Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
9
2.92k
type
stringclasses
20 values
library
stringclasses
6 values
imports
listlengths
1
4
filename
stringclasses
63 values
symbolic_name
stringlengths
1
35
docstring
stringclasses
1 value
option_mul {T : Mul.type} (o1 o2 : option T) : option T := match o1, o2 with | Some n, Some m => Some (mul n m) | _, _ => None end. HB.instance Definition _ (T : Mul.type) := HasMul.Build (option T) option_mul.
Definition
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
option_mul
option_square {T : Sq.type} (o : option T) : option T := match o with | Some n => Some (sq n) | None => None end. HB.instance Definition _ (T : Sq.type) := HasSq.Build (option T) option_square. (* Now we mix the two unrelated structures by building Sq out of Mul. *** This breaks Non Forgetful Inheritance *** https://math-comp.github.io/competing-inheritance-paths-in-dependent-type-theory/ *) #[non_forgetful_inheritance] HB.instance Definition _ (T : Mul.type) := HasSq.Build T (fun x => mul x x). (* As we expect we can proved this (by reflexivity) *)
Definition
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
option_square
sq_mul (V : Mul.type) (v : V) : sq v = mul v v. Proof. by reflexivity. Qed.
Lemma
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
sq_mul
problem (W : Mul.type) (w : option W) : sq w = mul w w. Proof. Fail reflexivity. (* What? It used to work! *) Fail rewrite sq_mul. (* Lemmas don't cross the container either! *) (* Let's investigate *) rewrite /mul/= /sq/=. (* As we expect, we are on the option type. In the LHS it is the Sq built using the NFI instance option_square w = option_mul w w *) rewrite /option_mul/=. rewrite /option_square/sq/=. congr (match w with Some n => _ | None => None end). (* The branches for Some differ, since w is a variable, they don't compare as equal (fun n : W => Some (mul n n)) = (fun n : W => match w with | Some m => Some (mul n m) | None => None end) *) Abort.
Lemma
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
problem
option_mul {T : Mul.type} (o1 o2 : option T) : option T := match o1, o2 with | Some n, Some m => Some (mul n m) | _, _ => None end. HB.instance Definition _ (T : Mul.type) := HasMul.Build (option T) option_mul.
Definition
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
option_mul
option_square {T : Sq.type} (o : option T) : option T := match o with | Some n => Some (sq n) | None => None end.
Definition
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
option_square
option_sq_mul {T : Sq.type} (o : option T) : option_square o = mul o o. Proof. by rewrite /option_square; case: o => [x|//]; rewrite sq_mul. Qed. HB.instance Definition _ (T : Sq.type) := HasSq.Build (option T) option_square option_sq_mul.
Lemma
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
option_sq_mul
problem (W : Sq.type) (w : option W) : sq w = mul w w. Proof. by rewrite sq_mul. Qed.
Lemma
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
problem
link {xT T : Type} {f : xT -> T} {g : T -> xT} (canfg : forall x, f (g x) = x) := T. (* (link canfg) is convertible to T *) (* We explain HB how to transfer Equality over link *)
Definition
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
link
link_eqtest (x y : T) : bool := eqtest (g x) (g y).
Definition
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
link_eqtest
link_eqOK (x y : T) : reflect (x = y) (link_eqtest x y). Proof. rewrite /link_eqtest; case: (eqOK (g x) (g y)) => [E|abs]. by constructor; rewrite -[x]canfg -[y]canfg E canfg. by constructor=> /(f_equal g)/abs. Qed. (* (link canfg) is now an Equality instance *) HB.instance Definition link_HasEqDec := HasEqDec.Build (link canfg) link_eqtest link_eqOK.
Lemma
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
link_eqOK
link_def : link canfg := f def.
Definition
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
link_def
link_all_def x : eqtest x link_def = true. Proof. rewrite /link_def; have /eqOK <- := all_def (g x). by rewrite canfg; case: (eqOK x x). Qed. (* (link canfg) is now a Signleton instance *) HB.instance Definition _ := IsContractible.Build (link canfg) link_def link_all_def.
Lemma
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
link_all_def
B : Type.
Axiom
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
B
testB : B -> B -> bool.
Axiom
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
testB
testOKB : forall x y, reflect (x = y) (testB x y). HB.instance Definition _ := HasEqDec.Build B testB testOKB.
Axiom
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
testOKB
defB : B.
Axiom
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
defB
all_defB : forall x, eqtest x defB = true. HB.instance Definition _ := IsContractible.Build B defB all_defB. (* Now we copy all instances from B to A via link *)
Axiom
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
all_defB
A : Type.
Axiom
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
A
f : B -> A.
Axiom
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
f
g : A -> B.
Axiom
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
g
canfg : forall x, f (g x) = x. (* We take all the instances up to Singleton on (link canfg) and we copy them on A. Recall (link canfg) is convertible to A *) HB.instance Definition _ := Singleton.copy A (link canfg). HB.about A. (* both Equality and Singleton have been copied *)
Axiom
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
canfg
new_concept := 999999.
Definition
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
new_concept
test x : new_concept ^ x ^ new_concept = x ^ new_concept ^ new_concept. Proof. (* this goal is not trivial, and maybe even false, but you may call some automation on it anyway *) Time Fail reflexivity. (* takes 7s, note that both by and // call reflexivity *) Abort.
Lemma
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
test
test x : new_concept ^ x ^ new_concept = x ^ new_concept ^ new_concept. Time Fail reflexivity. (* takes 0s *) rewrite new_concept.unlock. Time Fail reflexivity. (* takes 7s, the original body is restored *) Abort. Print Module Type new_concept_Locked. Print Module new_concept. (*
Lemma
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
test
body : nat.
Parameter
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
body
unlock : body = 999999
Parameter
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
unlock
new_concept := new_concept.body *)
Notation
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
new_concept
unlock_new_concept := Unlockable new_concept.unlock.
Canonical
examples
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
examples/hulk.v
unlock_new_concept
example (G : AbelianGrp.type) (x : G) : x + (- x) = - 0. Proof. by rewrite addrC addNr -[LHS](addNr zero) addrC add0r. Qed.
Lemma
examples
[ "From HB Require Import structures.", "From Corelib Require Import ssreflect BinNums IntDef." ]
examples/readme.v
example
Z_add_assoc : forall x y z, Z.add x (Z.add y z) = Z.add (Z.add x y) z.
Axiom
examples
[ "From HB Require Import structures.", "From Corelib Require Import ssreflect BinNums IntDef." ]
examples/readme.v
Z_add_assoc
Z_add_comm : forall x y, Z.add x y = Z.add y x.
Axiom
examples
[ "From HB Require Import structures.", "From Corelib Require Import ssreflect BinNums IntDef." ]
examples/readme.v
Z_add_comm
Z_add_0_l : forall x, Z.add Z0 x = x.
Axiom
examples
[ "From HB Require Import structures.", "From Corelib Require Import ssreflect BinNums IntDef." ]
examples/readme.v
Z_add_0_l
Z_add_opp_diag_l : forall x, Z.add (Z.opp x) x = Z0. HB.instance Definition Z_CoMoid := AddComoid_of_Type.Build Z Z0 Z.add Z_add_assoc Z_add_comm Z_add_0_l. HB.instance Definition Z_AbGrp := AbelianGrp_of_AddComoid.Build Z Z.opp Z_add_opp_diag_l.
Axiom
examples
[ "From HB Require Import structures.", "From Corelib Require Import ssreflect BinNums IntDef." ]
examples/readme.v
Z_add_opp_diag_l
example2 (x : Z) : x + (- x) = - 0. Proof. by rewrite example. Qed. Check AbelianGrp.on Z. HB.graph "readme.dot". HB.about Z.
Lemma
examples
[ "From HB Require Import structures.", "From Corelib Require Import ssreflect BinNums IntDef." ]
examples/readme.v
example2
Search Blacklist "Builders_".
Add
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
Search
Search Blacklist "__canonical__".
Add
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
Search
Search Blacklist "__to__".
Add
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
Search
Search Blacklist "_between_".
Add
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
Search
Search Blacklist "_mixin".
Add
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
Search
error_msg := NoMsg | IsNotCanonicallyA (x : Type).
Variant
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
error_msg
unify T1 T2 (t1 : T1) (t2 : T2) (s : error_msg) := phantom T1 t1 -> phantom T2 t2.
Definition
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
unify
id_phant {T} {t : T} (x : phantom T t) := x.
Definition
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
id_phant
id_phant_disabled {T T'} {t : T} {t' : T'} (x : phantom T t) := Phantom T' t'.
Definition
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
id_phant_disabled
nomsg : error_msg := NoMsg.
Definition
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
nomsg
is_not_canonically_a x := IsNotCanonicallyA x.
Definition
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
is_not_canonically_a
new {T} (x : T) := x.
Definition
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
new
eta {T} (x : T) := x.
Definition
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
eta
ignore {T} (x: T) := x.
Definition
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
ignore
ignore_disabled {T T'} (x : T) (x' : T') := x'. (* ********************* structures ****************************** *) From elpi Require Import elpi. Register unify as hb.unify. Register id_phant as hb.id. Register id_phant_disabled as hb.id_disabled. Register ignore as hb.ignore. Register ignore_disabled as hb.ignore_disabled. Register Coq.Init.Datatypes.None as hb.none. Register nomsg as hb.nomsg. Register is_not_canonically_a as hb.not_a_msg. Register Coq.Init.Datatypes.Some as hb.some. Register Coq.Init.Datatypes.pair as hb.pair. Register Coq.Init.Datatypes.prod as hb.prod. Register Coq.Init.Specif.sigT as hb.sigT. Register Coq.ssr.ssreflect.phant as hb.phant. Register Coq.ssr.ssreflect.Phant as hb.Phant. Register Coq.ssr.ssreflect.phantom as hb.phantom. Register Coq.ssr.ssreflect.Phantom as hb.Phantom. Register Coq.Init.Logic.eq as hb.eq. Register Coq.Init.Logic.eq_refl as hb.erefl. Register new as hb.new. Register eta as hb.eta. #[deprecated(since="HB 1.0.1", note="use #[key=...] instead")]
Definition
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
ignore_disabled
indexed T := T (only parsing). Declare Scope HB_scope.
Notation
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
indexed
aux_fact : .... HB.export aux_fact. ... HB.end. ...
Lemma
HB
[ "From Corelib Require Import ssreflect ssrfun.", "From elpi Require Import elpi.", "From elpi.apps Require Import locker." ]
HB/structures.v
aux_fact
error_msg := NoMsg | IsNotCanonicallyA (x : Type).
Variant
shim
[ "From Coq Require Import String ssreflect ssrfun." ]
shim/structures.v
error_msg
unify T1 T2 (t1 : T1) (t2 : T2) (s : error_msg) := phantom T1 t1 -> phantom T2 t2.
Definition
shim
[ "From Coq Require Import String ssreflect ssrfun." ]
shim/structures.v
unify
id_phant {T} {t : T} (x : phantom T t) := x.
Definition
shim
[ "From Coq Require Import String ssreflect ssrfun." ]
shim/structures.v
id_phant
nomsg : error_msg := NoMsg.
Definition
shim
[ "From Coq Require Import String ssreflect ssrfun." ]
shim/structures.v
nomsg
is_not_canonically_a x := IsNotCanonicallyA x.
Definition
shim
[ "From Coq Require Import String ssreflect ssrfun." ]
shim/structures.v
is_not_canonically_a
new {T} (x : T) := x.
Definition
shim
[ "From Coq Require Import String ssreflect ssrfun." ]
shim/structures.v
new
eta {T} (x : T) := x.
Definition
shim
[ "From Coq Require Import String ssreflect ssrfun." ]
shim/structures.v
eta
testTy := A | B. HB.mixin Record Stack1 T := { prop1 : unit }. HB.structure Definition JustStack1 := { T of Stack1 T }. HB.mixin Record Stack1Param R T := { prop2 : unit }. HB.structure Definition JustStack1Param R := { T of Stack1Param R T }. HB.mixin Record Stack2 T := { prop3 : unit }. HB.structure Definition JustStack2 := { T of Stack2 T }. HB.mixin Record Mixed T of Stack1 T & Stack2 T := { prop4 : unit }. HB.structure Definition JustMixed := { T of Mixed T & Stack1 T & Stack2 T}. HB.structure Definition JustMixedParam R := { T of Mixed T & Stack1 T & Stack1Param R T & Stack2 T}. HB.instance Definition _ := @Stack1.Build testTy tt. HB.instance Definition _ := @Stack2.Build testTy tt. HB.instance Definition _ {R} := @Stack1Param.Build R testTy tt. HB.instance Definition _ := @Mixed.Build testTy tt. Check testTy : JustMixedParam.type _.
Variant
tests
[ "From HB Require Import structures." ]
tests/bug_447.v
testTy
unit' := unit. HB.instance Definition _ := isInhab.Build unit' tt. Check Inhab.of unit'. Fail Check Inhab.of unit. HB.instance Definition _ := Inhab.copy unit unit'. Check Inhab.of unit. (* with params *) HB.mixin Record isInhabIf (b : bool) (T : Type) := { y : forall ph : phant T, (match b with true => T | false => unit end) }. HB.structure Definition InhabIf b := { T of isInhabIf b T }.
Definition
tests
[ "From Coq Require Import ssreflect ssrfun ssrbool.", "From HB Require Import structures." ]
tests/class_for.v
unit'
bool' := bool. HB.instance Definition _ := isInhabIf.Build true bool' (fun=> false). Check InhabIf.of bool'. Fail Check InhabIf.of bool. HB.instance Definition _ := InhabIf.copy bool bool'. Check InhabIf.of bool. Check (y (Phant bool) : bool).
Definition
tests
[ "From Coq Require Import ssreflect ssrfun ssrbool.", "From HB Require Import structures." ]
tests/class_for.v
bool'
test := [the C.type _ _ of T].
Definition
tests
[ "From Corelib Require Import ssreflect ssrfun.", "From HB Require Import structures." ]
tests/declare.v
test
test2 := [the C.type _ _ of T].
Definition
tests
[ "From Corelib Require Import ssreflect ssrfun.", "From HB Require Import structures." ]
tests/declare.v
test2
copy : Type -> Type := id. HB.declare Context p T of hasABC p tt (copy T).
Definition
tests
[ "From Corelib Require Import ssreflect ssrfun.", "From HB Require Import structures." ]
tests/declare.v
copy
test3 := [the C.type _ _ of copy T].
Definition
tests
[ "From Corelib Require Import ssreflect ssrfun.", "From HB Require Import structures." ]
tests/declare.v
test3
comb A op := forall x : A, op (op x) = x. HB.mixin Record Foo A := { op : A -> A; ax : comb A op }. HB.structure Definition S1 := { A of Foo A }. Fail HB.structure Definition S2 := { A of Foo A }.
Definition
tests
[ "From HB Require Import structures." ]
tests/duplicate_structure.v
comb
x := (fun x : nat => true). HB.mixin Record m T := {x : T}. HB.factory Record f T := { x : T }. HB.builders Context T of f T. HB.instance Definition _ := m.Build T x. HB.end.
Notation
tests
[ "From HB Require Import structures." ]
tests/factory_when_notation.v
x
pred T := T -> bool. HB.mixin Record isPredNat (f : pred nat) := {}. HB.structure Definition PredNat := {f of isPredNat f}.
Definition
tests
[ "From HB Require Import structures." ]
tests/grefclass.v
pred
xxx := HB.pack_for AB.type T (hasB.Build T b) (hasA.Build T a). HB.instance Definition _ := AB.copy T xxx. HB.end. About hasAB.type. HB.factory Definition hasA' T := hasA T. About hasA'.type.
Definition
tests
[ "Require Import ssreflect ssrfun ssrbool.", "From elpi Require Import elpi.", "From HB Require Import structures." ]
tests/hb_pack.v
xxx
prop := Prop. HB.instance Definition Xprop := X_of_Type.Build prop. HB.instance Definition XSet := X_of_Type.Build Set.
Definition
tests
[ "From HB Require Import structures." ]
tests/issue284.v
prop
set := Set. HB.instance Definition Xset := X_of_Type.Build set. HB.instance Definition XType := X_of_Type.Build Type.
Definition
tests
[ "From HB Require Import structures." ]
tests/issue284.v
set
type := Type. HB.instance Definition Xtype := X_of_Type.Build type.
Definition
tests
[ "From HB Require Import structures." ]
tests/issue284.v
type
nat1 := nat. HB.lock Definition bar : nat1 := 3. HB.lock Definition baz n : nat := 3 + n.
Definition
tests
[ "From HB Require Import structures." ]
tests/lock.v
nat1
bigbody : Type -> Type -> Type.
Axiom
tests
[ "From HB Require Import structures." ]
tests/lock.v
bigbody
bigop : forall R I : Type, R -> list I -> (I -> bigbody R I) -> R. HB.lock Definition big := bigop.
Axiom
tests
[ "From HB Require Import structures." ]
tests/lock.v
bigop
A T := { a : T; f : T -> T; p : forall x : T, f x = x -> True; q : forall h : f a = a, p _ h = p _ h; }. HB.structure Definition S := { T of A T }. About A.p.
Record
tests
[ "From HB Require Import structures." ]
tests/log_impargs_record.v
A
option_mul {T : Mul.type} (o1 o2 : option T) : option T := match o1, o2 with | Some n, Some m => Some (mul n m) | _, _ => None end. HB.instance Definition _ (T : Mul.type) := HasMul.Build (option T) option_mul.
Definition
tests
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
tests/non_forgetful_inheritance.v
option_mul
option_square {T : Sq.type} (o : option T) : option T := match o with | Some n => Some (sq n) | None => None end. HB.instance Definition _ (T : Sq.type) := HasSq.Build (option T) option_square. (* Now we mix the two unrelated structures by building Sq out of Mul. *** This breaks Forgetful Inheritance *** https://math-comp.github.io/competing-inheritance-paths-in-dependent-type-theory/ hence, HB prevents us from using it without care. *) Set Warnings "+HB.non-forgetful-inheritance". Fail HB.instance Definition _ (T : Mul.type) := HasSq.Build T (fun x => mul x x). (* As advised by the error message, we contain the problem in a module *)
Definition
tests
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
tests/non_forgetful_inheritance.v
option_square
sq_mul (V : Mul.type) (v : V) : sq v = mul v v. Proof. by reflexivity. Qed.
Lemma
tests
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
tests/non_forgetful_inheritance.v
sq_mul
problem (W : Mul.type) (w : option W) : sq w = mul w w. Proof. Fail reflexivity. (* What? It used to work! *) Fail rewrite sq_mul. (* Lemmas don't cross the container either! *) (* Let's investigate *) rewrite /mul/= /sq/=. (* As we expect, we are on the option type. In the LHS it is the Sq built using the NFI instance option_square w = option_mul w w *) rewrite /option_mul/=. rewrite /option_square/sq/=. congr (match w with Some n => _ | None => None end). (* The branches for Some differ, since w is a variable, they don't compare as equal (fun n : W => Some (mul n n)) = (fun n : W => match w with | Some m => Some (mul n m) | None => None end) *) Abort.
Lemma
tests
[ "From HB Require Import structures.", "Require Import ssreflect ssrfun ssrbool." ]
tests/non_forgetful_inheritance.v
problem
to_AddComoid_of_TYPE := AddComoid_of_TYPE.Build A zero add addrA addrC add0r. HB.instance
Definition
tests
[ "From Coq Require Import ssreflect ssrfun.", "From HB Require Import structures." ]
tests/packable.v
to_AddComoid_of_TYPE
to_Ring_of_AddComoid := Ring_of_AddComoid.Build A _ _ _ addNr mulrA mul1r mulr1 mulrDl mulrDr. HB.end. (* End change *) HB.structure Definition Ring := { A of Ring_of_TYPE A }.
Definition
tests
[ "From Coq Require Import ssreflect ssrfun.", "From HB Require Import structures." ]
tests/packable.v
to_Ring_of_AddComoid
xxx := ABType T (hasB.Build T b) (hasA.Build T a). HB.instance Definition _ := AB.copy T xxx. HB.end. About hasAB.type. HB.factory Definition hasA' T := hasA T. About hasA'.type.
Definition
tests
[ "From Corelib Require Import ssreflect ssrfun.", "From HB Require Import structures." ]
tests/short.v
xxx
pred T := T -> Prop. #[key="sub_sort"] HB.mixin Record is_SUB (T : Type) (P : pred T) (sub_sort : Type) := SubType { val : sub_sort -> T; Sub : forall x, P x -> sub_sort; Sub_rect : forall K (_ : forall x Px, K (@Sub x Px)) u, K u; SubK : forall x Px, val (@Sub x Px) = x }. HB.structure Definition SUB (T : Type) (P : pred T) := { S of is_SUB T P S }. #[verbose] HB.structure Definition SubInhab (T : Type) P := { sT of is_inhab sT & is_SUB T P sT }. HB.structure Definition SubNontrivial T P := { sT of is_nontrivial sT & is_SUB T P sT }. #[key="sT"] HB.factory Record InhabForSub (T : Inhab.type) P (sT : Type) of SubNontrivial T P sT := {}. HB.builders Context (T : Inhab.type) P sT of InhabForSub T P sT.
Definition
tests
[ "From HB Require Import structures." ]
tests/subtype.v
pred
xxx : P (default : T). HB.instance Definition SubInhabMix := is_inhab.Build sT (Sub (default : T) xxx). HB.end.
Axiom
tests
[ "From HB Require Import structures." ]
tests/subtype.v
xxx
ix : Type.
Axiom
tests
[ "From HB Require Import structures." ]
tests/test_CS_db_filtering.v
ix
vec T := ix -> T.
Definition
tests
[ "From HB Require Import structures." ]
tests/test_CS_db_filtering.v
vec
dual (T : Type) := T.
Definition
tests
[ "From HB Require Import structures." ]
tests/test_synthesis_params.v
dual
dd (d:unit) : unit. exact d. Qed. HB.instance Definition _ d (T : POrder.type d) := IsDualPOrdered.Build (dd d) (dual T) (fun x y => @le d T y x) (fun x y => @le d T y x). HB.instance Definition _ d (T : TPOrder.type d) := HasBottom.Build (dd d) (dual T) (@top _ T). HB.instance Definition _ d (T : BPOrder.type d) := HasTop.Build (dd d) (dual T) (@bottom _ T).
Definition
tests
[ "From HB Require Import structures." ]
tests/test_synthesis_params.v
dd
comb A op := forall x : A, op (op x) = x. HB.mixin Record Foo A := { op : A -> A; ax : comb A op }. HB.structure Definition S := { A of Foo A }. Set Printing All.
Definition
tests
[ "From HB Require Import structures." ]
tests/type_of_exported_ops.v
comb
test1 : True. Proof. pose proof @ax as H. match goal with | H : forall x : S.type, comb (S.sort x) op |- _ => trivial | H : ?T |- _ => fail "type of ax not as nice as expected:" T end. Qed. HB.mixin Record HasMul T := { mul : T -> T -> T; mulC: forall x y : T, mul x y = mul y x; mulA: forall x y z : T, mul x (mul y z) = mul (mul x y) z; }. HB.structure Definition Mul := { T of HasMul T }.
Lemma
tests
[ "From HB Require Import structures." ]
tests/type_of_exported_ops.v
test1
test2 : True. Proof. pose proof @mulA as H. match goal with | H : forall s : Mul.type, forall x y z : Mul.sort s, mul x (mul y z) = mul (mul x y) z |- _ => trivial | H : ?T |- _ => fail "type of mulA not as nice as expected:" T end. Qed.
Lemma
tests
[ "From HB Require Import structures." ]
tests/type_of_exported_ops.v
test2
_ := AddAG_of_TYPE.Build Z 0%Z Z.add Z.opp Z.add_assoc Z.add_comm Z.add_0_l Z.add_opp_diag_l. HB.instance
Definition
tests_stdlib
[ "From Coq Require Import ZArith ssrfun ssreflect.", "From HB Require Import structures.", "From HB Require Import demo1." ]
tests_stdlib/about.v
_
_ := Ring_of_TYPE.Build Z 0%Z 1%Z Z.add Z.opp Z.mul Z.add_assoc Z.add_comm Z.add_0_l Z.add_opp_diag_l Z.mul_assoc Z.mul_1_l Z.mul_1_r Z.mul_add_distr_r Z.mul_add_distr_l. (* mixin *) HB.about AddMonoid_of_TYPE. (* mixin constructor *) HB.about AddMonoid_of_TYPE.Build. (* structure *) HB.about AddAG.type. (* class *) HB.about AddMonoid. (* factory *) HB.about Ring_of_AddAG. (* factory constructor *) HB.about Ring_of_AddAG.Build. (* operation *) HB.about add. (* canonical proj/value *) HB.about AddAG.sort. (* canonical value *) HB.about Z. (* coercion *) HB.about hierarchy_5_Ring_class__to__hierarchy_5_SemiRing_class. HB.about hierarchy_5_Ring__to__hierarchy_5_SemiRing. (* builder *) HB.about Builders_40.hierarchy_5_Ring_of_AddAG__to__hierarchy_5_BiNearRing_of_AddMonoid. HB.locate BinNums_Z__canonical__hierarchy_5_AddAG. (* Test minimally qualified names *)
Definition
tests_stdlib
[ "From Coq Require Import ZArith ssrfun ssreflect.", "From HB Require Import structures.", "From HB Require Import demo1." ]
tests_stdlib/about.v
_
addr0 : right_id (@zero R) add. Proof. by move=> x; rewrite addrC add0r. Qed. HB.export addr0.
Lemma
tests_stdlib
[ "From Coq Require Import ssreflect ssrfun ZArith.", "From HB Require Import structures." ]
tests_stdlib/exports.v
addr0
addrN : right_inverse (@zero R) opp add. Proof. by move=> x; rewrite addrC addNr. Qed.
Lemma
tests_stdlib
[ "From Coq Require Import ssreflect ssrfun ZArith.", "From HB Require Import structures." ]
tests_stdlib/exports.v
addrN
subrr x : x - x = 0. Proof. by rewrite addrN. Qed.
Lemma
tests_stdlib
[ "From Coq Require Import ssreflect ssrfun ZArith.", "From HB Require Import structures." ]
tests_stdlib/exports.v
subrr
addrNK x y : x + y - y = x. Proof. by rewrite -addrA subrr addr0. Qed.
Lemma
tests_stdlib
[ "From Coq Require Import ssreflect ssrfun ZArith.", "From HB Require Import structures." ]
tests_stdlib/exports.v
addrNK
addrNK := addrNK. HB.export addrNK. HB.end.
Definition
tests_stdlib
[ "From Coq Require Import ssreflect ssrfun ZArith.", "From HB Require Import structures." ]
tests_stdlib/exports.v
addrNK
End of preview. Expand in Data Studio

Coq-HierarchyBuilder

Structured dataset from Hierarchy Builder — High-level commands for packed class hierarchies.

752 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
27

Collection including phanerozoic/Coq-HierarchyBuilder