Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
8
29k
type
stringclasses
20 values
library
stringclasses
1 value
imports
listlengths
0
9
filename
stringclasses
173 values
symbolic_name
stringlengths
1
44
docstring
stringclasses
1 value
find (T : Type) (x : T) (xs : seq T) (i:nat). #[export]
Class
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
find
find0 (T : Type) (x : T) (xs : seq T) : find x (x :: xs) 0 := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
find0
findS (T : Type) (x : T) (y : T) (ys : seq T) i {_: find x ys i} : find x (y :: ys) i.+1 | 1 := { }. (* -------------------------------------------------------------------- *)
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
findS
closed (T : Type) (xs : seq T). #[export]
Class
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
closed
closed_nil T : closed (T:=T) nil := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
closed_nil
closed_cons T (x : T) (xs : seq T) {_: closed xs} : closed (x :: xs) := { }. (* -------------------------------------------------------------------- *)
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
closed_cons
reify (R : ringType) (a : R) (t : PExpr Z) (e : seq R). #[export]
Class
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify
reify_zero (R : ringType) e : @reify R 0 0%S e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify_zero
reify_one (R : ringType) e : @reify R 1 1%S e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify_one
reify_natconst (R : ringType) n e : @reify R n%:R ((n : Z)%:S)%S e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify_natconst
reify_add (R : ringType) a1 a2 t1 t2 e {_: @reify R a1 t1 e} {_: @reify R a2 t2 e} : reify (a1 + a2) (t1 + t2)%S e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify_add
reify_opp (R : ringType) a t e {_: @reify R a t e} : reify (-a) (-t)%S e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify_opp
reify_natmul (R : ringType) a n t e {_: @reify R a t e} : reify (a *+ n) (t * (n : Z)%:S)%S e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify_natmul
reify_mul (R : ringType) a1 a2 t1 t2 e {_: @reify R a1 t1 e} {_: @reify R a2 t2 e} : reify (a1 * a2) (t1 * t2)%S e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify_mul
reify_exp (R : ringType) a n t e {_: @reify R a t e} : reify (a ^+ n) (t ^+ n)%S e | 1 := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify_exp
reify_var (R : ringType) a i e `{find R a e i} : reify a ('X_i)%S e | 100 := { }.
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify_var
reifyl (R : ringType) a t e {_: @reify R a t e} `{closed (T := R) e} := (t, e). (* -------------------------------------------------------------------- *)
Definition
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reifyl
reify xt xe := match goal with |- ?a = 0 => match eval red in (reifyl (a := a)) with | (?t, ?e) => pose xt := t; pose xe := e end end. (* -------------------------------------------------------------------- *)
Ltac
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
reify
freify (F : fieldType) (a : F) (t : FExpr Z) (e : seq F). #[export]
Class
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify
freify_zero (F : fieldType) e : @freify F 0 0%F e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_zero
freify_one (F : fieldType) e : @freify F 1 1%F e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_one
freify_natconst (F : fieldType) n e : @freify F n%:R ((n : Z)%:S)%F e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_natconst
freify_add (F : fieldType) a1 a2 t1 t2 e {_: @freify F a1 t1 e} {_: @freify F a2 t2 e} : freify (a1 + a2) (t1 + t2)%F e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_add
freify_opp (F : fieldType) a t e {_: @freify F a t e} : freify (-a) (-t)%F e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_opp
freify_natmul (F : fieldType) a n t e {_: @freify F a t e} : freify (a *+ n) (t * (n : Z)%:S)%F e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_natmul
freify_mul (F : fieldType) a1 a2 t1 t2 e {_: @freify F a1 t1 e} {_: @freify F a2 t2 e} : freify (a1 * a2) (t1 * t2)%F e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_mul
freify_inv (F : fieldType) a t e {_: @freify F a t e} : freify (a^-1) (t^-1)%F e := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_inv
freify_exp (F : fieldType) a n t e {_: @freify F a t e} : freify (a ^+ n) (t ^+ n)%F e | 1 := { }. #[export]
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_exp
freify_var (F : fieldType) a i e `{find F a e i} : freify a ('X_i)%F e | 100 := { }.
Instance
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify_var
freifyl (F : fieldType) a t e {_: @freify F a t e} `{closed (T := F) e} := (t, e). (* -------------------------------------------------------------------- *)
Definition
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freifyl
freify xt xe := match goal with |- ?a = 0 => match eval red in (freifyl (a := a)) with | (?t, ?e) => pose xt := t; pose xe := e end end. (* -------------------------------------------------------------------- *)
Ltac
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
freify
R_of_Z (R : ringType) (z : Z) : R := match z with | Z0 => 0 | Zpos n => (nat_of_P n)%:R | Zneg n => - (nat_of_P n)%:R end. Arguments R_of_Z [R].
Definition
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
R_of_Z
z0E : 0%Z = 0. Proof. by []. Qed.
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
z0E
zaddE (z1 z2 : Z): (z1 + z2)%Z = z1 + z2. Proof. by []. Qed.
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
zaddE
zoppE (z : Z): (-z)%Z = -z. Proof. by []. Qed.
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
zoppE
zmulE (z1 z2 : Z): (z1 * z2)%Z = z1 * z2. Proof. by []. Qed.
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
zmulE
zE := (z0E, zaddE, zoppE).
Definition
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
zE
R_of_Z_is_additive (R : ringType): additive (R_of_Z (R := R)). Proof. have oppm: {morph (R_of_Z (R := R)) : x / -x >-> -x}. by case=> [|n|n] //=; rewrite ?(oppr0, opprK). have addm z1 z2: R_of_Z (z1 + z2) = R_of_Z z1 + R_of_Z z2 :> R. wlog: z1 z2 / (z1 <=? z2)%Z; first move=> wlog. + case: (boolP (z1 <=? z2))%Z; first by move/wlog. + move/negbTE/Z.leb_gt/Z.lt_le_incl/Z.leb_le. by move/wlog; rewrite Z.add_comm addrC. case: z1 z2=> [|n1|n1] [|n2|n2] //= _; rewrite ?(addr0, add0r) //. + by rewrite Pos2Nat.inj_add natrD. + case: (Z.compare_spec n1 n2) => [[->]||]. * by rewrite Z.pos_sub_diag addrC subrr. * move=> lt; rewrite (Z.pos_sub_gt _ _ lt) /=. rewrite (Pos2Nat.inj_sub _ _ lt) natrB 1?addrC //. apply/leP/Pos2Nat.inj_le/Pos.lt_le_incl/Pos.ltb_lt. by rewrite Pos2Z.inj_ltb; apply/Pos.ltb_lt. * move=> lt; rewrite (Z.pos_sub_lt _ _ lt) /=. rewrite (Pos2Nat.inj_sub _ _ lt) natrB ?opprB 1?addrC //. apply/leP/Pos2Nat.inj_le/Pos.lt_le_incl/Pos.ltb_lt. by rewrite Pos2Z.inj_ltb; apply/Pos.ltb_lt. + by rewrite Pos2Nat.inj_add natrD opprD. by move=> z1 z2 /=; rewrite addm oppm. Qed. HB.instance Definition _ (R : ringType) := GRing.isAdditive.Build _ _ (R_of_Z (R:=R)) (R_of_Z_is_additive R).
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
R_of_Z_is_additive
R_of_Z_is_multiplicative (R : ringType): multiplicative (R_of_Z (R := R)). Proof. split=> //=; case=> [|z1|z1] [|z2|z2] //=; rewrite ?simpm // ?(mulNr, mulrN, opprK); by rewrite nat_of_P_mult_morphism natrM. Qed. HB.instance Definition _ (R : ringType) := GRing.isMultiplicative.Build _ _ (R_of_Z (R:=R)) (R_of_Z_is_multiplicative R). Local Notation REeval := (@PEeval _ 0 +%R *%R (fun x y => x - y) -%R Z R_of_Z nat nat_of_N (@GRing.exp _)).
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
R_of_Z_is_multiplicative
RE (R : ringType): @ring_eq_ext R +%R *%R -%R (@eq R). Proof. by split; do! move=> ? _ <-. Qed. Local Notation "~%R" := (fun x y => x - y). Local Notation "/%R" := (fun x y => x / y). Local Notation "^-1%R" := (@GRing.inv _) (only parsing).
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
RE
RR (R : comRingType): @ring_theory R 0 1 +%R *%R ~%R -%R (@eq R). Proof. split=> //=; [ exact: add0r | exact: addrC | exact: addrA | exact: mul1r | exact: mulrC | exact: mulrA | exact: mulrDl | exact: subrr ]. Qed.
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
RR
RZ (R : ringType): ring_morph (R := R) 0 1 +%R *%R ~%R -%R eq 0%Z 1%Z Zplus Zmult Zminus Z.opp Z.eqb (@R_of_Z _). Proof. split=> //=. + by move=> x y; rewrite rmorphD. + by move=> x y; rewrite rmorphB. + by move=> x y; rewrite rmorphM. + by move=> x; rewrite raddfN. + by move=> x y /Z.eqb_eq ->. Qed.
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
RZ
PN (R : ringType): @power_theory R 1 *%R eq nat nat_of_N (@GRing.exp R). Proof. split=> r [|n] //=; elim: n => //= p ih. + by rewrite Pos2Nat.inj_xI exprS -!ih -exprD addnn -mul2n. + by rewrite Pos2Nat.inj_xO -!ih -exprD addnn -mul2n. Qed.
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
PN
RF (F : fieldType): @field_theory F 0 1 +%R *%R ~%R -%R /%R ^-1%R (@eq F). Proof. split=> //=; first by apply RR. + by apply/eqP; rewrite oner_eq0. + by move=> x /eqP nz_z; rewrite mulVf. Qed.
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
RF
Rcorrect (R : comRingType) := ring_correct (Eqsth R) (RE R) (Rth_ARth (Eqsth R) (RE R) (RR R)) (RZ R) (PN R) (triv_div_th (Eqsth R) (RE R) (Rth_ARth (Eqsth R) (RE R) (RR R)) (RZ R)).
Definition
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
Rcorrect
Fcorrect (F : fieldType) := Field_correct (Eqsth F) (RE F) (congr1 GRing.inv) (F2AF (Eqsth F) (RE F) (RF F)) (RZ F) (PN F) (triv_div_th (Eqsth F) (RE F) (Rth_ARth (Eqsth F) (RE F) (RR F)) (RZ F)). (* -------------------------------------------------------------------- *)
Definition
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
Fcorrect
Reval (R : ringType) (l : seq R) (pe : PExpr Z) := match pe with | 0%S => 0 | 1%S => 1 | (c%:S)%S => R_of_Z c | ('X_j)%S => BinList.nth 0 j l | (pe1 + pe2)%S => (Reval l pe1) + (Reval l pe2) | (pe1 - pe2)%S => (Reval l pe1) - (Reval l pe2) | (- pe1)%S => - (Reval l pe1) | (pe1 ^+ n)%S => (Reval l pe1) ^+ (nat_of_N n) | (pe1 * pe2)%S => match pe2 with | ((Zpos n)%:S)%S => (Reval l pe1) *+ (nat_of_P n) | _ => (Reval l pe1) * (Reval l pe2) end end. Local Notation RevalC R := (PEeval 0 1 +%R *%R ~%R -%R (R_of_Z (R := R)) nat_of_N (@GRing.exp R)).
Fixpoint
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
Reval
PEReval (R : ringType): RevalC _ =2 @Reval R. Proof. move=> l; elim => //=; try by do? move=> ?->. + move=> pe1 -> pe2 ->; case: pe2 => //=. by case=> [|c|c] //=; rewrite mulr_natr. Qed. (* -------------------------------------------------------------------- *)
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
PEReval
Feval (F : fieldType) (l : seq F) (pe : FExpr Z) := match pe with | 0%F => 0 | 1%F => 1 | (c%:S)%F => R_of_Z c | ('X_j)%F => BinList.nth 0 j l | (pe1 + pe2)%F => (Feval l pe1) + (Feval l pe2) | (pe1 - pe2)%F => (Feval l pe1) - (Feval l pe2) | (- pe1)%F => - (Feval l pe1) | (pe1 ^+ n)%F => (Feval l pe1) ^+ (nat_of_N n) | (pe^-1)%F => (Feval l pe)^-1 | (pe1 / pe2)%F => (Feval l pe1) / (Feval l pe2) | (pe1 * pe2)%F => match pe2 with | ((Zpos n)%:S)%F => (Feval l pe1) *+ (nat_of_P n) | _ => (Feval l pe1) * (Feval l pe2) end end. Local Notation FevalC R := (FEeval 0 1 +%R *%R ~%R -%R /%R ^-1%R (R_of_Z (R := R)) nat_of_N (@GRing.exp R)).
Fixpoint
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
Feval
PEFeval (F : fieldType): FevalC _ =2 @Feval F. Proof. move=> l; elim => //=; try by do? move=> ?->. + move=> pe1 -> pe2 ->; case: pe2 => //=. by case=> [|c|c] //=; rewrite mulr_natr. Qed. (* -------------------------------------------------------------------- *)
Lemma
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
PEFeval
ssring := let xt := fresh "xt" in let xe := fresh "xe" in apply/eqP; rewrite -subr_eq0; apply/eqP; reify xt xe; apply (@Rcorrect _ 100 xe [::] xt (Coq.setoid_ring.Ring_polynom.PEc 0%Z) I); vm_compute;exact (erefl true). (* -------------------------------------------------------------------- *)
Ltac
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
ssring
ssfield := let xt := fresh "xt" in let xe := fresh "xe" in apply/eqP; rewrite -subr_eq0; apply/eqP; (* rewrite ?(mulr0, mul0r, mulr1, mul1r); *) freify xt xe; move: (@Fcorrect _ 100 xe [::] xt (Field_theory.FEc 0) I [::] (erefl [::])); move/(_ _ (erefl _) _ (erefl _) (erefl true)); rewrite !PEFeval; apply=> /=; do? split; cbv delta[BinPos.Pos.to_nat] => /= {xt xe}; try (exact I || apply/eqP).
Ltac
proofs
[ "From HB Require Import structures.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrnat ssrfun seq.", "From mathcomp Require Import choice ssralg bigop.", "From mathcomp Require Export word_ssrZ.", "From Coq Require Import NArith ZArith BinPos Ring_polynom Field_theory." ]
proofs/3rdparty/ssrring.v
ssfield
pair_inj {A B: Type} {a a': A} {b b': B} (e: (a, b) = (a', b')) : a = a' ∧ b = b' := let 'Logic.eq_refl := e in conj Logic.eq_refl Logic.eq_refl. (* -------------------------------------------------------------------- *)
Definition
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
pair_inj
assoc (s : seq (T * U)) (x : T) : option U := if s is (y, v) :: s then if x == y then Some v else assoc s x else None.
Fixpoint
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc
assoc_cat (s1 s2: seq (T * U)) x : assoc (s1 ++ s2) x = if assoc s1 x is Some _ then assoc s1 x else assoc s2 x. Proof. by elim: s1 => [|[t u] s1 ih] //=; case: eqP. Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc_cat
assoc_mem' (T: eqType) U (s: seq (T * U)) x w : assoc s x = Some w → List.In (x, w) s. Proof. elim: s => // [ [t u] s ] ih /=; case: eqP; last by auto. by move => a /Some_inj; left; f_equal. Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc_mem'
InP (T: eqType) (s: seq T) m : reflect (List.In m s) (m \in s). Proof. elim: s. by constructor. move => a s ih. rewrite in_cons. case: (@eqP _ m a). by constructor; left. case ih; constructor. by right. simpl; intuition. Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
InP
mem_uniq_assoc (T: eqType) U (s: seq (T * U)) x w : List.In (x, w) s → uniq (map fst s) → assoc s x = Some w. Proof. elim: s => // [ [t u] s] ih [ /pair_inj [] -> -> | rec ] /andP [nr un] /=. by rewrite eq_refl; eauto. case: eqP; last by eauto. fold (List.In (x, w) s) in rec. apply (List.in_map fst), (rwP (InP _ _)) in rec. move=> ?; subst. rewrite rec in nr. done. Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
mem_uniq_assoc
assoc_mem_dom' (T: eqType) U (s : seq (T * U)) x w : assoc s x = Some w -> x \in [seq v.1 | v <- s]. Proof. move => h; apply assoc_mem' in h. apply (rwP (InP _ _)), List.in_map_iff. eexists; split. 2: eassumption. reflexivity. Qed. (* -------------------------------------------------------------------- *)
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc_mem_dom'
assocP (s : seq (T * U)) (x : T) (w : U) : uniq (map fst s) -> reflect (assoc s x = Some w) ((x, w) \in s). Proof. elim: s => [|[t u] s ih] => uq; first by constructor. move: uq => /andP[/= t_notin_s /ih {ih}]; move: t_notin_s. case: eqP=> [->|/eqP ne_xt] t_notin_s; last first. + by rewrite in_cons eqE /= (negbTE ne_xt). rewrite inE eqE /= eqxx /=; case: eqP => [->|ne_wu] _ /=. + by constructor. suff ->: (t, w) \in s = false by constructor; case=> /esym. by apply/negbTE; apply/contra: t_notin_s => /(map_f fst). Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assocP
assoc_mem (s : seq (T * U)) x w : assoc s x = Some w -> (x, w) \in s. Proof. elim: s => [|[t u] s ih] //=; case: eqP => [-> [->]|/eqP ne]. + by rewrite in_cons eqxx orTb. by rewrite in_cons eqE /= (negbTE ne). Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc_mem
assoc_mem_dom (s : seq (T * U)) x w : assoc s x = Some w -> w \in [seq v.2 | v <- s]. Proof. by move/assoc_mem/(map_f snd). Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc_mem_dom
assoc_inj (s : seq (T * U)) x y w : uniq [seq v.2 | v <- s] -> assoc s x = Some w -> assoc s y = Some w -> x = y. Proof. elim: s => [|[t u] s ih] //= /andP[u_notin_s uq_s xw yx]. move: xw yx ih u_notin_s; case: eqP => [-> [->]|ne_xt]. + by case: eqP=> [->//|] ne_yt yw _ /negbTE; rewrite (assoc_mem_dom yw). move=> xw; case: eqP=> [-> [->] _|]. + by move/negbTE; rewrite (assoc_mem_dom xw). by move=> ne_yt yw ih u_notin_s; apply: ih. Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc_inj
assoc_mapE m n : (∀ n u, (h (n, u)).1 = n) → assoc (map h m) n = omap (λ u, (h (n, u)).2) (assoc m n). Proof. move => E. elim: m => // - [] t u m /= ->. case htu: h (E t u) => [ ? v ] /= ?; subst. case: eqP => //= ->. by rewrite htu. Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc_mapE
assoc_filterI (m: seq (T * U)) (n: T) : assoc [seq x <- m | p x.1 ] n = if p n then assoc m n else None. Proof. elim: m n. - by move => n /=; case: ifP. case => t u m ih n /=. case: ifP. - by move => /=; case: eqP => // -> ->. by case: eqP => // -> {n} h; rewrite ih h. Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc_filterI
assoc_filter (m: seq (T * U)) (n: T) : p n → assoc [seq x <- m | p x.1] n = assoc m n. Proof. by move => h; rewrite assoc_filterI h. Qed.
Corollary
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
assoc_filter
in_map b m : reflect (exists2 a : A, List.In a m & b = f a) (b \in [seq f i | i <- m]). Proof. elim: m; first by constructor => - [] _ []. move => a m ih /=. rewrite in_cons; case: eqP => [ -> | neq ] /=. - by constructor; exists a => //; left. case: ih => ih; constructor. - by case: ih => a' ??; exists a' => //; right. case => a' ha' ?; apply: ih; exists a' => //. case: ha' => //; congruence. Qed.
Lemma
proofs
[ "From Coq Require List.", "From Coq Require Import Utf8.", "From mathcomp Require Import ssreflect eqtype ssrbool ssrfun ssrnat.", "From mathcomp Require Export seq." ]
proofs/3rdparty/xseq.v
in_map
ToString (t: ltype) (T: Type) := { category : string (* Name of the "register" used to print errors. *) ; _finC : finTypeC T ; to_string : T -> string }. #[global]
Class
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
ToString
Instance _finC.
Existing
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
Instance
rtype {t T} `{ToString t T} := t. (* This type and the field check_CAimm is not very elegant, but it is the only solution I have to keep a decidable equality over the type arg_kind. If new architecture need new checker for immediate then we should add an entry here. But it definition can be done in the architecture itself *) #[only(eqbOK)] derive
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
rtype
caimm_checker_s := | CAimmC_none | CAimmC_arm_shift_amout of shift_kind | CAimmC_arm_wencoding of expected_wencoding | CAimmC_arm_0_8_16_24 | CAimmC_riscv_12bits_signed | CAimmC_riscv_5bits_unsigned. HB.instance Definition _ := hasDecEq.Build caimm_checker_s caimm_checker_s_eqb_OK. (* -------------------------------------------------------------------- *) (* Basic architecture declaration. * Parameterized by types for registers, extra registers, flags, and conditions. *)
Inductive
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
caimm_checker_s
arch_decl (reg regx xreg rflag cond : Type) := { reg_size : wsize (* Register size. Also used as pointer size. *) ; xreg_size : wsize (* Extended registers size. *) ; cond_eqC : eqTypeC cond ; toS_r : ToString (lword reg_size) reg ; toS_rx : ToString (lword reg_size) regx ; toS_x : ToString (lword xreg_size) xreg ; toS_f : ToString lbool rflag ; reg_size_neq_xreg_size : reg_size != xreg_size ; ad_rsp : reg ; ad_fcp : FlagCombinationParams ; check_CAimm : caimm_checker_s -> forall ws, word ws -> bool }. #[global]
Class
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
arch_decl
Instances cond_eqC toS_r toS_rx toS_x toS_f ad_fcp. #[export]
Existing
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
Instances
arch_pd `{arch_decl} : PointerData := { Uptr := reg_size }. #[export]
Instance
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
arch_pd
arch_msfsz `{arch_decl} : MSFsize := { msf_size := reg_size }.
Instance
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
arch_msfsz
mk_ptr `{arch_decl} name := {| vtype := aword Uptr; vname := name; |}. (* FIXME ARM : Try to not use this projection *)
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
mk_ptr
reg_t {reg regx xreg rflag cond} `{arch : arch_decl reg regx xreg rflag cond} := reg.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
reg_t
regx_t {reg regx xreg rflag cond} `{arch : arch_decl reg regx xreg rflag cond} := regx.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
regx_t
xreg_t {reg regx xreg rflag cond} `{arch : arch_decl reg regx xreg rflag cond} := xreg.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
xreg_t
rflag_t {reg regx xreg rflag cond} `{arch : arch_decl reg regx xreg rflag cond} := rflag.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
rflag_t
cond_t {reg regx xreg rflag cond} `{arch : arch_decl reg regx xreg rflag cond} := cond.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
cond_t
sem_lt t := (sem_t (eval_ltype t)).
Notation
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
sem_lt
sem_olt t := (sem_ot (eval_ltype t)).
Notation
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
sem_olt
sem_lprod ts tr := (sem_prod (map eval_ltype ts) tr).
Notation
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
sem_lprod
sem_ltuple ts := (sem_tuple (map eval_ltype ts)).
Notation
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
sem_ltuple
sem_lforall P tin := (sem_forall P (map eval_ltype tin)).
Notation
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
sem_lforall
interp_safe_cond_lty tin id_safe id_semi := (values.interp_safe_cond_ty (tin := map eval_ltype tin) id_safe id_semi).
Notation
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
interp_safe_cond_lty
lreg := lword reg_size.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
lreg
wreg := sem_lt lreg.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
wreg
lxreg := lword xreg_size.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
lxreg
wxreg := sem_lt lxreg.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
wxreg
lword_reg_neq_xreg : lreg != lxreg. Proof. apply/eqP. move=> []. apply/eqP. exact: reg_size_neq_xreg_size. Qed. (* -------------------------------------------------------------------- *) (* Addresses. * An address consists of * - A displacement (an immediate value). * - A base (a register). * - A scale. * - An offset (a register). * The effective address is displacement + base + offset * scale. *)
Lemma
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
lword_reg_neq_xreg
reg_address : Type := mkAddress { ad_disp : pointer ; ad_base : option reg_t ; ad_scale : nat ; ad_offset : option reg_t }.
Record
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
reg_address
address := | Areg of reg_address (* Absolute address. *) | Arip of pointer. (* Address relative to instruction pointer. *)
Variant
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
address
oeq_reg (x y:option reg_t) := @eq_op (option ceqT_eqType) x y.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
oeq_reg
reg_address_beq (addr1: reg_address) addr2 := match addr1, addr2 with | mkAddress d1 b1 s1 o1, mkAddress d2 b2 s2 o2 => [&& d1 == d2, oeq_reg b1 b2, s1 == s2 & oeq_reg o1 o2] end.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
reg_address_beq
reg_address_eq_axiom : Equality.axiom reg_address_beq. Proof. case=> [d1 b1 s1 o1] [d2 b2 s2 o2]; apply: (iffP idP) => /=. + by case/and4P ; do 4! move/eqP=> ->. by case; do 4! move=> ->; rewrite /oeq_reg !eqxx. Qed. HB.instance Definition _ := hasDecEq.Build reg_address reg_address_eq_axiom. (* -------------------------------------------------------------------- *)
Lemma
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
reg_address_eq_axiom
address_beq (addr1: address) addr2 := match addr1, addr2 with | Areg ra1, Areg ra2 => ra1 == ra2 | Arip p1, Arip p2 => p1 == p2 | _, _ => false end.
Definition
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
address_beq
address_eq_axiom : Equality.axiom address_beq. Proof. by case=> []? []? /=; (constructor || apply: reflect_inj eqP => ?? []). Qed. HB.instance Definition _ := hasDecEq.Build address address_eq_axiom. (* -------------------------------------------------------------------- *) (* Arguments to assembly instructions. *)
Lemma
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
address_eq_axiom
asm_arg : Type := | Condt of cond_t | Imm ws of word ws | Reg of reg_t | Regx of regx_t | Addr of address | XReg of xreg_t.
Variant
proofs
[ "From elpi.apps Require Import derive.", "From HB Require Import structures.", "From mathcomp Require Import ssreflect ssrfun ssrbool ssrnat eqtype ssralg.", "From mathcomp Require Import word_ssrZ." ]
proofs/arch/arch_decl.v
asm_arg
End of preview. Expand in Data Studio

Coq-Jasmin

Structured dataset from Jasmin — High-assurance cryptography language and compiler.

9,728 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
25

Collection including phanerozoic/Coq-Jasmin