apply Ropp_le_contravar. left; split; now apply Ropp_le_contravar. right; apply f_equal. rewrite <- ulp_opp. apply f_equal. unfold Rdiv; ring. Qed. (* Lemma avg_half_sub_symmetry: forall u v, avg_half_sub u v = avg_half_sub v u. is false *)
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
avg_half_sub_correct
bpow e := (bpow radix2 e). Variable emin prec : Z. Context { prec_gt_0_ : Prec_gt_0 prec }.
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
bpow
format := (generic_format radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
format
round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
round_flt
ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
ulp_flt
cexp := (cexp radix2 (FLT_exp emin prec)).
Notation
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
cexp
average (x y : R) := let samesign := match (Rle_bool 0 x), (Rle_bool 0 y) with true , true => true | false , false => true | _,_ => false end in if samesign then match (Rle_bool (Rabs x) (Rabs y)) with true => avg_half_sub emin prec x y | false => avg_half_sub emin prec y x end else avg_naive emin prec x y. Variables x y:R. Hypothesis Fx: format x. Hypothesis Fy: format y.
Definition
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
average
a :=(x+y)/2.
Let
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
a
av :=average x y.
Let
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
av
average_symmetry : forall u v, average u v = average v u. Proof. intros u v; unfold average. case (Rle_bool_spec 0 u); case (Rle_bool_spec 0 v); intros. rewrite 2!Rabs_right; try apply Rle_ge; try assumption. case (Rle_bool_spec u v); case (Rle_bool_spec v u); trivial. intros; replace u with v; trivial; auto with real. intros H1 H2; contradict H1; auto with real. apply avg_naive_symmetry. apply avg_naive_symmetry. rewrite 2!Rabs_left; try assumption. case (Rle_bool_spec (-u) (-v)); case (Rle_bool_spec (-v) (-u)); trivial. intros; replace u with v; trivial; auto with real. intros H1 H2; contradict H1; auto with real. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
average_symmetry
average_symmetry_Ropp : forall u v, format u -> format v -> average (-u) (-v) = - average u v. Proof with auto with typeclass_instances. (* first: nonnegative u *) assert (forall u v, 0 <= u -> format u -> format v -> average (-u) (-v) = - average u v). intros u v Hu Fu Fv; unfold average. rewrite 2!Rabs_Ropp. destruct Hu as [Hu|Hu]. (* 0 < u *) rewrite Rle_bool_false. 2: apply Ropp_lt_cancel. 2: now rewrite Ropp_involutive, Ropp_0. rewrite (Rle_bool_true 0 u); [idtac|now left]. rewrite Rabs_right. 2: apply Rle_ge; now left. destruct (total_order_T 0 v) as [Hv|Hv];[destruct Hv as [Hv|Hv] |idtac]. (* . 0 < u and 0 < v *) rewrite Rle_bool_false. 2: apply Ropp_lt_cancel. 2: now rewrite Ropp_involutive, Ropp_0. rewrite (Rle_bool_true 0 v); [idtac|now left]. rewrite Rabs_right. 2: apply Rle_ge; now left. case (Rle_bool_spec u v);intros. apply avg_half_sub_symmetry_Ropp. apply avg_half_sub_symmetry_Ropp. (* . 0 < u and v = 0 *) rewrite <- Hv, Ropp_0, Rabs_R0. rewrite Rle_bool_true ;[idtac|now right]. rewrite Rle_bool_false; try exact Hu. unfold avg_naive, avg_half_sub. unfold Rminus; rewrite Ropp_0, Rplus_0_l, 2!Rplus_0_r. rewrite (round_generic _ _ _ u); trivial. rewrite (round_generic _ _ _ (-u)). 2: now apply generic_format_opp. rewrite <- round_NE_opp. rewrite <- round_NE_opp. rewrite (round_generic _ _ _ (round_flt (-(u/2)))). apply f_equal; field. apply generic_format_round... (* . 0 < u and v < 0 *) rewrite Rabs_left; trivial. rewrite Rle_bool_true. rewrite Rle_bool_false; trivial. apply avg_naive_symmetry_Ropp. rewrite <- Ropp_0; apply Ropp_le_contravar. now left. (* u = 0 *) rewrite <- Hu, Ropp_0, Rabs_R0. rewrite Rle_bool_true. 2: now right. rewrite (Rle_bool_true 0 (Rabs v)). 2: apply Rabs_pos. destruct (total_order_T 0 v) as [Hv|Hv];[destruct Hv as [Hv|Hv] |idtac]. (* . u=0 and 0 < v *) rewrite Rle_bool_false. rewrite Rle_bool_true. unfold avg_naive, avg_half_sub. unfold Rminus; rewrite Ropp_0, 2!Rplus_0_l, Rplus_0_r. rewrite (round_generic _ _ _ v); trivial. rewrite (round_generic _ _ _ (-v)). 2: now apply generic_format_opp. rewrite <- round_NE_opp. rewrite <- round_NE_opp. rewrite (round_generic _ _ _ (round_flt (-(v/2)))). apply f_equal; field. apply generic_format_round... now left. rewrite <- Ropp_0; now apply Ropp_lt_contravar. (* . u=0 and v=0 *) rewrite <- Hv, Ropp_0. rewrite Rle_bool_true. 2: now right. unfold avg_half_sub. replace (0-0) with 0 by ring; rewrite round_0... unfold Rdiv; rewrite Rmult_0_l, round_0, Rplus_0_l... rewrite round_0... ring. (* . u=0 and v < 0 *) rewrite Rle_bool_true. rewrite Rle_bool_false. unfold avg_naive, avg_half_sub. unfold Rminus; rewrite Ropp_0, 2!Rplus_0_l, Rplus_0_r. rewrite (round_generic _ _ _ v); trivial. rewrite (round_generic _ _ _ (-v)). 2: now apply generic_format_opp. rewrite <- round_NE_opp. rewrite (round_generic _ _ _ (round_flt (-v/2))). apply f_equal; field. apply generic_format_round... exact Hv. rewrite <- Ropp_0; apply Ropp_le_contravar; now left. (* any u *) intros u v Fu Fv. case (Rle_or_lt 0 u). intros Hu; now apply H. intros Hu. apply trans_eq with (- average (--u) (--v)). rewrite (H (-u) (-v)). ring. rewrite <- Ropp_0; apply Ropp_le_contravar; now left. apply generic_format_opp... apply generic_format_opp... apply f_equal, f_equal2; ring. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
average_symmetry_Ropp
average_same_sign_1 : 0 <= a -> 0 <= av. Proof with auto with typeclass_instances. intros H; unfold av, average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_same_sign_1... apply avg_half_sub_same_sign_1... now rewrite Rplus_comm. apply avg_naive_same_sign_1... apply avg_naive_same_sign_1... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_same_sign_1... apply avg_half_sub_same_sign_1... now rewrite Rplus_comm. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
average_same_sign_1
average_same_sign_2 : a <= 0-> av <= 0. Proof with auto with typeclass_instances. intros H; unfold av, average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_same_sign_2... apply avg_half_sub_same_sign_2... now rewrite Rplus_comm. apply avg_naive_same_sign_2... apply avg_naive_same_sign_2... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_same_sign_2... apply avg_half_sub_same_sign_2... now rewrite Rplus_comm. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
average_same_sign_2
average_correct : Rabs (av -a) <= 3/2 * ulp_flt a. Proof with auto with typeclass_instances. unfold av,a,average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_correct... rewrite Rplus_comm. apply avg_half_sub_correct... apply avg_naive_correct_weak2... apply avg_naive_correct_weak2... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_correct... right; split; now left. rewrite Rplus_comm. apply avg_half_sub_correct... right; split; now left. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
average_correct
average_between : Rmin x y <= av <= Rmax x y. Proof with auto with typeclass_instances. unfold av,a,average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_between... rewrite Rmin_comm, Rmax_comm. apply avg_half_sub_between... apply avg_naive_between... apply avg_naive_between... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_between... rewrite Rmin_comm, Rmax_comm. apply avg_half_sub_between... Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
average_between
average_zero : a = 0 -> av = 0. Proof with auto with typeclass_instances. unfold av,a,average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_zero... apply avg_half_sub_zero... now rewrite Rplus_comm. apply avg_naive_zero... apply avg_naive_zero... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_zero... apply avg_half_sub_zero... now rewrite Rplus_comm. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
average_zero
average_no_underflow : (bpow emin) <= Rabs a -> av <> 0. Proof with auto with typeclass_instances. unfold av,a,average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_no_underflow... apply avg_half_sub_no_underflow... now rewrite Rplus_comm. apply avg_naive_no_underflow... apply avg_naive_no_underflow... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_no_underflow... right; split; now left. apply avg_half_sub_no_underflow... right; split; now left. now rewrite Rplus_comm. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals Psatz.", "From Flocq Require Import Core Plus_error." ]
examples/Average.v
average_no_underflow
rel_helper : forall xa xe b : R, xe <> 0 -> (Rabs ((xa - xe) / xe) <= b <-> Rabs (xa - xe) <= b * Rabs xe). Proof. intros xa xe b Zx. unfold Rdiv. rewrite Rabs_mult, Rabs_Rinv by exact Zx. split ; intros H. - apply Rmult_le_reg_r with (/ Rabs xe). apply Rinv_0_lt_compat. now apply Rabs_pos_lt. rewrite Rmult_assoc, Rinv_r, Rmult_1_r. exact H. now apply Rabs_no_R0. - apply Rmult_le_reg_r with (Rabs xe). now apply Rabs_pos_lt. rewrite Rmult_assoc, Rinv_l, Rmult_1_r. exact H. now apply Rabs_no_R0. Qed.
Lemma
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
rel_helper
Rdiv_compat_r : forall a b c : R, a <> 0 -> c <> 0 -> (a*b) / (a*c) = b/c. Proof. intros a b c Ha Hc. field. apply conj. apply Hc. apply Ha. Qed.
Lemma
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
Rdiv_compat_r
pow2 := (bpow radix2).
Notation
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
pow2
rnd := (round radix2 (FLT_exp (-1074) 53) ZnearestE).
Notation
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
rnd
add x y := rnd (x + y).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
add
sub x y := rnd (x - y).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
sub
mul x y := rnd (x * y).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
mul
div x y := rnd (x / y).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
div
nearbyint x := round radix2 (FIX_exp 0) ZnearestE x.
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
nearbyint
Log2h := 3048493539143 * pow2 (-42).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
Log2h
Log2l := 544487923021427 * pow2 (-93).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
Log2l
InvLog2 := 3248660424278399 * pow2 (-51).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
InvLog2
p0 := 1 * pow2 (-2).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
p0
p1 := 4002712888408905 * pow2 (-59).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
p1
p2 := 1218985200072455 * pow2 (-66).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
p2
q0 := 1 * pow2 (-1).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
q0
q1 := 8006155947364787 * pow2 (-57).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
q1
q2 := 4573527866750985 * pow2 (-63).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
q2
cw_exp (x : R) := let k := nearbyint (mul x InvLog2) in let t := sub (sub x (mul k Log2h)) (mul k Log2l) in let t2 := mul t t in let p := add p0 (mul t2 (add p1 (mul t2 p2))) in let q := add q0 (mul t2 (add q1 (mul t2 q2))) in pow2 (Zfloor k + 1) * (add (div (mul t p) (sub q (mul t p))) (1/2)).
Definition
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
cw_exp
method_error : forall t : R, let t2 := t * t in let p := p0 + t2 * (p1 + t2 * p2) in let q := q0 + t2 * (q1 + t2 * q2) in let f := 2 * ((t * p) / (q - t * p) + 1/2) in Rabs t <= 355 / 1024 -> Rabs ((f - exp t) / exp t) <= 23 * pow2 (-62). Proof. intros t t2 p q f Ht. unfold f, q, p, t2, p0, p1, p2, q0, q1, q2 ; interval with (i_bisect t, i_taylor t, i_degree 9, i_prec 70). Qed.
Lemma
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
method_error
argument_reduction : forall x : R, generic_format radix2 (FLT_exp (-1074) 53) x -> -746 <= x <= 710 -> let k := nearbyint (mul x InvLog2) in let tf := sub (sub x (mul k Log2h)) (mul k Log2l) in let te := x - k * ln 2 in Rabs tf <= 355 / 1024 /\ Rabs (tf - te) <= 65537 * pow2 (-71). Proof with auto with typeclass_instances. intros x Fx Bx k tf te. assert (Rabs x <= 5/16 \/ 5/16 <= Rabs x <= 746) as [Bx'|Bx'] by gappa. - assert (k = 0). clear -Bx'. refine (let H := _ in Rle_antisym _ _ (proj2 H) (proj1 H)). unfold k, mul, nearbyint, InvLog2, Log2h ; gappa. unfold tf, te, mul, sub. rewrite H. rewrite 2!Rmult_0_l. rewrite round_0... rewrite Rmult_0_l. rewrite 2!Rminus_0_r. rewrite 2!round_generic with (2 := Fx)... gappa. - assert (Hl: - 1 * pow2 (-102) <= Log2l - (ln 2 - Log2h) <= 0). unfold Log2l, Log2h ; interval with (i_prec 110). assert (Ax: x = x * InvLog2 * (1 / InvLog2)). field. unfold InvLog2 ; interval. unfold te. replace (x - k * ln 2) with (x - k * Log2h - k * (ln 2 - Log2h)) by ring. revert Hl Ax. unfold tf, te, k, sub, mul, nearbyint, InvLog2, Log2h, Log2l ; gappa. Qed.
Lemma
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
argument_reduction
exp_correct : forall x : R, generic_format radix2 (FLT_exp (-1074) 53) x -> -746 <= x <= 710 -> Rabs ((cw_exp x - exp x) / exp x) <= 1 * pow2 (-51). Proof. intros x Fx Bx. generalize (argument_reduction x Fx Bx). unfold cw_exp. set (k := nearbyint (mul x InvLog2)). set (t := sub (sub x (mul k Log2h)) (mul k Log2l)). set (t2 := mul t t). intros [Bt Et]. clearbody t. generalize (method_error t Bt). intros Ef. rewrite bpow_plus, Rmult_assoc. assert (exp x = pow2 (Zfloor k) * exp (x - k * ln 2)) as ->. assert (exists k', k = IZR k') as [k' ->] by (eexists ; apply Rmult_1_r). rewrite Zfloor_IZR, bpow_exp, <- exp_plus. apply f_equal. simpl ; ring. rewrite <- Rmult_minus_distr_l. rewrite Rdiv_compat_r. 2: apply Rgt_not_eq, bpow_gt_0. 2: apply Rgt_not_eq, exp_pos. clearbody k. revert Et. generalize (x - k * ln 2). clear x Fx Bx. intros x Ex. assert (Rabs ((exp t - exp x) / exp x) <= 33 * pow2 (-60)). unfold Rdiv. rewrite Rmult_minus_distr_r. rewrite Rinv_r by apply Rgt_not_eq, exp_pos. rewrite <- exp_Ropp, <- exp_plus. revert Ex. unfold Rminus ; generalize (t + - x) ; clear. intros r Hr ; interval with (i_prec 60). apply rel_helper. apply Rgt_not_eq, exp_pos. apply rel_helper in H. 2: apply Rgt_not_eq, exp_pos. apply rel_helper in Ef. 2: apply Rgt_not_eq, exp_pos. unfold t2, add, mul, sub, div, p0, p1, p2, q0, q1, q2 in * ; gappa. Qed.
Theorem
examples
[ "From Coq Require Import Reals.", "From Flocq Require Import Core.", "From Gappa Require Import Gappa_tactic.", "From Interval Require Import Tactic." ]
examples/Cody_Waite.v
exp_correct
Rsgn_F2R : forall m e, Rlt_bool (F2R (Float beta m e)) 0 = Zlt_bool m 0. Proof. intros m e. case Zlt_bool_spec ; intros H. apply Rlt_bool_true. now apply F2R_lt_0. apply Rlt_bool_false. now apply F2R_ge_0. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals.", "From Flocq Require Import Core Bracket Round Operations Div Sqrt." ]
examples/Compute.v
Rsgn_F2R
plus (x y : float beta) := let (m, e) := Fplus x y in let s := Zlt_bool m 0 in let '(m', e', l) := truncate beta fexp (Z.abs m, e, loc_Exact) in Float beta (cond_Zopp s (choice s m' l)) e'.
Definition
examples
[ "From Coq Require Import ZArith Reals.", "From Flocq Require Import Core Bracket Round Operations Div Sqrt." ]
examples/Compute.v
plus
plus_correct : forall x y : float beta, round beta fexp rnd (F2R x + F2R y) = F2R (plus x y). Proof. intros x y. unfold plus. rewrite <- F2R_plus. destruct (Fplus x y) as [m e]. rewrite (round_trunc_sign_any_correct beta fexp rnd choice rnd_choice _ (Z.abs m) e loc_Exact). 3: now right. destruct truncate as [[m' e'] l']. apply (f_equal (fun s => F2R (Float beta (cond_Zopp s (choice s _ _)) _))). apply Rsgn_F2R. apply inbetween_Exact. apply sym_eq, F2R_Zabs. Qed.
Theorem
examples
[ "From Coq Require Import ZArith Reals.", "From Flocq Require Import Core Bracket Round Operations Div Sqrt." ]
examples/Compute.v
plus_correct
mult (x y : float beta) := let (m, e) := Fmult x y in let s := Zlt_bool m 0 in let '(m', e', l) := truncate beta fexp (Z.abs m, e, loc_Exact) in Float beta (cond_Zopp s (choice s m' l)) e'.
Definition
examples
[ "From Coq Require Import ZArith Reals.", "From Flocq Require Import Core Bracket Round Operations Div Sqrt." ]
examples/Compute.v
mult
mult_correct : forall x y : float beta, round beta fexp rnd (F2R x * F2R y) = F2R (mult x y). Proof. intros x y. unfold mult. rewrite <- F2R_mult. destruct (Fmult x y) as [m e]. rewrite (round_trunc_sign_any_correct beta fexp rnd choice rnd_choice _ (Z.abs m) e loc_Exact). 3: now right. destruct truncate as [[m' e'] l']. apply (f_equal (fun s => F2R (Float beta (cond_Zopp s (choice s _ _)) _))). apply Rsgn_F2R. apply inbetween_Exact. apply sym_eq, F2R_Zabs. Qed.
Theorem
examples
[ "From Coq Require Import ZArith Reals.", "From Flocq Require Import Core Bracket Round Operations Div Sqrt." ]
examples/Compute.v
mult_correct
sqrt (x : float beta) := if Zlt_bool 0 (Fnum x) then let '(m', e', l) := truncate beta fexp (Fsqrt fexp x) in Float beta (choice false m' l) e' else Float beta 0 0.
Definition
examples
[ "From Coq Require Import ZArith Reals.", "From Flocq Require Import Core Bracket Round Operations Div Sqrt." ]
examples/Compute.v
sqrt
sqrt_correct : forall x : float beta, round beta fexp rnd (R_sqrt.sqrt (F2R x)) = F2R (sqrt x). Proof. intros x. unfold sqrt. case Zlt_bool_spec ; intros Hm. generalize (Fsqrt_correct fexp x (F2R_gt_0 _ _ Hm)). destruct Fsqrt as [[m' e'] l]. intros [Hs1 Hs2]. rewrite (round_trunc_sign_any_correct' beta fexp rnd choice rnd_choice _ m' e' l). destruct truncate as [[m'' e''] l']. now rewrite Rlt_bool_false by apply sqrt_ge_0. now rewrite Rabs_pos_eq by apply sqrt_ge_0. now left. destruct (Req_dec (F2R x) 0) as [Hz|Hz]. rewrite Hz, sqrt_0, F2R_0. now apply round_0. unfold R_sqrt.sqrt. destruct Rcase_abs as [H|H]. rewrite F2R_0. now apply round_0. destruct H as [H|H]. elim Rgt_not_le with (1 := H). now apply F2R_le_0. now elim Hz. Qed.
Theorem
examples
[ "From Coq Require Import ZArith Reals.", "From Flocq Require Import Core Bracket Round Operations Div Sqrt." ]
examples/Compute.v
sqrt_correct
Rsgn_div : forall x y : R, x <> 0%R -> y <> 0%R -> Rlt_bool (x / y) 0 = xorb (Rlt_bool x 0) (Rlt_bool y 0). Proof. intros x y Hx0 Hy0. unfold Rdiv. case (Rlt_bool_spec x) ; intros Hx ; case (Rlt_bool_spec y) ; intros Hy. apply Rlt_bool_false. rewrite <- Rmult_opp_opp. apply Rlt_le, Rmult_lt_0_compat. now apply Ropp_gt_lt_0_contravar. apply Ropp_gt_lt_0_contravar. now apply Rinv_lt_0_compat. apply Rlt_bool_true. apply Ropp_lt_cancel. rewrite Ropp_0, <- Ropp_mult_distr_l_reverse. apply Rmult_lt_0_compat. now apply Ropp_gt_lt_0_contravar. apply Rinv_0_lt_compat. destruct Hy as [Hy|Hy]. easy. now elim Hy0. apply Rlt_bool_true. apply Ropp_lt_cancel. rewrite Ropp_0, <- Ropp_mult_distr_r_reverse. apply Rmult_lt_0_compat. destruct Hx as [Hx|Hx]. easy. now elim Hx0. apply Ropp_gt_lt_0_contravar. now apply Rinv_lt_0_compat. apply Rlt_bool_false. apply Rlt_le, Rmult_lt_0_compat. destruct Hx as [Hx|Hx]. easy. now elim Hx0. apply Rinv_0_lt_compat. destruct Hy as [Hy|Hy]. easy. now elim Hy0. Qed.
Lemma
examples
[ "From Coq Require Import ZArith Reals.", "From Flocq Require Import Core Bracket Round Operations Div Sqrt." ]
examples/Compute.v
Rsgn_div
div (x y : float beta) := if Zeq_bool (Fnum x) 0 then Float beta 0 0 else let '(m, e, l) := truncate beta fexp (Fdiv fexp (Fabs x) (Fabs y)) in let s := xorb (Zlt_bool (Fnum x) 0) (Zlt_bool (Fnum y) 0) in Float beta (cond_Zopp s (choice s m l)) e.
Definition
examples
[ "From Coq Require Import ZArith Reals.", "From Flocq Require Import Core Bracket Round Operations Div Sqrt." ]
examples/Compute.v
div
End of preview. Expand in Data Studio

Coq-Flocq

Structured dataset from Flocq — Floating-point formalization.

3,207 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
24

Collection including phanerozoic/Coq-Flocq