Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
14
11.5k
type
stringclasses
22 values
library
stringclasses
7 values
imports
listlengths
0
7
filename
stringclasses
136 values
symbolic_name
stringlengths
1
36
docstring
stringclasses
1 value
ioE : Type -> Type := | Input : ioE (list nat) (** Ask for a list of [nat] from the environment. *) | Output : list nat -> ioE unit (** Send a list of [nat]. *) . (** Events are wrapped as ITrees using [ITree.trigger], and composed using monadic operations [bind] and [ret]. *) (** Read some input, and echo it back, appending [1] to it. *)
Inductive
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
ioE
write_one : itree ioE unit := xs <- ITree.trigger Input;; ITree.trigger (Output (xs ++ [1])). (** We can _interpret_ interaction trees by giving semantics to their events individually, as a _handler_: a function of type [forall R, ioE R -> M R] for some monad [M]. *) (** The handler [handle_io] below responds to every [Input] event with [[0]], and appends any [Output] to a global log. Here the target monad is [M := stateT (list nat) (itree void1)], - [stateT] is the state monad transformer, that type unfolds to [M R := list nat -> itree void1 (list nat * R)]; - [void1] is the empty event (so the resulting ITree can trigger no event). *) Compute Monads.stateT (list nat) (itree void1) unit. Print void1.
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
write_one
handle_io : forall R, ioE R -> Monads.stateT (list nat) (itree void1) R := fun R e log => match e with | Input => ret (log, [0]) | Output o => ret (log ++ o, tt) end. (** [interp] lifts any handler into an _interpreter_, of type [forall R, itree ioE R -> M R]. *)
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
handle_io
interp_io : forall R, itree ioE R -> itree void1 (list nat * R) := fun R t => Monads.run_stateT (interp handle_io t) []. (** We can now interpret [write_one]. *)
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
interp_io
interpreted_write_one : itree void1 (list nat * unit) := interp_io _ write_one. (** Intuitively, [interp_io] replaces every [ITree.trigger] in the definition of [write_one] with [handle_io]: [[ interpreted_write_one = xs <- handle_io _ Input;; handle_io _ (Output (xs ++ [1])) ]] We can prove such a lemma in a more restricted setting, where [handle_io] targets some monad of the form [itree F], rather than [T (itree F)] (above, [T := stateT (list nat)]). (The library is currently missing some theory about the monads we can instantiate [interp] with.) The proof of [interp_write_one] will require us to rewrite an expression under a binder---i.e., on the right side of a [;;]. The [rewrite] tactic will fail in this situation; instead, we can use [setoid_rewrite], which works under binders. *)
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
interpreted_write_one
interp_write_one F (handle_io : forall R, ioE R -> itree F R) : interp handle_io write_one ≈ (xs <- handle_io _ Input;; handle_io _ (Output (xs ++ [1]))). Proof. unfold write_one. (* Use lemmas from [ITree.Simple] ([theories/Simple.v]). *) (* ADMITTED *) rewrite interp_bind. rewrite interp_trigger. setoid_rewrite interp_trigger. reflexivity. Qed. (* /ADMITTED *) (** An [itree void1] is a computation which can either return a value, or loop infinitely. Since Coq is total, [interpreted_write_one] will not be reduced naively. Instead, we can force computation with fuel, using [burn]: *) Compute (burn 100 interpreted_write_one). (** * General recursion with interaction trees *) (** One application of [interp] is to define and reason about recursive functions as ITrees. In this section, we will demonstrate: - [rec] - equational reasoning using [≈] ([\approx]) *) (** In this file, we won't use external events, so we will use this empty event type [void1]. *)
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
interp_write_one
E := void1. (** ** Factorial *) (** This is the Coq specification -- the usual mathematical definition. *)
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
E
factorial_spec (n : nat) : nat := match n with | 0 => 1 | S m => n * factorial_spec m end. (** The generic [rec] interface of the library's [Interp] module can be used to define a single recursive function. The more general [mrec] (from which [rec] is defined) allows multiple, mutually recursive definitions. The argument of [rec] is an interaction tree with an event type [callE A B] to represent "recursive calls", with input [A] and output [B]. The function [call : A -> itree _ B] can be used to make such calls. In this case, since [factorial : nat -> nat], we use [callE nat nat]. *)
Fixpoint
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
factorial_spec
fact_body (x : nat) : itree (callE nat nat +' E) nat := match x with | 0 => Ret 1 | S m => y <- call m ;; (* Recursively compute [y := m!] *) Ret (x * y) end. (** The factorial function itself is defined as an ITree by "tying the knot" using [rec]. *)
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
fact_body
factorial (n : nat) : itree E nat := rec fact_body n. (** *** Evaluation *) (** Contrary to definitions by [Fixpoint], there are no restrictions on the arguments of recursive calls: [rec] may thus produce diverging computations, and Coq will not naively reduce [factorial 5]. We can force the computation with fuel, e.g., using [burn]... *) Compute (burn 100 (factorial 5)). (** ... or with tactics, such as [tau_steps], which removes all taus from the left-hand side of an [≈] equation. *)
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
factorial
fact_5 : factorial 5 ≈ Ret 120. Proof. tau_steps. reflexivity. Qed. (** *** Alternative notation *) (** An equivalent definition with a [rec-fix] notation looking like [fix], where the recursive call can be given a more specific name. *)
Example
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
fact_5
factorial' : nat -> itree E nat := rec-fix fact x := match x with | 0 => Ret 1 | S m => y <- fact m ;; Ret (x * y) end. (** These two definitions are definitionally equal. *)
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
factorial'
factorial_same : factorial = factorial'. Proof. reflexivity. Qed. (** *** Correctness *) (** [rec] is actually a special version of [interp], which replaces every [call] in [fact_body] with [factorial] itself. *)
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
factorial_same
unfold_factorial : forall x, factorial x ≈ match x with | 0 => Ret 1 | S m => y <- factorial m ;; Ret (x * y) end. Proof. intros x. unfold factorial. (* ADMITTED *) rewrite rec_as_interp; unfold fact_body at 2. destruct x. - rewrite interp_ret. reflexivity. - rewrite interp_bind. rewrite interp_recursive_call. setoid_rewrite interp_ret. reflexivity. Qed. (* /ADMITTED *) (** We can prove that the ITrees version [factorial] is "equivalent" to the [factorial_spec] version. The proof goes by induction on [n] and uses only rewriting -- no coinduction necessary. Here, we detail each step of rewriting to illustrate the use of the equational theory, which is mostly applications of the monad laws and the properties of [rec]. In this proof, we do all of the rewriting steps explicitly. *)
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
unfold_factorial
factorial_correct : forall n, factorial n ≈ Ret (factorial_spec n). Proof. intros n. (* ADMITTED *) induction n as [ | n' IH ]. - (* n = 0 *) rewrite unfold_factorial. reflexivity. - (* n = S n' *) rewrite unfold_factorial. rewrite IH. (* Induction hypothesis *) rewrite bind_ret. simpl. reflexivity. Qed. (* /ADMITTED *) (* HIDE *) (** The tactics [tau_steps] and [autorewrite with itree] offer a little automation to simplify monadic expressions. *)
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
factorial_correct
factorial_correct' : forall n, factorial n ≈ Ret (factorial_spec n). Proof. intros n. unfold factorial. induction n as [ | n' IH ]. - (* n = 0 *) tau_steps. (* Just compute away. *) reflexivity. - (* n = S n' *) rewrite rec_as_interp. unfold fact_body at 2. autorewrite with itree. rewrite IH. (* Induction hypothesis *) autorewrite with itree. reflexivity. Qed. (* /HIDE *) (** ** Fibonacci *) (** Carry out the analogous proof of correctness for the Fibonacci function, whose naturally recursive coq definition is given below. *)
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
factorial_correct'
fib_spec (n : nat) : nat := match n with | 0 => 0 | S n' => match n' with | 0 => 1 | S n'' => fib_spec n'' + fib_spec n' end end.
Fixpoint
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
fib_spec
fib_body : nat -> itree (callE nat nat +' E) nat (* ADMITDEF *) := fun n => match n with | 0 => Ret 0 | S n' => match n' with | 0 => Ret 1 | S n'' => y1 <- call n'' ;; y2 <- call n' ;; Ret (y1 + y2) end end. (* /ADMITDEF *)
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
fib_body
fib n : itree E nat := rec fib_body n.
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
fib
fib_3_6 : mapT fib [4;5;6] ≈ Ret [3; 5; 8]. Proof. (* Use [tau_steps] to compute. *) (* ADMITTED *) tau_steps. reflexivity. Qed. (* /ADMITTED *) (** Since fib uses two recursive calls, we need to strengthen the induction hypothesis. One way to do that is to prove the property for all [m <= n]. You may find the following two lemmas useful at the start of each case. [[ Nat.le_0_r : forall n : nat, n <= 0 <-> n = 0 Nat.le_succ_r : forall n m : nat, n <= S m <-> n <= m \/ n = S m ]] *)
Example
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
fib_3_6
fib_correct_aux : forall n m, m <= n -> fib m ≈ Ret (fib_spec m). Proof. intros n. unfold fib. induction n as [ | n' IH ]; intros. - (* n = 0 *) apply Nat.le_0_r in H. subst m. (* ADMIT *) rewrite rec_as_interp. simpl. rewrite interp_ret. (* alternatively, [tau_steps], or [autorewrite with itree] *) reflexivity. (* /ADMIT *) - (* n = S n' *) apply Nat.le_succ_r in H. (* ADMIT *) destruct H. + apply IH. auto. + rewrite rec_as_interp. subst m. simpl. destruct n' as [ | n'' ]. * rewrite interp_ret. reflexivity. * autorewrite with itree. rewrite IH. 2: lia. autorewrite with itree. rewrite IH. 2: lia. autorewrite with itree. reflexivity. (* /ADMIT *) (* ADMITTED *) Qed. (* /ADMITTED. *) (** The final correctness result follows. *)
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
fib_correct_aux
fib_correct : forall n, fib n ≈ Ret (fib_spec n). Proof. (* ADMITTED *) intros n. eapply fib_correct_aux. reflexivity. Qed. (* /ADMITTED *) (** ** Logarithm *) (** An example of a function which is not structurally recursive. [log_ b n]: logarithm of [n] in base [b]. Specification: [log_ b (b ^ y) ≈ Ret y] when [1 < b]. (Note that this only constrains a very small subset of inputs, and in fact our solution diverges for some of them.) *)
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
fib_correct
log (b : nat) : nat -> itree E nat (* ADMITDEF *) := rec-fix log_b n := if n <=? 1 then Ret O else y <- log_b (n / b) ;; Ret (S y). (* /ADMITDEF *)
Definition
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
log
log_2_64 : log 2 (2 ^ 6) ≈ Ret 6. Proof. (* ADMITTED *) tau_steps. reflexivity. Qed. (* /ADMITTED *) (** These lemmas take care of the boring arithmetic. *)
Example
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
log_2_64
log_correct_helper : forall b y, 1 < b -> (b * b ^ y <=? 1) = false. Proof. intros. apply Nat.leb_gt. apply Nat.lt_1_mul_pos; auto. apply Nat.neq_0_lt_0. intro. apply (Nat.pow_nonzero b y); lia. Qed.
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
log_correct_helper
log_correct_helper2 : forall b y, 1 < b -> (b * b ^ y / b) = (b ^ y). Proof. intros; rewrite Nat.mul_comm, Nat.div_mul; lia. Qed.
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
log_correct_helper2
log_correct : forall b y, 1 < b -> log b (b ^ y) ≈ Ret y. Proof. intros b y H. (* ADMITTED *) unfold log, rec_fix. induction y. - rewrite rec_as_interp; cbn. autorewrite with itree. reflexivity. - rewrite rec_as_interp; cbn. (* (b * b ^ y <=? 1) = false *) rewrite log_correct_helper by auto. autorewrite with itree. (* (b * b ^ y / b) = (b ^ y)*) rewrite log_correct_helper2 by auto. rewrite IHy. autorewrite with itree. reflexivity. Qed. (* /ADMITTED *)
Lemma
examples
[ "From ITree Require Import\n Simple." ]
examples/IntroductionSolutions.v
log_correct
stateE (S:Type) : Type -> Type := | Get : stateE S S | Put : S -> stateE S unit. (* We can define an interpretation of [stateE] events into itrees with no events as follows. Note that we split out the "node functor", which is parameterized by the interpreter on the recursive calls, separating it from the CoFixpoint. This structure mirrors the way that we define predicates below. The ITrees library defines more elaborate versions of these interpreters that work with multiple events types. *)
Variant
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
stateE
stateT (S:Type) (M:Type -> Type) (R:Type) := S -> M (S * R)%type.
Definition
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
stateT
interpret_stateF (S:Type) {R} (rec : itree (stateE S) R -> stateT S (itree void1) R) (t : itree (stateE S) R) : stateT S (itree void1) R := fun s => match observe t with | RetF r => ret (s, r) | TauF t => Tau (rec t s) | VisF Get k => Tau (rec (k s) s) | VisF (Put s') k => Tau (rec (k tt) s') end. CoFixpoint interpret_state {S R:Type} (t:itree (stateE S) R) : stateT S (itree void1) R := interpret_stateF interpret_state t.
Definition
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
interpret_stateF
unfold_interpret_state : forall {S R} (t : itree (stateE S) R) (s:S), observe (interpret_state t s) = observe (interpret_stateF interpret_state t s). Proof. reflexivity. Qed. (* Rewriting ---------------------------------------------------------------- *) (* To enable rewriting under the [interpret_state] function, we need to show that it respects ≅. In practice, this means instantiating the typeclass [Proper] so that the setoid rewrite tactics recognize that interpret_state is such a morphism. These proofs are pretty straightforward, but there are a few gotchas: - We use [red] to unfold the definitions of Proper and respectful. - We typically want to use [rewrite itree_eta] to change [t] into [(observe t)] but we don't want to do that before introducing the coinductive hypothesis because the extra "observes" get in the way of later using the CIH after we've made some progress in the proof. - We need to use UIP (via the [ITree.Axioms.ddestruction] tactic, which itself uses the stdlib's [dependent destruction]) to get equality of the projected components of the VisF constructor. *)
Lemma
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
unfold_interpret_state
proper_interpret_state {S R} : Proper ((@eq_itree (stateE S) R _ eq) ==> (@eq S) ==> (@eq_itree void1 (S * R) _ eq)) interpret_state. Proof. ginit. gcofix CIH. intros x y H0 x2 y0 H1. rewrite (itree_eta (interpret_state x x2)). rewrite (itree_eta (interpret_state y y0)). rewrite !unfold_interpret_state. subst. punfold H0. repeat red in H0. unfold interpret_stateF. destruct (observe x); inv H0; try discriminate; pclearbot; simpl; try (gstep; constructor; eauto with paco; fail). ddestruction. destruct e; gstep; econstructor; eauto with paco itree. Qed.
Instance
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
proper_interpret_state
NoGetsF {S R} (rec : itree (stateE S) R -> Prop) : itreeF (stateE S) R (itree (stateE S) R) -> Prop := | isRet : forall (r:R), NoGetsF rec (RetF r) | isTau : forall t, rec t -> NoGetsF rec (TauF t) | isPut : forall (k : unit -> itree (stateE S) R), forall (s:S), rec (k tt) -> NoGetsF rec (VisF (Put s) k). Global Hint Constructors NoGetsF : core. (* Next, we lift the [NoGetsF] predicate through the [itree] [go] constructor to obtain a predicate transformer on [itree stateE R]. This is achieved just by asking composing NoGetsF with [observe]. *) (* SAZ: n.b. for some reason, we have adopted the [Foo_] notational convention for the predicate transformer whose greatest fixpoint is [Foo]. Is this good? SAZ: Actually, I see that we're inconsistent between [eq_itree] and [eutt] with these naming conventions. *)
Variant
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
NoGetsF
NoGets_ {S R} (rec : itree (stateE S) R -> Prop) (t : itree (stateE S) R) : Prop := NoGetsF rec (observe t). (* Next, we need to prove that [NoGets_] is a monotone function on relations, which means that paco can take its greatest fixpoint. Monotonicity of [NoGets_] depends on monotonicity of [NoGetsF]. Fortunately, paco provides the tactic [pmonauto] which almost always discharges these proofs. It also provides the definitions monotone1, monotone2, etc. for monotonicity at different arities of relations. *) (* SAZ: Arguably, the LE fact should be defined via some named property. In the Coq Relationclasses library, there is a definition of subrelation, which is the binary version of this. It might be more uniform to have subrelation1, subrelation2, subrelation3, etc. for different arities. SAZ: It's a bit of a wart that, due to NoGetsF transforming predicates on [itree (stateE S) R] to predicates on [itreeF (stateE S) (itree (stateE S) R)] that it isn't an instance of monotone1. *)
Definition
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
NoGets_
monotone_NoGetsF : forall {S R} t (r r' : itree (stateE S) R -> Prop) (IN: NoGetsF r t) (LE: forall y, r y -> r' y), NoGetsF r' t. Proof. pmonauto. Qed. (* SAZ: we need to do a couple of reductions to expose the structure of the lemma so that pmonauto can work. Note that [cbn] and [simple] don't work here because they don't unfold the definitions. *)
Lemma
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
monotone_NoGetsF
monotone_NoGets_ : forall {S R}, monotone1 (@NoGets_ S R). Proof. do 2 red. pmonauto. Qed. Global Hint Resolve monotone_NoGets_ : paco. (* Finally, we can define the [NoGets] predicate by simply applying paco1 starting from bot1 (the least prediate). We would use paco2 and bot2 for a binary relation, paco3 and bot3 for ternary, etc. *)
Lemma
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
monotone_NoGets_
NoGets {S R} : itree (stateE S) R -> Prop := paco1 NoGets_ bot1. (* Using a coinductive predicate -------------------------------------------- *) (* Now that we have defined [NoGets], we can use that predicate to do a coinductive proof. Intuitively, if we interpret an itree of type [itree (stateE S) R] that satisfies the [NoGets] predicate, it does not matter what initial state it runs in. To state this correctly, we have to "project away" the final state component that is produced by the monad, since the two final states might differ. Some notes about this proof: - In general, rewriting up to ≅ or ≈ can take place only under the "up to" paco context. This means that to do the [rewrite (itree_eta ...)] steps, we have to have done [pupto2_init] first. *)
Definition
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
NoGets
state_independent : forall {S R} (t:itree (stateE S) R) (H: NoGets t), forall s s', ('(s,x) <- interpret_state t s ;; ret x) ≅ ('(s,x) <- interpret_state t s' ;; ret x). Proof. intros S R. ginit. gcofix CIH. intros t H0 s s'. rewrite (itree_eta (interpret_state t s)). rewrite (itree_eta (interpret_state t s')). rewrite !unfold_interpret_state. unfold interpret_stateF. punfold H0. repeat red in H0. destruct (observe t); cbn. - rewrite !bind_ret_l. gstep. econstructor. eauto. - rewrite !bind_tau. gstep. econstructor. gbase. eapply CIH. inversion H0. subst. pclearbot. assumption. - destruct e; cbn. + (* e is Get, which is ruled out by the NoGets predicate *) inversion H0. + rewrite !bind_tau. gstep. econstructor. gbase. eapply CIH. inversion H0. ddestruction. pclearbot. assumption. Qed. (* More or less the same proof also works for any continuation [k] that ignores the state. This proof illustrates the use of paco2_mon -- monotonicity means that if we assume that [k (s, x) ≅ k (s', x))] then [k (s, x)] is related to [k (s', x)] at any "later" step of the cofixpoint. e.g. in the proof below we need them related at [r]. *)
Lemma
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
state_independent
state_independent_k : forall {S R U} (t:itree (stateE S) R) (H: NoGets t) (k: (S * R) -> itree void1 U) (INV: forall s s' x, k (s, x) ≅ k (s', x)), forall s s', (sx <- interpret_state t s ;; (k sx)) ≅ (sx <- interpret_state t s' ;; (k sx)). Proof. intros S R U. ginit. gcofix CIH. intros t H0 k INV s s'. rewrite (itree_eta (interpret_state t s)). rewrite (itree_eta (interpret_state t s')). rewrite !unfold_interpret_state. unfold interpret_stateF. punfold H0. repeat red in H0. destruct (observe t); cbn. - rewrite !bind_ret_l. gfinal. right. eapply paco2_mon_bot; eauto with paco. apply INV. - rewrite !bind_tau. gstep. econstructor. gbase. eapply CIH; auto. inversion H0. subst. pclearbot. assumption. - destruct e; cbn. + (* e is Get, which is ruled out by the NoGets predicate *) inversion H0. + rewrite !bind_tau. gstep. econstructor. gbase. eapply CIH; auto. inversion H0. ddestruction. pclearbot. assumption. Qed.
Lemma
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
state_independent_k
state_independent' : forall {S R} (t:itree (stateE S) R) (H: NoGets t), forall s s', ('(s,x) <- interpret_state t s ;; ret x) ≅ ('(s,x) <- interpret_state t s' ;; ret x). Proof. intros S R t H s s'. eapply state_independent_k; eauto. intros. reflexivity. Qed.
Theorem
examples
[ "From Coq Require Import\n Morphisms.", "From Paco Require Import paco.", "From ExtLib Require Import\n Monads.", "From Paco Require Import paco." ]
examples/ITreePredicatesExample.v
state_independent'
term : Type := | Var : nat -> term (* DeBruijn indexed *) | App : term -> term -> term | Lam : term -> term .
Inductive
examples
[ "From Coq Require Import Arith.", "From ExtLib.Structures Require Import\n Monad." ]
examples/LC.v
term
headvar : Type := | VVar : nat -> headvar | VApp : headvar -> value -> headvar with value : Type := | VHead : headvar -> value | VLam : term -> value .
Inductive
examples
[ "From Coq Require Import Arith.", "From ExtLib.Structures Require Import\n Monad." ]
examples/LC.v
headvar
to_term (v : value) : term := match v with | VHead hv => hv_to_term hv | VLam t => Lam t end with hv_to_term (hv : headvar) : term := match hv with | VVar n => Var n | VApp hv v => App (hv_to_term hv) (to_term v) end.
Fixpoint
examples
[ "From Coq Require Import Arith.", "From ExtLib.Structures Require Import\n Monad." ]
examples/LC.v
to_term
shift (n m : nat) (s : term) := match s with | Var p => if p <? m then Var (n + p) else Var p | App t1 t2 => App (shift n m t1) (shift n m t2) | Lam t => Lam (shift n (S m) t) end.
Fixpoint
examples
[ "From Coq Require Import Arith.", "From ExtLib.Structures Require Import\n Monad." ]
examples/LC.v
shift
subst (n : nat) (s t : term) := match t with | Var m => if m <? n then Var m else if m =? n then shift n O s else Var (pred m) | App t1 t2 => App (subst n s t1) (subst n s t2) | Lam t => Lam (subst (S n) s t) end. (* big-step call-by-value *)
Fixpoint
examples
[ "From Coq Require Import Arith.", "From ExtLib.Structures Require Import\n Monad." ]
examples/LC.v
subst
big_step : term -> itree void1 value := rec (fun t => match t with | Var n => ret (VHead (VVar n)) | App t1 t2 => t2' <- trigger (Call t2);; t1' <- trigger (Call t1);; match t1' with | VHead hv => ret (VHead (VApp hv t2')) | VLam t1'' => trigger (Call (subst O (to_term t2') t1'')) end | Lam t => ret (VLam t) end).
Definition
examples
[ "From Coq Require Import Arith.", "From ExtLib.Structures Require Import\n Monad." ]
examples/LC.v
big_step
printE : Type -> Type := Print : string -> printE unit. (* A thread that loops, printing [s] forever. *)
Variant
examples
[ "From Coq Require Import\n String." ]
examples/MultiThreadedPrinting.v
printE
thread {E} `{printE -< E} (s:string) : itree E unit := ITree.forever (trigger (Print s)). (* Run three threads. *)
Definition
examples
[ "From Coq Require Import\n String." ]
examples/MultiThreadedPrinting.v
thread
main_thread : itree (spawnE printE +' printE) unit := spawn (thread "Thread 1") ;; spawn (thread "Thread 2") ;; spawn (thread "Thread 3").
Definition
examples
[ "From Coq Require Import\n String." ]
examples/MultiThreadedPrinting.v
main_thread
scheduled_thread : itree printE unit := run_spawn main_thread.
Definition
examples
[ "From Coq Require Import\n String." ]
examples/MultiThreadedPrinting.v
scheduled_thread
com : Type := | loop : com -> com (* Nondeterministically, continue or stop. *) | choose : com -> com -> com | skip : com | seq : com -> com -> com . Declare Scope com_scope. Infix ";;" := seq (at level 61, right associativity) : com_scope. Delimit Scope com_scope with com. Open Scope com_scope.
Inductive
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
com
one_loop : com := loop skip.
Example
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
one_loop
two_loops : com := loop (loop skip).
Example
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
two_loops
loop_choose : com := loop (choose skip skip).
Example
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
loop_choose
choose_loop : com := choose (loop skip) skip. (* Unlabeled small-step *)
Example
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
choose_loop
step : relation com := | step_loop_stop c : loop c --> skip | step_loop_go c : loop c --> (c ;; loop c) | step_choose_l c1 c2 : choose c1 c2 --> c1 | step_choose_r c1 c2 : choose c1 c2 --> c2 | step_seq_go c1 c1' c2 : c1 --> c2 -> (c1 ;; c2) --> (c1' ;; c2) | step_seq_next c2 : (skip ;; c2) --> c2 where "x --> y" := (step x y).
Inductive
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
step
infinite_steps (c : com) : Type := | more c' : step c c' -> infinite_steps c' -> infinite_steps c.
CoInductive
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
infinite_steps
infinite_simple_loop : infinite_steps one_loop. Proof. cofix self. eapply more. { eapply step_loop_go. } eapply more. { eapply step_seq_next. } apply self. Qed.
Lemma
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
infinite_simple_loop
label := tau | bit (b : bool).
Variant
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
label
step : label -> relation com := | step_loop_stop c : loop c ! true --> skip | step_loop_go c : loop c ! false --> (c ;; loop c) | step_choose_l c1 c2 : choose c1 c2 ! true --> c1 | step_choose_r c1 c2 : choose c1 c2 ! false --> c2 | step_seq_go b c1 c1' c2 : c1 ? b --> c2 -> (c1 ;; c2) ? b --> (c1' ;; c2) | step_seq_next c2 : (skip ;; c2) --> c2 where "x --> y" := (step tau x y) and "x ! b --> y" := (step (bit b) x y) and "x ? b --> y" := (step b x y).
Inductive
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
step
infinite_steps (c : com) : Type := | more b c' : step b c c' -> infinite_steps c' -> infinite_steps c.
CoInductive
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
infinite_steps
infinite_simple_loop : infinite_steps one_loop. Proof. cofix self. eapply more. { eapply step_loop_go. } eapply more. { eapply step_seq_next. } apply self. Qed.
Lemma
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
infinite_simple_loop
nd : Type -> Prop := | Or : nd bool.
Variant
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
nd
or {R : Type} (t1 t2 : itree nd R) : itree nd R := Vis Or (fun b : bool => if b then t1 else t2). (* Flip a coin *)
Definition
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
or
choice {E} `{nd -< E} : itree E bool := trigger Or.
Definition
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
choice
eval_def : com -> itree (callE _ _ +' nd) unit := (fun (c : com) => match c with | loop c => (b <- choice;; if b : bool then Ret tt else (trigger (Call c);; trigger (Call (loop c))))%itree | choose c1 c2 => (b <- choice;; if b : bool then trigger (Call c1) else trigger (Call c2))%itree | (t1 ;; t2)%com => (trigger (Call t1);; trigger (Call t2))%itree | skip => Ret tt end ).
Definition
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
eval_def
eval : com -> itree nd unit := rec eval_def. (* [itree] semantics of [one_loop]. *)
Definition
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
eval
one_loop_tree : itree nd unit := rec (fun _ : unit => (* note: [or] is not allowed under [mfix]. *) b <- choice;; if b : bool then Ret tt else trigger (Call tt))%itree tt. Import Coq.Classes.Morphisms.
Definition
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
one_loop_tree
eval_skip : rec eval_def skip ≈ Ret tt. Proof. rewrite rec_as_interp. cbn. rewrite interp_ret. reflexivity. Qed. (* SAZ: the [~] notation for eutt wasn't working here. *)
Lemma
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
eval_skip
eval_one_loop : eval one_loop ≈ one_loop_tree. Proof. einit. ecofix CIH. edrop. setoid_rewrite rec_as_interp. setoid_rewrite interp_bind. setoid_rewrite interp_vis. setoid_rewrite tau_eutt. setoid_rewrite interp_ret. setoid_rewrite bind_bind. setoid_rewrite bind_ret_l. setoid_rewrite bind_vis. evis. intros. setoid_rewrite bind_ret_l. destruct v. - setoid_rewrite interp_ret. apply reflexivity. - setoid_rewrite interp_bind. setoid_rewrite interp_recursive_call. setoid_rewrite eval_skip. setoid_rewrite bind_ret_l. eauto with paco. Qed.
Lemma
examples
[ "From Coq Require Import\n Relations.", "From Paco Require Import paco." ]
examples/Nimp.v
eval_one_loop
inputE : Type -> Prop := | Input : inputE nat. (* Effectful programs *)
Variant
examples
[ "From ITree Require Import\n ITree ITreeFacts." ]
examples/ReadmeExample.v
inputE
echo : itree inputE nat := x <- trigger Input ;; Ret x. (* Effect handlers *)
Definition
examples
[ "From ITree Require Import\n ITree ITreeFacts." ]
examples/ReadmeExample.v
echo
handler {E} (n : nat) : inputE ~> itree E := fun _ e => match e with | Input => Ret n end. (* Interpreters *)
Definition
examples
[ "From ITree Require Import\n ITree ITreeFacts." ]
examples/ReadmeExample.v
handler
echoed (n : nat) : itree void1 nat := interp (handler n) echo. (* Equational reasoning *)
Definition
examples
[ "From ITree Require Import\n ITree ITreeFacts." ]
examples/ReadmeExample.v
echoed
echoed_id : forall n, echoed n ≈ Ret n. Proof. intros n. (* echoed n *) unfold echoed, echo. (* ≈ interp (handler n) (x <- trigger Input ;; Ret x) *) rewrite interp_bind. (* ≈ x <- interp (handler n) Input ;; interp (handler n) (Ret x) *) rewrite interp_trigger. (* ≈ x <- handler n _ Input ;; interp (handler n) (Ret x) *) cbn. (* ≈ x <- Ret n ;; interp (handler n) (Ret x) *) rewrite bind_ret_l. (* ≈ interp (handler n) (Ret n) *) rewrite interp_ret. (* ≈ Ret n *) reflexivity. Qed.
Theorem
examples
[ "From ITree Require Import\n ITree ITreeFacts." ]
examples/ReadmeExample.v
echoed_id
typ := | Base | Arr (s:typ) (t:typ). Variable V : typ -> Type. (* PHOAS variables *)
Inductive
examples
[]
examples/STLC.v
typ
tm : typ -> Type := | Lit (n:nat) : tm Base | Var : forall (t:typ), V t -> tm t | App : forall t1 t2 (m1 : tm (Arr t1 t2)) (m2 : tm t1), tm t2 | Lam : forall t1 t2 (body : V t1 -> tm t2), tm (Arr t1 t2) | Opr : forall (m1 : tm Base) (m2 : tm Base), tm Base .
Inductive
examples
[]
examples/STLC.v
tm
open_tm (G : list typ) (u:typ) : Type := match G with | [] => tm u | t::ts => V t -> (open_tm ts u) end.
Fixpoint
examples
[]
examples/STLC.v
open_tm
Term (G : list typ) (u:typ) := forall (V : typ -> Type), open_tm V G u. Arguments Lit {V}. Arguments Var {V t}. Arguments App {V t1 t2}. Arguments Lam {V t1 t2}. Arguments Opr {V}.
Definition
examples
[]
examples/STLC.v
Term
denote_typ E (t:typ) : Type := match t with | Base => nat | Arr s t => (denote_typ E s) -> itree E (denote_typ E t) end.
Fixpoint
examples
[]
examples/STLC.v
denote_typ
denotation_tm_typ E (V:typ -> Type) (G : list typ) (u:typ) := match G with | [] => itree E (V u) | t::ts => (V t) -> denotation_tm_typ E V ts u end.
Fixpoint
examples
[]
examples/STLC.v
denotation_tm_typ
denote_closed_term {E} {u:typ} (m : tm (denote_typ E) u) : itree E (denote_typ E u) := match m with | Lit n => Ret n | Var x => Ret x | App m1 m2 => f <- (denote_closed_term m1) ;; x <- (denote_closed_term m2) ;; ans <- f x ;; ret ans | Lam body => ret (fun x => denote_closed_term (body x)) | Opr m1 m2 => x <- (denote_closed_term m1) ;; y <- (denote_closed_term m2) ;; Ret (x + y) end.
Fixpoint
examples
[]
examples/STLC.v
denote_closed_term
Fixpoint denote_rec (V:typ -> Type) E (base : forall u (m : tm V u), itree E (V u)) (G: list typ) (u:typ) (m : open_tm V G u) : denotation_tm_typ E V G u := match G with | [] => base u _ | t::ts => fun (x : V t) => denote_rec V E base ts u _ end.
Program
examples
[]
examples/STLC.v
Fixpoint
Obligation . simpl in m. exact m. Defined.
Next
examples
[]
examples/STLC.v
Obligation
Obligation . unfold Term in m. simpl in m. apply m in x. exact x. Defined.
Next
examples
[]
examples/STLC.v
Obligation
Definition denote E (G : list typ) (u:typ) (m : Term G u) : denotation_tm_typ E (denote_typ E) G u := denote_rec (denote_typ E) E (@denote_closed_term E) G u _.
Program
examples
[]
examples/STLC.v
Definition
Obligation . unfold Term in m. specialize (m (denote_typ E)). exact m. Defined.
Next
examples
[]
examples/STLC.v
Obligation
id_tm : Term [] (Arr Base Base) := fun V => Lam (fun x => Var x).
Definition
examples
[]
examples/STLC.v
id_tm
example : Term [] Base := fun V => App (id_tm V) (Lit 3).
Definition
examples
[]
examples/STLC.v
example
example_equiv E : (denote E [] Base example) ≈ Ret 3. Proof. cbn. repeat rewrite bind_ret_l. reflexivity. Qed.
Lemma
examples
[]
examples/STLC.v
example_equiv
twice : Term [] (Arr (Arr Base Base) (Arr Base Base)) := fun V => Lam (fun f => Lam (fun x => App (Var f) (App (Var f) (Var x)))).
Definition
examples
[]
examples/STLC.v
twice
example2 : Term [] Base := fun V => App (App (twice V) (id_tm V)) (Lit 3).
Definition
examples
[]
examples/STLC.v
example2
big_example_equiv E : (denote E [] Base example2) ≈ Ret 3. Proof. cbn. repeat rewrite bind_ret_l. reflexivity. Qed.
Lemma
examples
[]
examples/STLC.v
big_example_equiv
add_2_tm : Term [] (Arr Base Base) := fun V => Lam (fun x => (Opr (Var x) (Lit 2))).
Definition
examples
[]
examples/STLC.v
add_2_tm
example3 : Term [] Base := fun V => App (App (twice V) (add_2_tm V)) (Lit 3).
Definition
examples
[]
examples/STLC.v
example3
big_example2_equiv E : (denote E [] Base example3) ≈ Ret 7. Proof. cbn. repeat rewrite bind_ret_l. reflexivity. Qed.
Lemma
examples
[]
examples/STLC.v
big_example2_equiv
iforest (E: Type -> Type) (X: Type): Type := itree E X -> Prop. (** TODO: There may be a generalization to a kind of monad transformer [PropT M X := M X -> Prop]. *) (** [iforest] are expected to be compatible with the [eutt] relation in the following sense: *)
Definition
extra
[ "From Paco Require Import paco.", "From ExtLib Require Import\n Structures." ]
extra/IForest.v
iforest
eutt_closed := (Proper (eutt eq ==> iff)) (only parsing). #[global] Polymorphic Instance Eq1_iforest {E} : Eq1 (iforest E) := fun a PA PA' => (forall x y, x ≈ y -> (PA x <-> PA' y)) /\ eutt_closed PA /\ eutt_closed PA'. #[global] Instance Functor_iforest {E} : Functor (iforest E) := {| fmap := fun A B f PA b => exists (a: itree E A), PA a /\ b = fmap f a |}.
Notation
extra
[ "From Paco Require Import paco.", "From ExtLib Require Import\n Structures." ]
extra/IForest.v
eutt_closed
subtree {E} {A B} (ta : itree E A) (tb : itree E B) : Prop := exists (k : A -> itree E B), tb ≈ bind ta k. (* Definition 5.1 *)
Definition
extra
[ "From Paco Require Import paco.", "From ExtLib Require Import\n Structures." ]
extra/IForest.v
subtree
bind_iforest {E} : forall A B, iforest E A -> (A -> iforest E B) -> iforest E B := fun A B (specA : iforest E A) (K: A -> iforest E B) (tb: itree E B) => exists (ta: itree E A) (k: A -> itree E B), specA ta /\ tb ≈ bind ta k /\ (forall a, Leaf a ta -> K a (k a)).
Definition
extra
[ "From Paco Require Import paco.", "From ExtLib Require Import\n Structures." ]
extra/IForest.v
bind_iforest
End of preview. Expand in Data Studio

Coq-InteractionTrees

Structured dataset from Interaction Trees — Representing recursive and impure programs.

2,936 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
19

Collection including phanerozoic/Coq-InteractionTrees