Proof Assistant Projects
Collection
Digesting proof assistant libraries for AI ingestion.
•
84 items
•
Updated
•
2
fact
stringlengths 12
2.45k
| type
stringclasses 9
values | library
stringclasses 1
value | imports
listlengths 1
4
| filename
stringlengths 21
66
| symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
veldman_theorem_vtree_upto : afs_veldman_vtree_upto. Proof. exact afs_vtree_upto_embed. Qed.
|
Theorem
|
theories
|
[
"Require Import base statements."
] |
theories/conversions.v
|
veldman_theorem_vtree_upto
| |
higman_theorem_dtree_afs : afs_higman_dtree. Proof. apply veldman_vtree_upto_afs_to_higman_dtree_afs, veldman_theorem_vtree_upto. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree."
] |
theories/higman_theorems.v
|
higman_theorem_dtree_afs
| |
higman_theorem_dtree_af : af_higman_dtree. Proof. apply higman_dtree_afs_to_af, higman_theorem_dtree_afs. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree."
] |
theories/higman_theorems.v
|
higman_theorem_dtree_af
| |
higman_theorem_atree_af : af_higman_atree. Proof. apply higman_theorem_dtree_atree_af, higman_theorem_dtree_af. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree."
] |
theories/higman_theorems.v
|
higman_theorem_atree_af
| |
higman_lemma_list_af : af_higman_list. Proof. apply higman_dtree_to_list, higman_theorem_dtree_af. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree."
] |
theories/higman_theorems.v
|
higman_lemma_list_af
| |
l : vtree X := ⟨x|∅⟩.
|
Let
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree."
] |
theories/higman_theorems.v
|
l
| |
t n : vtree X := ⟨x|vec_set (λ _ : idx (S n), l)⟩. Local Fact embed_l r : r ≤ₚ l → arity r = 0. Proof. intros [ (p & ?) | H ]%dtree_product_embed_inv. + idx invert p. + destruct r as [ n y w ]. now destruct H as (-> & _). Qed. (* The only way for t n to embed into t m is n = m *) Local Fact embed_t n m : t n ≤ₚ t m → n = m. Proof. intros [ (p & H) | (e & _) ]%dtree_product_embed_inv. + rewrite vec_prj_set in H. now apply embed_l in H. + tlia. Qed. (** If X is inhabited then (dtree_product_embed R) is never almost-full when branching is unbounded *)
|
Let
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree."
] |
theories/higman_theorems.v
|
t
| |
not_af_product_embed : af (dtree_product_embed R) → False. Proof. intros (? & ? & ? & ? & ?%embed_t)%(af_good_pair t); tlia. Qed.
|
Lemma
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree."
] |
theories/higman_theorems.v
|
not_af_product_embed
| |
kruskal_theorem_vtree_afs : afs_kruskal_vtree. Proof. apply kruskal_theorem_vtree_afs, veldman_theorem_vtree_upto. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree ltree."
] |
theories/kruskal_theorems.v
|
kruskal_theorem_vtree_afs
| |
kruskal_theorem_vtree_af : af_kruskal_vtree. Proof. apply kruskal_vtree_afs_to_af, kruskal_theorem_vtree_afs. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree ltree."
] |
theories/kruskal_theorems.v
|
kruskal_theorem_vtree_af
| |
kruskal_theorem_ltree_af : af_kruskal_ltree. Proof. apply kruskal_vtree_to_ltree, kruskal_theorem_vtree_af. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree ltree."
] |
theories/kruskal_theorems.v
|
kruskal_theorem_ltree_af
| |
kruskal_theorem_ltree_afs : afs_kruskal_ltree. Proof. apply kruskal_ltree_af_to_afs, kruskal_theorem_ltree_af. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree ltree."
] |
theories/kruskal_theorems.v
|
kruskal_theorem_ltree_afs
| |
kruskal_theorem_atree_af : af_kruskal_atree. Proof. apply kruskal_theorem_vtree_atree_af, kruskal_theorem_vtree_af. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree ltree."
] |
theories/kruskal_theorems.v
|
kruskal_theorem_atree_af
| |
afs_vtree_homeo_embed : afs X R → afs (wft (λ _, X)) (vtree_homeo_embed R). Proof. exact (@kruskal_theorem_vtree_afs _ _ _). Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree ltree."
] |
theories/kruskal_theorems.v
|
afs_vtree_homeo_embed
| |
af_vtree_homeo_embed : af R → af (vtree_homeo_embed R). Proof. exact (@kruskal_theorem_vtree_af _ _). Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree ltree."
] |
theories/kruskal_theorems.v
|
af_vtree_homeo_embed
| |
afs_ltree_homeo_embed : afs X R → afs (ltree_fall (λ x _, X x)) (ltree_homeo_embed R). Proof. exact (@kruskal_theorem_ltree_afs _ _ _). Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree ltree."
] |
theories/kruskal_theorems.v
|
afs_ltree_homeo_embed
| |
af_ltree_homeo_embed : af R → af (ltree_homeo_embed R). Proof. exact (@kruskal_theorem_ltree_af _ _). Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree ltree."
] |
theories/kruskal_theorems.v
|
af_ltree_homeo_embed
| |
le_pirr x y (h₁ h₂ : x ≤ y) { struct h₁ } : h₁ = h₂. Proof. destruct h₁ as [ | y h₁ ]. + apply le_inv_eq_dep with (e := eq_refl). + specialize (le_pirr _ _ h₁). (* Freeze the recursive call on h₁ *) destruct (le_inv_le_dep h₂) as [ | (? & []) ]. * exfalso; lia. * now f_equal. Qed.
|
Fixpoint
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics."
] |
theories/le_lt_pirr.v
|
le_pirr
| |
lt_pirr x y (h₁ h₂ : x < y) : h₁ = h₂ := le_pirr h₁ h₂.
|
Definition
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics."
] |
theories/le_lt_pirr.v
|
lt_pirr
| |
af_higman_list := ∀ X (R : rel₂ X), af R → af (list_embed R). (** The statement of Higman's theorem for dependent roses trees: - sons are collected in vectors at each arity - the type of nodes can vary depending on the arity - the relation on nodes can vary depending on the arity - the type of nodes of arity greater than k (fixed) should be empty hence limiting the breadth of those trees to arity k In that case, the nested product embedding is AF. *)
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
af_higman_list
| |
af_higman_dtree := ∀ (k : nat) (X : nat → Type) (R : ∀n, rel₂ (X n)), (∀n, k ≤ n → X n → False) → (∀n, n < k → af (R n)) → af (dtree_product_embed R). (** The statement of Higman's theorem for vector based roses trees: - each node (x : X) can only be used with arity (a x : nat) - the relation R : nat → rel₂ X between nodes depends on the arity - the arity is bounded by k : a _ < k - for any arities n < k, R n restricted to (λ x, n = a x) is AF In that case, the product embedding is AF. *)
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
af_higman_dtree
| |
af_higman_atree := ∀ (k : nat) X (a : X → nat) (R : nat → rel₂ X), (∀x, a x < k) → (∀n, n < k → af (R n)⇓(λ x, n = a x)) → af (atree_product_embed a R). (** The statement of Kruskal's theorem for vector based uniform roses trees: - the type of nodes is independent of the arity - the relation between nodes is independent of the arity In that case, the homeomorphic embedding is AF. *)
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
af_higman_atree
| |
af_kruskal_vtree := ∀ X (R : rel₂ X), af R → af (vtree_homeo_embed R). (** The statement of Kruskal's theorem for vector based roses trees: - each node (x : X) can only be used with arity (a x : nat) - the relation between nodes does not depend on the arity In that case, the homeomorphic embedding is AF. *)
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
af_kruskal_vtree
| |
af_kruskal_atree := ∀ X (a : X → nat) (R : rel₂ X), af R → af (atree_homeo_embed a R). (** The statement of Kruskal's theorem for list based roses trees *)
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
af_kruskal_atree
| |
af_kruskal_ltree := ∀ X (R : rel₂ X), af R → af (ltree_homeo_embed R). (** The statement of Veldman's theorem for uniform well formed rose trees, as established in the Kruskal-Veldman project: - sons are collected in vectors - the type of nodes is independent of the arity - but the sub-type of allowed nodes depends on the arity - the relation on nodes can vary depending on the arity *)
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
af_kruskal_ltree
| |
afs_veldman_vtree_upto := ∀ (k : nat) A (X : nat → rel₁ A) (R : nat → rel₂ A), (∀n, k ≤ n → X n = X k) → (∀n, k ≤ n → R n = R k) → (∀n, n ≤ k → afs (X n) (R n)) → afs (wft X) (vtree_upto_embed k R). (** Below are afs versions of the above statements, that is when variations on types is replaced by variations on sub-types *)
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
afs_veldman_vtree_upto
| |
afs_higman_dtree := ∀ k U (X : nat → rel₁ U) (R : nat → rel₂ U), (∀ n x, k ≤ n → X n x → False) → (∀n, n < k → afs (X n) (R n)) → afs (wft X) (dtree_product_embed R).
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
afs_higman_dtree
| |
afs_kruskal_vtree := ∀ U (X : rel₁ U) (R : rel₂ U), afs X R → afs (wft (λ _, X)) (vtree_homeo_embed R).
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
afs_kruskal_vtree
| |
afs_kruskal_ltree := ∀ U (X : rel₁ U) (R : rel₂ U), afs X R → afs (ltree_fall (λ x _, X x)) (ltree_homeo_embed R). (** The statement of Vazsonyi's conjecture for vector based undecorated rose trees, of breadth bounded by k *) #[local] Notation "x ∊ v" := (@vec_in _ x _ v) (at level 70, no associativity, format "x ∊ v"). #[local] Notation "⟨ v | h ⟩ᵥ" := (btree_cons v h) (at level 0, v at level 200, format "⟨ v | h ⟩ᵥ").
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
afs_kruskal_ltree
| |
vazsonyi_conjecture_bounded := ∀ k (R : rel₂ (btree k)), (∀ s t n (h : n < k) v, t ∊ v → R s t → R s ⟨v|h⟩ᵥ) → (∀ n v m w (hₙ : n < k) (hₘ : m < k), vec_forall2 R v w → R ⟨v|hₙ⟩ᵥ ⟨w|hₘ⟩ᵥ) → ∀f, ∃ₜ n, ∃ i j, i < j < n ∧ R (f i) (f j). (** The statement of Vazsonyi's conjecture for list based (decorated) rose trees, but the decoration is ignored as if X = unit. *)
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
vazsonyi_conjecture_bounded
| |
vazsonyi_conjecture := ∀ X (R : rel₂ (ltree X)), (∀ s t x l, t ∈ l → R s t → R s ⟨x|l⟩ₗ) → (∀ x l y m, list_embed R l m → R ⟨x|l⟩ₗ ⟨y|m⟩ₗ) → ∀f, ∃ₜ n, ∃ i j, i < j < n ∧ R (f i) (f j).
|
Definition
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"Require Import base dtree_embed vtree_embed ltree_embed atree_embed."
] |
theories/statements.v
|
vazsonyi_conjecture
| |
vazsonyi_theorem_bounded : vazsonyi_conjecture_bounded. Proof. apply higman_dtree_to_vazsonyi_bounded, higman_theorem_dtree_af. Qed. (** See statements.v for the statement of the "conjecture" *)
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec vtree ltree."
] |
theories/vazsonyi_theorems.v
|
vazsonyi_theorem_bounded
| |
vazsonyi_theorem : vazsonyi_conjecture. Proof. apply kruskal_ltree_to_vazsonyi, kruskal_theorem_ltree_af. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec vtree ltree."
] |
theories/vazsonyi_theorems.v
|
vazsonyi_theorem
| |
Y := sigT X.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree.",
"Require Import base dtree_embed statements."
] |
theories/conversions/higman_dtree_afs_to_af.v
|
Y
| |
T : nat → Y → Prop := λ n s, n = projT1 s. Local Definition dtree_vtree (t : dtree X) : vtree Y. Proof. induction t as [ n x v f ]. exact ⟨existT _ n x|vec_set f⟩. Defined. Local Fact dtree_vtree_fix n (x : X n) (v : vec _ n) : dtree_vtree ⟨x|v⟩ = ⟨existT _ n x|vec_map dtree_vtree v⟩. Proof. rewrite <- vec_set_map; auto. Qed. Local Fact dtree_vtree_inj s t : dtree_vtree s = dtree_vtree t → s = t. Proof. revert t; induction s as [ n x v IH ]; intros [ m y w ]. rewrite !dtree_vtree_fix, dtree_cons_inj. intros (? & H1 & H2); eq refl; simpl in *. apply eq_sigT_inj in H1 as (e & H1); eq refl; subst; clear e. f_equal; vec ext; apply IH. apply f_equal with (f := fun v => v⦃p⦄) in H2. now rewrite !vec_prj_map in H2. Qed. Local Fact dtree_vtree_wf t : wft T (dtree_vtree t). Proof. unfold T. induction t. rewrite dtree_vtree_fix, wft_fix; simpl; split; auto. now intro; vec rew. Qed. Local Fact dtree_vtree_surj t' : wft T t' → { t | dtree_vtree t = t' }. Proof. unfold T. induction 1 as [ n (j,x) v H1 H2 IH2 ] using wft_rect. vec reif IH2 as (w & Hw). simpl in H1; subst j. exists ⟨x|w⟩. rewrite dtree_vtree_fix; f_equal. now vec ext; vec rew. Qed. Local Fact dtree_vtree_vec_surj n (v : vec _ n) : vec_fall (wft T) v → { w | vec_map dtree_vtree w = v }. Proof. apply vec_cond_reif, dtree_vtree_surj. Qed. Local Definition vtree_dtree t' Ht' := proj1_sig (dtree_vtree_surj t' Ht'). Local Fact dtree_vtree_dtree t' Ht' : dtree_vtree (@vtree_dtree t' Ht') = t'. Proof. apply (proj2_sig (dtree_vtree_surj t' Ht')). Qed. Local Fact vtree_dtree_vtree t H : vtree_dtree (dtree_vtree t) H = t. Proof. apply dtree_vtree_inj; rewrite dtree_vtree_dtree; auto. Qed. Local Fact vtree_dtree_fix n x (w : vec (dtree X) n) H : vtree_dtree ⟨existT _ n x|vec_map dtree_vtree w⟩ H = ⟨x|w⟩. Proof. apply dtree_vtree_inj; rewrite dtree_vtree_dtree, dtree_vtree_fix; auto. Qed.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree.",
"Require Import base dtree_embed statements."
] |
theories/conversions/higman_dtree_afs_to_af.v
|
T
| |
Y := (sigT X).
|
Notation
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree.",
"Require Import base dtree_embed statements."
] |
theories/conversions/higman_dtree_afs_to_af.v
|
Y
| |
T n (y : Y) := n = projT1 y. Local Fact T_empty n x : k ≤ n → T n x → False. Proof. unfold T; intros H; destruct x as (j,x); simpl; intros; subst; revert x; apply HX; auto. Qed.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree.",
"Require Import base dtree_embed statements."
] |
theories/conversions/higman_dtree_afs_to_af.v
|
T
| |
R' n (u v : Y) := match u, v with | existT _ _ x, existT _ _ y => exists e f, @R n x↺e y↺f end. Local Fact R'_afs n : n < k → afs (T n) (@R' n). Proof. intros Hn; apply afs_iff_af_sub_rel; generalize (HR Hn). af rel morph (fun (x : X n) (y : sig (T n)) => match proj1_sig y with | existT _ i a => exists e, x↺e = a end); unfold T. + intros ((j,x),e); simpl in *; subst; exists x, eq_refl; auto. + intros x1 x2 ((i1,y1),e1) ((i2,y2),e2); simpl. intros (<- & ?) (<- & <-); simpl in *. exists eq_refl, eq_refl; simpl; subst; auto. Qed. Hint Resolve T_empty R'_afs : core. Local Lemma higman_afs_to_higman_af_at : af (dtree_product_embed R). Proof. cut (afs (wft T) (dtree_product_embed R')). 2: { apply higman with k; eauto. } equiv with afs_iff_af_sub_rel. af rel morph (fun x y => vtree_dtree (proj1_sig x) (proj2_sig x) = y ). + intros t. induction t as [ n x v IH ]. assert (Hw : forall p, ∃ₜ t (Ht : wft _ t), vtree_dtree t Ht = vec_prj v p). 1: { intros p; destruct (IH p) as ([] & ?); eauto. } vec reif Hw as (w & Hw). idx reif Hw as (g & Hg). assert (Ht : wft T ⟨existT _ n x|w⟩). 1: { unfold T; apply wft_fix; simpl; auto. } exists (exist _ ⟨existT _ n x|w⟩ Ht); simpl. apply dtree_vtree_inj; rewrite dtree_vtree_dtree, dtree_vtree_fix. f_equal; vec ext; vec rew. rewrite <- Hg, dtree_vtree_dtree; auto. + intros x1 x2 ? ? <- <-; revert x1 x2. intros (x1 & H1) (x2 & H2); simpl. intros H; revert H H1 H2; unfold T. induction 1 as [ j b v t p H1 IH1 | j b v c w H1 H2 IH2 ]; intros G1 G2; auto. * generalize G2. apply wft_fix in G2 as [ G2 G3 ]. generalize (G3 p); intros G4. destruct dtree_vtree_vec_surj with (v := v) as (w & <-); auto. rewrite !vec_prj_map in IH1, G4. specialize (IH1 G1 G4). rewrite vtree_dtree_vtree in IH1. intros G5. destruct b as [ u b ]. simpl in G2; subst u. rewrite (vtree_dtree_fix _ G5). constructor 1 with p; auto. * generalize G1 G2. apply wft_fix in G2 as [ G3 G4 ]. apply wft_fix in G1 as [ G1 G2 ]. destruct dtree_vtree_vec_surj with (1 := G2) as (v1 & <-). destruct dtree_vtree_vec_surj with (1 := G4) as (v2 & <-). intros G5 G6. destruct b as [ u b ]; simpl in G1; subst u. destruct c as [ u c ]; simpl in G3; subst u. rewrite !vtree_dtree_fix. constructor 2. - destruct H1 as (e & g & H1); eq refl; auto. - intros p. specialize (IH2 p). specialize (G2 p). specialize (G4 p). rewrite !vec_prj_map in G2, G4. rewrite !vec_prj_map in IH2. specialize (IH2 G2 G4). rewrite !vtree_dtree_vtree in IH2. trivial. Qed.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree.",
"Require Import base dtree_embed statements."
] |
theories/conversions/higman_dtree_afs_to_af.v
|
R'
| |
higman_dtree_afs_to_af : afs_higman_dtree → af_higman_dtree. Proof. intros ? ? ? ?; apply higman_afs_to_higman_af_at; auto. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree.",
"Require Import base dtree_embed statements."
] |
theories/conversions/higman_dtree_afs_to_af.v
|
higman_dtree_afs_to_af
| |
Y := unary_family.
|
Notation
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils idx vec dtree.",
"Require Import base notations dtree_embed statements."
] |
theories/conversions/higman_dtree_to_list.v
|
Y
| |
T := (dtree Y). Local Fixpoint dtree_list (t : T) : list X := match t with | @dtree_cons _ 0 _ _ => [] | @dtree_cons _ 1 x v => x :: dtree_list v⦃idx₀⦄ | @dtree_cons _ _ x _ => @Empty_set_rect _ x end. Local Fixpoint list_dtree l : T := match l with | [] => ⟨tt|∅⟩ | x::l => ⟨x|list_dtree l##∅⟩ end. Local Fact dtree_list_dtree l : dtree_list (list_dtree l) = l. Proof. induction l; simpl; f_equal; auto. Qed. Local Fact list_dtree_list_not_needed t : list_dtree (dtree_list t) = t. Proof. induction t as [ [ | [ | n ] ] x v IHv ]; simpl in *; try easy; f_equal. + now destruct x. + now vec invert v. + vec invert v as ? v; vec invert v. now rewrite IHv. Qed.
|
Notation
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils idx vec dtree.",
"Require Import base notations dtree_embed statements."
] |
theories/conversions/higman_dtree_to_list.v
|
T
| |
Y := (unary_family X).
|
Notation
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils idx vec dtree.",
"Require Import base notations dtree_embed statements."
] |
theories/conversions/higman_dtree_to_list.v
|
Y
| |
T := (dtree Y).
|
Notation
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils idx vec dtree.",
"Require Import base notations dtree_embed statements."
] |
theories/conversions/higman_dtree_to_list.v
|
T
| |
RY n : rel₂ (Y n) := match n with | 1 => R | _ => ⊤₂ end. Local Lemma higman_lemma_af : af R → af (list_embed R). Proof. intros H. cut (af (dtree_product_embed RY)). + clear H. af rel morph (fun x y => dtree_list x = y). * intros l; exists (list_dtree l); rewrite dtree_list_dtree; auto. * intros r t ? ? <- <-. induction 1 as [ [|[]] x t v p H IH | [|[]] x v y w H IH ]; simpl; auto; ( (destruct x; fail) || idx invert all; auto with list_db). + apply higman_dtree with (k := 2). * intros [|[]] ?; tlia; intros []. * intros [|[]] ?; tlia; simpl; auto. Qed.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils idx vec dtree.",
"Require Import base notations dtree_embed statements."
] |
theories/conversions/higman_dtree_to_list.v
|
RY
| |
higman_dtree_to_list : af_higman_dtree → af_higman_list. Proof. intros ? ? ? ?; apply higman_lemma_af; auto. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils idx vec dtree.",
"Require Import base notations dtree_embed statements."
] |
theories/conversions/higman_dtree_to_list.v
|
higman_dtree_to_list
| |
X := dtree_bounded. Local Definition tt' n : n < k → X n. Proof. refine (match le_lt_dec k n as d return _ → if d then Empty_set else unit with | left _ => λ _, match _ : False with end | right _ => λ _, tt end); tlia. Defined. Local Fact X_uniq n : ∀ a b : X n, a = b. Proof. unfold X; destruct (le_lt_dec k n); intros [] []; auto. Qed. Local Fixpoint btree_dtree (t : btree k) : dtree X := match t with | btree_cons v h => ⟨tt' h|vec_map btree_dtree v⟩ end. Local Fact btree_dtree_fix n v h : btree_dtree (@btree_cons k n v h) = ⟨tt' h|vec_map btree_dtree v⟩. Proof. reflexivity. Qed. (* Hint Resolve lt_pirr : core. *) Local Fact btree_dtree_inj s t : btree_dtree s = btree_dtree t → s = t. Proof. revert t; induction s as [ n v hv IH ]; intros [ m w hw ]; simpl. rewrite dtree_cons_inj. intros (e & H1 & H2); eq refl; simpl in *. apply btree_f_equal. vec ext. apply f_equal with (f := fun v => v⦃p⦄) in H2. rewrite !vec_prj_map in H2; auto. Qed.
|
Notation
|
theories
|
[
"From Coq\n Require Import Arith Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree ltree btree."
] |
theories/conversions/higman_dtree_to_vazsonyi_bounded.v
|
X
| |
higman_dtree_to_vazsonyi_bounded : af_higman_dtree → vazsonyi_conjecture_bounded. Proof. intros Hk k R HR1 HR2 f. apply vazsonyi_conjecture_bounded_strong; eauto. Qed. Print vazsonyi_conjecture_bounded. (** Notation for binary relations/predicates *) Locate "rel₂ _". (** Inductive definition vec X n for vectors of length n over type X, with notations ∅ (for empty vector in vec X 0) and ## (for cons in vec X (S _)) *) Print vec. Locate "∅". Locate "##". (** Inductive definition of membership in vectors, denoted with ∊ *) Locate "∈ᵥ". Print vec_in. (** Inductive definition of the product relations over vectors of the same length *) Print vec_forall2. (** Inductive definition of tree of width bounded by k *) Print btree. (** The statement of Vazoni's conjecture for trees of bounded width, and a check that no assumption is used to establish it *) Check higman_dtree_to_vazsonyi_bounded. Print Assumptions higman_dtree_to_vazsonyi_bounded.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree ltree btree."
] |
theories/conversions/higman_dtree_to_vazsonyi_bounded.v
|
higman_dtree_to_vazsonyi_bounded
| |
A := (λ n x, n = a x).
|
Notation
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
A
| |
atree_dtree (t : atree a) : dtree (λ n, sig (A n)) := match t with | ⟨x|v⟩ₐ => ⟨exist _ x eq_refl|vec_map atree_dtree v⟩ end.
|
Fixpoint
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
atree_dtree
| |
dtree_atree (s : dtree (λ n, sig (A n))) : atree a := match s with | ⟨exist _ x e|v⟩ => ⟨x|vec_map dtree_atree v↺e⟩ₐ end.
|
Fixpoint
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
dtree_atree
| |
dtree_atree_dtree t : dtree_atree (atree_dtree t) = t. Proof. induction t; simpl; f_equal. rewrite vec_map_map; now vec ext; vec rew. Qed.
|
Fact
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
dtree_atree_dtree
| |
atree_dtree_atree s : atree_dtree (dtree_atree s) = s. Proof. induction s as [ ? [] ]; simpl; eq refl; f_equal. rewrite vec_map_map; now vec ext; vec rew. Qed.
|
Fact
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
atree_dtree_atree
| |
va_tree_eq : vtree X → atree a → Prop := | in_va_tree_eq x (v : vec _ (a x)) w : vec_fall2 va_tree_eq v w → va_tree_eq ⟨x|v⟩ ⟨x|w⟩ₐ.
|
Inductive
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
va_tree_eq
| |
va_tree_eq_surj t : { s | va_tree_eq s t }. Proof. induction t as [ x v IHv ]. vec reif IHv as [ w Hw ]. exists ⟨x|w⟩; now constructor. Qed.
|
Fact
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
va_tree_eq_surj
| |
va_tree_eq_wft s t : va_tree_eq s t → wft A s. Proof. induction 1; split; auto. Qed.
|
Remark
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
va_tree_eq_wft
| |
va_tree_eq_total s : wft A s → { t | va_tree_eq s t }. Proof. induction s as [ n x v IHv ]; intros (Hx & Hv)%wft_fix. specialize (fun p => IHv _ (Hv p)). vec reif IHv as [ w Hw ]. subst n. exists (atree_cons x w). now constructor. Qed. (* This is the critical inversion lemma *)
|
Remark
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
va_tree_eq_total
| |
va_tree_eq_invl s t : va_tree_eq s t → match s with | @dtree_cons _ n x v => ∃ (e : n = a x) w, t = atree_cons x w↺e ∧ vec_fall2 va_tree_eq v w end. Proof. intros []; eexists eq_refl, _; simpl; eauto. Qed.
|
Lemma
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
va_tree_eq_invl
| |
A := (λ n x, n = a x). Hypothesis (Hk : ∀x, a x < k) (HR : ∀n, n < k → af (R n)⇓(A n)).
|
Notation
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
A
| |
Y n := sig (A n).
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
Y
| |
T n : rel₂ (Y n) := (R n)⇓(A n). Local Fact af_dtree_T : af (dtree_product_embed T). Proof. apply higman_dtree with (k := k). + intros n Hn (x & Hx). specialize (Hk x). rewrite <- Hx in Hk; tlia. + apply HR. Qed. Local Theorem higman_dtree_atree_af_local : af (atree_product_embed a R). Proof. generalize af_dtree_T. af rel morph (λ s t, dtree_atree a s = t). + intros s; exists (atree_dtree s). apply dtree_atree_dtree. + intros s t ? ? <- <-. induction 1 as [ n [ x Hx ] v t p H IH | n [ x Hx ] v [ y Hy ] w H1 H2 IH2 ]; simpl. * eq refl. constructor 1 with p. now vec rew. * eq refl. unfold T in H1; simpl in H1. constructor 2; auto. clear H1. rewrite <- Hy; simpl. apply vec_forall2_iff_fall2. now intro; vec rew. Qed.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
T
| |
higman_theorem_dtree_atree_af : af_higman_dtree → af_higman_atree. Proof. exact higman_dtree_atree_af_local. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
higman_theorem_dtree_atree_af
| |
A := (λ n x, n = a x). Hypothesis (HR : af R). Local Fact af_vtree : af (vtree_homeo_embed R). Proof. apply kruskal_vtree, HR. Qed. Local Theorem kruskal_vtree_atree_af_local : af (atree_homeo_embed a R). Proof. generalize af_vtree. af rel morph (@va_tree_eq _ a). + intros t. destruct (va_tree_eq_surj t); eauto. + intros s t u v Hu Hv H. revert H u v Hu Hv. induction 1 as [ x n v t p H IH | n x v m y w H1 H2 IH2 ]; simpl; intros c d. * intros Hc (e & w & -> & Hw)%va_tree_eq_invl; eq refl. constructor 1 with p; auto. * intros (e1 & v1 & -> & Hv1)%va_tree_eq_invl (e2 & w1 & -> & Hw1)%va_tree_eq_invl; eq refl. constructor 2; auto. clear H1 H2. revert v w IH2 v1 w1 Hv1 Hw1. generalize (a x) (a y); clear x y HR. induction 1 as [ | n x v m y w H1 _ IH2 | n v m y w _ IH ]. - intros v1 w1; vec invert v1; vec invert w1; constructor. - intros v1 w1. vec invert v1 as x1 v1. vec invert w1 as y1 w1. intros []%vec_fall2_cons_inv []%vec_fall2_cons_inv. constructor 2; auto. - intros v1 w1. vec invert w1 as y1 w1. intros ? []%vec_fall2_cons_inv. constructor 3; auto. Qed.
|
Notation
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
A
| |
kruskal_theorem_vtree_atree_af : af_kruskal_vtree → af_kruskal_atree. Proof. exact kruskal_vtree_atree_af_local. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/higman_kruskal_dtree_to_atree.v
|
kruskal_theorem_vtree_atree_af
| |
kruskal_ltree_afs_to_af : afs_kruskal_ltree → af_kruskal_ltree. Proof. intros K X R H%af_iff_afs_True%K; apply af_iff_afs_True; revert H. apply afs_mono; auto. intros t _. induction t; apply ltree_fall_fix; auto. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"From KruskalTrees\n Require Import list_utils ltree.",
"Require Import base statements."
] |
theories/conversions/kruskal_ltree_afs_to_af.v
|
kruskal_ltree_afs_to_af
| |
forget := (@ltree_sig_forget _ _). Hypothesis kruskal : af_kruskal_ltree.
|
Notation
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"From KruskalTrees\n Require Import list_utils ltree.",
"Require Import base statements."
] |
theories/conversions/kruskal_ltree_af_to_afs.v
|
forget
| |
kruskal_ltree_af_to_afs : afs_kruskal_ltree. Proof. intros U X R H%afs_iff_af_sub_rel%kruskal. apply afs_iff_af_sub_rel; revert H. af rel morph (fun x y => proj1_sig y = forget x). + intros (t & Ht); simpl; revert t Ht. induction 1 as [ x l H1 H2 IH2 ] using ltree_fall_rect. Forall reif IH2 as (m & Hm). exists ⟨exist _ x H1|m⟩ₗ; simpl; f_equal. now apply Forall2_eq, Forall2_map_right. + intros t1 t2 (r1 & H1) (r2 & H2); simpl; intros -> ->. clear H1 H2. induction 1 as [ s t (x & Hx) l H1 _ IH2 | (x & Hx) l (y & Hy) m H1 H2 IH2 ]; simpl. * constructor 1 with (forget t); auto. apply in_map_iff; eauto. * constructor 2; auto. now apply list_embed_map. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"From KruskalTrees\n Require Import list_utils ltree.",
"Require Import base statements."
] |
theories/conversions/kruskal_ltree_af_to_afs.v
|
kruskal_ltree_af_to_afs
| |
kruskal_ltree_to_vazsonyi : af_kruskal_ltree → vazsonyi_conjecture. Proof. intros H X R HR1 HR2 f. apply af_good_pair. generalize (H _ _ (@af_True X)); apply af_mono. induction 1; simpl; eauto. Qed. Print list. Print ltree. Locate "_ ∈ _". Print "∈". Print list_embed. Check kruskal_ltree_to_vazsonyi. Print Assumptions kruskal_ltree_to_vazsonyi.
|
Theorem
|
theories
|
[
"From Coq\n Require Import List Utf8.",
"From KruskalTrees\n Require Import list_utils ltree.",
"Require Import base ltree_embed statements."
] |
theories/conversions/kruskal_ltree_to_vazsonyi.v
|
kruskal_ltree_to_vazsonyi
| |
kruskal_vtree_afs_to_af : afs_kruskal_vtree → af_kruskal_vtree. Proof. intros K X R H%af_iff_afs_True%K. apply af_iff_afs_True; revert H. apply afs_mono; auto. intros t _; induction t; apply wft_fix; auto. Qed.
|
Theorem
|
theories
|
[
"From Coq \n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree.",
"Require Import base statements."
] |
theories/conversions/kruskal_vtree_afs_to_af.v
|
kruskal_vtree_afs_to_af
| |
V := (idx k * U)%type.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/kruskal_vtree_afs_to_higman_dtree_afs.v
|
V
| |
Y : V → Prop := λ '(p,x), X (idx2nat p) x.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/kruskal_vtree_afs_to_higman_dtree_afs.v
|
Y
| |
T : V → V → Prop := λ '(p,x) '(q,y), p = q ∧ R (idx2nat p) x y.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/kruskal_vtree_afs_to_higman_dtree_afs.v
|
T
| |
W : nat → V → Prop := λ _, Y. Local Fact af_R (p : idx k) : af (R (idx2nat p))⇓(X (idx2nat p)). Proof. apply afs_iff_af_sub_rel; apply HXR, idx2nat_lt. Qed. (* Using finite dependent sum, T is afs over Y *) Local Fact afs_YT : afs Y T. Proof. generalize (af_dep_sum _ _ af_R). intros H; apply afs_iff_af_sub_rel; revert H. af rel morph (fun x y => match x with existT _ p (exist _ x Hx) => proj1_sig y = (p,x) end). + intros ((p,x) & Hx). exists (existT _ p (exist _ x Hx)); auto. + intros (p1 & x1 & ?) (p2 & x2 & ?) (y1 & ?) (y2 & ?); simpl. intros -> -> (e & H); eq refl; simpl; auto. Qed. (** Homeomorphic embedding T is afs over wf Y trees decorated with idk k * U such that Y (p,x) := X p x T (p,x) (q,y) := p = q /\ R p x y *) Local Fact afs_embed_T1 : afs (wft W) (vtree_homeo_embed T). Proof. apply kruskal, afs_YT. Qed. (* We consider uniform vtrees such that at node (p,x), not only X p x holds but holds its arity must be p *)
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/kruskal_vtree_afs_to_higman_dtree_afs.v
|
W
| |
K : ∀n, V → vec (vtree V) n → Prop := λ n '(p,x) _, n = idx2nat p ∧ X n x. Local Fact K_inc_W : ∀ n x v, @K n x v → W n x. Proof. intros ? [] _ (-> & ?); simpl; auto. Qed. Local Fact dtree_fall_K_inc_wft_W : dtree_fall K ⊆₁ wft W. Proof. apply dtree_fall_mono, K_inc_W. Qed. (** Homeomorphic embedding of T is afs over wf K dtrees decorated with pos k * U such that K n (p,x) v := n = p /\ X n x T (p,x) (q,y) := p = q /\ R p x y Over these, the homeomorphic embedding and the product (Higman) embedding match *) Hint Resolve dtree_fall_K_inc_wft_W : core. Local Fact afs_embed_T2 : afs (dtree_fall K) (vtree_homeo_embed T). Proof. apply afs_mono with (3 := afs_embed_T1); auto. Qed. (* f forgets part of the decoration ie (_,x) => x *) Local Definition f : vtree V → vtree U. Proof. induction 1 as [ n (_,x) v f ]. exact ⟨x|vec_set f⟩. Defined. Local Fact Hf n p x (v : vec _ n) : f ⟨(p,x)|v⟩ = ⟨x|vec_map f v⟩. Proof. rewrite <- vec_set_map; auto. Qed. Local Lemma kruskal_afs_to_higman_afs_at : afs (wft X) (dtree_product_embed R). Proof. generalize afs_embed_T2; equiv with afs_iff_af_sub_rel. af rel morph (fun x y => f (proj1_sig x) = proj1_sig y). + intros (t & Ht); simpl; revert t Ht. induction 1 as [ n x v Hx Hv IHv ] using wft_rect. vec reif IHv as (w & Hw). assert (n < k) as Hn. 1: { destruct (le_lt_dec k n) as [ H | ]; auto. exfalso; revert H Hx; apply Hk. } set (t := ⟨(nat2idx Hn,x)|vec_set (fun p => proj1_sig w⦃p⦄)⟩). assert (Ht : dtree_fall K t). 1: { unfold t, K; rewrite dtree_fall_fix; simpl; split. + rewrite idx2nat2idx; auto. + intros p; vec rew. apply (proj2_sig w⦃p⦄). } exists (exist _ t Ht); simpl; f_equal. now vec ext; vec rew. + intros (x1 & H1) (x2 & H2) (y1 & H3) (y2 & H4); simpl. intros <- <- H5; revert H5 H1 H2; clear H3 H4. induction 1 as [ t n [q u] v p H1 IH1 | n [q x] v m [r y] w (H0 & H1) H2 IH2 ]. * intros ? [[]]; rewrite Hf; simpl. constructor 1 with p; vec rew; auto. * intros ((H3 & H4) & H5) ((H6 & H7) & H8). rewrite !Hf; subst r; simpl. rewrite <- H6 in H3; subst m. constructor 2; subst; auto. apply vec_embed_fall2_eq in IH2. intro; vec rew; auto. Qed.
|
Let
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/kruskal_vtree_afs_to_higman_dtree_afs.v
|
K
| |
kruskal_vtree_afs_to_higman_dtree_afs : afs_kruskal_vtree → afs_higman_dtree. Proof. intros ? ? ? ? ? ?; apply kruskal_afs_to_higman_afs_at; auto. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree vtree."
] |
theories/conversions/kruskal_vtree_afs_to_higman_dtree_afs.v
|
kruskal_vtree_afs_to_higman_dtree_afs
| |
forget := (@vtree_sig_forget _ _). Hypothesis kruskal : af_kruskal_vtree.
|
Notation
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree.",
"Require Import base statements."
] |
theories/conversions/kruskal_vtree_af_to_afs.v
|
forget
| |
kruskal_vtree_af_to_afs : afs_kruskal_vtree. Proof. intros U X R H%afs_iff_af_sub_rel%kruskal. apply afs_iff_af_sub_rel; revert H. af rel morph (fun x y => forget x = proj1_sig y). + intros (t & Ht); revert t Ht; simpl. induction 1 as [ n x v Hx Hv IHv ] using wft_rect. vec reif IHv as (w & Hw). exists ⟨exist _ x Hx|w⟩; simpl; f_equal. now vec ext; vec rew. + intros t1 t2 (r1 & H1) (r2 & H2); simpl; intros <- <-. clear H1 H2. induction 1 as [ t n [x Hx] v p H1 IH1 | n [x Hx] v m [y Hy] w H1 H2 IH2 ]; simpl. * constructor 1 with p. now vec rew. * constructor 2; auto. now apply vec_embed_vec_map. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import idx vec vtree.",
"Require Import base statements."
] |
theories/conversions/kruskal_vtree_af_to_afs.v
|
kruskal_vtree_af_to_afs
| |
kruskal_vtree_to_ltree : af_kruskal_vtree → af_kruskal_ltree. Proof. intros K X R HR; generalize (K _ _ HR); clear HR. af rel morph (fun x y => vtree_ltree x = y). + intros t; destruct (vtree_ltree_surj t); eauto. + intros t1 t2 ? ? <- <-. induction 1 as [ t n x v p H1 IH1 | n x v m y w H1 H2 IH2 ]. * rewrite vtree_ltree_fix. constructor 1 with (vtree_ltree v⦃p⦄); auto. apply in_map_iff; exists v⦃p⦄; split; auto. apply in_vec_list; eauto. * rewrite !vtree_ltree_fix. constructor 2; auto. clear x y H1 H2; revert IH2. induction 1; econstructor; eauto. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec vtree ltree.",
"Require Import base statements."
] |
theories/conversions/kruskal_vtree_to_ltree.v
|
kruskal_vtree_to_ltree
| |
veldman_vtree_upto_afs_to_higman_dtree_afs : afs_veldman_vtree_upto → afs_higman_dtree. Proof. intros Kr k U X R H1 H2. set (X' i := if le_lt_dec k i then ⊥₁ else X i). set (R' i := if le_lt_dec k i then ⊥₂ else R i). cut (afs (wft X') (vtree_upto_embed k R')). af rel morph eq. + intros t Ht; exists t; split; auto. revert t Ht; apply wft_mono. intros n; unfold X'. destruct (le_lt_dec k n); eauto. + intros ? ? s t ? ? ? ? -> ->. rewrite -> vtree_product_upto_iff; eauto. apply vtree_upto_embed_mono. intros n Hn; unfold R'. destruct (le_lt_dec k n); now auto. + apply Kr. * intros n Hn; unfold X'. destruct (le_lt_dec k n); [ | lia ]. destruct (le_lt_dec k k); auto; lia. * intros n Hn; unfold R'. destruct (le_lt_dec k n); [ | lia ]. destruct (le_lt_dec k k); auto; lia. * intros n Hn; unfold X', R'. destruct (le_lt_dec k n); auto. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import dtree vtree."
] |
theories/conversions/veldman_vtree_upto_afs_to_higman_dtree_afs.v
|
veldman_vtree_upto_afs_to_higman_dtree_afs
| |
kruskal_theorem_vtree_afs : afs_veldman_vtree_upto → afs_kruskal_vtree. Proof. intros V U X R H. cut (afs (wft (fun _ => X)) (vtree_upto_embed 0 (fun _ => R))). + apply afs_mono; auto. intros ? ? ? ?; apply vtree_upto_homeo_uniform; auto. + apply afs_vtree_upto_embed; auto. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec vtree ltree.",
"Require Import base vtree_embed ltree_embed statements."
] |
theories/conversions/veldman_vtree_upto_afs_to_kruskal_vtree_afs.v
|
kruskal_theorem_vtree_afs
| |
atree : Type := | atree_cons x : vec atree (a x) → atree. Set Elimination Schemes. Arguments atree_cons : clear implicits.
|
Inductive
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec dtree vtree.",
"Require Import base."
] |
theories/embeddings/atree_embed.v
|
atree
| |
atree_rect t : P t := match t with | ⟨x|v⟩ₐ => P_cons v (λ i, atree_rect v⦃i⦄) end.
|
Fixpoint
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec dtree vtree.",
"Require Import base."
] |
theories/embeddings/atree_embed.v
|
atree_rect
| |
atree_rect_fix x v : atree_rect ⟨x|v⟩ₐ = P_cons v (λ i, atree_rect v⦃i⦄). Proof. reflexivity. Qed.
|
Fact
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec dtree vtree.",
"Require Import base."
] |
theories/embeddings/atree_embed.v
|
atree_rect_fix
| |
atree_rec (P : _ → Set) := atree_rect P.
|
Definition
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec dtree vtree.",
"Require Import base."
] |
theories/embeddings/atree_embed.v
|
atree_rec
| |
atree_ind (P : _ → Prop) := atree_rect P. Unset Elimination Schemes. Variable (R : nat → rel₂ X) (T : rel₂ X).
|
Definition
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec dtree vtree.",
"Require Import base."
] |
theories/embeddings/atree_embed.v
|
atree_ind
| |
atree_product_embed : atree → atree → Prop := | dtree_embed_subt x v s i : s ≤ₚ v⦃i⦄ → s ≤ₚ ⟨x|v⟩ₐ | dtree_embed_root x v y w : R (a x) x y → vec_forall2 atree_product_embed v w → ⟨x|v⟩ₐ ≤ₚ ⟨y|w⟩ₐ where "s ≤ₚ t" := (atree_product_embed s t).
|
Inductive
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec dtree vtree.",
"Require Import base."
] |
theories/embeddings/atree_embed.v
|
atree_product_embed
| |
atree_homeo_embed : atree → atree → Prop := | vtree_homeo_embed_subt t x v i : t ≤ₕ v⦃i⦄ → t ≤ₕ ⟨x|v⟩ₐ | vtree_homeo_embed_root x v y w : T x y → vec_embed atree_homeo_embed v w → ⟨x|v⟩ₐ ≤ₕ ⟨y|w⟩ₐ where "s ≤ₕ t" := (atree_homeo_embed s t). Set Elimination Schemes.
|
Inductive
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec dtree vtree.",
"Require Import base."
] |
theories/embeddings/atree_embed.v
|
atree_homeo_embed
| |
atree_product_embed_ind : ∀ s t, s ≤ₚ t → P s t. Proof. refine (fix loop s t D { struct D } := _). destruct D as [ t x v p H1 | x v y w H1 H2 ]. + apply HT1 with (1 := H1); trivial. apply loop, H1. + apply HT2; trivial. revert v w H2; generalize (a x) (a y). clear x y H1. induction 1; eauto with vec_db. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec dtree vtree.",
"Require Import base."
] |
theories/embeddings/atree_embed.v
|
atree_product_embed_ind
| |
atree_homeo_embed_ind : ∀ s t, s ≤ₕ t → P s t. Proof. refine (fix loop s t D { struct D } := _). destruct D as [ t x v p H1 | x v y w H1 H2 ]. + apply HT1 with (1 := H1); trivial. apply loop, H1. + apply HT2; trivial. revert v w H2; generalize (a x) (a y). clear x y H1. induction 1; eauto with vec_db. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import list_utils idx vec dtree vtree.",
"Require Import base."
] |
theories/embeddings/atree_embed.v
|
atree_homeo_embed_ind
| |
dtree_product_embed : dtree X → dtree X → Prop := | dtree_embed_subt k x (v : vec _ k) s i : s ≤ₚ v⦃i⦄ → s ≤ₚ ⟨x|v⟩ | dtree_embed_root k x (v : vec _ k) y w : R x y → vec_fall2 dtree_product_embed v w → ⟨x|v⟩ ≤ₚ ⟨y|w⟩ where "s ≤ₚ t" := (dtree_product_embed s t).
|
Inductive
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree.",
"Require Import base."
] |
theories/embeddings/dtree_embed.v
|
dtree_product_embed
| |
dtree_product_embed_inv r t : r ≤ₚ t → match t with | @dtree_cons _ m y v => (∃i, r ≤ₚ v⦃i⦄) ∨ match r with | @dtree_cons _ n x u => ∃ e : n = m, R x↺e y ∧ vec_fall2 dtree_product_embed u↺e v end end. Proof. intros []; simpl; [ left | right ]; eauto; exists eq_refl; auto. Qed.
|
Fact
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree.",
"Require Import base."
] |
theories/embeddings/dtree_embed.v
|
dtree_product_embed_inv
| |
dtree_product_embed_mono (R T : ∀k, X k → X k → Prop) : (∀k, R k ⊆₂ T k) → dtree_product_embed R ⊆₂ dtree_product_embed T. Proof. induction 2; eauto. Qed.
|
Fact
|
theories
|
[
"From Coq\n Require Import Utf8.",
"From KruskalTrees\n Require Import tactics idx vec dtree.",
"Require Import base."
] |
theories/embeddings/dtree_embed.v
|
dtree_product_embed_mono
| |
ltree_product_embed : ltree X → ltree X → Prop := | ltree_product_embed_subt {s t x l} : t ∈ l → s ≤ₚ t → s ≤ₚ ⟨x|l⟩ₗ | ltree_product_embed_root {x l y m} : R x y → Forall2 ltree_product_embed l m → ⟨x|l⟩ₗ ≤ₚ ⟨y|m⟩ₗ where "s ≤ₚ t" := (ltree_product_embed s t). (* This is the homeomorphic embedding for Kruskal's tree theorem *)
|
Inductive
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils ltree.",
"Require Import base."
] |
theories/embeddings/ltree_embed.v
|
ltree_product_embed
| |
ltree_homeo_embed : ltree X → ltree X → Prop := | homeo_embed_subt s t x l : t ∈ l → s ≤ₕ t → s ≤ₕ ⟨x|l⟩ₗ | homeo_embed_root x l y m : R x y → list_embed ltree_homeo_embed l m → ⟨x|l⟩ₗ ≤ₕ ⟨y|m⟩ₗ where "s ≤ₕ t" := (ltree_homeo_embed s t). Set Elimination Schemes. Hint Constructors ltree_product_embed ltree_homeo_embed : core.
|
Inductive
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils ltree.",
"Require Import base."
] |
theories/embeddings/ltree_embed.v
|
ltree_homeo_embed
| |
ltree_product_embed_ind s t (Hst : s ≤ₚ t) { struct Hst } : P s t := match Hst with | ltree_product_embed_subt H1 H2 => HT1 H1 H2 (ltree_product_embed_ind H2) | ltree_product_embed_root H1 H2 => HT2 H1 H2 (Forall2_mono ltree_product_embed_ind H2) end.
|
Fixpoint
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils ltree.",
"Require Import base."
] |
theories/embeddings/ltree_embed.v
|
ltree_product_embed_ind
| |
ltree_homeo_embed_ind s t (Hst : s ≤ₕ t) : P s t. Proof. destruct Hst as [ s t x ll H1 H2 | x ll y mm H1 H2 ]. + apply HT1 with (1 := H1); trivial. apply ltree_homeo_embed_ind, H2. + apply HT2; trivial. now apply list_embed_mono with (1 := ltree_homeo_embed_ind). Qed.
|
Fixpoint
|
theories
|
[
"From Coq\n Require Import Arith List Lia Utf8.",
"From KruskalTrees\n Require Import tactics list_utils ltree.",
"Require Import base."
] |
theories/embeddings/ltree_embed.v
|
ltree_homeo_embed_ind
| |
vtree_homeo_embed : vtree A → vtree A → Prop := | vtree_homeo_embed_subt t n x (v : vec _ n) i : t ≤ₕ v⦃i⦄ → t ≤ₕ ⟨x|v⟩ | vtree_homeo_embed_root n x (v : vec _ n) m y (w : vec _ m) : Rₕ x y → vec_embed vtree_homeo_embed v w → ⟨x|v⟩ ≤ₕ ⟨y|w⟩ where "s ≤ₕ t" := (vtree_homeo_embed s t). Set Elimination Schemes. Hint Constructors vtree_homeo_embed vtree_upto_embed : core.
|
Inductive
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree.",
"Require Import base.",
"Require Export dtree_embed."
] |
theories/embeddings/vtree_embed.v
|
vtree_homeo_embed
| |
vtree_homeo_embed_ind : ∀ s t, s ≤ₕ t → P s t. Proof. refine (fix loop s t D { struct D } := _). destruct D as [ t n x v p H1 | n x v m y w H1 H2 ]. + apply HT1 with (1 := H1); trivial. apply loop, H1. + apply HT2; trivial. clear x y H1; revert H2. induction 1; eauto with vec_db. Qed.
|
Theorem
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree.",
"Require Import base.",
"Require Export dtree_embed."
] |
theories/embeddings/vtree_embed.v
|
vtree_homeo_embed_ind
| |
vtree_product_upto k (R : nat → rel₂ A) : (∀ n, k ≤ n → R n ⊆₂ R k) → dtree_product_embed R ⊆₂ vtree_upto_embed k R. Proof. intros H. induction 1 as [ | n ]; eauto. destruct (le_lt_dec k n); eauto. Qed.
|
Fact
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree.",
"Require Import base.",
"Require Export dtree_embed."
] |
theories/embeddings/vtree_embed.v
|
vtree_product_upto
| |
vtree_product_upto_iff k (X : nat → rel₁ A) (R : nat → rel₂ A) : (∀ n x, k ≤ n → ¬ X n x) → ∀ s t, wft X s → dtree_product_embed R s t ↔ vtree_upto_embed k R s t. Proof. intros HX s t H; split; intros H1; revert H1 H. + induction 1 as [ t n x v p H1 IH1 | n x v y w H1 H2 IH2 ]; intros H; eauto. rewrite wft_fix in H; destruct H as (H3 & H4). constructor 2; auto. * destruct (le_lt_dec k n) as [ Hn | ]; auto. now apply HX in H3. * intro; apply IH2; auto. + induction 1 as [ t n x v p H1 IH1 | n x v y w H1 H2 H3 IH3 | n x v m y w H1 H2 H3 IH3 ]; intros H; eauto with dtree_db. * rewrite wft_fix in H; destruct H. constructor 2; auto. intros p; apply IH3; auto. * rewrite wft_fix in H. apply proj1, HX in H; easy. Qed.
|
Fact
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree.",
"Require Import base.",
"Require Export dtree_embed."
] |
theories/embeddings/vtree_embed.v
|
vtree_product_upto_iff
| |
vtree_upto_homeo k (R : nat → rel₂ A) : (∀n, n ≤ k → R n ⊆₂ Rₕ) → vtree_upto_embed k R ⊆₂ vtree_homeo_embed. Proof. intros H. induction 1 as [ | n ? ? ? ? Hn | ]; eauto. generalize (lt_le_weak _ _ Hn); intro; eauto. Qed.
|
Fact
|
theories
|
[
"From Coq\n Require Import Arith Lia Utf8.",
"From KruskalTrees\n Require Import tactics idx vec vtree.",
"Require Import base.",
"Require Export dtree_embed."
] |
theories/embeddings/vtree_embed.v
|
vtree_upto_homeo
|
Structured dataset from Kruskal-Theorems — Kruskal tree theorem formalization.
102 declarations extracted from Coq source files.
| Column | Type | Description |
|---|---|---|
| fact | string | Declaration body |
| type | string | Lemma, Definition, Theorem, etc. |
| library | string | Source module |
| imports | list | Required imports |
| filename | string | Source file path |
| symbolic_name | string | Identifier |