Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
12
6.75k
type
stringclasses
14 values
library
stringclasses
3 values
imports
listlengths
0
17
filename
stringclasses
26 values
symbolic_name
stringlengths
2
34
docstring
stringclasses
1 value
euclidean_division : forall x y:R, y <> 0 -> exists k : Z, (exists r : R, x = IZR k * y + r /\ 0 <= r < Rabs y). Proof. unfold not; intros x y H. assert (H0: y > 0 \/ y <= 0). { hecrush use: @Rtotal_order unfold: Rle. } destruct H0 as [H0|H0]. - pose (k := (up (x / y) - 1)%Z). exists k. exists (x - IZR k * y). assert (HH: IZR k = IZR (up (x / y)) - 1). { assert (IZR k = IZR (up (x / y)) - IZR 1%Z). { qauto use: @Z_R_minus. } sauto. } rewrite HH; clear HH. clear k. split. + qauto use: RIneq.Rplus_minus. + assert (HH: x - (IZR (up (x / y)) - 1) * y = x - IZR (up (x / y)) * y + y) by lra. rewrite HH; clear HH. split. * assert (IZR (up (x / y)) * y <= y + x). { assert (IZR (up (x / y)) <= 1 + (x / y)). { generalize (archimed (x / y)); sintuition. assert (IZR (up (x / y)) - (x / y) + (x / y) <= 1 + (x / y)). { qauto use: @Rplus_le_compat_r. } qauto use: Rplus_opp_l, Rplus_assoc, Rplus_0_r unfold: Rdefinitions.Rminus. } assert (IZR (up (x / y)) * y <= (1 + x / y) * y) by sauto. assert (IZR (up (x / y)) * y <= y + ((x / y) * y)). { qauto use: @Rmult_1_l, @Rmult_plus_distr_r. } hfcrush use: @Rmult_1_r, @Rmult_assoc, @Rinv_l_sym unfold: Rdiv. } lra. * assert (IZR (up (x / y)) * y > x). { assert (IZR (up (x / y)) > x / y). { hauto use: @archimed. } assert (IZR (up (x / y)) * y > (x / y) * y). { hauto use: @Rmult_gt_compat_r. } hfcrush use: @Rmult_1_r, @Rmult_assoc, @Rmult_comm, @Rinv_r_sym unfold: Rdiv. } assert (HH: Rabs y = y). { (* Unset Hammer CVC4. hammer. *) (* If you get an unreconstructible proof, it might help to disable the prover which found it. *) hauto ered: off use: @Rlt_asym unfold: Rabs, Rgt. } rewrite HH; clear HH. lra. - pose (k := (1 - up (x / -y))%Z). exists k. exists (x - IZR k * y). assert (HH: IZR k = 1 - IZR (up (x / -y))). { assert (IZR k = IZR 1 - IZR (up (x / -y))). { hauto ered: off use: @Z_R_minus unfold: Rminus, BinIntDef.Z.sub, Rdiv. } sauto. } rewrite HH; clear HH. clear k. split. + qauto use: @Rplus_minus. + assert (HH: x - (1 - IZR (up (x / - y))) * y = x - y + IZR (up (x / -y)) * y) by lra. rewrite HH; clear HH. split. * assert (IZR (up (x / -y)) * y >= y - x). { assert (IZR (up (x / -y)) <= 1 + (x / -y)). { generalize (archimed (x / -y)); sintuition. assert (IZR (up (x / -y)) - (x / -y) + (x / -y) <= 1 + (x / -y)). { hauto use: @Rplus_comm, @Rplus_le_compat_l. } hcrush use: @Rplus_opp_l, @Rplus_assoc, @Rplus_0_r unfold: Rminus, Rmax. } assert (y < 0) by sauto. assert (IZR (up (x / - y)) * y >= y + (x / - y) * y). { assert (IZR (up (x / - y)) * (-y) <= (1 + (x / - y)) * (-y)). { hauto use: @Ropp_0_ge_le_contravar, @Rmult_le_compat_r, @RIneq.Rle_ge. } assert (HH: IZR (up (x / - y)) * (-y) = - (IZR (up (x / - y)) * y)) by lra. rewrite HH in *; clear HH. assert (HH: (1 + (x / - y)) * (-y) = - (y + (x / -y) * y)) by lra. rewrite HH in *; clear HH. hfcrush use: @Rle_ge, @Ropp_le_cancel unfold: Rle, Rge, Rgt. } assert (HH: y + x / - y * y = y - x). { assert (x / - y * - y = x). { assert (HH1: - y > 0) by lra. assert (HH2: forall u, u <> 0 -> (x / u) * u = x). { hfcrush use: @Rinv_l_sym, @Rmult_1_r, @Rmult_assoc unfold: Rdiv. } (* Unset Hammer CVC4. hammer. *) qauto use: @Ropp_gt_cancel, @atan_right_inv, @Rgt_not_eq unfold: atan, Rdiv. } qauto use: @Ropp_involutive, @Ropp_mult_distr_r_reverse unfold: Rminus. } rewrite HH in *; clear HH. sauto. } lra. * assert (HH: Rabs y = -y). { qauto use: @Rabs_left1. } rewrite HH; clear HH. assert (IZR (up (x / -y)) * y < -x). { assert (IZR (up (x / -y)) > x / -y). { hfcrush use: @archimed. } assert (IZR (up (x / -y)) * -y > (x / -y) * -y). { hauto ered: off use: @Rlt_irrefl, @Rmult_gt_compat_r, @Rabs_pos, @Rabs_pos_lt, @Rle_lt_trans unfold: Rabs, Rle, Rgt. } assert (HH: x / - y * - y = x). { assert (- y <> 0). { hauto use: @Rplus_0_r, @Rplus_opp_r. } assert (forall u, u <> 0 -> (x / u) * u = x). { hfcrush use: @Rmult_1_r, @Rinv_l_sym, @Rmult_assoc unfold: Rdiv. } sauto. } rewrite HH in *; clear HH. lra. } lra. Qed.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Reals.", "Require Import Lra." ]
examples/euclidean_division.v
euclidean_division
lem_false : False. Proof. hammer. Qed.*) (*
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_false
lem_classic : forall P : Prop, P \/ ~P. Proof. hammer. Qed.*) Require Import Arith. (* disable the preliminary sauto tactic *) Set Hammer SAutoLimit 0.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_classic
lem_1 : le 1 2. hammer. Restart. scongruence use: Nat.lt_0_2 unfold: lt. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_1
lem_2 : forall n : nat, Nat.Odd n \/ Nat.Odd (n + 1). hammer. Restart. hauto lq: on use: Nat.Even_or_Odd, Nat.add_1_r, Nat.Odd_succ. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_2
lem_2_1 : forall n : nat, Nat.Even n \/ Nat.Even (n + 1). hammer. Restart. hauto lq: on use: Nat.add_1_r, Nat.Even_or_Odd, Nat.Even_succ. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_2_1
lem_3 : le 2 3. hammer. Restart. srun eauto use: Nat.le_succ_diag_r unfold: Init.Nat.two. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_3
lem_4 : le 3 10. hammer. Restart. sfirstorder use: Nat.nle_succ_0, Nat.le_gt_cases, Nat.lt_succ_r, Nat.succ_le_mono, Nat.log2_up_2 unfold: Init.Nat.two. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_4
mult_1 : forall m n k : nat, m * n + k = k + n * m. Proof. hammer. Restart. scongruence use: Nat.mul_comm, Nat.add_comm. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
mult_1
lem_rew : forall m n : nat, 1 + n + m + 1 = m + 2 + n. Proof. hammer. Restart. strivial use: Nat.add_comm, Nat.add_1_r, Nat.add_shuffle1, Nat.add_assoc. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_rew
lem_pow : forall n : nat, 3 * 3 ^ n = 3 ^ (n + 1). Proof. hammer. Restart. qauto use: Nat.pow_succ_r, Nat.le_0_l, Nat.add_1_r. Qed. Require Coq.Reals.RIneq. Require Coq.Reals.Raxioms. Require Coq.Reals.Rtrigo1.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_pow
cos_decreasing_1 : forall y x : Rdefinitions.R, Rdefinitions.Rlt x y -> Rdefinitions.Rle x Rtrigo1.PI -> Rdefinitions.Rge y Rdefinitions.R0 -> Rdefinitions.Rle y Rtrigo1.PI -> Rdefinitions.Rge x Rdefinitions.R0 -> Rdefinitions.Rlt (Rtrigo_def.cos y) (Rtrigo_def.cos x). Proof. (* hammer. Restart. *) hauto using (@Reals.Rtrigo1.cos_decreasing_1, @Reals.RIneq.Rge_le). Qed. Require ZArith.BinInt.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
cos_decreasing_1
max_lub : forall m p k n : BinNums.Z, BinInt.Z.ge p m -> BinInt.Z.le n p -> BinInt.Z.le (BinInt.Z.max n m) p. Proof. hammer. Restart. srun eauto use: BinInt.Z.max_lub, BinInt.Z.ge_le. Qed. Require Reals.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
max_lub
lem_iso : forall x1 y1 x2 y2 theta : Rdefinitions.R, Rgeom.dist_euc x1 y1 x2 y2 = Rgeom.dist_euc (Rgeom.xr x1 y1 theta) (Rgeom.yr x1 y1 theta) (Rgeom.xr x2 y2 theta) (Rgeom.yr x2 y2 theta). Proof. hammer. Restart. scongruence use: Rgeom.isometric_rotation. Qed. Require Import List.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_iso
lem_lst : forall {A} (x : A) l1 l2 (P : A -> Prop), In x (l1 ++ l2) -> (forall y, In y l1 -> P y) -> (forall y, In y l2 -> P y) -> P x. Proof. hammer. Restart. qauto use: in_app_iff. (* `firstorder with datatypes' does not work *) Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_lst
lem_lst2 : forall {A} (y1 y2 y3 : A) l l' z, In z l \/ In z l' -> In z (y1 :: y2 :: l ++ y3 :: l'). Proof. hammer. Restart. hauto lq: on use: in_app_iff, in_or_app, not_in_cons, in_cons, Add_in unfold: app. (* `firstorder with datatypes' does not work *) Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_lst2
lem_lst3 : forall {A} (l : list A), length (tl l) <= length l. Proof. hammer. Restart. qauto use: le_S, Nat.le_0_l, le_n unfold: tl, length. Qed. Require NArith.Ndec.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_lst3
Nleb_alt : forall b a c : BinNums.N, Ndec.Nleb b c = BinNat.N.leb b c /\ Ndec.Nleb a b = BinNat.N.leb a b. Proof. hammer. Restart. srun eauto use: Ndec.Nleb_alt. Qed. Require NArith.BinNat.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
Nleb_alt
setbit_iff : forall m a n : BinNums.N, n = m \/ true = BinNat.N.testbit a m <-> BinNat.N.testbit (BinNat.N.setbit a n) m = true. Proof. hammer. Restart. hfcrush use: BinNat.N.setbit_iff. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
setbit_iff
in_int_p_Sq : forall r p q a : nat, a >= 0 -> Between.in_int p (S q) r -> Between.in_int p q r \/ r = q \/ a = 0. Proof. hammer. Restart. hauto lq: on use: in_int_p_Sq. Qed. Require Reals.Rminmax.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
in_int_p_Sq
min_spec_1 : forall n m : Rdefinitions.R, (Rdefinitions.Rle m n /\ Rbasic_fun.Rmin m m = m) \/ (Rdefinitions.Rlt n m /\ Rbasic_fun.Rmin m n = n). Proof. hammer. Restart. hauto use: RIneq.Rnot_le_lt unfold: Rbasic_fun.Rmin. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
min_spec_1
min_spec_2 : forall n m : Rdefinitions.R, (Rdefinitions.Rle m n /\ Rbasic_fun.Rmin m n = m) \/ (Rdefinitions.Rlt n m /\ Rbasic_fun.Rmin m n = n). Proof. hammer. Restart. hauto use: RIneq.Rnot_le_lt unfold: Rbasic_fun.Rmin. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
min_spec_2
incl_app : forall (A : Type) (n l m : list A), List.incl l n /\ List.incl m n -> List.incl (l ++ m) n. Proof. hammer. Restart. strivial use: incl_app. Qed. Require Reals.Rpower.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
incl_app
exp_Ropp : forall x y : Rdefinitions.R, Rdefinitions.Rinv (Rtrigo_def.exp x) = Rtrigo_def.exp (Rdefinitions.Ropp x). Proof. hammer. Restart. srun eauto use: Rpower.exp_Ropp. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
exp_Ropp
lem_lst_1 : forall (A : Type) (l l' : list A), List.NoDup (l ++ l') -> List.NoDup l. Proof. (* The hammer can't do induction. If induction is necessary to carry out the proof, then one needs to start the induction manually. *) induction l'. - hammer. Undo. scongruence use: app_nil_end. - hammer. Undo. srun eauto use: NoDup_remove_1. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
lem_lst_1
NoDup_remove_2 : forall (A : Type) (a : A) (l' l : list A), List.NoDup (l ++ a :: l') -> ~ List.In a (l ++ l') /\ List.NoDup (l ++ l') /\ List.NoDup l. Proof. hammer. Restart. strivial use: lem_lst_1, NoDup_remove. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
NoDup_remove_2
leb_compare2 : forall m n : nat, PeanoNat.Nat.leb n m = true <-> (PeanoNat.Nat.compare n m = Lt \/ PeanoNat.Nat.compare n m = Eq). Proof. (* hammer. Restart. *) (* Sometimes the tactics cannot reconstruct the goal, but the returned dependencies may still be used to create the proof semi-manually. *) assert (forall c : Datatypes.comparison, c = Eq \/ c = Lt \/ c = Gt) by sauto inv: Datatypes.comparison. hauto erew: off use: Compare_dec.leb_compare. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
leb_compare2
leb_1 : forall m n : nat, PeanoNat.Nat.leb m n = true <-> m <= n. Proof. hammer. Restart. srun eauto use: Nat.leb_le, Nat.leb_nle, leb_correct, leb_complete. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
leb_1
leb_2 : forall m n : nat, PeanoNat.Nat.leb m n = false <-> m > n. Proof. hammer. Restart. srun eauto use: leb_iff_conv, leb_correct_conv unfold: gt. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
leb_2
incl_appl_1 : forall (A : Type) (l m n : list A), List.incl l n -> List.incl l (n ++ m) /\ List.incl l (m ++ n) /\ List.incl l (l ++ l). Proof. hammer. Restart. strivial use: incl_appl, incl_refl, incl_appr. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
incl_appl_1
in_int_lt2 : forall p q r : nat, Between.in_int p q r -> q >= p /\ r >= p /\ r <= q. Proof. hammer. Restart. sfirstorder use: Nat.lt_le_incl, in_int_lt unfold: ge, in_int. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
in_int_lt2
nat_compare_eq : forall n m : nat, PeanoNat.Nat.compare n m = Eq <-> n = m. Proof. hammer. Restart. srun eauto use: Nat.compare_eq_iff. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
nat_compare_eq
Forall_1 : forall (A : Type) (P : A -> Prop) (a : A), forall (l l' : list A), List.Forall P l /\ List.Forall P l' /\ P a -> List.Forall P (l ++ a :: l'). Proof. induction l. - hammer. Undo. strivial use: app_nil_l, Forall_cons. - (* hammer. Undo. *) sauto use: Forall_cons. Restart. induction l; qsimpl. Qed. (* Neither the base case nor the inductive step may be solved using 'firstorder with datatypes'. *)
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
Forall_1
Forall_impl : forall (A : Type) (P : A -> Prop), forall l : list A, List.Forall P l -> List.Forall P (l ++ l). Proof. induction l. - hammer. Undo. srun eauto use: app_nil_end. - hammer. Undo. qauto use: Forall_inv, Forall_inv_tail, Forall_1. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
Forall_impl
minus_neq_O : forall n i:nat, (i < n) -> (n - i) <> 0. Proof. hammer. Undo. srun eauto use: Nat.sub_gt. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import List." ]
examples/hammer_tests.v
minus_neq_O
lem_0 : forall n m, n <> 0 -> m * m = 2 * n * n -> m < 2 * n. Proof. intros n m H H0. destruct (lt_dec m (2 * n)) as [|H1]; try strivial. exfalso. assert (m >= 2 * n) by lia. clear H1. assert (m * m >= 2 * n * (2 * n)). { assert (m * m >= 2 * n * m). { hauto use: @Nat.le_0_l, @Nat.mul_le_mono_nonneg_r unfold: ge. } assert (2 * n * m >= 2 * n * (2 * n)). { hauto use: @Nat.le_0_l, @Nat.mul_le_mono_nonneg_l unfold: ge. } eauto with arith. } sauto. Qed.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Reals.", "Require Import Arith.", "Require Import Wf_nat.", "Require Import Even.", "Require Import Lia." ]
examples/sqrt2_irrational.v
lem_0
lem_main : forall n m, n * n = 2 * m * m -> m = 0. Proof. intro n; pattern n; apply lt_wf_ind; clear n. intros n H m H0. destruct (Nat.eq_dec n 0) as [H1|H1]; subst. - sauto. - destruct (even_odd_cor n) as [k HH]. destruct HH as [H2|H2]; subst. + assert (2 * k * k = m * m) by lia. assert (m < 2 * k). { qauto use: @Nat.mul_0_r, @lem_0. } sauto. + sauto. Qed.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Reals.", "Require Import Arith.", "Require Import Wf_nat.", "Require Import Even.", "Require Import Lia." ]
examples/sqrt2_irrational.v
lem_main
thm_irrational : forall (p q : nat), q <> 0 -> sqrt 2 <> (INR p / INR q)%R. Proof. unfold not. intros p q H H0. assert (2 * q * q = p * p). { assert (((sqrt 2) ^ 2)%R = 2%R). { hauto use: @Rsqr_sqrt, @Rlt_R0_R2, @Rsqr_pow2 unfold: Rle. } assert (((INR p / INR q) ^ 2)%R = ((INR p / INR q) * (INR p / INR q))%R). { qauto use: @Rsqr_pow2 unfold: Rsqr. } assert (((INR p / INR q) * (INR p / INR q))%R = ((INR p * INR p) / (INR q * INR q))%R). { hauto use: @Rsqr_div, @not_0_INR. } assert (HH: 2%R = ((INR p * INR p) / (INR q * INR q))%R) by sauto. assert (INR q <> 0%R). { qauto use: @INR_not_0, @INR_eq. } assert (HH2: (2 * INR q * INR q)%R = (INR p * INR p)%R). { rewrite HH; rewrite Rmult_assoc. hfcrush use: @Rinv_l_sym, @Rmult_1_r, @Rmult_integral_contrapositive_currified, @Rmult_assoc unfold: Rsqr, Rdiv. } clear -HH2. assert (forall a b, INR a = INR b -> a = b). { qauto use: @INR_eq. } assert (INR (2 * q * q) = INR (p * p)). { assert (INR (p * p) = (INR p * INR p)%R). { hfcrush use: @mult_INR. } assert (INR (2 * q * q) = (2 * INR q * INR q)%R). { assert (INR (2 * q * q) = (INR 2 * INR q * INR q)%R). { hauto ered: off use: @mult_INR. } sauto. } sauto. } sauto. } sauto use: lem_main. Qed.
Theorem
examples
[ "From Hammer Require Import Tactics.", "Require Import Reals.", "Require Import Arith.", "Require Import Wf_nat.", "Require Import Even.", "Require Import Lia." ]
examples/sqrt2_irrational.v
thm_irrational
lem_odd : forall n : nat, Nat.Odd n \/ Nat.Odd (n + 1). Proof. (* hammer. *) hauto lq: on use: Nat.Odd_succ, Nat.Even_or_Odd, Nat.add_1_r. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_odd
lem_even : forall n : nat, Nat.Even n \/ Nat.Even (n + 1). Proof. (* predict 16. *) (* hammer. *) hauto lq: on use: Nat.add_1_r, Nat.Even_or_Odd, Nat.Even_succ. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_even
lem_pow : forall n : nat, 3 * 3 ^ n = 3 ^ (n + 1). Proof. Fail sauto. (* hammer. *) hauto lq: on use: Nat.pow_succ_r, Nat.le_0_l, Nat.add_1_r. Qed. Require List. Import List.ListNotations. Open Scope list_scope.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_pow
lem_incl_concat : forall (A : Type) (l m n : list A), List.incl l n -> List.incl l (n ++ m) /\ List.incl l (m ++ n) /\ List.incl l (l ++ l). Proof. (* hammer. *) strivial use: List.incl_appr, List.incl_refl, List.incl_appl. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_incl_concat
lem_lst_1 : forall (A : Type) (l l' : list A), List.NoDup (l ++ l') -> List.NoDup l. Proof. (* The "hammer" tactic can't do induction. If induction is necessary to carry out the proof, then one needs to start the induction manually. *) induction l'. - (* hammer. *) scongruence use: List.app_nil_end. - (* hammer. *) srun eauto use: List.NoDup_remove_1. Qed. Require Import Sorting.Permutation. (*
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_lst_1
lem_perm_1 {A} : forall (x y : A) l1 l2 l3, Permutation l1 (y :: l2) -> Permutation (x :: l1 ++ l3) (y :: x :: l2 ++ l3). Proof. hammer. *)
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_perm_1
lem_perm_0 {A} : forall (x y : A) l1 l2 l3, Permutation l1 (y :: l2) -> Permutation (x :: l1 ++ l3) (x :: y :: l2 ++ l3). Proof. (* hammer. *) hauto lq: on drew: off use: Permutation_app, List.app_comm_cons, Permutation_refl, perm_skip. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_perm_0
lem_perm_1 {A} : forall (x y : A) l1 l2 l3, Permutation l1 (y :: l2) -> Permutation (x :: l1 ++ l3) (y :: x :: l2 ++ l3). Proof. (* hammer. *) srun eauto use: @lem_perm_0, perm_skip, Permutation_Add, Permutation_trans, Permutation_sym, perm_swap unfold: app. Undo. (* Occasionally, some of the returned dependencies are not necessary. *) srun eauto use: @lem_perm_0, Permutation_trans, perm_swap. (* Undo. Set Hammer MinimizationThreshold 0. hammer. *) Qed. (* A general advice: use "hammer" to prove entire lemmas which are stated separately. Using "hammer" to prove subgoals in a larger proof is less effective. One reason is that the machine-learning premise selection can get confused by the presence of unnecessary hypotheses in the context. *)
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_perm_1
lem_perm_2 : forall (x : nat) l1 l2 l3, Permutation (x :: l1) l2 -> Permutation (x :: l3 ++ l1) (l3 ++ l2). Proof. (* hammer. *) (* If an ATP returns at least 8 dependencies, then "hammer" tries to automatically minimize the number of dependencies by repeatedly running the ATPs with the returned dependencies as long as some ATP returns fewer dependencies. *) srun eauto use: Permutation_app_head, Permutation_trans, Permutation_app_comm, Permutation_cons_app. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_perm_2
lem_perm_3 : forall (x y : nat) l1 l2 l3, Permutation (x :: l1) l2 -> Permutation (x :: y :: l1 ++ l3) (y :: l2 ++ l3). Proof. (* hammer. *) srun eauto use: @lem_perm_1, Permutation_sym. Qed.
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_perm_3
lem_perm_4 : forall (x y : nat) l1 l2 l3, Permutation (x :: l1) l2 -> Permutation (x :: y :: l3 ++ l1) (y :: l3 ++ l2). Proof. (* hammer. *) intros. rewrite List.app_comm_cons. pattern (y :: l3 ++ l2). rewrite List.app_comm_cons. apply lem_perm_2; assumption. Qed. (*
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_perm_4
lem_classic : forall P : Prop, P \/ ~P. Proof. hammer. Qed.*)
Lemma
examples
[ "From Hammer Require Import Hammer.", "Require Import Arith.", "Require Import Sorting." ]
examples/tutorial/hammer/demo.v
lem_classic
is_cd d a b := a mod d = 0 /\ b mod d = 0. (* Is "d" the greatest common divisor of "a" and "b"? *)
Definition
examples
[ "From Hammer Require Import Tactics.", "From Hammer Require Import Hammer.", "Require Import Program.", "Require Import Arith.", "Require Import Lia." ]
examples/tutorial/hammer/gcd.v
is_cd
is_gcd d a b := is_cd d a b /\ forall d', is_cd d' a b -> d' <= d.
Definition
examples
[ "From Hammer Require Import Tactics.", "From Hammer Require Import Hammer.", "Require Import Program.", "Require Import Arith.", "Require Import Lia." ]
examples/tutorial/hammer/gcd.v
is_gcd
lem_gcd_step : forall a b d, b <> 0 -> is_gcd d b (a mod b) -> is_gcd d a b. Proof. unfold is_gcd, is_cd. intros a b d Hb. sintuition. - destruct (Nat.eq_dec d 0) as [Hd|Hd]. + subst; reflexivity. + assert (Hc1: exists c1, b = d * c1). { (* hammer. *) strivial use: Nat.mod_divides. } assert (Hc2: exists c2, a mod b = d * c2). { (* hammer. *) strivial use: Nat.mod_divides. } assert (Hc3: exists c3, a = b * c3 + a mod b). { (* hammer. *) srun eauto use: Nat.div_mod. } clear -Hc1 Hc2 Hc3 Hd. destruct Hc1 as [c1 H1]. destruct Hc2 as [c2 H2]. destruct Hc3 as [c3 H3]. subst. rewrite H2 in H3. subst. assert (H: d * c1 * c3 + d * c2 = (c1 * c3 + c2) * d) by lia. rewrite H. auto using Nat.mod_mul. - enough ((a mod b) mod d' = 0) by auto. destruct (Nat.eq_dec d' 0) as [Hd|Hd]. + subst; reflexivity. + assert (Hc1: exists c1, b = d' * c1) by hauto use: Nat.mod_divides. assert (Hc2: exists c2, a = d' * c2) by hauto use: Nat.mod_divides. assert (Hc3: exists c3, a = b * c3 + a mod b). { exists (a / b); auto using Nat.div_mod. } clear -Hc1 Hc2 Hc3 Hd Hb. destruct Hc1 as [c1 H1]. destruct Hc2 as [c2 H2]. destruct Hc3 as [c3 H3]. subst. (* hammer. *) clear - Hb Hd. (* Coq.Arith.PeanoNat.Nat.mod_mul, Coq.Arith.PeanoNat.Nat.mul_mod_distr_l, Coq.Arith.PeanoNat.Nat.mul_comm *) rewrite Nat.mul_mod_distr_l; [| lia | lia ]. rewrite Nat.mul_comm. apply Nat.mod_mul; assumption. Qed.
Lemma
examples
[ "From Hammer Require Import Tactics.", "From Hammer Require Import Hammer.", "Require Import Program.", "Require Import Arith.", "Require Import Lia." ]
examples/tutorial/hammer/gcd.v
lem_gcd_step
Fixpoint gcd (a b : nat) {measure b} : {d : nat | a + b > 0 -> is_gcd d a b} := match b with | 0 => a | _ => gcd b (a mod b) end.
Program
examples
[ "From Hammer Require Import Tactics.", "From Hammer Require Import Hammer.", "Require Import Program.", "Require Import Arith.", "Require Import Lia." ]
examples/tutorial/hammer/gcd.v
Fixpoint
Obligation . unfold is_gcd, is_cd. sintuition. - (* hammer. *) sfirstorder use: Nat.mod_same. - (* hammer. *) (* time sauto. *) (* Set Hammer SAutoLimit 0. hammer. *) sfirstorder use: Nat.mod_0_l. - (* hammer. *) qauto use: Nat.add_pos_cases, Nat.le_gt_cases, Nat.mod_small, Nat.neq_0_lt_0. Qed.
Next
examples
[ "From Hammer Require Import Tactics.", "From Hammer Require Import Hammer.", "Require Import Program.", "Require Import Arith.", "Require Import Lia." ]
examples/tutorial/hammer/gcd.v
Obligation
Obligation . (* hammer. *) srun eauto use: Nat.mod_upper_bound. Qed.
Next
examples
[ "From Hammer Require Import Tactics.", "From Hammer Require Import Hammer.", "Require Import Program.", "Require Import Arith.", "Require Import Lia." ]
examples/tutorial/hammer/gcd.v
Obligation
Obligation . simpl_sigma. (* hammer. *) apply lem_gcd_step; [ lia | apply i; lia ]. Qed. Check gcd. Compute ` (gcd 2 3). Compute ` (gcd 5 15). Compute ` (gcd 20 15). Compute ` (gcd 2424 1542).
Next
examples
[ "From Hammer Require Import Tactics.", "From Hammer Require Import Hammer.", "Require Import Program.", "Require Import Arith.", "Require Import Lia." ]
examples/tutorial/hammer/gcd.v
Obligation
type := Nat | Bool | Prod (ty1 ty2 : type).
Inductive
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
type
tyeval (ty : type) : Type := match ty with | Nat => nat | Bool => bool | Prod ty1 ty2 => tyeval ty1 * tyeval ty2 end.
Fixpoint
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
tyeval
expr : type -> Type := | Var : string -> expr Nat | Plus : expr Nat -> expr Nat -> expr Nat | Equal : expr Nat -> expr Nat -> expr Bool | Pair : forall {A B}, expr A -> expr B -> expr (Prod A B) | Fst : forall {A B}, expr (Prod A B) -> expr A | Snd : forall {A B}, expr (Prod A B) -> expr B | Const : forall A, tyeval A -> expr A | Ite : forall {A}, expr Bool -> expr A -> expr A -> expr A.
Inductive
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
expr
store := string -> nat.
Definition
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
store
eval {A} (s : store) (e : expr A) : tyeval A := match e with | Var n => s n | Plus e1 e2 => eval s e1 + eval s e2 | Equal e1 e2 => eval s e1 =? eval s e2 | Pair e1 e2 => (eval s e1, eval s e2) | Fst e => fst (eval s e) | Snd e => snd (eval s e) | Const _ c => c | Ite b e1 e2 => if eval s b then eval s e1 else eval s e2 end.
Fixpoint
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
eval
simp_plus (e1 e2 : expr Nat) := match e1, e2 with | Const Nat n1, Const Nat n2 => Const Nat (n1 + n2) | _, Const Nat 0 => e1 | Const Nat 0, _ => e2 | _, _ => Plus e1 e2 end.
Definition
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
simp_plus
lem_plus : forall s e1 e2, eval s (simp_plus e1 e2) = eval s e1 + eval s e2. Proof. time (depind e1; depelim e2; sauto). (* Undo. time (depind e1; depelim e2; sauto l: on). *) Qed.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
lem_plus
lem_plus' : forall s e1 e2, eval s (simp_plus e1 e2) = eval s e1 + eval s e2. Proof. Fail depind e1; sauto. time (depind e1; sauto dep: on). (* "dep: on" instructs "sauto" to use the "depelim" tactic for inversion. This may be slower and it will make your proof depend on axioms (equivalent to Uniqueness of Identity Proofs). *) Qed. Hint Rewrite lem_plus : simp_db.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
lem_plus'
simp_equal (e1 e2 : expr Nat) := match e1, e2 with | Const Nat n1, Const Nat n2 => Const Bool (n1 =? n2) | _, _ => Equal e1 e2 end.
Definition
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
simp_equal
lem_equal : forall s e1 e2, eval s (simp_equal e1 e2) = (eval s e1 =? eval s e2). Proof. Fail depind e1; sauto. time (depind e1; sauto dep: on). Undo. time (depind e1; depelim e2; sauto). Qed. Hint Rewrite lem_equal : simp_db.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
lem_equal
unpair_type (T : type) := option (match T with Prod A B => expr A * expr B | _ => unit end).
Definition
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
unpair_type
unpair {A B : type} (e : expr (Prod A B)) : option (expr A * expr B) := match e in expr T return unpair_type T with | Pair e1 e2 => Some (e1, e2) | _ => None end.
Definition
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
unpair
simp_fst {A B : type} (e : expr (Prod A B)) : expr A := match unpair e with | Some (e1, e2) => e1 | None => Fst e end.
Definition
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
simp_fst
lem_fst {A B} : forall s (e : expr (Prod A B)), eval s (simp_fst e) = fst (eval s e). Proof. depind e; sauto. Qed. Hint Rewrite @lem_fst : simp_db.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
lem_fst
simp_snd {A B : type} (e : expr (Prod A B)) : expr B := match unpair e with | Some (e1, e2) => e2 | None => Snd e end.
Definition
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
simp_snd
lem_snd {A B} : forall s (e : expr (Prod A B)), eval s (simp_snd e) = snd (eval s e). Proof. depind e; sauto. Qed. Hint Rewrite @lem_snd : simp_db.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
lem_snd
simp_ite {A} (e : expr Bool) (e1 e2 : expr A) : expr A := match e with | Const Bool true => e1 | Const Bool false => e2 | _ => Ite e e1 e2 end.
Definition
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
simp_ite
lem_ite {A} : forall s e (e1 e2 : expr A), eval s (simp_ite e e1 e2) = if eval s e then eval s e1 else eval s e2. Proof. depind e; sauto. Qed. Hint Rewrite @lem_ite : simp_db.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
lem_ite
simp {A} (e : expr A) : expr A := match e with | Var n => Var n | Plus e1 e2 => simp_plus (simp e1) (simp e2) | Equal e1 e2 => simp_equal (simp e1) (simp e2) | Pair e1 e2 => Pair (simp e1) (simp e2) | Fst e => simp_fst (simp e) | Snd e => simp_snd (simp e) | Const t c => Const t c | Ite e e1 e2 => simp_ite (simp e) (simp e1) (simp e2) end.
Fixpoint
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
simp
lem_simp {A} : forall s (e : expr A), eval s (simp e) = eval s e. Proof. time (depind e; sauto use: lem_plus, lem_equal, @lem_fst, @lem_snd, @lem_ite). Undo. time (depind e; sauto db: simp_db). Undo. time (depind e; simpl; autorewrite with simp_db; sauto). Qed.
Lemma
examples
[ "From Hammer Require Import Tactics.", "Require Import Program.", "Require Import Arith.", "Require Import String." ]
examples/tutorial/sauto/exp.v
lem_simp
aexpr := | Aval : nat -> aexpr | Avar : string -> aexpr | Aplus : aexpr -> aexpr -> aexpr | Aminus : aexpr -> aexpr -> aexpr.
Inductive
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
aexpr
Aval : nat >-> aexpr.
Coercion
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
Aval
state := string -> nat.
Definition
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
state
aval (s : state) (e : aexpr) := match e with | Aval n => n | Avar x => s x | Aplus x y => aval s x + aval s y | Aminus x y => aval s x - aval s y end.
Fixpoint
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
aval
bexpr := | Bval : bool -> bexpr | Bnot : bexpr -> bexpr | Band : bexpr -> bexpr -> bexpr | Bless : aexpr -> aexpr -> bexpr.
Inductive
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
bexpr
Bval : bool >-> bexpr.
Coercion
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
Bval
bval (s : state) (e : bexpr) := match e with | Bval b => b | Bnot e1 => negb (bval s e1) | Band e1 e2 => bval s e1 && bval s e2 | Bless a1 a2 => aval s a1 <? aval s a2 end.
Fixpoint
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
bval
cmd := | Nop : cmd | Assign : string -> aexpr -> cmd | Seq : cmd -> cmd -> cmd | If : bexpr -> cmd -> cmd -> cmd | While : bexpr -> cmd -> cmd.
Inductive
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
cmd
update (s : state) x v y := if string_dec x y then v else s y.
Definition
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
update
state_subst (s : state) (x : string) (a : aexpr) : state := (update s x (aval s a)).
Definition
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
state_subst
BigStep : cmd -> state -> state -> Prop := | NopSem : forall s, BigStep Nop s s | AssignSem : forall s x a, BigStep (x <- a) s s[x := a] | SeqSem : forall c1 c2 s1 s2 s3, BigStep c1 s1 s2 -> BigStep c2 s2 s3 -> BigStep (c1 ;; c2) s1 s3 | IfTrue : forall b c1 c2 s s', bval s b -> BigStep c1 s s' -> BigStep (If b Then c1 Else c2) s s' | IfFalse : forall b c1 c2 s s', negb (bval s b) -> BigStep c2 s s' -> BigStep (If b Then c1 Else c2) s s' | WhileFalse : forall b c s, negb (bval s b) -> BigStep (While b Do c) s s | WhileTrue : forall b c s1 s2 s3, bval s1 b -> BigStep c s1 s2 -> BigStep (While b Do c) s2 s3 -> BigStep (While b Do c) s1 s3.
Inductive
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
BigStep
lem_big_step_deterministic : forall c s s1, c >> s ==> s1 -> forall s2, c >> s ==> s2 -> s1 = s2. Proof. time (induction 1; sauto brefl: on). Undo. time (induction 1; sauto lazy: on brefl: on). Undo. time (induction 1; sauto lazy: on quick: on brefl: on). Qed. (* Program equivalence *)
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_big_step_deterministic
equiv_cmd (c1 c2 : cmd) := forall s s', c1 >> s ==> s' <-> c2 >> s ==> s'.
Definition
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
equiv_cmd
lem_sim_refl : forall c, c ~~ c. Proof. sauto. Qed.
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_sim_refl
lem_sim_sym : forall c c', c ~~ c' -> c' ~~ c. Proof. sauto unfold: equiv_cmd. Qed.
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_sim_sym
lem_sim_trans : forall c1 c2 c3, c1 ~~ c2 -> c2 ~~ c3 -> c1 ~~ c3. Proof. sauto unfold: equiv_cmd. Qed.
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_sim_trans
lem_seq_assoc : forall c1 c2 c3, c1;; (c2;; c3) ~~ (c1;; c2);; c3. Proof. time sauto unfold: equiv_cmd. Undo. time sauto lazy: on unfold: equiv_cmd. (* "lazy: on" turns off all eager heuristics *) (* This may sometimes speed up "sauto" noticeably, but sometimes it may prevent "sauto" from solving the goal. *) (* To increase the performance of "sauto" you may need to fiddle with various options. *) (* Things to try which commonly result in speed increase (if "sauto" can still solve the goal): - "lazy: on" ("l: on") - "quick: on" ("q: on") - a combination of various options which typically make "sauto" faster but weaker; this is more conservative than "qauto" which additionally severely decreases the proof cost limit - "lq: on" - an abbreviation for "l: on q: on" - "erew: off" - turn off eager rewriting - "rew: off" - turn off rewriting entirely - "ered: off" - turn off eager reduction with "simpl" - "red: off" - turn off reduction entirely - "ecases: off" - turn off eager case splitting - "cases: -" - turn off case splitting entirely - "einv: off sinv: off" - turn off eager inversion heuristics *) Qed.
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_seq_assoc
lem_triv_if : forall b c, If b Then c Else c ~~ c. Proof. unfold equiv_cmd. intros b c s s'. destruct (bval s b) eqn:?; sauto. Qed.
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_triv_if
lem_commute_if : forall b1 b2 c1 c2 c3, If b1 Then (If b2 Then c1 Else c2) Else c3 ~~ If b2 Then (If b1 Then c1 Else c3) Else (If b1 Then c2 Else c3). Proof. unfold equiv_cmd. intros *. time (destruct (bval s b1) eqn:?; destruct (bval s b2) eqn:?; sauto). Undo. time (destruct (bval s b1) eqn:?; destruct (bval s b2) eqn:?; sauto inv: BigStep ctrs: BigStep). Undo. time (destruct (bval s b1) eqn:?; destruct (bval s b2) eqn:?; sauto quick: on inv: BigStep ctrs: BigStep). (* "quick: on" sets various options in a way which typically makes "sauto" weaker but faster. "quato" is "hauto" with "quick: on", a smaller cost limit and a different leaf solver. See https://github.com/lukaszcz/coqhammer#Sauto for details. *) Undo. time (destruct (bval s b1) eqn:?; destruct (bval s b2) eqn:?; sauto lazy: on inv: BigStep ctrs: BigStep). Undo. time (destruct (bval s b1) eqn:?; destruct (bval s b2) eqn:?; sauto lazy: on quick: on inv: BigStep ctrs: BigStep). Undo. time (destruct (bval s b1) eqn:?; destruct (bval s b2) eqn:?; sauto lq: on inv: BigStep ctrs: BigStep). (* "lq: on" is an abbreviation for "lazy: on quick: on" *) (* "lazy:" may be abbreviated to "l:" *) (* "quick:" may be abbreviated to "q:" *) Qed.
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_commute_if
lem_unfold_while : forall b c, While b Do c ~~ If b Then c;; While b Do c Else Nop. Proof. time sauto unfold: equiv_cmd. Undo. time sauto q: on unfold: equiv_cmd. (* "quick: on" does not result in significant speed increase this time *) Undo. time sauto l: on unfold: equiv_cmd. (* "lazy: on" does *) Qed.
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_unfold_while
lem_while_cong_aux : forall b c c' s s', While b Do c >> s ==> s' -> c ~~ c' -> While b Do c' >> s ==> s'. Proof. intros *. remember (While b Do c). induction 1; sauto lq: on unfold: equiv_cmd. Qed.
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_while_cong_aux
lem_while_cong : forall b c c', c ~~ c' -> While b Do c ~~ While b Do c'. Proof. hauto use: lem_while_cong_aux unfold: equiv_cmd. Qed. (* Small-step operational semantics *)
Lemma
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
lem_while_cong
SmallStep : cmd * state -> cmd * state -> Prop := | AssignSemS : forall x a s, SmallStep (x <- a, s) (Nop, s[x := a]) | SeqSemS1 : forall c s, SmallStep (Nop ;; c, s) (c, s) | SeqSemS2 : forall c1 c2 s c1' s', SmallStep (c1, s) (c1', s') -> SmallStep (c1 ;; c2, s) (c1';; c2, s') | IfTrueS : forall b c1 c2 s, bval s b -> SmallStep (If b Then c1 Else c2, s) (c1, s) | IfFalseS : forall b c1 c2 s, negb (bval s b) -> SmallStep (If b Then c1 Else c2, s) (c2, s) | WhileS : forall b c s, SmallStep (While b Do c, s) (If b Then c;; While b Do c Else Nop, s).
Inductive
examples
[ "From Hammer Require Import Tactics Reflect.", "Require Import String.", "Require Import Arith.", "Require Import Lia.", "Require Import Relations." ]
examples/tutorial/sauto/imp.v
SmallStep
End of preview. Expand in Data Studio

Coq-Hammer

Structured dataset from CoqHammer — Automation for dependent type theory via ATPs.

866 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
16

Collection including phanerozoic/Coq-Hammer