Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
4
2.87k
type
stringclasses
17 values
library
stringclasses
91 values
imports
listlengths
0
19
filename
stringclasses
497 values
symbolic_name
stringlengths
1
75
docstring
stringlengths
5
3.99k
ecompose_e1 {A B} (e : A <~> B) : e oE 1 = e.
Lemma
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_e1
The identity equivalence is a right unit.
ecompose_1e {A B} (e : A <~> B) : 1 oE e = e.
Lemma
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_1e
The identity is a left unit.
ecompose_e_ee {A B C D} (e : A <~> B) (f : B <~> C) (g : C <~> D) : g oE (f oE e) = (g oE f) oE e.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_e_ee
Composition is associative.
ecompose_ee_e {A B C D} (e : A <~> B) (f : B <~> C) (g : C <~> D) : (g oE f) oE e = g oE (f oE e).
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_ee_e
null
ecompose_eV {A B} (e : A <~> B) : e oE e^-1 = 1.
Lemma
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_eV
The left inverse law.
ecompose_Ve {A B} (e : A <~> B) : e^-1 oE e = 1.
Lemma
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_Ve
The right inverse law.
ecompose_V_ee {A B C} (e : A <~> B) (f : B <~> C) : f^-1 oE (f oE e) = e.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_V_ee
Several auxiliary theorems about canceling inverses across associativity. These are somewhat redundant, following from earlier theorems.
ecompose_e_Ve {A B C} (e : A <~> B) (f : C <~> B) : e oE (e^-1 oE f) = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_e_Ve
null
ecompose_ee_V {A B C} (e : A <~> B) (f : B <~> C) : (f oE e) oE e^-1 = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_ee_V
null
ecompose_eV_e {A B C} (e : B <~> A) (f : B <~> C) : (f oE e^-1) oE e = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
ecompose_eV_e
null
einv_ee {A B C} (e : A <~> B) (f : B <~> C) : (f oE e)^-1 = e^-1 oE f^-1.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
einv_ee
Inverse distributes over composition
einv_Ve {A B C} (e : A <~> C) (f : B <~> C) : (f^-1 oE e)^-1 = e^-1 oE f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
einv_Ve
null
einv_eV {A B C} (e : C <~> A) (f : C <~> B) : (f oE e^-1)^-1 = e oE f^-1.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
einv_eV
null
einv_VV {A B C} (e : A <~> B) (f : B <~> C) : (e^-1 oE f^-1)^-1 = f oE e.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
einv_VV
null
einv_V {A B} (e : A <~> B) : (e^-1)^-1 = e.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
einv_V
Inverse is an involution.
emoveR_Me {A B C} (e : B <~> A) (f : B <~> C) (g : A <~> C) : e = g^-1 oE f -> g oE e = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveR_Me
*** Theorems for moving things around in equations.
emoveR_eM {A B C} (e : B <~> A) (f : B <~> C) (g : A <~> C) : g = f oE e^-1 -> g oE e = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveR_eM
null
emoveR_Ve {A B C} (e : B <~> A) (f : B <~> C) (g : C <~> A) : e = g oE f -> g^-1 oE e = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveR_Ve
null
emoveR_eV {A B C} (e : A <~> B) (f : B <~> C) (g : A <~> C) : g = f oE e -> g oE e^-1 = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveR_eV
null
emoveL_Me {A B C} (e : A <~> B) (f : A <~> C) (g : B <~> C) : g^-1 oE f = e -> f = g oE e.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveL_Me
null
emoveL_eM {A B C} (e : A <~> B) (f : A <~> C) (g : B <~> C) : f oE e^-1 = g -> f = g oE e.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveL_eM
null
emoveL_Ve {A B C} (e : A <~> C) (f : A <~> B) (g : B <~> C) : g oE f = e -> f = g^-1 oE e.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveL_Ve
null
emoveL_eV {A B C} (e : A <~> B) (f : B <~> C) (g : A <~> C) : f oE e = g -> f = g oE e^-1.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveL_eV
null
emoveL_1M {A B} (e f : A <~> B) : e oE f^-1 = 1 -> e = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveL_1M
null
emoveL_M1 {A B} (e f : A <~> B) : f^-1 oE e = 1 -> e = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveL_M1
null
emoveL_1V {A B} (e : A <~> B) (f : B <~> A) : e oE f = 1 -> e = f^-1.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveL_1V
null
emoveL_V1 {A B} (e : A <~> B) (f : B <~> A) : f oE e = 1 -> e = f^-1.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveL_V1
null
emoveR_M1 {A B} (e f : A <~> B) : 1 = e^-1 oE f -> e = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveR_M1
null
emoveR_1M {A B} (e f : A <~> B) : 1 = f oE e^-1 -> e = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveR_1M
null
emoveR_1V {A B} (e : A <~> B) (f : B <~> A) : 1 = f oE e -> e^-1 = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveR_1V
null
emoveR_V1 {A B} (e : A <~> B) (f : B <~> A) : 1 = e oE f -> e^-1 = f.
Definition
Root
[ "Basics" ]
theories/EquivGroupoids.v
emoveR_V1
null
Class ExcludedMiddle.
Existing
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
Class
null
is_global_axiom_excludedmiddle : IsGlobalAxiom ExcludedMiddle := {}.
Instance
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
is_global_axiom_excludedmiddle
Mark this axiom as a "global axiom", which some of our tactics will automatically handle.
LEM : forall `{ExcludedMiddle} (P : Type), IsHProp P -> P + ~P.
Axiom
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
LEM
null
ExcludedMiddle_type := forall (P : Type), IsHProp P -> P + ~P.
Definition
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
ExcludedMiddle_type
null
decidable_lem `{ExcludedMiddle} (P : Type) `{IsHProp P} : Decidable P := LEM P _.
Instance
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
decidable_lem
** LEM means that all propositions are decidable
DNE_type := forall P, IsHProp P -> ~~P -> P.
Definition
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
DNE_type
** Double-negation elimination
LEM_to_DNE : ExcludedMiddle -> DNE_type.
Definition
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
LEM_to_DNE
null
DNE_to_LEM `{Funext} : DNE_type -> ExcludedMiddle_type.
Definition
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
DNE_to_LEM
This direction requires Funext.
allneg_from_DNE (H : DNE_type) (P : Type) `{IsHProp P} : {Q : Type & P <-> ~Q}.
Definition
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
allneg_from_DNE
DNE is equivalent to "every proposition is a negation".
DNE_from_allneg (H : forall P, IsHProp P -> {Q : Type & P <-> ~Q}) : DNE_type.
Definition
Root
[ "HoTT" ]
theories/ExcludedMiddle.v
DNE_from_allneg
null
ExtensionAlong@{a b p m} {A : Type@{a}} {B : Type@{b}} (f : A -> B) (P : B -> Type@{p}) (d : forall x:A, P (f x)) := (* { s : forall y:B, P y & forall x:A, s (f x) = d x }. *) sig@{m m} (fun (s : forall y:B, P y) => forall x:A, s (f x) = d x).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ExtensionAlong
This elimination rule (and others) can be seen as saying that, given a fibration over the codomain and a section of it over the domain, there is some *extension* of this to a section over the whole codomain. It can also be considered as an equivalent form of an [hfiber] of precomposition-with-[f] that replaces paths by pointwise paths, thereby avoiding [Funext].
lift_extensionalong@{a1 a2 amin b1 b2 bmin p1 p2 pmin m1 m2} {A : Type@{amin}} {B : Type@{bmin}} (f : A -> B) (P : B -> Type@{pmin}) (d : forall x:A, P (f x)) : ExtensionAlong@{a1 b1 p1 m1} f P d -> ExtensionAlong@{a2 b2 p2 m2} f P d.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
lift_extensionalong
It's occasionally useful to be able to modify those universes. For each of the universes [a], [b], [p], we give an initial one, a final one, and a "minimum" one smaller than both and where the type actually lives.
equiv_path_extension `{Funext} {A B : Type} {f : A -> B} {P : B -> Type} {d : forall x:A, P (f x)} (ext ext' : ExtensionAlong f P d) : (ExtensionAlong f (fun y => pr1 ext y = pr1 ext' y) (fun x => pr2 ext x @ (pr2 ext' x)^)) <~> ext = ext'.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
equiv_path_extension
We called it [lift_extensionalong], but in fact it doesn't require the new universes to be bigger than the old ones, only that they both satisfy the max condition.
path_extension `{Funext} {A B : Type} {f : A -> B} {P : B -> Type} {d : forall x:A, P (f x)} (ext ext' : ExtensionAlong f P d) : (ExtensionAlong f (fun y => pr1 ext y = pr1 ext' y) (fun x => pr2 ext x @ (pr2 ext' x)^)) -> ext = ext' := equiv_path_extension ext ext'.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
path_extension
null
#[export] Instance isequiv_path_extension `{Funext} {A B : Type} {f : A -> B} {P : B -> Type} {d : forall x:A, P (f x)} (ext ext' : ExtensionAlong f P d) : IsEquiv (path_extension ext ext') | 0 := equiv_isequiv _.
Instance
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
isequiv_path_extension
null
ExtendableAlong@{i j k l} (n : nat) {A : Type@{i}} {B : Type@{j}} (f : A -> B) (C : B -> Type@{k}) : Type@{l} := match n with | 0 => Unit | S n => (forall (g : forall a, C (f a)), ExtensionAlong@{i j k l} f C g) * forall (h k : forall b, C b), ExtendableAlong n f (fun b => h b = k b) end.
Fixpoint
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ExtendableAlong
Here is the iterated version.
lift_extendablealong@{a1 a2 amin b1 b2 bmin p1 p2 pmin m1 m2} (n : nat) {A : Type@{amin}} {B : Type@{bmin}} (f : A -> B) (P : B -> Type@{pmin}) : ExtendableAlong@{a1 b1 p1 m1} n f P -> ExtendableAlong@{a2 b2 p2 m2} n f P.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
lift_extendablealong
We can modify the universes, as with [ExtensionAlong].
equiv_extendable_pathsplit `{Funext} (n : nat) {A B : Type} (C : B -> Type) (f : A -> B) : ExtendableAlong n f C <~> PathSplit n (fun (g : forall b, C b) => g oD f).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
equiv_extendable_pathsplit
null
isequiv_extendable `{Funext} (n : nat) {A B : Type} {C : B -> Type} {f : A -> B} : ExtendableAlong n.+2 f C -> IsEquiv (fun g => g oD f) := isequiv_pathsplit n o (equiv_extendable_pathsplit n.+2 C f).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
isequiv_extendable
null
#[export] Instance ishprop_extendable `{Funext} (n : nat) {A B : Type} (C : B -> Type) (f : A -> B) : IsHProp (ExtendableAlong n.+2 f C).
Instance
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ishprop_extendable
null
equiv_extendable_isequiv `{Funext} (n : nat) {A B : Type} (C : B -> Type) (f : A -> B) : ExtendableAlong n.+2 f C <~> IsEquiv (fun (g : forall b, C b) => g oD f).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
equiv_extendable_isequiv
null
extension_isequiv_precompose {A : Type} {B : Type} (f : A -> B) (C : B -> Type) : IsEquiv (fun (g : forall b, C b) => g oD f) -> forall g, ExtensionAlong f C g.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extension_isequiv_precompose
Unless we give the universe explicitly here, [kmin] gets collapsed to [k1].
extendable_postcompose' (n : nat) {A B : Type} (C D : B -> Type) (f : A -> B) (g : forall b, C b <~> D b) : ExtendableAlong n f C -> ExtendableAlong n f D.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_postcompose
Postcomposition with a known equivalence. Note that this does not require funext to define, although showing that it is an equivalence would require funext.
extendable_postcompose (n : nat) {A B : Type} (C D : B -> Type) (f : A -> B) (g : forall b, C b -> D b) `{forall b, IsEquiv (g b)} : ExtendableAlong n f C -> ExtendableAlong n f D := extendable_postcompose' n C D f (fun b => Build_Equiv _ _ (g b) _).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_postcompose
null
extendable_compose (n : nat) {A B C : Type} (P : C -> Type) (f : A -> B) (g : B -> C) : ExtendableAlong n g P -> ExtendableAlong n f (fun b => P (g b)) -> ExtendableAlong n (g o f) P.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_compose
Composition of the maps we extend along. This also does not require funext.
cancelL_extendable (n : nat) {A B C : Type} (P : C -> Type) (f : A -> B) (g : B -> C) : ExtendableAlong n g P -> ExtendableAlong n (g o f) P -> ExtendableAlong n f (fun b => P (g b)).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cancelL_extendable
And cancellation
cancelR_extendable (n : nat) {A B C : Type} (P : C -> Type) (f : A -> B) (g : B -> C) : ExtendableAlong n.+1 f (fun b => P (g b)) -> ExtendableAlong n (g o f) P -> ExtendableAlong n g P.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cancelR_extendable
null
extendable_homotopic (n : nat) {A B : Type} (C : B -> Type) (f : A -> B) {g : A -> B} (p : f == g) : ExtendableAlong n f C -> ExtendableAlong n g C.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_homotopic
And transfer across homotopies
extendable_equiv (n : nat) {A B : Type} (C : B -> Type) (f : A -> B) `{IsEquiv _ _ f} : ExtendableAlong n f C.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_equiv
We can extend along equivalences
extendable_contr (n : nat) {A B : Type} (C : B -> Type) (f : A -> B) `{forall b, Contr (C b)} : ExtendableAlong n f C.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_contr
And into contractible types
extendable_homotopy (n : nat) {A B : Type} (C : B -> Type) (f : A -> B) (h k : forall b, C b) : ExtendableAlong n.+1 f C -> ExtendableAlong n f (fun b => h b = k b).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_homotopy
This is inherited by types of homotopies.
ooExtendableAlong@{i j k l} {A : Type@{i}} {B : Type@{j}} (f : A -> B) (C : B -> Type@{k}) : Type@{l} := forall n : nat, ExtendableAlong@{i j k l} n f C.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooExtendableAlong
And the oo-version.
lift_ooextendablealong@{a1 a2 amin b1 b2 bmin p1 p2 pmin m1 m2} {A : Type@{amin}} {B : Type@{bmin}} (f : A -> B) (P : B -> Type@{pmin}) : ooExtendableAlong@{a1 b1 p1 m1} f P -> ooExtendableAlong@{a2 b2 p2 m2} f P := fun ext n => lift_extendablealong@{a1 a2 amin b1 b2 bmin p1 p2 pmin m1 m2} n f P (ext n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
lift_ooextendablealong
Universe modification.
isequiv_ooextendable `{Funext} {A B : Type} (C : B -> Type) (f : A -> B) : ooExtendableAlong f C -> IsEquiv (fun g => g oD f) := fun ps => isequiv_extendable 0 (fst (ps 1%nat), snd (ps 2)).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
isequiv_ooextendable
We take part of the data from [ps 1] and part from [ps 2] so that the inverse chosen is the expected one.
equiv_ooextendable_pathsplit `{Funext} {A B : Type} (C : B -> Type) (f : A -> B) : ooExtendableAlong f C <~> ooPathSplit (fun (g : forall b, C b) => g oD f).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
equiv_ooextendable_pathsplit
null
#[export] Instance ishprop_ooextendable `{Funext} {A B : Type} (C : B -> Type) (f : A -> B) : IsHProp (ooExtendableAlong f C).
Instance
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ishprop_ooextendable
null
equiv_ooextendable_isequiv `{Funext} {A B : Type} (C : B -> Type) (f : A -> B) : ooExtendableAlong f C <~> IsEquiv (fun (g : forall b, C b) => g oD f) := equiv_oopathsplit_isequiv _ oE equiv_ooextendable_pathsplit _ _.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
equiv_ooextendable_isequiv
null
ooextendable_postcompose {A B : Type} (C D : B -> Type) (f : A -> B) (g : forall b, C b -> D b) `{forall b, IsEquiv (g b)} : ooExtendableAlong f C -> ooExtendableAlong f D := fun ppp n => extendable_postcompose n C D f g (ppp n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_postcompose
null
ooextendable_postcompose' {A B : Type} (C D : B -> Type) (f : A -> B) (g : forall b, C b <~> D b) : ooExtendableAlong f C -> ooExtendableAlong f D := fun ppp n => extendable_postcompose' n C D f g (ppp n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_postcompose
null
ooextendable_compose {A B C : Type} (P : C -> Type) (f : A -> B) (g : B -> C) : ooExtendableAlong g P -> ooExtendableAlong f (fun b => P (g b)) -> ooExtendableAlong (g o f) P := fun extg extf n => extendable_compose n P f g (extg n) (extf n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_compose
null
cancelL_ooextendable {A B C : Type} (P : C -> Type) (f : A -> B) (g : B -> C) : ooExtendableAlong g P -> ooExtendableAlong (g o f) P -> ooExtendableAlong f (fun b => P (g b)) := fun extg extgf n => cancelL_extendable n P f g (extg n) (extgf n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cancelL_ooextendable
null
cancelR_ooextendable {A B C : Type} (P : C -> Type) (f : A -> B) (g : B -> C) : ooExtendableAlong f (fun b => P (g b)) -> ooExtendableAlong (g o f) P -> ooExtendableAlong g P := fun extf extgf n => cancelR_extendable n P f g (extf n.+1) (extgf n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cancelR_ooextendable
null
ooextendable_homotopic {A B : Type} (C : B -> Type) (f : A -> B) {g : A -> B} (p : f == g) : ooExtendableAlong f C -> ooExtendableAlong g C := fun extf n => extendable_homotopic n C f p (extf n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_homotopic
null
ooextendable_equiv {A B : Type} (C : B -> Type) (f : A -> B) `{IsEquiv _ _ f} : ooExtendableAlong f C := fun n => extendable_equiv n C f.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_equiv
null
ooextendable_contr {A B : Type} (C : B -> Type) (f : A -> B) `{forall b, Contr (C b)} : ooExtendableAlong f C := fun n => extendable_contr n C f.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_contr
null
ooextendable_homotopy {A B : Type} (C : B -> Type) (f : A -> B) (h k : forall b, C b) : ooExtendableAlong f C -> ooExtendableAlong f (fun b => h b = k b).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_homotopy
null
ooextendable_isnull_fibers {A B} (f : A -> B) (C : B -> Type) : (forall b, ooExtendableAlong (const_tt (hfiber f b)) (fun _ => C b)) -> ooExtendableAlong f C.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_isnull_fibers
Extendability of a family [C] along a map [f] can be detected by extendability of the constant family [C b] along the projection from the corresponding fiber of [f] to [Unit]. Note that this is *not* an if-and-only-if; the hypothesis can be genuinely stronger than the conclusion.
cyl_extension {A B} (f : A -> B) (C : Cyl f -> Type) (g : forall a, C (cyl a)) (ext : ExtensionAlong cyl C g) : ExtensionAlong cyl C g.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cyl_extension
If a family is extendable along a cofibration (i.e. a mapping cylinder), it is extendable definitionally.
cyl_extendable (n : nat) {A B} (f : A -> B) (C : Cyl f -> Type) (ext : ExtendableAlong n cyl C) : ExtendableAlong n cyl C.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cyl_extendable
null
cyl_ooextendable {A B} (f : A -> B) (C : Cyl f -> Type) (ext : ooExtendableAlong cyl C) : ooExtendableAlong cyl C := fun n => cyl_extendable n f C (ext n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cyl_ooextendable
null
cyl_extension' {A B} (f : A -> B) (C : B -> Type) (g : forall a, C (pr_cyl (cyl a))) (ext : ExtensionAlong f C g) : ExtensionAlong cyl (C o pr_cyl) g.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cyl_extension
null
cyl_extendable' (n : nat) {A B} (f : A -> B) (C : B -> Type) (ext : ExtendableAlong n f C) : ExtendableAlong n cyl (C o (pr_cyl' f)).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cyl_extendable
null
cyl_ooextendable' {A B} (f : A -> B) (C : B -> Type) (ext : ooExtendableAlong f C) : ooExtendableAlong cyl (C o (pr_cyl' f)) := fun n => cyl_extendable' n f C (ext n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
cyl_ooextendable
null
extension_functor_prod {A B A' B'} (f : A -> A') (g : B -> B') (P : A' * B' -> Type) (ef : forall b', ExtendableAlong 1 f (fun a' => P (a',b'))) (eg : forall a', ExtendableAlong 1 g (fun b' => P (a',b'))) (s : forall z, P (functor_prod f g z)) : ExtensionAlong (functor_prod f g) P s.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extension_functor_prod
** Extendability along [functor_prod]
extendable_functor_prod (n : nat) {A B A' B'} (f : A -> A') (g : B -> B') (P : A' * B' -> Type) (ef : forall b', ExtendableAlong n f (fun a' => P (a',b'))) (eg : forall a', ExtendableAlong n g (fun b' => P (a',b'))) : ExtendableAlong n (functor_prod f g) P.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_functor_prod
null
ooextendable_functor_prod {A B A' B'} (f : A -> A') (g : B -> B') (P : A' * B' -> Type) (ef : forall b', ooExtendableAlong f (fun a' => P (a',b'))) (eg : forall a', ooExtendableAlong g (fun b' => P (a',b'))) : ooExtendableAlong (functor_prod f g) P := fun n => extendable_functor_prod n f g P (fun b' => ef b' n) (fun a' => eg a' n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_functor_prod
null
extension_functor_sigma_id {A} {P Q : A -> Type} (f : forall a, P a -> Q a) (C : sig Q -> Type) (ef : forall a, ExtendableAlong 1 (f a) (fun v => C (a;v))) (s : forall z, C (functor_sigma idmap f z)) : ExtensionAlong (functor_sigma idmap f) C s.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extension_functor_sigma_id
** Extendability along [functor_sigma]
extendable_functor_sigma_id n {A} {P Q : A -> Type} (f : forall a, P a -> Q a) (C : sig Q -> Type) (ef : forall a, ExtendableAlong n (f a) (fun v => C (a;v))) : ExtendableAlong n (functor_sigma idmap f) C.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_functor_sigma_id
null
ooextendable_functor_sigma_id {A} {P Q : A -> Type} (f : forall a, P a -> Q a) (C : sig Q -> Type) (ef : forall a, ooExtendableAlong (f a) (fun v => C (a;v))) : ooExtendableAlong (functor_sigma idmap f) C := fun n => extendable_functor_sigma_id n f C (fun a => ef a n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_functor_sigma_id
null
HomotopyExtensionAlong {A B} {Q : B -> Type} (f : A -> B) (C : sig Q -> Type) (p : forall (a:A) (v:Q (f a)), C (f a;v)) := { q : forall (b:B) (v:Q b), C (b;v) & forall a v, q (f a) v = p a v }.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
HomotopyExtensionAlong
Unfortunately, the technology of [ExtensionAlong] seems to be insufficient to state a general, funext-free version of [extension_functor_sigma] with a non-identity map on the bases; the hypothesis on the fiberwise map would have to be the existence of an extension in a function-type "up to pointwise equality". With wild oo-groupoids we could probably manage it. For now, we say something a bit hacky.
HomotopyExtendableAlong (n : nat) {A B} {Q : B -> Type} (f : A -> B) (C : sig Q -> Type) : Type := match n with | 0 => Unit | S n => ((forall (p : forall (a:A) (v:Q (f a)), C (f a;v)), HomotopyExtensionAlong f C p) * (forall (h k : forall z, C z), HomotopyExtendableAlong n f (fun z => h z = k z))) end.
Fixpoint
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
HomotopyExtendableAlong
null
ooHomotopyExtendableAlong {A B} {Q : B -> Type} (f : A -> B) (C : sig Q -> Type) := forall n, HomotopyExtendableAlong n f C.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooHomotopyExtendableAlong
null
extension_functor_sigma {A B} {P : A -> Type} {Q : B -> Type} (f : A -> B) (g : forall a, P a -> Q (f a)) (C : sig Q -> Type) (ef : HomotopyExtendableAlong 1 f C) (eg : forall a, ExtendableAlong 1 (g a) (fun v => C (f a ; v))) (s : forall z, C (functor_sigma f g z)) : ExtensionAlong (functor_sigma f g) C s.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extension_functor_sigma
null
extendable_functor_sigma (n : nat) {A B} {P : A -> Type} {Q : B -> Type} (f : A -> B) (g : forall a, P a -> Q (f a)) (C : sig Q -> Type) (ef : HomotopyExtendableAlong n f C) (eg : forall a, ExtendableAlong n (g a) (fun v => C (f a ; v))) : ExtendableAlong n (functor_sigma f g) C.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_functor_sigma
null
ooextendable_functor_sigma {A B} {P : A -> Type} {Q : B -> Type} (f : A -> B) (g : forall a, P a -> Q (f a)) (C : sig Q -> Type) (ef : ooHomotopyExtendableAlong f C) (eg : forall a, ooExtendableAlong (g a) (fun v => C (f a ; v))) : ooExtendableAlong (functor_sigma f g) C := fun n => extendable_functor_sigma n f g C (ef n) (fun a => eg a n).
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_functor_sigma
null
extension_functor_sum {A B A' B'} (f : A -> A') (g : B -> B') (P : A' + B' -> Type) (ef : ExtendableAlong 1 f (P o inl)) (eg : ExtendableAlong 1 g (P o inr)) (h : forall z, P (functor_sum f g z)) : ExtensionAlong (functor_sum f g) P h.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extension_functor_sum
** Extendability along [functor_sum]
extendable_functor_sum (n : nat) {A B A' B'} (f : A -> A') (g : B -> B') (P : A' + B' -> Type) (ef : ExtendableAlong n f (P o inl)) (eg : ExtendableAlong n g (P o inr)) : ExtendableAlong n (functor_sum f g) P.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extendable_functor_sum
null
ooextendable_functor_sum {A B A' B'} (f : A -> A') (g : B -> B') (P : A' + B' -> Type) (ef : ooExtendableAlong f (P o inl)) (eg : ooExtendableAlong g (P o inr)) : ooExtendableAlong (functor_sum f g) P.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
ooextendable_functor_sum
null
extension_functor_coeq {B A f g B' A' f' g'} {h : B -> B'} {k : A -> A'} {p : k o f == f' o h} {q : k o g == g' o h} {C : Coeq f' g' -> Type} (ek : ExtendableAlong 1 k (C o coeq)) (eh : forall (u v : forall x : B', C (coeq (g' x))), ExtendableAlong 1 h (fun x => u x = v x)) (s : forall x, C (functor_coeq h k p q x)) : ExtensionAlong (functor_coeq h k p q) C s.
Definition
Root
[ "HoTT", "Equiv", "Cubical", "Colimits" ]
theories/Extensions.v
extension_functor_coeq
First we show that if we can extend in [C] along [k], and we can extend in appropriate path-types of [C] along [h], then we can extend in [C] along [functor_coeq]. This is where the hard work is.
End of preview. Expand in Data Studio

Coq-HoTT

Structured dataset of formalizations from the Coq-HoTT library (Homotopy Type Theory in Coq).

Schema

Column Type Description
fact string Full declaration (name, signature, body)
type string Definition, Lemma, Theorem, Class, Instance, etc.
library string Sub-library within HoTT (Basics, Types, Spaces, etc.)
imports list Require Import statements
filename string Source file path
symbolic_name string Declaration identifier
docstring string Documentation comment (41% coverage)

Statistics

By Type

Type Count
Definition 6,726
Instance 2,355
Lemma 1,308
Class 363
Fixpoint 141
Record 139
Theorem 103
Proposition 67
Inductive 39
Other 292

Docstring Coverage

  • 4,756 entries (41%) have documentation

Example Entry

Use Cases

  • Retrieval / RAG for Coq theorem proving
  • Homotopy Type Theory research
  • Training embeddings for formal mathematics
  • Documentation generation

Citation

Changelog

  • v2.0 (Jan 2025): Re-extraction with improved schema
    • 7,848 -> 11,533 entries (+47%)
    • Added library and docstring columns
    • Changed imports from string to list
    • Removed index_level column
    • fact now includes full signature
  • v1.0 (Dec 2024): Initial release
Downloads last month
38

Collection including phanerozoic/Coq-HoTT