Proof Assistant Projects
Collection
Digesting proof assistant libraries for AI ingestion.
•
79 items
•
Updated
•
2
fact
stringlengths 12
30.2k
| type
stringclasses 14
values | library
stringclasses 2
values | imports
listlengths 1
5
| filename
stringclasses 43
values | symbolic_name
stringlengths 1
38
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
Rmin_Rmax_overflow : forall x y z M, Rabs x <= M -> Rabs y <= M -> Rmin x y <= z <= Rmax x y -> Rabs z <= M. Proof. intros x y z M Hx Hy H. case (Rle_or_lt 0 z); intros Hz. rewrite Rabs_right. apply Rle_trans with (1:=proj2 H). generalize (proj2 H). apply Rmax_case_strong. intros; apply Rle_trans with (2:=Hx). apply RRle_abs. intros; apply Rle_trans with (2:=Hy). apply RRle_abs. now apply Rle_ge. rewrite Rabs_left; try assumption. apply Rle_trans with (Rmax (-x) (-y)). rewrite Rmax_opp. apply Ropp_le_contravar, H. apply Rmax_case_strong. intros; apply Rle_trans with (2:=Hx). rewrite <- Rabs_Ropp. apply RRle_abs. intros; apply Rle_trans with (2:=Hy). rewrite <- Rabs_Ropp. apply RRle_abs. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
Rmin_Rmax_overflow
| |
radix2 := Build_radix 2 (refl_equal true).
|
Definition
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
radix2
| |
bpow e := (bpow radix2 e). Variable emin prec : Z. Context { prec_gt_0_ : Prec_gt_0 prec }.
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
bpow
| |
format := (generic_format radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
format
| |
round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
round_flt
| |
ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
ulp_flt
| |
cexp := (cexp radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
cexp
| |
pred_flt := (pred radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
pred_flt
| |
FLT_format_double : forall u, format u -> format (2*u). Proof with auto with typeclass_instances. intros u Fu. apply generic_format_FLT. apply FLT_format_generic in Fu... destruct Fu as [uf H1 H2 H3]. exists (Float radix2 (Fnum uf) (Fexp uf+1)). rewrite H1; unfold F2R; simpl. rewrite bpow_plus, bpow_1. simpl;ring. easy. apply Z.le_trans with (1:=H3). apply Zle_succ. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
FLT_format_double
| |
FLT_format_half : forall u, format u -> bpow (prec+emin) <= Rabs u -> format (u/2). Proof with auto with typeclass_instances. intros u Fu H. apply FLT_format_generic in Fu... destruct Fu as [[n e] H1 H2 H3]. simpl in H1, H2, H3. apply generic_format_FLT. exists (Float radix2 n (e-1)). rewrite H1; unfold F2R; simpl. unfold Zminus; rewrite bpow_plus. change (bpow (-(1))) with (/2). unfold Rdiv; ring. easy. cut (prec + emin < prec +e)%Z. simpl ; lia. apply lt_bpow with radix2. apply Rle_lt_trans with (1:=H). rewrite H1; unfold F2R; simpl. rewrite Rabs_mult; rewrite (Rabs_right (bpow e)). 2: apply Rle_ge, bpow_ge_0. rewrite bpow_plus. apply Rmult_lt_compat_r. apply bpow_gt_0. rewrite <- abs_IZR. rewrite <- IZR_Zpower. now apply IZR_lt. now apply Zlt_le_weak. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
FLT_format_half
| |
FLT_round_half : forall z, bpow (prec+emin) <= Rabs z -> round_flt (z/2)= round_flt z /2. Proof with auto with typeclass_instances. intros z Hz. apply Rmult_eq_reg_l with 2. 2: apply sym_not_eq; auto with real. apply trans_eq with (round_flt z). 2: field. assert (z <> 0)%R. intros K; contradict Hz. rewrite K, Rabs_R0; apply Rlt_not_le. apply bpow_gt_0. assert (cexp (z/2) = cexp z -1)%Z. assert (prec+emin < mag radix2 z)%Z. apply lt_bpow with radix2. destruct mag as (e,He); simpl. apply Rle_lt_trans with (1:=Hz). now apply He. unfold cexp, FLT_exp. replace ((mag radix2 (z/2))-prec)%Z with ((mag radix2 z -1) -prec)%Z. rewrite Z.max_l; lia. apply Zplus_eq_compat; try reflexivity. apply sym_eq, mag_unique. destruct (mag radix2 z) as (e,He); simpl. unfold Rdiv; rewrite Rabs_mult. rewrite (Rabs_right (/2)). split. apply Rmult_le_reg_l with (bpow 1). apply bpow_gt_0. rewrite <- bpow_plus. replace (1+(e-1-1))%Z with (e-1)%Z by ring. apply Rle_trans with (Rabs z). now apply He. change (bpow 1) with 2%R. right; simpl; field. apply Rmult_lt_reg_l with (bpow 1). apply bpow_gt_0. rewrite <- bpow_plus. replace (1+(e-1))%Z with e by ring. apply Rle_lt_trans with (Rabs z). change (bpow 1) with 2. right; field. now apply He. lra. unfold round, scaled_mantissa, F2R. rewrite H0; simpl. rewrite Rmult_comm, Rmult_assoc. apply f_equal2. apply f_equal, f_equal. replace (-(cexp z -1))%Z with (-cexp z +1)%Z by ring. rewrite bpow_plus. change (bpow 1) with 2. field. unfold Zminus; rewrite bpow_plus. change (bpow (-(1))) with (/2). field. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
FLT_round_half
| |
FLT_ulp_le_id : forall u, bpow emin <= u -> ulp_flt u <= u. Proof with auto with typeclass_instances. intros u H. rewrite ulp_neq_0. 2: apply Rgt_not_eq, Rlt_le_trans with (2:=H), bpow_gt_0. case (Rle_or_lt (bpow (emin+prec-1)) u); intros Hu. unfold ulp; rewrite cexp_FLT_FLX. unfold cexp, FLX_exp. destruct (mag radix2 u) as (e,He); simpl. apply Rle_trans with (bpow (e-1)). apply bpow_le. unfold Prec_gt_0 in prec_gt_0_; lia. rewrite <- (Rabs_right u). apply He. apply Rgt_not_eq, Rlt_gt. apply Rlt_le_trans with (2:=Hu). apply bpow_gt_0. apply Rle_ge, Rle_trans with (2:=Hu), bpow_ge_0. rewrite Rabs_right. assumption. apply Rle_ge, Rle_trans with (2:=Hu), bpow_ge_0. unfold ulp; rewrite cexp_FLT_FIX. apply H. apply Rgt_not_eq, Rlt_gt. apply Rlt_le_trans with (2:=H). apply bpow_gt_0. rewrite Rabs_right. apply Rlt_le_trans with (1:=Hu). apply bpow_le; lia. apply Rle_ge, Rle_trans with (2:=H), bpow_ge_0. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
FLT_ulp_le_id
| |
FLT_ulp_double : forall u, ulp_flt (2*u) <= 2*ulp_flt(u). Proof. intros u. case (Req_bool_spec u 0); intros Hu'. rewrite Hu', Rmult_0_r. rewrite <- (Rmult_1_l (ulp_flt 0)) at 1. apply Rmult_le_compat_r. apply ulp_ge_0. left; apply Rlt_plus_1. rewrite 2!ulp_neq_0; trivial. 2: lra. change 2 with (bpow 1) at 2. rewrite <- bpow_plus. apply bpow_le. case (Rle_or_lt (bpow (emin+prec-1)) (Rabs u)); intros Hu. (* *) rewrite cexp_FLT_FLX. rewrite cexp_FLT_FLX; trivial. unfold cexp, FLX_exp. change 2 with (bpow 1). rewrite Rmult_comm, mag_mult_bpow. lia. intros H; contradict Hu. apply Rlt_not_le; rewrite H, Rabs_R0. apply bpow_gt_0. apply Rle_trans with (1:=Hu). rewrite Rabs_mult. pattern (Rabs u) at 1; rewrite <- (Rmult_1_l (Rabs u)). apply Rmult_le_compat_r. apply Rabs_pos. rewrite <- (abs_IZR 2). now apply IZR_le. (* *) rewrite cexp_FLT_FIX. rewrite cexp_FLT_FIX; trivial. unfold FIX_exp, cexp; lia. apply Rlt_le_trans with (1:=Hu). apply bpow_le; lia. lra. rewrite Rabs_mult. rewrite Rabs_pos_eq. 2: now apply IZR_le. apply Rlt_le_trans with (2*bpow (emin + prec - 1)). apply Rmult_lt_compat_l with (1 := Rlt_0_2). assumption. change 2 with (bpow 1). rewrite <- bpow_plus. apply bpow_le; lia. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
FLT_ulp_double
| |
round_plus_small_id_aux : forall f h, format f -> (bpow (prec+emin) <= f) -> 0 < f -> Rabs h <= /4* ulp_flt f -> round_flt (f+h) = f. Proof with auto with typeclass_instances. intros f h Ff H1 H2 Hh. case (Rle_or_lt 0 h); intros H3;[destruct H3|idtac]. (* 0 < h *) rewrite Rabs_right in Hh. 2: now apply Rle_ge, Rlt_le. apply round_N_eq_DN_pt with (f+ ulp_flt f)... pattern f at 2; rewrite <- (round_DN_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=h); try assumption. apply round_DN_pt... now left. split. now left. apply Rle_lt_trans with (1:=Hh). rewrite <- (Rmult_1_l (ulp_flt f)) at 2. apply Rmult_lt_compat_r. rewrite ulp_neq_0; try now apply Rgt_not_eq. apply bpow_gt_0. lra. rewrite <- (round_UP_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=h); try assumption. apply round_UP_pt... now left. split; trivial. apply Rle_trans with (1:=Hh). rewrite <- (Rmult_1_l (ulp_flt f)) at 2. apply Rmult_le_compat_r. apply ulp_ge_0. lra. apply Rplus_lt_reg_l with (-f); ring_simplify. apply Rlt_le_trans with (/2*ulp_flt f). 2: right; field. apply Rle_lt_trans with (1:=Hh). apply Rmult_lt_compat_r. rewrite ulp_neq_0; try now apply Rgt_not_eq. apply bpow_gt_0. lra. (* h = 0 *) rewrite <- H, Rplus_0_r. apply round_generic... (* h < 0 *) (* - assertions *) rewrite Rabs_left in Hh; try assumption. assert (0 < pred_flt f). apply Rlt_le_trans with (bpow emin). apply bpow_gt_0. apply pred_ge_gt... apply generic_format_FLT_bpow... apply Z.le_refl. apply Rlt_le_trans with (2:=H1). apply bpow_lt. unfold Prec_gt_0 in prec_gt_0_; lia. assert (M:(prec + emin +1 <= mag radix2 f)%Z). apply mag_ge_bpow. replace (prec+emin+1-1)%Z with (prec+emin)%Z by ring. rewrite Rabs_right; try assumption. apply Rle_ge; now left. assert (T1:(ulp_flt (pred_flt f) = ulp_flt f) \/ ( ulp_flt (pred_flt f) = /2* ulp_flt f /\ f = bpow (mag radix2 f -1))). generalize H; rewrite pred_eq_pos; [idtac|now left]. unfold pred_pos; case Req_bool_spec; intros K HH. (**) right; split; try assumption. rewrite ulp_neq_0;[idtac|now apply Rgt_not_eq]. apply trans_eq with (bpow (mag radix2 f- prec -1)). apply f_equal. unfold cexp. apply trans_eq with (FLT_exp emin prec (mag radix2 f -1)%Z). apply f_equal. unfold FLT_exp. rewrite Z.max_l by lia. apply mag_unique. rewrite Rabs_right. split. apply Rplus_le_reg_l with (bpow (mag radix2 f -1-prec)). ring_simplify. apply Rle_trans with (bpow (mag radix2 f - 1 - 1) + bpow (mag radix2 f - 1 - 1)). apply Rplus_le_compat_r. apply bpow_le. unfold Prec_gt_0 in prec_gt_0_; lia. apply Rle_trans with (bpow 1*bpow (mag radix2 f - 1 - 1)). change (bpow 1) with 2. right; ring. rewrite <- bpow_plus. apply Rle_trans with (bpow (mag radix2 f -1)). apply bpow_le; lia. rewrite <- K; now right. rewrite <- K. apply Rplus_lt_reg_l with (-f+bpow (mag radix2 f-1-prec)); ring_simplify. apply bpow_gt_0. apply Rle_ge. rewrite K at 1. apply Rplus_le_reg_l with (bpow (mag radix2 f - 1 - prec)). ring_simplify. apply bpow_le. unfold Prec_gt_0 in prec_gt_0_; lia. unfold FLT_exp. rewrite Z.max_l by lia. ring. replace (/2) with (bpow (-1)) by reflexivity. rewrite ulp_neq_0; try now apply Rgt_not_eq. rewrite <- bpow_plus. apply f_equal. unfold cexp, FLT_exp. rewrite Z.max_l by lia. ring. (**) left. assert (bpow (mag radix2 f -1) < f). destruct (mag radix2 f); simpl in *. destruct a. now apply Rgt_not_eq. rewrite Rabs_right in H0. destruct H0; try assumption. contradict H0. now apply sym_not_eq. apply Rle_ge; now left. assert (bpow (mag radix2 f -1) + ulp_flt (bpow (mag radix2 f-1)) <= f). rewrite <- succ_eq_pos;[idtac|apply bpow_ge_0]. apply succ_le_lt... apply generic_format_FLT_bpow... unfold Prec_gt_0 in prec_gt_0_;lia. rewrite ulp_bpow in H4. unfold FLT_exp in H4. rewrite Z.max_l in H4 by lia. replace (mag radix2 f - 1 + 1 - prec)%Z with (mag radix2 f - prec)%Z in H4 by ring. rewrite ulp_neq_0; try now apply Rgt_not_eq. rewrite ulp_neq_0 at 2; try now apply Rgt_not_eq. unfold cexp. apply f_equal; apply f_equal. replace (ulp_flt f) with (bpow (mag radix2 f -prec)). apply mag_unique. rewrite Rabs_right. split. apply Rplus_le_reg_l with (bpow (mag radix2 f -prec)). ring_simplify. apply Rle_trans with (2:=H4); right; ring. apply Rlt_trans with f. apply Rplus_lt_reg_l with (-f+bpow (mag radix2 f - prec)). ring_simplify. apply bpow_gt_0. apply Rle_lt_trans with (1:=RRle_abs _). apply bpow_mag_gt. apply Rle_ge. apply Rplus_le_reg_l with (bpow (mag radix2 f - prec)). ring_simplify. left; apply Rle_lt_trans with (2:=H0). apply bpow_le. unfold Prec_gt_0 in prec_gt_0_;lia. rewrite ulp_neq_0; try now apply Rgt_not_eq. unfold cexp, FLT_exp. rewrite Z.max_l. reflexivity. lia. assert (T: (ulp_flt (pred_flt f) = ulp_flt f \/ (ulp_flt (pred_flt f) = / 2 * ulp_flt f /\ - h < / 4 * ulp_flt f)) \/ (ulp_flt (pred_flt f) = / 2 * ulp_flt f /\ f = bpow (mag radix2 f - 1) /\ - h = / 4 * ulp_flt f) ). destruct T1. left; now left. case Hh; intros P. left; right. split; try apply H0; assumption. right. split; try split; try apply H0; assumption. clear T1. (* - end of assertions *) destruct T. (* normal case *) apply round_N_eq_UP_pt with (pred_flt f)... rewrite <- (round_DN_minus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=-h); try assumption. replace (f--h) with (f+h) by ring. apply round_DN_pt... split. auto with real. apply Rle_trans with (1:=Hh). apply Rle_trans with (/2*ulp_flt f). apply Rmult_le_compat_r. apply ulp_ge_0. lra. case H0. intros Y; rewrite Y. rewrite <- (Rmult_1_l (ulp_flt f)) at 2. apply Rmult_le_compat_r. apply ulp_ge_0. lra. intros Y; rewrite (proj1 Y); now right. replace (f+h) with (pred_flt f + (f-pred_flt f+h)) by ring. pattern f at 4; rewrite <- (round_UP_pred_plus_eps_pos radix2 (FLT_exp emin prec) f) with (eps:=(f - pred_flt f + h)); try assumption. apply round_UP_pt... replace (f-pred_flt f) with (ulp_flt (pred_flt f)). split. apply Rplus_lt_reg_l with (-h); ring_simplify. case H0; [intros Y|intros (Y1,Y2)]. apply Rle_lt_trans with (1:=Hh). rewrite Y. rewrite <- (Rmult_1_l (ulp_flt f)) at 2. apply Rmult_lt_compat_r. rewrite ulp_neq_0;[apply bpow_gt_0|now apply Rgt_not_eq]. lra. apply Rlt_le_trans with (1:=Y2). rewrite Y1. apply Rmult_le_compat_r. apply ulp_ge_0. lra. apply Rplus_le_reg_l with (-ulp_flt (pred_flt f)); ring_simplify. now left. rewrite pred_eq_pos; try now left. pattern f at 2; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f)... ring. apply Rplus_lt_reg_l with (-f); ring_simplify. apply Rle_lt_trans with (-(/2 * ulp_flt (pred_flt f))). right. apply trans_eq with ((pred_flt f - f) / 2). field. rewrite pred_eq_pos; try now left. pattern f at 2; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f)... field. replace h with (--h) by ring. apply Ropp_lt_contravar. case H0;[intros Y|intros (Y1,Y2)]. apply Rle_lt_trans with (1:=Hh). rewrite Y. apply Rmult_lt_compat_r. rewrite ulp_neq_0; try apply bpow_gt_0; now apply Rgt_not_eq. lra. apply Rlt_le_trans with (1:=Y2). rewrite Y1. right; field. (* complex case: even choosing *) elim H0; intros T1 (T2,T3); clear H0. assert (pred_flt f = bpow (mag radix2 f - 1) - bpow (mag radix2 f - 1 -prec)). rewrite pred_eq_pos; try now left. unfold pred_pos; case Req_bool_spec. intros _; rewrite <- T2. apply f_equal, f_equal. unfold FLT_exp. rewrite Z.max_l. ring. lia. intros Y; now contradict T2. assert (round radix2 (FLT_exp emin prec) Zfloor (f+h) = pred_flt f). replace (f+h) with (f-(-h)) by ring. apply round_DN_minus_eps_pos... split. auto with real. rewrite T3, T1. apply Rmult_le_compat_r. apply ulp_ge_0. lra. assert (round radix2 (FLT_exp emin prec) Zceil (f+h) = f). replace (f+h) with (pred_flt f + /2*ulp_flt (pred_flt f)). apply round_UP_pred_plus_eps_pos... split. apply Rmult_lt_0_compat. lra. rewrite ulp_neq_0; try now apply Rgt_not_eq. apply bpow_gt_0. rewrite <- (Rmult_1_l (ulp_flt (pred_flt f))) at 2. apply Rmult_le_compat_r. apply ulp_ge_0. lra. rewrite T1, H0, <- T2. replace h with (--h) by ring; rewrite T3. replace (bpow (mag radix2 f - 1 - prec)) with (/2*ulp_flt f). field. replace (/2) with (bpow (-1)) by reflexivity. rewrite T2 at 1. rewrite ulp_bpow, <- bpow_plus. apply f_equal; unfold FLT_exp. rewrite Z.max_l. ring. lia. assert ((Z.even (Zfloor (scaled_mantissa radix2 (FLT_exp emin prec) (f + h)))) = false). replace (Zfloor (scaled_mantissa radix2 (FLT_exp emin prec) (f + h))) with (Zpower radix2 prec -1)%Z. unfold Zminus; rewrite Z.even_add. rewrite Z.even_opp. rewrite Z.even_pow. reflexivity. unfold Prec_gt_0 in prec_gt_0_; lia. apply eq_IZR. rewrite <- scaled_mantissa_DN... 2: rewrite H4; assumption. rewrite H4. unfold scaled_mantissa. rewrite bpow_opp. rewrite <- ulp_neq_0; try now apply Rgt_not_eq. rewrite T1. rewrite Rinv_mult_distr. 2: apply Rgt_not_eq; lra. 2: apply Rgt_not_eq; rewrite ulp_neq_0; try apply bpow_gt_0. 2: now apply Rgt_not_eq. rewrite Rinv_involutive. 2: apply Rgt_not_eq; lra. rewrite T2 at 2. rewrite ulp_bpow. rewrite <- bpow_opp. unfold FLT_exp at 2. rewrite Z.max_l by lia. replace 2 with (bpow 1) by reflexivity. rewrite <- bpow_plus. rewrite H0. rewrite Rmult_minus_distr_r, <- 2!bpow_plus. rewrite minus_IZR. apply f_equal2. rewrite IZR_Zpower. apply f_equal. ring. unfold Prec_gt_0 in prec_gt_0_; lia. apply trans_eq with (bpow 0). reflexivity. apply f_equal. ring. rewrite round_N_middle. rewrite H5. rewrite H6. reflexivity. rewrite H5, H4. pattern f at 1; rewrite <- (pred_pos_plus_ulp radix2 (FLT_exp emin prec) f); try assumption. ring_simplify. rewrite <- pred_eq_pos;[idtac|now left]. rewrite T1. replace h with (--h) by ring. rewrite T3. field. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
round_plus_small_id_aux
| |
round_plus_small_id : forall f h, format f -> (bpow (prec+emin) <= Rabs f) -> Rabs h <= /4* ulp_flt f -> round_flt (f+h) = f. intros f h Ff H1 H2. case (Rle_or_lt 0 f); intros V. case V; clear V; intros V. apply round_plus_small_id_aux; try assumption. rewrite Rabs_right in H1; try assumption. apply Rle_ge; now left. contradict H1. rewrite <- V, Rabs_R0. apply Rlt_not_le, bpow_gt_0. rewrite <- (Ropp_involutive f), <- (Ropp_involutive h). replace (--f + --h) with (-(-f+-h)) by ring. rewrite round_NE_opp. apply f_equal. apply round_plus_small_id_aux. now apply generic_format_opp. rewrite Rabs_left in H1; try assumption. auto with real. now rewrite Rabs_Ropp, ulp_opp. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
round_plus_small_id
| |
avg_naive (x y : R) :=round_flt(round_flt(x+y)/2). Variables x y:R. Hypothesis Fx: format x. Hypothesis Fy: format y.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive
| |
a :=(x+y)/2.
|
Let
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
a
| |
av :=avg_naive x y.
|
Let
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
av
| |
avg_naive_correct : av = round_flt a. Proof with auto with typeclass_instances. case (Rle_or_lt (bpow (prec + emin)) (Rabs (x+y))). (* normal case: division by 2 is exact *) intros H. unfold av,a,avg_naive. rewrite round_generic... now apply sym_eq, FLT_round_half. apply FLT_format_half. apply generic_format_round... apply abs_round_ge_generic... apply generic_format_FLT_bpow... unfold Prec_gt_0 in prec_gt_0_; lia. (* subnormal case: addition is exact, but division by 2 is not *) intros H. unfold av, avg_naive. replace (round_flt (x + y)) with (x+y). reflexivity. apply sym_eq, round_generic... apply FLT_format_plus_small... left; assumption. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_correct
| |
avg_naive_symmetry : forall u v, avg_naive u v = avg_naive v u. Proof. intros u v; unfold avg_naive. rewrite Rplus_comm; reflexivity. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_symmetry
| |
avg_naive_symmetry_Ropp : forall u v, avg_naive (-u) (-v) = - avg_naive u v. Proof. intros u v; unfold avg_naive. replace (-u+-v) with (-(u+v)) by ring. rewrite round_NE_opp. replace (- round_flt (u + v) / 2) with (- (round_flt (u + v) / 2)) by (unfold Rdiv; ring). now rewrite round_NE_opp. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_symmetry_Ropp
| |
avg_naive_same_sign_1 : 0 <= a -> 0 <= av. Proof with auto with typeclass_instances. intros H. rewrite avg_naive_correct. apply round_ge_generic... apply generic_format_0. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_same_sign_1
| |
avg_naive_same_sign_2 : a <= 0-> av <= 0. Proof with auto with typeclass_instances. intros H. rewrite avg_naive_correct. apply round_le_generic... apply generic_format_0. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_same_sign_2
| |
avg_naive_between : Rmin x y <= av <= Rmax x y. Proof with auto with typeclass_instances. rewrite avg_naive_correct. split. apply round_ge_generic... now apply P_Rmin. apply Rmult_le_reg_l with (1 := Rlt_0_2). replace (2 * Rmin x y) with (Rmin x y + Rmin x y) by ring. replace (2 * a) with (x + y) by (unfold a; field). apply Rplus_le_compat. apply Rmin_l. apply Rmin_r. (* *) apply round_le_generic... now apply Rmax_case. apply Rmult_le_reg_l with (1 := Rlt_0_2). replace (2 * a) with (x + y) by (unfold a; field). replace (2 * Rmax x y) with (Rmax x y + Rmax x y) by ring. apply Rplus_le_compat. apply Rmax_l. apply Rmax_r. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_between
| |
avg_naive_zero : a = 0 -> av = 0. Proof with auto with typeclass_instances. intros H1; rewrite avg_naive_correct, H1. rewrite round_0... Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_zero
| |
avg_naive_no_underflow : (bpow emin) <= Rabs a -> av <> 0. Proof with auto with typeclass_instances. intros H. (* *) cut (bpow emin <= Rabs av). intros H1 H2. rewrite H2 in H1; rewrite Rabs_R0 in H1. contradict H1. apply Rlt_not_le. apply bpow_gt_0. (* *) rewrite avg_naive_correct. apply abs_round_ge_generic... apply generic_format_FLT_bpow... lia. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_no_underflow
| |
avg_naive_correct_weak1 : Rabs (av -a) <= /2*ulp_flt a. Proof with auto with typeclass_instances. rewrite avg_naive_correct. apply error_le_half_ulp... Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_correct_weak1
| |
avg_naive_correct_weak2 : Rabs (av -a) <= 3/2*ulp_flt a. Proof with auto with typeclass_instances. apply Rle_trans with (1:=avg_naive_correct_weak1). apply Rmult_le_compat_r. unfold ulp; apply ulp_ge_0. lra. Qed. (* Hypothesis diff_sign: (0 <= x /\ y <= 0) \/ (x <= 0 /\ 0 <= y). is useless for properties: only useful for preventing overflow *)
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_naive_correct_weak2
| |
avg_sum_half (x y : R) :=round_flt(round_flt(x/2) + round_flt(y/2)).
|
Definition
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_sum_half
| |
av2 :=avg_sum_half x y.
|
Let
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
av2
| |
avg_sum_half_correct : bpow (emin +prec+prec+1) <= Rabs x -> av2 = round_flt a. Proof with auto with typeclass_instances. intros Hx. assert (G:(0 < prec)%Z). unfold Prec_gt_0 in prec_gt_0_; assumption. unfold av2, avg_sum_half. replace (round_flt (x/2)) with (x/2). 2: apply sym_eq, round_generic... 2: apply FLT_format_half; try assumption. 2: apply Rle_trans with (2:=Hx). 2: apply bpow_le; lia. case (Rle_or_lt (bpow (prec + emin)) (Rabs y)). (* y is big enough so that y/2 is correct *) intros Hy. replace (round_flt (y/2)) with (y/2). apply f_equal; unfold a; field. apply sym_eq, round_generic... apply FLT_format_half; assumption. (* y is a subnormal, then it is too small to impact the result *) intros Hy. assert (format (x/2)). apply FLT_format_half. assumption. apply Rle_trans with (2:=Hx). apply bpow_le. lia. assert (bpow (prec+emin) <= Rabs (x/2)). apply Rmult_le_reg_l with (bpow 1). apply bpow_gt_0. rewrite <- bpow_plus. apply Rle_trans with (Rabs x). apply Rle_trans with (2:=Hx). apply bpow_le. lia. rewrite <- (Rabs_right (bpow 1)). rewrite <- Rabs_mult. right; apply f_equal. change (bpow 1) with 2. field. apply Rle_ge, bpow_ge_0. assert (K1: Rabs (y / 2) <= bpow (prec+emin-1)). unfold Rdiv; rewrite Rabs_mult. unfold Zminus; rewrite bpow_plus. simpl; rewrite (Rabs_pos_eq (/2)). apply (Rmult_le_compat_r (/2)). lra. now left. lra. assert (K2:bpow (prec+emin-1) <= / 4 * ulp_flt (x / 2)). assert (Z: x/2 <> 0). intros K; contradict H0. rewrite K, Rabs_R0. apply Rlt_not_le, bpow_gt_0. rewrite ulp_neq_0; trivial. replace (/4) with (bpow (-2)) by reflexivity. rewrite <- bpow_plus. apply bpow_le. unfold cexp, FLT_exp. assert (emin+prec+prec+1 -1 < mag radix2 (x/2))%Z. destruct (mag radix2 (x/2)) as (e,He). simpl. apply lt_bpow with radix2. apply Rle_lt_trans with (Rabs (x/2)). unfold Rdiv; rewrite Rabs_mult. unfold Zminus; rewrite bpow_plus. simpl; rewrite (Rabs_right (/2)). apply Rmult_le_compat_r. lra. exact Hx. lra. apply He; trivial. rewrite Z.max_l. lia. lia. (* . *) apply trans_eq with (x/2). apply round_plus_small_id; try assumption. apply Rle_trans with (2:=K2). apply abs_round_le_generic... apply generic_format_FLT_bpow... lia. unfold a; apply sym_eq. replace ((x+y)/2) with (x/2+y/2) by field. apply round_plus_small_id; try assumption. now apply Rle_trans with (2:=K2). Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_sum_half_correct
| |
bpow e := (bpow radix2 e). Variable emin prec : Z. Context { prec_gt_0_ : Prec_gt_0 prec }.
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
bpow
| |
format := (generic_format radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
format
| |
round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
round_flt
| |
ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
ulp_flt
| |
cexp := (cexp radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
cexp
| |
avg_half_sub (x y : R) :=round_flt(x+round_flt(round_flt(y-x)/2)). Variables x y:R. Hypothesis Fx: format x. Hypothesis Fy: format y.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub
| |
a :=(x+y)/2.
|
Let
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
a
| |
av :=avg_half_sub x y.
|
Let
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
av
| |
avg_half_sub_symmetry_Ropp : forall u v, avg_half_sub (-u) (-v) = - avg_half_sub u v. intros u v; unfold avg_half_sub. replace (-v--u) with (-(v-u)) by ring. rewrite round_NE_opp. replace (- round_flt (v-u) / 2) with (- (round_flt (v-u) / 2)) by (unfold Rdiv; ring). rewrite round_NE_opp. replace (- u + - round_flt (round_flt (v - u) / 2)) with (-(u+round_flt (round_flt (v - u) / 2))) by ring. apply round_NE_opp. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_symmetry_Ropp
| |
avg_half_sub_same_sign_1 : 0 <= a -> 0 <= av. Proof with auto with typeclass_instances. intros H. apply round_ge_generic... apply generic_format_0. apply Rplus_le_reg_l with (-x). ring_simplify. apply round_ge_generic... now apply generic_format_opp. apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rle_trans with (-(2*x)). right; ring. apply Rle_trans with (round_flt (y - x)). 2: right; field. apply round_ge_generic... apply generic_format_opp. now apply FLT_format_double... apply Rplus_le_reg_l with (2*x). apply Rmult_le_reg_r with (/2). lra. apply Rle_trans with 0;[right; ring|idtac]. apply Rle_trans with (1:=H). right; unfold a, Rdiv; ring. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_same_sign_1
| |
avg_half_sub_same_sign_2 : a <= 0-> av <= 0. Proof with auto with typeclass_instances. intros H. apply round_le_generic... apply generic_format_0. apply Rplus_le_reg_l with (-x). ring_simplify. apply round_le_generic... now apply generic_format_opp. apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rle_trans with (-(2*x)). 2: right; ring. apply Rle_trans with (round_flt (y - x)). right; field. apply round_le_generic... apply generic_format_opp. now apply FLT_format_double... apply Rplus_le_reg_l with (2*x). apply Rmult_le_reg_r with (/2). lra. apply Rle_trans with 0;[idtac|right; ring]. apply Rle_trans with (2:=H). right; unfold a, Rdiv; ring. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_same_sign_2
| |
avg_half_sub_between_aux : forall u v, format u -> format v -> u <= v -> u <= avg_half_sub u v <= v. Proof with auto with typeclass_instances. clear Fx Fy a av x y. intros x y Fx Fy M. split. (* . *) apply round_ge_generic... apply Rplus_le_reg_l with (-x). ring_simplify. apply round_ge_generic... apply generic_format_0. unfold Rdiv; apply Rmult_le_pos. apply round_ge_generic... apply generic_format_0. apply Rplus_le_reg_l with x. now ring_simplify. lra. (* . *) apply round_le_generic... assert (H:(0 <= round radix2 (FLT_exp emin prec) Zfloor (y-x))). apply round_ge_generic... apply generic_format_0. apply Rplus_le_reg_l with x. now ring_simplify. destruct H as [H|H]. (* .. *) pattern y at 2; replace y with (x + (y-x)) by ring. apply Rplus_le_compat_l. case (generic_format_EM radix2 (FLT_exp emin prec) (y-x)); intros K. apply round_le_generic... rewrite round_generic... apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rplus_le_reg_l with (2*x-y). apply Rle_trans with x. right; field. apply Rle_trans with (1:=M). right; field. apply Rle_trans with (round radix2 (FLT_exp emin prec) Zfloor (y - x)). apply round_le_generic... apply generic_format_round... apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rle_trans with (round_flt (y - x)). right; field. case (round_DN_or_UP radix2 (FLT_exp emin prec) ZnearestE (y-x)); intros H1; rewrite H1. apply Rplus_le_reg_l with (-round radix2 (FLT_exp emin prec) Zfloor (y - x)). ring_simplify. now left. rewrite round_UP_DN_ulp. apply Rplus_le_reg_l with (-round radix2 (FLT_exp emin prec) Zfloor (y - x)); ring_simplify. apply round_DN_pt... apply generic_format_ulp... case (Rle_or_lt (bpow (emin + prec - 1)) (y-x)); intros P. apply FLT_ulp_le_id... apply Rle_trans with (2:=P). apply bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. contradict K. apply FLT_format_plus_small... now apply generic_format_opp. rewrite Rabs_right. apply Rle_trans with (bpow (emin+prec-1)). left; exact P. apply bpow_le; lia. apply Rle_ge; apply Rplus_le_reg_l with x; now ring_simplify. assumption. apply round_DN_pt... (* .. *) case M; intros H1. 2: rewrite H1; replace (y-y) with 0 by ring. 2: rewrite round_0... 2: unfold Rdiv; rewrite Rmult_0_l. 2: rewrite round_0... 2: right; ring. apply Rle_trans with (x+0). 2: rewrite Rplus_0_r; assumption. apply Rplus_le_compat_l. replace 0 with (round_flt (bpow emin/2)). apply round_le... unfold Rdiv; apply Rmult_le_compat_r. lra. apply round_le_generic... apply generic_format_FLT_bpow... lia. case (Rle_or_lt (y-x) (bpow emin)); trivial. intros H2. contradict H. apply Rlt_not_eq. apply Rlt_le_trans with (bpow emin). apply bpow_gt_0. apply round_DN_pt... apply generic_format_FLT_bpow... lia. now left. replace (bpow emin /2) with (bpow (emin-1)). unfold round, scaled_mantissa, cexp, FLT_exp. rewrite mag_bpow. replace (emin - 1 + 1 - prec)%Z with (emin-prec)%Z by ring. rewrite Z.max_r. 2: unfold Prec_gt_0 in prec_gt_0_; lia. rewrite <- bpow_plus. replace (emin-1+-emin)%Z with (-1)%Z by ring. replace (ZnearestE (bpow (-1))) with 0%Z. unfold F2R; simpl; ring. change (bpow (-1)) with (/2). simpl; unfold Znearest. replace (Zfloor (/2)) with 0%Z. rewrite Rcompare_Eq. reflexivity. simpl; ring. apply sym_eq, Zfloor_imp. simpl ; lra. unfold Zminus; rewrite bpow_plus. reflexivity. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_between_aux
| |
avg_half_sub_between : Rmin x y <= av <= Rmax x y. Proof with auto with typeclass_instances. case (Rle_or_lt x y); intros M. (* x <= y *) rewrite Rmin_left; try exact M. rewrite Rmax_right; try exact M. now apply avg_half_sub_between_aux. (* y < x *) rewrite Rmin_right; try now left. rewrite Rmax_left; try now left. unfold av; rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y). rewrite avg_half_sub_symmetry_Ropp. split; apply Ropp_le_contravar. apply avg_half_sub_between_aux. now apply generic_format_opp. now apply generic_format_opp. apply Ropp_le_contravar; now left. apply avg_half_sub_between_aux. now apply generic_format_opp. now apply generic_format_opp. apply Ropp_le_contravar; now left. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_between
| |
avg_half_sub_zero : a = 0 -> av = 0. Proof with auto with typeclass_instances. intros H. assert (y=-x). apply Rplus_eq_reg_l with x. apply Rmult_eq_reg_r with (/2). apply trans_eq with a. reflexivity. rewrite H; ring. lra. unfold av, avg_half_sub. rewrite H0. replace (-x-x) with (-(2*x)) by ring. rewrite round_generic with (x:=(-(2*x)))... replace (-(2*x)/2) with (-x) by field. rewrite round_generic with (x:=-x)... replace (x+-x) with 0 by ring. apply round_0... now apply generic_format_opp. apply generic_format_opp. now apply FLT_format_double. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_zero
| |
avg_half_sub_no_underflow_aux_aux : forall z:Z, (0 < z)%Z -> (ZnearestE (IZR z / 2) < z)%Z. Proof. intros z H1. case (Zle_lt_or_eq 1 z); [lia|intros H2|intros H2]. apply lt_IZR. apply Rplus_lt_reg_r with (- ((IZR z)/2)). apply Rle_lt_trans with (-(((IZR z) /2) - IZR (ZnearestE (IZR z / 2)))). right; ring. apply Rle_lt_trans with (1:= RRle_abs _). rewrite Rabs_Ropp. apply Rle_lt_trans with (1:=Znearest_half (fun x => negb (Z.even x)) _). apply Rle_lt_trans with (1*/2);[right; ring|idtac]. apply Rlt_le_trans with ((IZR z)*/2);[idtac|right; field]. apply Rmult_lt_compat_r. lra. now apply IZR_lt. rewrite <- H2. unfold Znearest; simpl. replace (Zfloor (1 / 2)) with 0%Z. rewrite Rcompare_Eq. simpl; lia. simpl; field. unfold Rdiv; rewrite Rmult_1_l. apply sym_eq, Zfloor_imp. simpl; lra. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_no_underflow_aux_aux
| |
avg_half_sub_no_underflow_aux1 : forall f, format f -> 0 < f -> f <= round_flt (f/2) -> False. Proof with auto with typeclass_instances. intros f Ff Hf1 Hf2. apply FLT_format_generic in Ff... destruct Ff as [g H1 H2 H3]. case (Zle_lt_or_eq emin (Fexp g)); try exact H3; intros H4. contradict Hf2. apply Rlt_not_le. rewrite round_generic... apply Rplus_lt_reg_l with (-(f/2)). apply Rle_lt_trans with 0;[right; ring|idtac]. apply Rlt_le_trans with (f*/2);[idtac|right;field]. apply Rmult_lt_0_compat; try assumption. lra. apply generic_format_FLT. exists (Float radix2 (Fnum g) (Fexp g-1)). rewrite H1; unfold F2R; simpl. unfold Zminus; rewrite bpow_plus. apply Rmult_assoc. easy. simpl; lia. contradict Hf2; apply Rlt_not_le. unfold round, scaled_mantissa. replace (cexp (f/2)) with emin. rewrite H1; unfold F2R; simpl. rewrite <- H4. apply Rmult_lt_compat_r. apply bpow_gt_0. apply IZR_lt. replace (IZR (Fnum g) * bpow emin / 2 * bpow (- emin)) with (IZR (Fnum g) /2). apply avg_half_sub_no_underflow_aux_aux. apply lt_IZR. apply Rmult_lt_reg_r with (bpow (Fexp g)). apply bpow_gt_0. rewrite Rmult_0_l. apply Rlt_le_trans with (1:=Hf1). right; rewrite H1; reflexivity. unfold Rdiv; apply trans_eq with (IZR (Fnum g) * / 2 * (bpow (- emin)*bpow emin)). rewrite <- bpow_plus. ring_simplify (-emin+emin)%Z. simpl; ring. ring. apply sym_eq, cexp_FLT_FIX. apply Rgt_not_eq, Rlt_gt. lra. rewrite H1; unfold F2R, Rdiv; simpl. replace (/2) with (bpow (-1)) by reflexivity. rewrite Rmult_assoc, <- bpow_plus. rewrite Rabs_mult. rewrite (Rabs_right (bpow _)). 2: apply Rle_ge, bpow_ge_0. rewrite (Zplus_comm emin _). rewrite (bpow_plus _ prec _). apply Rmult_lt_compat. apply Rabs_pos. apply bpow_ge_0. rewrite <- IZR_Zpower, <- abs_IZR. now apply IZR_lt. unfold Prec_gt_0 in prec_gt_0_; lia. rewrite <- H4; apply bpow_lt. lia. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_no_underflow_aux1
| |
avg_half_sub_no_underflow_aux2 : forall u v, format u -> format v -> (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) -> u <= v -> (bpow emin) <= Rabs ((u+v)/2) -> avg_half_sub u v <> 0. Proof with auto with typeclass_instances. clear Fx Fy a av x y; intros x y Fx Fy same_sign xLey H; unfold avg_half_sub. apply round_plus_neq_0... apply generic_format_round... intros J. assert (H1:x <= 0). apply Rplus_le_reg_r with (round_flt (round_flt (y - x) / 2)). rewrite J, Rplus_0_l. apply round_ge_generic... apply generic_format_0. unfold Rdiv; apply Rmult_le_pos. apply round_ge_generic... apply generic_format_0. apply Rplus_le_reg_l with x; now ring_simplify. lra. destruct H1 as [H1|H1]. (* *) destruct same_sign as [(H2,H3)|(_,H2)]. contradict H2; now apply Rlt_not_le. apply avg_half_sub_no_underflow_aux1 with (-x). now apply generic_format_opp. rewrite <- Ropp_0; now apply Ropp_lt_contravar. apply Rle_trans with (round_flt (round_flt (y - x) / 2)). apply Rplus_le_reg_l with x. rewrite J; right; ring. apply round_le... unfold Rdiv; apply Rmult_le_compat_r. lra. apply round_le_generic... now apply generic_format_opp. apply Rplus_le_reg_l with x. now ring_simplify. (* *) rewrite H1 in J, H. rewrite Rplus_0_l in H. contradict J; apply Rgt_not_eq, Rlt_gt. rewrite Rplus_0_l. unfold Rminus; rewrite Ropp_0, Rplus_0_r. rewrite round_generic with (x:=y)... apply Rlt_le_trans with (bpow emin). apply bpow_gt_0. apply round_ge_generic... apply generic_format_FLT_bpow... lia. apply Rle_trans with (1:=H). right; apply Rabs_right. apply Rle_ge; unfold Rdiv; apply Rmult_le_pos. rewrite <- H1; assumption. lra. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_no_underflow_aux2
| |
avg_half_sub_no_underflow_aux3 : forall u v, format u -> format v -> (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) -> (bpow emin) <= Rabs ((u+v)/2) -> avg_half_sub u v <> 0. Proof with auto with typeclass_instances. clear Fx Fy a av x y; intros x y Fx Fy. intros same_sign H. case (Rle_or_lt x y); intros H1. now apply avg_half_sub_no_underflow_aux2. rewrite <- (Ropp_involutive x); rewrite <- (Ropp_involutive y). rewrite avg_half_sub_symmetry_Ropp. apply Ropp_neq_0_compat. apply avg_half_sub_no_underflow_aux2. now apply generic_format_opp. now apply generic_format_opp. rewrite <- Ropp_0; case same_sign; intros (T1,T2). right; split; now apply Ropp_le_contravar. left; split; now apply Ropp_le_contravar. apply Ropp_le_contravar; now left. apply Rle_trans with (1:=H). rewrite <- Rabs_Ropp. right; apply f_equal. unfold Rdiv; ring. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_no_underflow_aux3
| |
avg_half_sub_no_underflow : (0 <= x /\ 0 <= y) \/ (x <= 0 /\ y <= 0) -> (bpow emin) <= Rabs a -> av <> 0. Proof with auto with typeclass_instances. intros; now apply avg_half_sub_no_underflow_aux3. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_no_underflow
| |
avg_half_sub_correct_aux : forall u v, format u -> format v -> u <= v -> (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) -> 0 < Rabs ((u+v)/2) < bpow emin -> Rabs (avg_half_sub u v -((u+v)/2)) <= 3/2 * ulp_flt ((u+v)/2). Proof with auto with typeclass_instances. clear Fx Fy x y a av. intros u v Fu Fv uLev same_sign. pose (b:=(u+v)/2); fold b. (* mostly forward proof *) intros (H1,H2). apply generic_format_FIX_FLT,FIX_format_generic in Fu. apply generic_format_FIX_FLT,FIX_format_generic in Fv. destruct Fu as [[nu eu] J1 J2]. destruct Fv as [[nv ev] J3 J4]; simpl in J2, J4. (* b is bpow emin /2 *) assert (b = IZR (nu+nv) * bpow (emin-1)). unfold b; rewrite J1, J3; unfold F2R; rewrite J2,J4; simpl. unfold Zminus; rewrite bpow_plus, plus_IZR. change (bpow (-(1))) with (/2). field. assert (Z.abs (nu+nv) = 1)%Z. cut (0 < Z.abs (nu+nv) < 2)%Z. lia. split; apply lt_IZR; simpl; rewrite abs_IZR; apply Rmult_lt_reg_l with (bpow (emin-1)); try apply bpow_gt_0. rewrite Rmult_0_r. apply Rlt_le_trans with (1:=H1). right; rewrite H, Rabs_mult. rewrite (Rabs_right (bpow (emin -1))). ring. apply Rle_ge, bpow_ge_0. apply Rle_lt_trans with (Rabs b). right; rewrite H, Rabs_mult. rewrite (Rabs_right (bpow (emin -1))). ring. apply Rle_ge, bpow_ge_0. apply Rlt_le_trans with (1:=H2). right; unfold Zminus; rewrite bpow_plus. change (bpow (-(1))) with (/2). field. (* only 2 possible values for u and v *) assert (((nu=0)/\ (nv=1)) \/ ((nu=-1)/\(nv=0)))%Z. assert (nu <= nv)%Z. apply le_IZR. apply Rmult_le_reg_r with (bpow emin). apply bpow_gt_0. apply Rle_trans with u. right; rewrite J1,J2; reflexivity. apply Rle_trans with (1:=uLev). right; rewrite J3,J4; reflexivity. case same_sign; intros (L1,L2). rewrite J1 in L1; apply Fnum_ge_0 in L1; simpl in L1. rewrite J3 in L2; apply Fnum_ge_0 in L2; simpl in L2. left. rewrite Z.abs_eq in H0. lia. lia. rewrite J1 in L1; apply Fnum_le_0 in L1; simpl in L1. rewrite J3 in L2; apply Fnum_le_0 in L2; simpl in L2. right. rewrite Z.abs_neq in H0. lia. lia. (* look into the 2 possible cases *) assert (G1:(round_flt (bpow emin/2) = 0)). replace (bpow emin /2) with (bpow (emin-1)). unfold round, scaled_mantissa. rewrite cexp_FLT_FIX. unfold cexp, FIX_exp; simpl. rewrite <- bpow_plus. replace (bpow (emin - 1 + - emin)) with (/2). replace (ZnearestE (/ 2)) with 0%Z. unfold F2R; simpl; ring. unfold Znearest. replace (Zfloor (/2)) with 0%Z. rewrite Rcompare_Eq. reflexivity. simpl; ring. apply sym_eq, Zfloor_imp. simpl; lra. ring_simplify (emin-1+-emin)%Z; reflexivity. apply Rgt_not_eq, Rlt_gt, bpow_gt_0. rewrite Rabs_right. apply bpow_lt. unfold Prec_gt_0 in prec_gt_0_; lia. apply Rle_ge, bpow_ge_0. unfold Zminus; rewrite bpow_plus. reflexivity. case H3; intros (T1,T2). unfold b, avg_half_sub. rewrite J1,J3,J2,J4,T1,T2; unfold F2R; simpl. rewrite Rmult_0_l, Rmult_1_l, 2!Rplus_0_l. unfold Rminus; rewrite Ropp_0, Rplus_0_r. rewrite (round_generic _ _ _ (bpow (emin)))... 2: apply generic_format_FLT_bpow... 2: lia. rewrite G1. rewrite round_0... rewrite Rplus_0_l, Rabs_Ropp. rewrite Rabs_right. 2: apply Rle_ge, Rmult_le_pos. 2: apply bpow_ge_0. 2: lra. apply Rle_trans with ((3*ulp_flt (bpow emin / 2))/2);[idtac|right; unfold Rdiv; ring]. unfold Rdiv; apply Rmult_le_compat_r. lra. apply Rle_trans with (3*bpow emin). apply Rle_trans with (1*bpow emin). right; ring. apply Rmult_le_compat_r. apply bpow_ge_0. now apply IZR_le. apply Rmult_le_compat_l. now apply IZR_le. rewrite ulp_neq_0. 2: apply Rmult_integral_contrapositive_currified. 2: apply Rgt_not_eq, bpow_gt_0. 2: apply Rinv_neq_0_compat, Rgt_not_eq; lra. apply bpow_le. unfold cexp, FLT_exp. apply Z.le_max_r. unfold b, avg_half_sub. rewrite J1,J3,J2,J4,T1,T2; unfold F2R; simpl. rewrite Rmult_0_l, Rplus_0_r. replace (0 - _ * bpow emin) with (bpow emin) by ring. rewrite (round_generic _ _ _ (bpow emin))... 2: apply generic_format_FLT_bpow... 2: lia. rewrite G1. replace (_ * bpow emin + 0) with (-bpow emin) by ring. rewrite round_generic... 2: apply generic_format_opp. 2: apply generic_format_FLT_bpow... 2: lia. replace (- bpow emin - _ * bpow emin / 2) with (-(bpow emin/2)) by field. rewrite Rabs_Ropp. rewrite Rabs_right. replace (_ * bpow emin / 2) with (-(bpow emin/2)) by field. rewrite ulp_opp. apply Rle_trans with ((3*ulp_flt (bpow emin / 2))/2);[idtac|right; unfold Rdiv; ring]. unfold Rdiv; apply Rmult_le_compat_r. lra. apply Rle_trans with (3*bpow emin). apply Rle_trans with (1*bpow emin). right; ring. apply Rmult_le_compat_r. apply bpow_ge_0. now apply IZR_le. apply Rmult_le_compat_l. now apply IZR_le. rewrite ulp_neq_0. 2: apply Rmult_integral_contrapositive_currified. 2: apply Rgt_not_eq, bpow_gt_0. 2: apply Rinv_neq_0_compat, Rgt_not_eq; lra. apply bpow_le. unfold cexp, FLT_exp. apply Z.le_max_r. apply Rle_ge, Rmult_le_pos. apply bpow_ge_0. lra. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_correct_aux
| |
avg_half_sub_correct_aux2 : forall u v, format u -> format v -> u <= v -> (0 <= u /\ 0 <= v) \/ (u <= 0 /\ v <= 0) -> Rabs (avg_half_sub u v -((u+v)/2)) <= 3/2 * ulp_flt ((u+v)/2). Proof with auto with typeclass_instances. clear Fx Fy a av x y. intros u v Fu Fv uLev same_sign. pose (b:=(u+v)/2); fold b. assert (T: forall z, Rabs (2*z) = 2* Rabs z). intros z; rewrite Rabs_mult. rewrite Rabs_pos_eq; try reflexivity. apply Rlt_le, Rlt_0_2. destruct uLev as [uLtv|uEqv]. (* when u < v *) assert (B: u <= v) by now left. assert (K1: b <> 0). unfold b ; lra. (* . initial lemma *) assert (Y:(Rabs (round_flt (v - u) - (v-u)) <= ulp_flt b)). apply Rle_trans with (/2*ulp_flt (v-u)). apply error_le_half_ulp... apply Rmult_le_reg_l with (1 := Rlt_0_2). rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l. 2: apply Rgt_not_eq, Rlt_0_2. apply Rle_trans with (ulp_flt (2*b)). case same_sign; intros (T1,T2). apply ulp_le_pos... lra. unfold b ; lra. rewrite <- (ulp_opp _ _ (2*b)). apply ulp_le_pos... lra. unfold b ; lra. rewrite 2!ulp_neq_0; trivial. 2: lra. change 2 with (bpow 1). rewrite <- bpow_plus. apply bpow_le. unfold cexp, FLT_exp. rewrite Rmult_comm, mag_mult_bpow; trivial. rewrite <- Z.add_max_distr_l. replace (mag radix2 b + 1 - prec)%Z with (1 + (mag radix2 b - prec))%Z by ring. apply Z.max_le_compat_l. lia. (* . splitting case of av=0 *) case (Rle_or_lt (bpow emin) (Rabs b)); intros D. (* . main proof *) unfold avg_half_sub. case (Rle_or_lt (bpow (prec+emin)) (v-u)); intros H1. (* .. v-u is big enough: division by 2 is exact *) cut (round_flt (round_flt (v - u) / 2) = round_flt (v - u) / 2). intros Z; rewrite Z. replace (round_flt (u + round_flt (v - u) / 2) - b) with ((round_flt (u + round_flt (v - u) / 2) - (u + round_flt (v - u) / 2)) +/2*(round_flt (v - u)-(v-u))). 2: unfold b; field. apply Rle_trans with (1:=Rabs_triang _ _). apply Rle_trans with (ulp_flt b+/2*ulp_flt b);[idtac|right; field]. apply Rplus_le_compat. apply Rle_trans with (/2*ulp_flt (u + round_flt (v - u) / 2)). apply error_le_half_ulp... apply Rmult_le_reg_l with (1 := Rlt_0_2). rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l. 2: apply Rgt_not_eq, Rlt_0_2. apply Rle_trans with (2:=FLT_ulp_double _ _ _). apply ulp_le... replace (u + round_flt (v - u) / 2) with (b+/2*(round_flt (v - u) - (v - u))). 2: unfold b; field. rewrite (T b). replace (2 * Rabs b) with (Rabs b + Rabs b) by ring. apply Rle_trans with (1:=Rabs_triang _ _). apply Rplus_le_compat_l. rewrite Rabs_mult. rewrite Rabs_pos_eq. 2: lra. apply Rmult_le_reg_l with (1 := Rlt_0_2). rewrite <- Rmult_assoc, Rinv_r, Rmult_1_l. 2: apply Rgt_not_eq, Rlt_0_2. apply Rle_trans with (1:=Y). apply Rle_trans with (ulp_flt (2*b)). apply ulp_le... rewrite <- (Rmult_1_l (Rabs b)). rewrite (T b). apply Rmult_le_compat_r. apply Rabs_pos. now apply IZR_le. rewrite <- (T b). rewrite <- ulp_abs. apply FLT_ulp_le_id... assert (H:generic_format radix2 (FIX_exp emin) (2*b)). replace (2*b) with (u+v). 2: unfold b; field. apply generic_format_FIX_FLT,FIX_format_generic in Fu. apply generic_format_FIX_FLT,FIX_format_generic in Fv. destruct Fu as [fu J1 J2]. destruct Fv as [fv J3 J4]. apply generic_format_FIX. exists (Float radix2 (Fnum fu+Fnum fv) emin). rewrite J1,J3; unfold F2R; simpl. rewrite J2,J4, plus_IZR; ring. easy. apply FIX_format_generic in H. destruct H as [[n e] J1 J2]. rewrite J1; unfold F2R; rewrite J2. simpl; rewrite Rabs_mult. pattern (bpow emin) at 1; rewrite <- (Rmult_1_l (bpow emin)). rewrite (Rabs_right (bpow emin)). 2: apply Rle_ge, bpow_ge_0. apply Rmult_le_compat_r. apply bpow_ge_0. rewrite <- abs_IZR. apply IZR_le. cut (0 < Z.abs n)%Z. lia. apply Z.abs_pos. intros M; apply K1. apply Rmult_eq_reg_l with 2. 2: apply Rgt_not_eq, Rlt_0_2. rewrite Rmult_0_r, J1, M. apply F2R_0. rewrite Rabs_mult. rewrite Rabs_right. 2: lra. apply Rmult_le_compat_l with (2 := Y). lra. apply round_generic... apply FLT_format_half... apply generic_format_round... apply abs_round_ge_generic... apply generic_format_FLT_bpow... unfold Prec_gt_0 in prec_gt_0_; lia. rewrite Rabs_right; try assumption. apply Rle_ge; left; apply Rplus_lt_reg_l with u; now ring_simplify. (* .. v-u is small: subtraction is exact *) cut ((round_flt (v - u)= (v-u))). intros Z; rewrite Z. replace (u + round_flt ((v-u) / 2)) with (b+((round_flt ((v-u) / 2) - (v-u)/2))). 2: unfold b; field. pose (eps:=(round_flt ((v - u) / 2) - (v - u) / 2)%R); fold eps. assert (Rabs eps <= /2*bpow emin). unfold eps. apply Rle_trans with (1:=error_le_half_ulp _ _ _ _)... right; apply f_equal. apply ulp_FLT_small... rewrite Zplus_comm; apply Rle_lt_trans with (2:=H1). rewrite Rabs_pos_eq ; lra. replace (round_flt (b + eps) - b) with ((round_flt (b+eps) -(b+eps)) + eps) by ring. apply Rle_trans with (1:=Rabs_triang _ _). apply Rle_trans with (/2*ulp_flt (b+eps) + /2*bpow emin). apply Rplus_le_compat. apply error_le_half_ulp... assumption. apply Rmult_le_reg_l with (1 := Rlt_0_2). apply Rle_trans with (ulp_flt (b + eps)+bpow emin). right; field. apply Rle_trans with (2*ulp_flt b + ulp_flt b). 2: right; field. apply Rplus_le_compat. apply Rle_trans with (2:=FLT_ulp_double _ _ _). apply ulp_le... rewrite (T b). replace (2 * Rabs b) with (Rabs b + Rabs b) by ring. apply Rle_trans with (1:=Rabs_triang _ _). apply Rplus_le_compat_l. apply Rle_trans with (2:=D). rewrite <- (Rmult_1_l (bpow emin)). apply Rle_trans with (1:=H). apply Rmult_le_compat_r. apply bpow_ge_0. lra. rewrite <- ulp_FLT_small with radix2 emin prec 0... apply ulp_ge_ulp_0... rewrite Rabs_R0; apply bpow_gt_0. apply round_generic... apply FLT_format_plus_small... now apply generic_format_opp. rewrite Rabs_right. now left. apply Rle_ge, Rplus_le_reg_l with u; now ring_simplify. (* . when b = bpow emin /2 *) apply avg_half_sub_correct_aux; trivial. split; trivial. now apply Rabs_pos_lt. (* . x = y *) unfold avg_half_sub,b. rewrite uEqv. replace (v-v) with 0 by ring. rewrite round_0... unfold Rdiv; rewrite Rmult_0_l. rewrite round_0... rewrite Rplus_0_r. rewrite round_generic... replace ((v+v)*/2) with v by field. replace (v-v) with 0 by ring. rewrite Rabs_R0. apply Rmult_le_pos. apply Rmult_le_pos. now apply IZR_le. lra. apply ulp_ge_0. Qed. (* tight example x=1/2 and y=2^p-1: error is 5/4 ulp *)
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_correct_aux2
| |
avg_half_sub_correct : (0 <= x /\ 0 <= y) \/ (x <= 0 /\ y <= 0) -> Rabs (av-a) <= 3/2 * ulp_flt a. Proof with auto with typeclass_instances. intros same_sign; case (Rle_or_lt x y); intros H. now apply avg_half_sub_correct_aux2. unfold av, a. rewrite <- (Ropp_involutive x), <- (Ropp_involutive y). rewrite avg_half_sub_symmetry_Ropp. rewrite <- Rabs_Ropp. replace (- (- avg_half_sub (- x) (- y) - (- - x + - - y) / 2)) with (avg_half_sub (-x) (-y) - ((-x+-y)/2)). 2: unfold Rdiv; ring. apply Rle_trans with (3 / 2 * ulp_flt ((- x + - y) / 2)). apply avg_half_sub_correct_aux2. now apply generic_format_opp. now apply generic_format_opp. apply Ropp_le_contravar; now left. rewrite <- Ropp_0; case same_sign; intros (T1,T2). right; split; now apply Ropp_le_contravar. left; split; now apply Ropp_le_contravar. right; apply f_equal. rewrite <- ulp_opp. apply f_equal. unfold Rdiv; ring. Qed. (* Lemma avg_half_sub_symmetry: forall u v, avg_half_sub u v = avg_half_sub v u. is false *)
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
avg_half_sub_correct
| |
bpow e := (bpow radix2 e). Variable emin prec : Z. Context { prec_gt_0_ : Prec_gt_0 prec }.
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
bpow
| |
format := (generic_format radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
format
| |
round_flt :=(round radix2 (FLT_exp emin prec) ZnearestE).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
round_flt
| |
ulp_flt :=(ulp radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
ulp_flt
| |
cexp := (cexp radix2 (FLT_exp emin prec)).
|
Notation
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
cexp
| |
average (x y : R) := let samesign := match (Rle_bool 0 x), (Rle_bool 0 y) with true , true => true | false , false => true | _,_ => false end in if samesign then match (Rle_bool (Rabs x) (Rabs y)) with true => avg_half_sub emin prec x y | false => avg_half_sub emin prec y x end else avg_naive emin prec x y. Variables x y:R. Hypothesis Fx: format x. Hypothesis Fy: format y.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
average
| |
a :=(x+y)/2.
|
Let
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
a
| |
av :=average x y.
|
Let
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
av
| |
average_symmetry : forall u v, average u v = average v u. Proof. intros u v; unfold average. case (Rle_bool_spec 0 u); case (Rle_bool_spec 0 v); intros. rewrite 2!Rabs_right; try apply Rle_ge; try assumption. case (Rle_bool_spec u v); case (Rle_bool_spec v u); trivial. intros; replace u with v; trivial; auto with real. intros H1 H2; contradict H1; auto with real. apply avg_naive_symmetry. apply avg_naive_symmetry. rewrite 2!Rabs_left; try assumption. case (Rle_bool_spec (-u) (-v)); case (Rle_bool_spec (-v) (-u)); trivial. intros; replace u with v; trivial; auto with real. intros H1 H2; contradict H1; auto with real. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
average_symmetry
| |
average_symmetry_Ropp : forall u v, format u -> format v -> average (-u) (-v) = - average u v. Proof with auto with typeclass_instances. (* first: nonnegative u *) assert (forall u v, 0 <= u -> format u -> format v -> average (-u) (-v) = - average u v). intros u v Hu Fu Fv; unfold average. rewrite 2!Rabs_Ropp. destruct Hu as [Hu|Hu]. (* 0 < u *) rewrite Rle_bool_false. 2: apply Ropp_lt_cancel. 2: now rewrite Ropp_involutive, Ropp_0. rewrite (Rle_bool_true 0 u); [idtac|now left]. rewrite Rabs_right. 2: apply Rle_ge; now left. destruct (total_order_T 0 v) as [Hv|Hv];[destruct Hv as [Hv|Hv] |idtac]. (* . 0 < u and 0 < v *) rewrite Rle_bool_false. 2: apply Ropp_lt_cancel. 2: now rewrite Ropp_involutive, Ropp_0. rewrite (Rle_bool_true 0 v); [idtac|now left]. rewrite Rabs_right. 2: apply Rle_ge; now left. case (Rle_bool_spec u v);intros. apply avg_half_sub_symmetry_Ropp. apply avg_half_sub_symmetry_Ropp. (* . 0 < u and v = 0 *) rewrite <- Hv, Ropp_0, Rabs_R0. rewrite Rle_bool_true ;[idtac|now right]. rewrite Rle_bool_false; try exact Hu. unfold avg_naive, avg_half_sub. unfold Rminus; rewrite Ropp_0, Rplus_0_l, 2!Rplus_0_r. rewrite (round_generic _ _ _ u); trivial. rewrite (round_generic _ _ _ (-u)). 2: now apply generic_format_opp. rewrite <- round_NE_opp. rewrite <- round_NE_opp. rewrite (round_generic _ _ _ (round_flt (-(u/2)))). apply f_equal; field. apply generic_format_round... (* . 0 < u and v < 0 *) rewrite Rabs_left; trivial. rewrite Rle_bool_true. rewrite Rle_bool_false; trivial. apply avg_naive_symmetry_Ropp. rewrite <- Ropp_0; apply Ropp_le_contravar. now left. (* u = 0 *) rewrite <- Hu, Ropp_0, Rabs_R0. rewrite Rle_bool_true. 2: now right. rewrite (Rle_bool_true 0 (Rabs v)). 2: apply Rabs_pos. destruct (total_order_T 0 v) as [Hv|Hv];[destruct Hv as [Hv|Hv] |idtac]. (* . u=0 and 0 < v *) rewrite Rle_bool_false. rewrite Rle_bool_true. unfold avg_naive, avg_half_sub. unfold Rminus; rewrite Ropp_0, 2!Rplus_0_l, Rplus_0_r. rewrite (round_generic _ _ _ v); trivial. rewrite (round_generic _ _ _ (-v)). 2: now apply generic_format_opp. rewrite <- round_NE_opp. rewrite <- round_NE_opp. rewrite (round_generic _ _ _ (round_flt (-(v/2)))). apply f_equal; field. apply generic_format_round... now left. rewrite <- Ropp_0; now apply Ropp_lt_contravar. (* . u=0 and v=0 *) rewrite <- Hv, Ropp_0. rewrite Rle_bool_true. 2: now right. unfold avg_half_sub. replace (0-0) with 0 by ring; rewrite round_0... unfold Rdiv; rewrite Rmult_0_l, round_0, Rplus_0_l... rewrite round_0... ring. (* . u=0 and v < 0 *) rewrite Rle_bool_true. rewrite Rle_bool_false. unfold avg_naive, avg_half_sub. unfold Rminus; rewrite Ropp_0, 2!Rplus_0_l, Rplus_0_r. rewrite (round_generic _ _ _ v); trivial. rewrite (round_generic _ _ _ (-v)). 2: now apply generic_format_opp. rewrite <- round_NE_opp. rewrite (round_generic _ _ _ (round_flt (-v/2))). apply f_equal; field. apply generic_format_round... exact Hv. rewrite <- Ropp_0; apply Ropp_le_contravar; now left. (* any u *) intros u v Fu Fv. case (Rle_or_lt 0 u). intros Hu; now apply H. intros Hu. apply trans_eq with (- average (--u) (--v)). rewrite (H (-u) (-v)). ring. rewrite <- Ropp_0; apply Ropp_le_contravar; now left. apply generic_format_opp... apply generic_format_opp... apply f_equal, f_equal2; ring. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
average_symmetry_Ropp
| |
average_same_sign_1 : 0 <= a -> 0 <= av. Proof with auto with typeclass_instances. intros H; unfold av, average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_same_sign_1... apply avg_half_sub_same_sign_1... now rewrite Rplus_comm. apply avg_naive_same_sign_1... apply avg_naive_same_sign_1... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_same_sign_1... apply avg_half_sub_same_sign_1... now rewrite Rplus_comm. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
average_same_sign_1
| |
average_same_sign_2 : a <= 0-> av <= 0. Proof with auto with typeclass_instances. intros H; unfold av, average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_same_sign_2... apply avg_half_sub_same_sign_2... now rewrite Rplus_comm. apply avg_naive_same_sign_2... apply avg_naive_same_sign_2... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_same_sign_2... apply avg_half_sub_same_sign_2... now rewrite Rplus_comm. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
average_same_sign_2
| |
average_correct : Rabs (av -a) <= 3/2 * ulp_flt a. Proof with auto with typeclass_instances. unfold av,a,average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_correct... rewrite Rplus_comm. apply avg_half_sub_correct... apply avg_naive_correct_weak2... apply avg_naive_correct_weak2... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_correct... right; split; now left. rewrite Rplus_comm. apply avg_half_sub_correct... right; split; now left. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
average_correct
| |
average_between : Rmin x y <= av <= Rmax x y. Proof with auto with typeclass_instances. unfold av,a,average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_between... rewrite Rmin_comm, Rmax_comm. apply avg_half_sub_between... apply avg_naive_between... apply avg_naive_between... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_between... rewrite Rmin_comm, Rmax_comm. apply avg_half_sub_between... Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
average_between
| |
average_zero : a = 0 -> av = 0. Proof with auto with typeclass_instances. unfold av,a,average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_zero... apply avg_half_sub_zero... now rewrite Rplus_comm. apply avg_naive_zero... apply avg_naive_zero... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_zero... apply avg_half_sub_zero... now rewrite Rplus_comm. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
average_zero
| |
average_no_underflow : (bpow emin) <= Rabs a -> av <> 0. Proof with auto with typeclass_instances. unfold av,a,average. case (Rle_bool_spec 0 x); case (Rle_bool_spec 0 y); intros. case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_no_underflow... apply avg_half_sub_no_underflow... now rewrite Rplus_comm. apply avg_naive_no_underflow... apply avg_naive_no_underflow... case (Rle_bool_spec (Rabs x) (Rabs y)); intros. apply avg_half_sub_no_underflow... right; split; now left. apply avg_half_sub_no_underflow... right; split; now left. now rewrite Rplus_comm. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals Psatz.",
"From Flocq Require Import Core Plus_error."
] |
examples/Average.v
|
average_no_underflow
| |
rel_helper : forall xa xe b : R, xe <> 0 -> (Rabs ((xa - xe) / xe) <= b <-> Rabs (xa - xe) <= b * Rabs xe). Proof. intros xa xe b Zx. unfold Rdiv. rewrite Rabs_mult, Rabs_Rinv by exact Zx. split ; intros H. - apply Rmult_le_reg_r with (/ Rabs xe). apply Rinv_0_lt_compat. now apply Rabs_pos_lt. rewrite Rmult_assoc, Rinv_r, Rmult_1_r. exact H. now apply Rabs_no_R0. - apply Rmult_le_reg_r with (Rabs xe). now apply Rabs_pos_lt. rewrite Rmult_assoc, Rinv_l, Rmult_1_r. exact H. now apply Rabs_no_R0. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
rel_helper
| |
Rdiv_compat_r : forall a b c : R, a <> 0 -> c <> 0 -> (a*b) / (a*c) = b/c. Proof. intros a b c Ha Hc. field. apply conj. apply Hc. apply Ha. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
Rdiv_compat_r
| |
pow2 := (bpow radix2).
|
Notation
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
pow2
| |
rnd := (round radix2 (FLT_exp (-1074) 53) ZnearestE).
|
Notation
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
rnd
| |
add x y := rnd (x + y).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
add
| |
sub x y := rnd (x - y).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
sub
| |
mul x y := rnd (x * y).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
mul
| |
div x y := rnd (x / y).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
div
| |
nearbyint x := round radix2 (FIX_exp 0) ZnearestE x.
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
nearbyint
| |
Log2h := 3048493539143 * pow2 (-42).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
Log2h
| |
Log2l := 544487923021427 * pow2 (-93).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
Log2l
| |
InvLog2 := 3248660424278399 * pow2 (-51).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
InvLog2
| |
p0 := 1 * pow2 (-2).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
p0
| |
p1 := 4002712888408905 * pow2 (-59).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
p1
| |
p2 := 1218985200072455 * pow2 (-66).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
p2
| |
q0 := 1 * pow2 (-1).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
q0
| |
q1 := 8006155947364787 * pow2 (-57).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
q1
| |
q2 := 4573527866750985 * pow2 (-63).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
q2
| |
cw_exp (x : R) := let k := nearbyint (mul x InvLog2) in let t := sub (sub x (mul k Log2h)) (mul k Log2l) in let t2 := mul t t in let p := add p0 (mul t2 (add p1 (mul t2 p2))) in let q := add q0 (mul t2 (add q1 (mul t2 q2))) in pow2 (Zfloor k + 1) * (add (div (mul t p) (sub q (mul t p))) (1/2)).
|
Definition
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
cw_exp
| |
method_error : forall t : R, let t2 := t * t in let p := p0 + t2 * (p1 + t2 * p2) in let q := q0 + t2 * (q1 + t2 * q2) in let f := 2 * ((t * p) / (q - t * p) + 1/2) in Rabs t <= 355 / 1024 -> Rabs ((f - exp t) / exp t) <= 23 * pow2 (-62). Proof. intros t t2 p q f Ht. unfold f, q, p, t2, p0, p1, p2, q0, q1, q2 ; interval with (i_bisect t, i_taylor t, i_degree 9, i_prec 70). Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
method_error
| |
argument_reduction : forall x : R, generic_format radix2 (FLT_exp (-1074) 53) x -> -746 <= x <= 710 -> let k := nearbyint (mul x InvLog2) in let tf := sub (sub x (mul k Log2h)) (mul k Log2l) in let te := x - k * ln 2 in Rabs tf <= 355 / 1024 /\ Rabs (tf - te) <= 65537 * pow2 (-71). Proof with auto with typeclass_instances. intros x Fx Bx k tf te. assert (Rabs x <= 5/16 \/ 5/16 <= Rabs x <= 746) as [Bx'|Bx'] by gappa. - assert (k = 0). clear -Bx'. refine (let H := _ in Rle_antisym _ _ (proj2 H) (proj1 H)). unfold k, mul, nearbyint, InvLog2, Log2h ; gappa. unfold tf, te, mul, sub. rewrite H. rewrite 2!Rmult_0_l. rewrite round_0... rewrite Rmult_0_l. rewrite 2!Rminus_0_r. rewrite 2!round_generic with (2 := Fx)... gappa. - assert (Hl: - 1 * pow2 (-102) <= Log2l - (ln 2 - Log2h) <= 0). unfold Log2l, Log2h ; interval with (i_prec 110). assert (Ax: x = x * InvLog2 * (1 / InvLog2)). field. unfold InvLog2 ; interval. unfold te. replace (x - k * ln 2) with (x - k * Log2h - k * (ln 2 - Log2h)) by ring. revert Hl Ax. unfold tf, te, k, sub, mul, nearbyint, InvLog2, Log2h, Log2l ; gappa. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
argument_reduction
| |
exp_correct : forall x : R, generic_format radix2 (FLT_exp (-1074) 53) x -> -746 <= x <= 710 -> Rabs ((cw_exp x - exp x) / exp x) <= 1 * pow2 (-51). Proof. intros x Fx Bx. generalize (argument_reduction x Fx Bx). unfold cw_exp. set (k := nearbyint (mul x InvLog2)). set (t := sub (sub x (mul k Log2h)) (mul k Log2l)). set (t2 := mul t t). intros [Bt Et]. clearbody t. generalize (method_error t Bt). intros Ef. rewrite bpow_plus, Rmult_assoc. assert (exp x = pow2 (Zfloor k) * exp (x - k * ln 2)) as ->. assert (exists k', k = IZR k') as [k' ->] by (eexists ; apply Rmult_1_r). rewrite Zfloor_IZR, bpow_exp, <- exp_plus. apply f_equal. simpl ; ring. rewrite <- Rmult_minus_distr_l. rewrite Rdiv_compat_r. 2: apply Rgt_not_eq, bpow_gt_0. 2: apply Rgt_not_eq, exp_pos. clearbody k. revert Et. generalize (x - k * ln 2). clear x Fx Bx. intros x Ex. assert (Rabs ((exp t - exp x) / exp x) <= 33 * pow2 (-60)). unfold Rdiv. rewrite Rmult_minus_distr_r. rewrite Rinv_r by apply Rgt_not_eq, exp_pos. rewrite <- exp_Ropp, <- exp_plus. revert Ex. unfold Rminus ; generalize (t + - x) ; clear. intros r Hr ; interval with (i_prec 60). apply rel_helper. apply Rgt_not_eq, exp_pos. apply rel_helper in H. 2: apply Rgt_not_eq, exp_pos. apply rel_helper in Ef. 2: apply Rgt_not_eq, exp_pos. unfold t2, add, mul, sub, div, p0, p1, p2, q0, q1, q2 in * ; gappa. Qed.
|
Theorem
|
examples
|
[
"From Coq Require Import Reals.",
"From Flocq Require Import Core.",
"From Gappa Require Import Gappa_tactic.",
"From Interval Require Import Tactic."
] |
examples/Cody_Waite.v
|
exp_correct
| |
Rsgn_F2R : forall m e, Rlt_bool (F2R (Float beta m e)) 0 = Zlt_bool m 0. Proof. intros m e. case Zlt_bool_spec ; intros H. apply Rlt_bool_true. now apply F2R_lt_0. apply Rlt_bool_false. now apply F2R_ge_0. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals.",
"From Flocq Require Import Core Bracket Round Operations Div Sqrt."
] |
examples/Compute.v
|
Rsgn_F2R
| |
plus (x y : float beta) := let (m, e) := Fplus x y in let s := Zlt_bool m 0 in let '(m', e', l) := truncate beta fexp (Z.abs m, e, loc_Exact) in Float beta (cond_Zopp s (choice s m' l)) e'.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith Reals.",
"From Flocq Require Import Core Bracket Round Operations Div Sqrt."
] |
examples/Compute.v
|
plus
| |
plus_correct : forall x y : float beta, round beta fexp rnd (F2R x + F2R y) = F2R (plus x y). Proof. intros x y. unfold plus. rewrite <- F2R_plus. destruct (Fplus x y) as [m e]. rewrite (round_trunc_sign_any_correct beta fexp rnd choice rnd_choice _ (Z.abs m) e loc_Exact). 3: now right. destruct truncate as [[m' e'] l']. apply (f_equal (fun s => F2R (Float beta (cond_Zopp s (choice s _ _)) _))). apply Rsgn_F2R. apply inbetween_Exact. apply sym_eq, F2R_Zabs. Qed.
|
Theorem
|
examples
|
[
"From Coq Require Import ZArith Reals.",
"From Flocq Require Import Core Bracket Round Operations Div Sqrt."
] |
examples/Compute.v
|
plus_correct
| |
mult (x y : float beta) := let (m, e) := Fmult x y in let s := Zlt_bool m 0 in let '(m', e', l) := truncate beta fexp (Z.abs m, e, loc_Exact) in Float beta (cond_Zopp s (choice s m' l)) e'.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith Reals.",
"From Flocq Require Import Core Bracket Round Operations Div Sqrt."
] |
examples/Compute.v
|
mult
| |
mult_correct : forall x y : float beta, round beta fexp rnd (F2R x * F2R y) = F2R (mult x y). Proof. intros x y. unfold mult. rewrite <- F2R_mult. destruct (Fmult x y) as [m e]. rewrite (round_trunc_sign_any_correct beta fexp rnd choice rnd_choice _ (Z.abs m) e loc_Exact). 3: now right. destruct truncate as [[m' e'] l']. apply (f_equal (fun s => F2R (Float beta (cond_Zopp s (choice s _ _)) _))). apply Rsgn_F2R. apply inbetween_Exact. apply sym_eq, F2R_Zabs. Qed.
|
Theorem
|
examples
|
[
"From Coq Require Import ZArith Reals.",
"From Flocq Require Import Core Bracket Round Operations Div Sqrt."
] |
examples/Compute.v
|
mult_correct
| |
sqrt (x : float beta) := if Zlt_bool 0 (Fnum x) then let '(m', e', l) := truncate beta fexp (Fsqrt fexp x) in Float beta (choice false m' l) e' else Float beta 0 0.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith Reals.",
"From Flocq Require Import Core Bracket Round Operations Div Sqrt."
] |
examples/Compute.v
|
sqrt
| |
sqrt_correct : forall x : float beta, round beta fexp rnd (R_sqrt.sqrt (F2R x)) = F2R (sqrt x). Proof. intros x. unfold sqrt. case Zlt_bool_spec ; intros Hm. generalize (Fsqrt_correct fexp x (F2R_gt_0 _ _ Hm)). destruct Fsqrt as [[m' e'] l]. intros [Hs1 Hs2]. rewrite (round_trunc_sign_any_correct' beta fexp rnd choice rnd_choice _ m' e' l). destruct truncate as [[m'' e''] l']. now rewrite Rlt_bool_false by apply sqrt_ge_0. now rewrite Rabs_pos_eq by apply sqrt_ge_0. now left. destruct (Req_dec (F2R x) 0) as [Hz|Hz]. rewrite Hz, sqrt_0, F2R_0. now apply round_0. unfold R_sqrt.sqrt. destruct Rcase_abs as [H|H]. rewrite F2R_0. now apply round_0. destruct H as [H|H]. elim Rgt_not_le with (1 := H). now apply F2R_le_0. now elim Hz. Qed.
|
Theorem
|
examples
|
[
"From Coq Require Import ZArith Reals.",
"From Flocq Require Import Core Bracket Round Operations Div Sqrt."
] |
examples/Compute.v
|
sqrt_correct
| |
Rsgn_div : forall x y : R, x <> 0%R -> y <> 0%R -> Rlt_bool (x / y) 0 = xorb (Rlt_bool x 0) (Rlt_bool y 0). Proof. intros x y Hx0 Hy0. unfold Rdiv. case (Rlt_bool_spec x) ; intros Hx ; case (Rlt_bool_spec y) ; intros Hy. apply Rlt_bool_false. rewrite <- Rmult_opp_opp. apply Rlt_le, Rmult_lt_0_compat. now apply Ropp_gt_lt_0_contravar. apply Ropp_gt_lt_0_contravar. now apply Rinv_lt_0_compat. apply Rlt_bool_true. apply Ropp_lt_cancel. rewrite Ropp_0, <- Ropp_mult_distr_l_reverse. apply Rmult_lt_0_compat. now apply Ropp_gt_lt_0_contravar. apply Rinv_0_lt_compat. destruct Hy as [Hy|Hy]. easy. now elim Hy0. apply Rlt_bool_true. apply Ropp_lt_cancel. rewrite Ropp_0, <- Ropp_mult_distr_r_reverse. apply Rmult_lt_0_compat. destruct Hx as [Hx|Hx]. easy. now elim Hx0. apply Ropp_gt_lt_0_contravar. now apply Rinv_lt_0_compat. apply Rlt_bool_false. apply Rlt_le, Rmult_lt_0_compat. destruct Hx as [Hx|Hx]. easy. now elim Hx0. apply Rinv_0_lt_compat. destruct Hy as [Hy|Hy]. easy. now elim Hy0. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith Reals.",
"From Flocq Require Import Core Bracket Round Operations Div Sqrt."
] |
examples/Compute.v
|
Rsgn_div
| |
div (x y : float beta) := if Zeq_bool (Fnum x) 0 then Float beta 0 0 else let '(m, e, l) := truncate beta fexp (Fdiv fexp (Fabs x) (Fabs y)) in let s := xorb (Zlt_bool (Fnum x) 0) (Zlt_bool (Fnum y) 0) in Float beta (cond_Zopp s (choice s m l)) e.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith Reals.",
"From Flocq Require Import Core Bracket Round Operations Div Sqrt."
] |
examples/Compute.v
|
div
|
Structured dataset from Flocq — Floating-point formalization.
3,207 declarations extracted from Coq source files.
| Column | Type | Description |
|---|---|---|
| fact | string | Declaration body |
| type | string | Lemma, Definition, Theorem, etc. |
| library | string | Source module |
| imports | list | Required imports |
| filename | string | Source file path |
| symbolic_name | string | Identifier |