Proof Assistant Projects
Collection
Digesting proof assistant libraries for AI ingestion.
•
79 items
•
Updated
•
2
fact
stringlengths 23
2.8k
| type
stringclasses 15
values | library
stringclasses 3
values | imports
listlengths 1
5
| filename
stringclasses 23
values | symbolic_name
stringlengths 1
55
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
door : Type := left | right.
|
Inductive
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
door
| |
door_eq_dec (d d' : door) : { d = d' } + { ~ d = d' } := ltac:(decide equality).
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
door_eq_dec
| |
DOORS : interface := | IsOpen : door -> DOORS bool | Toggle : door -> DOORS unit. Generalizable All Variables.
|
Inductive
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
DOORS
| |
is_open `{Provide ix DOORS} (d : door) : impure ix bool := request (IsOpen d).
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
is_open
| |
toggle `{Provide ix DOORS} (d : door) : impure ix unit := request (Toggle d).
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
toggle
| |
open_door `{Provide ix DOORS} (d : door) : impure ix unit := let* open := is_open d in when (negb open) (toggle d).
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
open_door
| |
close_door `{Provide ix DOORS} (d : door) : impure ix unit := let* open := is_open d in when open (toggle d). (** ** Controller *)
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
close_door
| |
CONTROLLER : interface := | Tick : CONTROLLER unit | RequestOpen (d : door) : CONTROLLER unit.
|
Inductive
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
CONTROLLER
| |
tick `{Provide ix CONTROLLER} : impure ix unit := request Tick.
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
tick
| |
request_open `{Provide ix CONTROLLER} (d : door) : impure ix unit := request (RequestOpen d).
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
request_open
| |
co (d : door) : door := match d with | left => right | right => left end.
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
co
| |
controller `{Provide ix DOORS, Provide ix (STORE nat)} : component CONTROLLER ix := fun _ op => match op with | Tick => let* cpt := get in when (15 <? cpt) begin close_door left;; close_door right;; put 0 end | RequestOpen d => close_door (co d);; open_door d;; put 0 end. (** * Verifying the Airlock Controller *) (** ** Doors Specification *) (** *** Witness States *)
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
controller
| |
Ω : Type := bool * bool.
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
Ω
| |
sel (d : door) : Ω -> bool := match d with | left => fst | right => snd end.
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
sel
| |
tog (d : door) (ω : Ω) : Ω := match d with | left => (negb (fst ω), snd ω) | right => (fst ω, negb (snd ω)) end.
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
tog
| |
tog_equ_1 (d : door) (ω : Ω) : sel d (tog d ω) = negb (sel d ω). Proof. destruct d; reflexivity. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
tog_equ_1
| |
tog_equ_2 (d : door) (ω : Ω) : sel (co d) (tog d ω) = sel (co d) ω. Proof. destruct d; reflexivity. Qed. (** From now on, we will reason about [tog] using [tog_equ_1] and [tog_equ_2]. FreeSpec tactics rely heavily on [cbn] to simplify certain terms, so we use the <<simpl never>> options of the [Arguments] vernacular command to prevent [cbn] from unfolding [tog]. This pattern is common in FreeSpec. Later in this example, we will use this trick to prevent [cbn] to unfold impure computations covered by intermediary theorems. *) #[local] Opaque tog.
|
Lemma
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
tog_equ_2
| |
step (ω : Ω) (a : Type) (e : DOORS a) (x : a) := match e with | Toggle d => tog d ω | _ => ω end. (** *** Requirements *)
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
step
| |
doors_o_caller : Ω -> forall (a : Type), DOORS a -> Prop := (** - Given the door [d] of o system [ω], it is always possible to ask for the state of [d]. *) | req_is_open (d : door) (ω : Ω) : doors_o_caller ω bool (IsOpen d) (** - Given the door [d] of o system [ω], if [d] is closed, then the second door [co d] has to be closed too for a request to toggle [d] to be valid. *) | req_toggle (d : door) (ω : Ω) (H : sel d ω = false -> sel (co d) ω = false) : doors_o_caller ω unit (Toggle d). #[global] Hint Constructors doors_o_caller : airlock. (** *** Promises *)
|
Inductive
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
doors_o_caller
| |
doors_o_callee : Ω -> forall (a : Type), DOORS a -> a -> Prop := (** - When a system in a state [ω] reports the state of the door [d], it shall reflect the true state of [d]. *) | doors_o_callee_is_open (d : door) (ω : Ω) (x : bool) (equ : sel d ω = x) : doors_o_callee ω bool (IsOpen d) x (** - There is no particular doors_o_calleeises on the result [x] of a request for [ω] to close the door [d]. *) | doors_o_callee_toggle (d : door) (ω : Ω) (x : unit) : doors_o_callee ω unit (Toggle d) x. #[global] Hint Constructors doors_o_callee : airlock.
|
Inductive
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
doors_o_callee
| |
doors_contract : contract DOORS Ω := make_contract step doors_o_caller doors_o_callee. (** ** Intermediary Lemmas *) (** Closing a door [d] in any system [ω] is always a respectful operation. *)
|
Definition
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
doors_contract
| |
close_door_respectful `{Provide ix DOORS} (ω : Ω) (d : door) : pre (to_hoare doors_contract (close_door d)) ω. Proof. (* We use the [prove_program] tactics to erase the program monad *) prove impure with airlock; subst; constructor. (* This leaves us with one goal to prove: [sel d ω = false -> sel (co d) ω = false] Yet, thanks to our call to [IsOpen d], we can predict that [sel d ω = true] *) inversion o_caller0; ssubst. now rewrite H3. Qed. #[global] Hint Resolve close_door_respectful : airlock.
|
Lemma
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
close_door_respectful
| |
open_door_respectful `{Provide ix DOORS} (ω : Ω) (d : door) (safe : sel (co d) ω = false) : pre (to_hoare doors_contract (open_door (ix := ix) d)) ω. Proof. prove impure; repeat constructor; subst. inversion o_caller0; ssubst. now rewrite safe. Qed. #[global] Hint Resolve open_door_respectful : airlock.
|
Lemma
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
open_door_respectful
| |
close_door_run `{Provide ix DOORS} (ω : Ω) (d : door) (ω' : Ω) (x : unit) (run : post (to_hoare doors_contract (close_door d)) ω x ω') : sel d ω' = false. Proof. unroll_post run. + rewrite tog_equ_1. inversion H1; ssubst. now rewrite H5. + now inversion H1; ssubst. Qed. #[global] Hint Resolve close_door_run : airlock. #[local] Opaque close_door. #[local] Opaque open_door. #[local] Opaque Nat.ltb.
|
Lemma
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
close_door_run
| |
one_door_safe_all_doors_safe (ω : Ω) (d : door) (safe : sel d ω = false \/ sel (co d) ω = false) : forall (d' : door), sel d' ω = false \/ sel (co d') ω = false. Proof. intros d'. destruct d; destruct d'; auto. + cbn -[sel]. now rewrite or_comm. + cbn -[sel]. fold (co right). now rewrite or_comm. Qed. (** The objective of this lemma is to prove that, if either the right door or the left door is closed, then after any respectful run of a computation [p] that interacts with doors, this fact remains true. *) #[local] Opaque sel.
|
Remark
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
one_door_safe_all_doors_safe
| |
respectful_run_inv `{Provide ix DOORS} {a} (p : impure ix a) (ω : Ω) (safe : sel left ω = false \/ sel right ω = false) (x : a) (ω' : Ω) (hpre : pre (to_hoare doors_contract p) ω) (hpost : post (to_hoare doors_contract p) ω x ω') : sel left ω' = false \/ sel right ω' = false. (** We reason by induction on the impure computation [p]: - Either [p] is a local, pure computation; in such a case, the doors state does not change, hence the proof is trivial. - Or [p] consists in a request to the doors interface, and a continuation whose domain satisfies the theorem, i.e. it preserves the invariant that either the left or the right door is closed. Due to this hypothesis, we only have to prove that the first request made by [p] does not break the invariant. We consider two cases. - Either the computation asks for the state of a given door ([IsOpen]), then again the doors state does not change and the proof is trivial. - Or the computation wants to toggle a door [d]. We know by hypothesis that either [d] is closed or [d] is open (thanks to the [one_door_safe_all_doors_safe] result and the [safe] hypothesis). Again, we consider both cases. - If [d] is closed —and therefore will be opened—, then because we consider a respectful run, [co d] is necessarily closed too (it is a requirements of [door_contract]). Once [d] is opened, [co d] is still closed. - Otherwise, [co d] is closed, which means once [d] is toggled (no matter its initial state), then [co d] is still closed. That is, we prove that, when [p] toggles [d], [co d] is necessarily closed after the request has been handled. Because there is at least one door closed ([co d]), we can conclude that either the right or the left door is closed thanks to [one_door_safe_all_doors_safe]. *) Proof. fold (co left) in *. revert ω hpre hpost safe. induction p; intros ω hpre run safe. + now unroll_post run. + unroll_post run. assert (hpost : post (interface_to_hoare doors_contract β e) ω x0 ω0). { split; [apply H2|now rewrite H3]. } apply H1 with (ω:=ω0) (β:=x0); auto; [now apply hpre|]. cbn in *. unfold gen_caller_obligation, gen_callee_obligation, gen_witness_update in *. destruct (proj_p e) as [e'|]. ++ destruct hpost as [o_callee equω]. destruct e' as [d|d]. +++ rewrite H3. apply safe. +++ apply one_door_safe_all_doors_safe with (d := d); apply one_door_safe_all_doors_safe with (d' := d) in safe; subst. destruct hpre as [hbefore hafter]. inversion hbefore; ssubst. cbn. destruct safe as [safe|safe]. all: right; rewrite tog_equ_2; auto. ++ destruct hpost as [_ equω]. subst. exact safe. Qed. (** ** Main Theorem *)
|
Lemma
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
respectful_run_inv
| |
controller_correct `{StrictProvide2 ix DOORS (STORE nat)} : correct_component controller (no_contract CONTROLLER) doors_contract (fun _ ω => sel left ω = false \/ sel right ω = false). Proof. intros ωc ωd pred a e req. assert (hpre : pre (to_hoare doors_contract (controller a e)) ωd) by (destruct e; prove impure with airlock). split; auto. intros x ωj' run. cbn. split. + auto with freespec. + apply respectful_run_inv in run; auto. Qed.
|
Lemma
|
examples
|
[
"From Coq Require Import Arith.",
"From FreeSpec.Core Require Import Core CoreFacts."
] |
examples/airlock.v
|
controller_correct
| |
with_heap `{Monad m, MonadRefs m} : m string := let* ptr := make_ref 2 in assign ptr 3;; let* x := deref ptr in if Nat.eqb x 2 then pure "yes!" else pure "no!". (* Coq projects the [with_heap] polymorphic definition directly into [impure], thanks to its typeclass inference algorithm. *)
|
Definition
|
examples
|
[
"From FreeSpec.Core Require Import Core Extraction.",
"From FreeSpec.FFI Require Import FFI Refs.",
"From FreeSpec.Exec Require Import Exec.",
"From Coq Require Import String."
] |
examples/heap.v
|
with_heap
| |
with_heap_impure `{Provide ix REFS} : impure ix string := with_heap. Exec with_heap_impure.
|
Definition
|
examples
|
[
"From FreeSpec.Core Require Import Core Extraction.",
"From FreeSpec.FFI Require Import FFI Refs.",
"From FreeSpec.Exec Require Import Exec.",
"From Coq Require Import String."
] |
examples/heap.v
|
with_heap_impure
| |
MEMORY : interface := | ReadFrom (addr : address) : MEMORY cell | WriteTo (addr : address) (value : cell) : MEMORY unit.
|
Inductive
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
MEMORY
| |
DRAM : interface := | MakeDRAM {a : Type} (e : MEMORY a) : DRAM a.
|
Inductive
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
DRAM
| |
dram_read_from `{Provide ix DRAM} (addr : address) : impure ix cell := request (MakeDRAM (ReadFrom addr)).
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
dram_read_from
| |
dram_write_to `{Provide ix DRAM} (addr : address) (val : cell) : impure ix unit := request (MakeDRAM (WriteTo addr val)).
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
dram_write_to
| |
VGA : interface := | MakeVGA {a : Type} (e : MEMORY a) : VGA a.
|
Inductive
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
VGA
| |
vga_read_from `{Provide ix VGA} (addr : address) : impure ix cell := request (MakeVGA (ReadFrom addr)).
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
vga_read_from
| |
vga_write_to `{Provide ix VGA} (addr : address) (val : cell) : impure ix unit := request (MakeVGA (WriteTo addr val)). (** ** Memory Controller *)
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
vga_write_to
| |
smiact := smiact_set | smiact_unset.
|
Inductive
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
smiact
| |
MEMORY_CONTROLLER : interface := | Read (pin : smiact) (addr : address) : MEMORY_CONTROLLER cell | Write (pin : smiact) (addr : address) (value : cell) : MEMORY_CONTROLLER unit.
|
Inductive
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
MEMORY_CONTROLLER
| |
unwrap_sumbool {A B} (x : { A } + { B }) : bool := if x then true else false.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
unwrap_sumbool
| |
unwrap_sumbool : sumbool >-> bool.
|
Coercion
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
unwrap_sumbool
| |
dispatch {a} `{Provide3 ix (STORE bool) DRAM VGA} (addr : address) (unpriv : address -> impure ix a) (priv : address -> impure ix a) : impure ix a := let* reg := get in if (andb reg (in_smram addr)) then unpriv addr else priv addr.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
dispatch
| |
memory_controller `{Provide3 ix (STORE bool) DRAM VGA} : component MEMORY_CONTROLLER ix := fun _ op => match op with (** When SMIACT is set, the CPU is in SMM. According to its specification, the Memory Controller can simply forward the memory access to the DRAM. *) | Read smiact_set addr => dram_read_from addr | Write smiact_set addr val => dram_write_to addr val (** On the contrary, when the SMIACT is not set, the CPU is not in SMM. As a consequence, the memory controller implements a dedicated access control mechanism. If the requested address belongs to the SMRAM and if the SMRAM lock has been set, then the memory access is forwarded to the VGA. Otherwise, it is forwarded to the DRAM by default. This is specified in the [dispatch] function. *) | Read smiact_unset addr => dispatch addr vga_read_from dram_read_from | Write smiact_unset addr val => dispatch addr (fun x => vga_write_to x val) (fun x => dram_write_to x val) end. (** * Verifying our Subsystem *) (** ** Memory View *)
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
memory_controller
| |
memory_view : Type := address -> cell.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
memory_view
| |
update_memory_view_address (ω : memory_view) (addr : address) (content : cell) : memory_view := fun (addr' : address) => if address_eq_dec addr addr' then content else ω addr'. (** ** Specification *) (** *** DRAM Controller Specification *)
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
update_memory_view_address
| |
update_dram_view (ω : memory_view) (a : Type) (p : DRAM a) (_ : a) : memory_view := match p with | MakeDRAM (WriteTo a v) => update_memory_view_address ω a v | _ => ω end.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
update_dram_view
| |
dram_o_callee (ω : memory_view) : forall (a : Type), DRAM a -> a -> Prop := | read_in_smram (a : address) (v : cell) (prom : in_smram a = true -> v = ω a) : dram_o_callee ω cell (MakeDRAM (ReadFrom a)) (ω a) | write (a : address) (v : cell) (r : unit) : dram_o_callee ω unit (MakeDRAM (WriteTo a v)) r.
|
Inductive
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
dram_o_callee
| |
dram_specs : contract DRAM memory_view := {| witness_update := update_dram_view ; caller_obligation := no_caller_obligation ; callee_obligation := dram_o_callee |}. (** *** Memory Controller Specification *)
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
dram_specs
| |
update_memory_controller_view (ω : memory_view) (a : Type) (p : MEMORY_CONTROLLER a) (_ : a) : memory_view := match p with | Write smiact_set a v => update_memory_view_address ω a v | _ => ω end.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
update_memory_controller_view
| |
memory_controller_o_callee (ω : memory_view) : forall (a : Type) (p : MEMORY_CONTROLLER a) (x : a), Prop := | memory_controller_read_o_callee (pin : smiact) (addr : address) (content : cell) (prom : pin = smiact_set -> in_smram addr = true -> ω addr = content) : memory_controller_o_callee ω cell (Read pin addr) content | memory_controller_write_o_callee (pin : smiact) (addr : address) (content : cell) (b : unit) : memory_controller_o_callee ω unit (Write pin addr content) b.
|
Inductive
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
memory_controller_o_callee
| |
mc_specs : contract MEMORY_CONTROLLER memory_view := {| witness_update := update_memory_controller_view ; caller_obligation := no_caller_obligation ; callee_obligation := memory_controller_o_callee |}. (** ** Main Theorem *)
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
mc_specs
| |
smram_pred (ωmc : memory_view) (ωmem : memory_view * bool) : Prop := snd ωmem = true /\ forall (a : address), in_smram a = true -> ωmc a = (fst ωmem) a.
|
Definition
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
smram_pred
| |
memory_controller_respectful `{StrictProvide3 ix (STORE bool) VGA DRAM} (a : Type) (op : MEMORY_CONTROLLER a) (ω : memory_view) : pre (to_hoare (dram_specs * store_specs bool) (memory_controller a op)) (ω, true). Proof. destruct op; destruct pin; prove impure. Qed. #[local] Open Scope semantics_scope. #[local] Open Scope contract_scope.
|
Lemma
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
memory_controller_respectful
| |
simpl_tuple := match goal with | H: (_, _) = (_, _) |- _ => inversion H; subst; clear H end.
|
Ltac
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
simpl_tuple
| |
memory_controller_correct `{StrictProvide3 ix VGA (STORE bool) DRAM} (ω : memory_view) (sem : semantics ix) (comp : compliant_semantics (dram_specs * store_specs bool) (ω, true) sem) : compliant_semantics mc_specs ω (derive_semantics memory_controller sem). Proof. apply correct_component_derives_compliant_semantics with (pred := smram_pred) (cj := dram_specs * store_specs bool) (ωj := (ω, true)). + intros ωmc [ωdram b] [b_true pred] a e _. cbn in b_true. rewrite b_true in *; clear b_true. split. ++ apply memory_controller_respectful. ++ intros x [ωdram' st'] respectful. split. +++ destruct e; unroll_post respectful; repeat simpl_tuple; constructor. all: intros ?equ hin. all: lazymatch goal with | H: dram_o_callee _ _ (MakeDRAM (ReadFrom _)) _ |- _ => apply pred in hin; rewrite hin; inversion H; now ssubst | _ => discriminate end. +++ destruct e; unroll_post respectful; repeat simpl_tuple; split. all: try reflexivity. all: intros addr' hin; (now apply pred) || cbn. all: unfold update_memory_view_address; destruct address_eq_dec. all: try reflexivity. all: try now apply pred. rewrite <- (in_smram_morphism addr _ a) in hin. inversion H8; ssubst. cbn in equ. rewrite equ in hin. discriminate. + now constructor. + exact comp. Qed.
|
Theorem
|
examples
|
[
"From Coq Require Import ZArith.",
"From FreeSpec Require Import Core CoreFacts."
] |
examples/smram.v
|
memory_controller_correct
| |
COUNTER : interface := | Get : COUNTER nat | Inc : COUNTER unit | Dec : COUNTER unit.
|
Inductive
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
COUNTER
| |
counter_get `{Provide ix COUNTER} : impure ix nat := request Get.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
counter_get
| |
counter_inc `{Provide ix COUNTER} : impure ix unit := request Inc.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
counter_inc
| |
counter_dec `{Provide ix COUNTER} : impure ix unit := request Dec.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
counter_dec
| |
repeat {m : Type -> Type} `{Monad m} {a} (n : nat) (c : m a) : m unit := match n with | O => pure tt | S n => (c >>= fun _ => repeat n c) end.
|
Fixpoint
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
repeat
| |
update_counter (x : nat) : forall (a : Type), COUNTER a -> a -> nat := fun (a : Type) (p : COUNTER a) (_ : a) => match p with | Inc => S x | Dec => Nat.pred x | _ => x end.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
update_counter
| |
counter_o_caller (x : nat) : forall (a : Type), COUNTER a -> Prop := fun (a : Type) (p : COUNTER a) => match p with | Dec => 0 < x | _ => True end.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
counter_o_caller
| |
counter_o_callee (x : nat) : forall (a : Type), COUNTER a -> a -> Prop := fun (a : Type) (p : COUNTER a) (r : a) => match p, r with | Get, r => r = x | _, _ => True end.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
counter_o_callee
| |
counter_specs : contract COUNTER nat := {| witness_update := update_counter ; caller_obligation := counter_o_caller ; callee_obligation := counter_o_callee |}.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
counter_specs
| |
dec_then_inc `{Provide ix COUNTER} (x y : nat) : impure ix nat := repeat x counter_dec;; repeat y counter_inc;; counter_get.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
dec_then_inc
| |
dec_then_inc_respectful `{Provide ix COUNTER} (cpt x y : nat) (init_cpt : x < cpt) : pre (to_hoare counter_specs $ dec_then_inc x y) cpt. Proof. prove impure. + revert x cpt init_cpt. induction x; intros cpt init_cpt; prove impure. ++ cbn. transitivity (S x); auto. apply PeanoNat.Nat.lt_0_succ. ++ apply IHx. now apply Lt.lt_pred. + clear init_cpt hpost cpt. revert ω; induction y; intros cpt; prove impure. Qed.
|
Theorem
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
dec_then_inc_respectful
| |
repeat_dec_cpt_output `(run : post (to_hoare counter_specs $ repeat x counter_dec) cpt r cpt') (init_cpt : x < cpt) : cpt' = cpt - x. Proof. revert init_cpt run; revert cpt; induction x; intros cpt init_cpt run. + unroll_post run. now rewrite PeanoNat.Nat.sub_0_r. + unroll_post run. apply IHx in run; [| lia]. subst. lia. Qed. #[local] Hint Resolve repeat_dec_cpt_output : counter.
|
Lemma
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
repeat_dec_cpt_output
| |
repeat_inc_cpt_output `(run : post (to_hoare counter_specs $ repeat x counter_inc) cpt r cpt') : cpt' = cpt + x. Proof. revert run; revert cpt; induction x; intros cpt run. + unroll_post run. now rewrite PeanoNat.Nat.add_0_r. + unroll_post run. apply IHx in run. lia. Qed. #[local] Hint Resolve repeat_inc_cpt_output : counter.
|
Lemma
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
repeat_inc_cpt_output
| |
get_cpt_output (cpt x cpt' : nat) (run : post (to_hoare counter_specs $ counter_get) cpt x cpt') : cpt' = cpt. Proof. now unroll_post run. Qed. #[local] Hint Resolve get_cpt_output : counter. #[local] Opaque counter_get.
|
Lemma
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
get_cpt_output
| |
dec_then_inc_cpt_output (cpt x y cpt' r : nat) (init_cpt : x < cpt) (run : post (to_hoare counter_specs $ dec_then_inc x y) cpt r cpt') : cpt' = cpt - x + y. Proof. unroll_post run. apply repeat_dec_cpt_output in run0; [| exact init_cpt ]. apply repeat_inc_cpt_output in run. apply get_cpt_output in run2. lia. Qed. #[local] Transparent counter_get.
|
Theorem
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
dec_then_inc_cpt_output
| |
dec_then_inc_output (cpt x y cpt' r : nat) (init_cpt : x < cpt) (run : post (to_hoare counter_specs $ dec_then_inc x y) cpt r cpt') : cpt' = r. Proof. now unroll_post run. Qed.
|
Theorem
|
tests
|
[
"From FreeSpec.Core Require Import CoreFacts.",
"From Coq Require Import Lia."
] |
tests/core_tactics.v
|
dec_then_inc_output
| |
enum {a b ix} (p : a -> impure ix b) (l : list a) {measure (length l)} : impure ix unit := match l with | nil => pure tt | cons x rst => p x;; enum p rst end. Fail Timeout 1 Exec (enum eval [true; true; false]). (** We have provided an attribute for [Exec] which slightly changes the behavior of the command (see the documentation of [FreeSpec.Exec.Exec]). Note that this is not a silver bullet, as some computations may behave just fine with the default behavior, but on the contrary take forever to compute with this option enabled. *) #[reduce(nf)] Exec (enum eval [true; true; false]).
|
Fixpoint
|
tests
|
[
"From FreeSpec.Exec Require Import Exec Eval.",
"From Coq.Program Require Import Wf.",
"From Coq Require Import List."
] |
tests/program_fixpoint.v
|
enum
| |
p1 : forall `{Provide ix}, impure ix nat.
|
Axiom
|
tests
|
[
"From FreeSpec.Core Require Import Core."
] |
tests/provide_notation.v
|
p1
| |
p2 : forall `{Provide2 ix i3 i1}, impure ix nat.
|
Axiom
|
tests
|
[
"From FreeSpec.Core Require Import Core."
] |
tests/provide_notation.v
|
p2
| |
p `{Provide4 ix i1 i4 i3 i2} : impure ix nat := p1;; p2.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import Core."
] |
tests/provide_notation.v
|
p
| |
provide_notation_test_1 {a} `{StrictProvide3 ix i1 i2 i3} (p : i2 a) : ix a := inj_p p.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import Core."
] |
tests/provide_notation.v
|
provide_notation_test_1
| |
provide_notation_test_2 `{StrictProvide3 ix i1 i2 i3} : StrictProvide2 ix i2 i3. Proof. typeclasses eauto. Qed.
|
Lemma
|
tests
|
[
"From FreeSpec.Core Require Import Core."
] |
tests/provide_notation.v
|
provide_notation_test_2
| |
provide_notation_test_3 {a} (i1 i2 i3 : interface) (p : i2 a) : (iplus (iplus i1 i2) i3) a := inj_p p.
|
Definition
|
tests
|
[
"From FreeSpec.Core Require Import Core."
] |
tests/provide_notation.v
|
provide_notation_test_3
| |
provide_notation_test_4 (i1 i2 i3 : interface) : Provide (i1 + (i2 + i3)) i2. Proof. typeclasses eauto. Qed.
|
Lemma
|
tests
|
[
"From FreeSpec.Core Require Import Core."
] |
tests/provide_notation.v
|
provide_notation_test_4
| |
provide_notation_test_5 (i1 i2 i3 : interface) : StrictProvide2 (i1 + i2 + i3) i2 i1. Proof. typeclasses eauto. Qed.
|
Lemma
|
tests
|
[
"From FreeSpec.Core Require Import Core."
] |
tests/provide_notation.v
|
provide_notation_test_5
| |
component (i j : interface) : Type := forall (α : Type), i α -> impure j α. (** The similarity between FreeSpec components and operational semantics may be confusing at first. The main difference between the two concepts is simple: operational semantics are self-contained terms which can, alone, be used to interpret impure computations of a given interface. Components, on the other hand, are not self-contained. Without an operational semantics for [j], we cannot use a component [c : component i j] to interpret an impure computation using [i]. Given an initial semantics for [j], we can however derive an operational semantics for [i] from a component [c]. *) (** * Semantics Derivation *) CoFixpoint derive_semantics {i j} (c : component i j) (sem : semantics j) : semantics i := mk_semantics (fun a p => let (res, next) := runState (to_state $ c a p) sem in (res, derive_semantics c next)). (** So, [semprod] on the one hand allows for composing operational semantics horizontally, and [derive_semantics] allows for composing components vertically. Using these two operators, we can model a complete system in a hierarchical and modular manner, by defining each of its components independently, then composing them together with [semprod] and [derive_semantics]. *)
|
Definition
|
theories
|
[
"From ExtLib Require Import StateMonad.",
"From FreeSpec.Core Require Export Interface Semantics Impure."
] |
theories/Core/Component.v
|
component
| |
bootstrap {i} (c : component i iempty) : semantics i := derive_semantics c iempty_semantics. (** * In-place Primitives Handling *) (** The function [with_component] allows for locally providing an additional interface [j] within an impure computation of type [impure ix a]. The primitives of [j] will be handled by impure computations, i.e., a component. of type [c : compoment j ix s]. *) #[local]
|
Definition
|
theories
|
[
"From ExtLib Require Import StateMonad.",
"From FreeSpec.Core Require Export Interface Semantics Impure."
] |
theories/Core/Component.v
|
bootstrap
| |
with_component_aux {ix j α} (c : component j ix) (p : impure (ix + j) α) : impure ix α := match p with | local x => local x | request_then (in_right e) f => c _ e >>= fun res => with_component_aux c (f res) | request_then (in_left e) f => request_then e (fun x => with_component_aux c (f x)) end.
|
Fixpoint
|
theories
|
[
"From ExtLib Require Import StateMonad.",
"From FreeSpec.Core Require Export Interface Semantics Impure."
] |
theories/Core/Component.v
|
with_component_aux
| |
with_component {ix j α} (initializer : impure ix unit) (c : component j ix) (finalizer : impure ix unit) (p : impure (ix + j) α) : impure ix α := initializer;; let* res := with_component_aux c p in finalizer;; pure res.
|
Definition
|
theories
|
[
"From ExtLib Require Import StateMonad.",
"From FreeSpec.Core Require Export Interface Semantics Impure."
] |
theories/Core/Component.v
|
with_component
| |
derive_semantics_equ `(c : component i j) (sem : semantics j) : (derive_semantics c sem === derive_semantics' c sem)%semantics. Proof. revert sem. cofix aux; intros sem. constructor; intros a e; cbn; unfold derive_semantics; unfold eval_effect; unfold exec_effect; unfold run_effect; unfold evalState; unfold execState; destruct runState. + reflexivity. + apply aux. Qed. (** ** Component Correctness *) (** We consider a component [c : component i j s], meaning [c] exposes an interface [i], uses an interface [j], and carries an internal state of type [s]. << c : component i j s i +---------------------+ j | | | | +------>| | st : s |----->| | | | | +---------------------+ >> We say [c] is correct wrt. [ci] (a contract for [i]) and [cj] (a contract for [i]) iff given primitives which satisfies the caller obligation of [ci], [c] will - use respectful impure computations wrt. [cj] - compute results which satisfy [ci] callee obligations, assuming it can rely on a semantics of [j] which complies with [cj] The two witness states [ωi : Ωi] (for [speci]) and [ωj : Ωj] (for [specj]), and [st : s] the internal state of [c] remained implicit in the previous sentence. In practice, we associate them together by means of a dedicated predicate [pred]. It is expected that [pred] is an invariant throughout [c]'s life, meaning that as long as [c] computes result for legitimate effects (wrt. [speci] effects, the updated values of [ωi], [ωj] and [st] continue to satisfy [pred]. *)
|
Remark
|
theories
|
[
"From ExtLib Require Import StateMonad.",
"From FreeSpec.Core Require Import Contract HoareFacts SemanticsFacts InstrumentFacts.",
"From FreeSpec Require Export Component."
] |
theories/Core/ComponentFacts.v
|
derive_semantics_equ
| |
correct_component `{MayProvide jx j} `(c : component i jx) `(ci : contract i Ωi) `(cj : contract j Ωj) (pred : Ωi -> Ωj -> Prop) : Prop := forall (ωi : Ωi) (ωj : Ωj) (init : pred ωi ωj) `(e : i α) (o_caller : caller_obligation ci ωi e), pre (to_hoare cj $ c α e) ωj /\ forall (x : α) (ωj' : Ωj) (run : post (to_hoare cj $ c α e) ωj x ωj'), callee_obligation ci ωi e x /\ pred (witness_update ci ωi e x) ωj'. (** Once we have proven [c] is correct wrt. to [speci] and [specj] with [pred] acting as an invariant throughout [c] life, we show we can derive a semantics from [c] with an initial state [st] which complies to [speci] in accordance to [ωi] if we use a semantics of [j] which complies to [specj] in accordance to [ωj], where [pred ωi st ωj] is satisfied. *)
|
Definition
|
theories
|
[
"From ExtLib Require Import StateMonad.",
"From FreeSpec.Core Require Import Contract HoareFacts SemanticsFacts InstrumentFacts.",
"From FreeSpec Require Export Component."
] |
theories/Core/ComponentFacts.v
|
correct_component
| |
correct_component_derives_compliant_semantics `{MayProvide jx j} `(c : component i jx) `(ci : contract i Ωi) `(cj : contract j Ωj) (pred : Ωi -> Ωj -> Prop) (correct : correct_component c ci cj pred) (ωi : Ωi) (ωj : Ωj) (inv : pred ωi ωj) (sem : semantics jx) (comp : compliant_semantics cj ωj sem) : compliant_semantics ci ωi (derive_semantics c sem). Proof. rewrite derive_semantics_equ. revert ωi ωj inv sem comp. cofix correct_component_derives_compliant_semantics. intros ωi ωj inv sem comp. unfold correct_component in correct. specialize (correct ωi ωj inv). constructor; intros a e req; specialize (correct a e req); destruct correct as [trust run]. + eapply run. cbn. ++ rewrite instrument_to_state_eval_morphism with (c0 := cj) (ω := ωj). now apply instrument_satisfies_hoare. + eapply correct_component_derives_compliant_semantics. ++ apply run. cbn. erewrite instrument_to_state_eval_morphism. apply instrument_satisfies_hoare. +++ exact comp. +++ exact trust. ++ erewrite instrument_to_state_exec_morphism. apply instrument_preserves_compliance. +++ exact comp. +++ apply trust. Qed.
|
Lemma
|
theories
|
[
"From ExtLib Require Import StateMonad.",
"From FreeSpec.Core Require Import Contract HoareFacts SemanticsFacts InstrumentFacts.",
"From FreeSpec Require Export Component."
] |
theories/Core/ComponentFacts.v
|
correct_component_derives_compliant_semantics
| |
contract (i : interface) (Ω : Type) : Type := make_contract { witness_update (ω : Ω) : forall (α : Type), i α -> α -> Ω ; caller_obligation (ω : Ω) : forall (α : Type), i α -> Prop ; callee_obligation (ω : Ω) : forall (α : Type), i α -> α -> Prop }. Declare Scope contract_scope. Bind Scope contract_scope with contract. Arguments make_contract [i Ω] (_ _ _). Arguments witness_update [i Ω] (c ω) [α] (_ _). Arguments caller_obligation [i Ω] (c ω) [α] (_). Arguments callee_obligation [i Ω] (c ω) [α] (_ _). (** The most simple contract we can define is the one that requires anything both for the impure computations which uses the primitives of a given interface, and for the operational semantics which compute results for these primitives. *)
|
Record
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
contract
| |
const_witness {i} := fun (u : unit) (α : Type) (e : i α) (x : α) => u.
|
Definition
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
const_witness
| |
no_caller_obligation {i Ω} (ω : Ω) (α : Type) (e : i α) : Prop := | mk_no_caller_obligation : no_caller_obligation ω α e. #[global] Hint Constructors no_caller_obligation : freespec.
|
Inductive
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
no_caller_obligation
| |
no_callee_obligation {i Ω} (ω : Ω) (α : Type) (e : i α) (x : α) : Prop := | mk_no_callee_obligation : no_callee_obligation ω α e x. #[global] Hint Constructors no_callee_obligation : freespec.
|
Inductive
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
no_callee_obligation
| |
no_contract (i : interface) : contract i unit := {| witness_update := const_witness ; caller_obligation := no_caller_obligation ; callee_obligation := no_callee_obligation |}. (** A similar —and as simple— contract is the one that forbids the use of a given interface. *)
|
Definition
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
no_contract
| |
do_no_use {i Ω} (ω : Ω) (α : Type) (e : i α) : Prop := False.
|
Definition
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
do_no_use
| |
forbid_specs (i : interface) : contract i unit := {| witness_update := const_witness ; caller_obligation := do_no_use ; callee_obligation := no_callee_obligation |}. (** * Contract Equivalence *)
|
Definition
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
forbid_specs
| |
contract_caller_equ `(c1 : contract i Ω1) `(c2 : contract i Ω2) (f : Ω1 -> Ω2) : Prop := forall ω1 a (p : i a), caller_obligation c1 ω1 p <-> caller_obligation c2 (f ω1) p.
|
Definition
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
contract_caller_equ
| |
contract_callee_equ `(c1 : contract i Ω1) `(c2 : contract i Ω2) (f : Ω1 -> Ω2) : Prop := forall ω1 a (p : i a) x, callee_obligation c1 ω1 p x <-> callee_obligation c2 (f ω1) p x.
|
Definition
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
contract_callee_equ
| |
contract_witness_equ `(c1 : contract i Ω1) `(c2 : contract i Ω2) (f : Ω1 -> Ω2) : Prop := forall ω1 a (p : i a) x, f (witness_update c1 ω1 p x) = witness_update c2 (f ω1) p x.
|
Definition
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
contract_witness_equ
| |
contract_equ `(c1 : contract i Ω1) `(c2 : contract i Ω2) : Type := | mk_contract_equ (f : Ω1 -> Ω2) (g : Ω2 -> Ω1) (iso1 : forall x, f (g x) = x) (iso2 : forall x, g (f x) = x) (caller_equ : contract_caller_equ c1 c2 f) (callee_equ : contract_callee_equ c1 c2 f) (witness_equ : contract_witness_equ c1 c2 f) : contract_equ c1 c2.
|
Inductive
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
contract_equ
| |
contract_iso_lr `(c1 : contract i Ω1) `(c2 : contract i Ω2) (equ : contract_equ c1 c2) (ω1 : Ω1) : Ω2 := match equ with | @mk_contract_equ _ _ _ _ _ f _ _ _ _ _ _ => f ω1 end.
|
Definition
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
contract_iso_lr
| |
contract_iso_rl `(c1 : contract i Ω1) `(c2 : contract i Ω2) (equ : contract_equ c1 c2) (ω2 : Ω2) : Ω1 := match equ with | @mk_contract_equ _ _ _ _ _ _ g _ _ _ _ _ => g ω2 end. Arguments contract_iso_lr {i Ω1 c1 Ω2 c2} (equ ω1). Arguments contract_iso_rl {i Ω1 c1 Ω2 c2} (equ ω2).
|
Definition
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
contract_iso_rl
| |
contract_equ_refl `(c : contract i Ω) : contract_equ c c. Proof. apply mk_contract_equ with (f:=fun x => x) (g:=fun x => x); auto. + now intros ω α p. + now intros ω α p x. + now intros ω α p x. Defined.
|
Lemma
|
theories
|
[
"From Coq Require Import Setoid Morphisms.",
"From ExtLib Require Import StateMonad MonadState MonadTrans.",
"From FreeSpec.Core Require Import Interface Impure Semantics Component."
] |
theories/Core/Contract.v
|
contract_equ_refl
|
Structured dataset from FreeSpec — Modular verification of effectful programs.
279 declarations extracted from Coq source files.
| Column | Type | Description |
|---|---|---|
| fact | string | Declaration body |
| type | string | Lemma, Definition, Theorem, etc. |
| library | string | Source module |
| imports | list | Required imports |
| filename | string | Source file path |
| symbolic_name | string | Identifier |