Proof Assistant Projects
Collection
Digesting proof assistant libraries for AI ingestion.
•
79 items
•
Updated
•
2
fact
stringlengths 8
1.54k
| type
stringclasses 19
values | library
stringclasses 8
values | imports
listlengths 1
10
| filename
stringclasses 98
values | symbolic_name
stringlengths 1
42
| docstring
stringclasses 1
value |
|---|---|---|---|---|---|---|
RecordNumDomain_hasFloorCeilTruncn R of Num.NumDomain R := {
floor : R -> int;
ceil : R -> int;
truncn : R -> nat;
int_num_subdef : pred R;
nat_num_subdef : pred R;
floor_subproof :
forall x,
if x \is real_num then (floor x)%:~R <= x < (floor x + 1)%:~R
else floor x == 0;
ceil_subproof : forall x, ceil x = - floor (- x);
truncn_subproof : forall x, truncn x = if floor x is Posz n then n else 0;
int_num_subproof : forall x, reflect (exists n, x = n%:~R) (int_num_subdef x);
nat_num_subproof : forall x, reflect (exists n, x = n%:R) (nat_num_subdef x);
}.
#[short(type="archiNumDomainType")]
HB.structure Definition ArchiNumDomain :=
{ R of NumDomain_hasFloorCeilTruncn R & Num.NumDomain R }.
|
HB.mixin
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
Record
| |
DefinitionArchiNumField :=
{ R of NumDomain_hasFloorCeilTruncn R & Num.NumField R }.
|
HB.structure
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
Definition
| |
DefinitionArchiClosedField :=
{ R of NumDomain_hasFloorCeilTruncn R & Num.ClosedField R }.
|
HB.structure
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
Definition
| |
DefinitionArchiRealDomain :=
{ R of NumDomain_hasFloorCeilTruncn R & Num.RealDomain R }.
|
HB.structure
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
Definition
| |
DefinitionArchiRealField :=
{ R of NumDomain_hasFloorCeilTruncn R & Num.RealField R }.
|
HB.structure
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
Definition
| |
DefinitionArchiRealClosedField :=
{ R of NumDomain_hasFloorCeilTruncn R & Num.RealClosedField R }.
|
HB.structure
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
Definition
| |
nat_num: qualifier 1 R := [qualify a x : R | nat_num_subdef x].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
nat_num
| |
int_num: qualifier 1 R := [qualify a x : R | int_num_subdef x].
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
int_num
| |
bound(x : R) := (truncn `|x|).+1.
|
Definition
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
bound
| |
trunc:= truncn.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
trunc
| |
truncn:= truncn.
#[deprecated(since="mathcomp 2.4.0", note="Renamed to truncn.")]
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
truncn
| |
trunc:= truncn.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
trunc
| |
floor:= floor.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floor
| |
ceil:= ceil.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceil
| |
nat_num:= nat_num.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
nat_num
| |
int_num:= int_num.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
int_num
| |
archi_bound:= bound.
|
Notation
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
archi_bound
| |
floorPn : if n \is real_num then n%:~R <= n < (n + 1)%:~R else n == 0.
Proof. by rewrite num_real !intz ltzD1 lexx. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floorP
| |
intrPn : reflect (exists m, n = m%:~R) true.
Proof. by apply: ReflectT; exists n; rewrite intz. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intrP
| |
natrPn : reflect (exists m, n = m%:R) (0 <= n).
Proof.
apply: (iffP idP); last by case=> m ->; rewrite ler0n.
by case: n => // n _; exists n; rewrite natz.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natrP
| |
Definition_ :=
@NumDomain_hasFloorCeilTruncn.Build int id id _ xpredT nneg_num_pred
intArchimedean.floorP (fun=> esym (opprK _)) (fun=> erefl)
intArchimedean.intrP intArchimedean.natrP.
|
HB.instance
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
Definition
| |
floorNceilx : floor x = - ceil (- x).
Proof. by rewrite ceil_subproof !opprK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floorNceil
| |
ceilNfloorx : ceil x = - floor (- x).
Proof. exact: ceil_subproof. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceilNfloor
| |
truncEfloorx : truncn x = if floor x is Posz n then n else 0.
Proof. exact: truncn_subproof. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
truncEfloor
| |
natrPx : reflect (exists n, x = n%:R) (x \is a nat_num).
Proof. exact: nat_num_subproof. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natrP
| |
intrPx : reflect (exists m, x = m%:~R) (x \is a int_num).
Proof. exact: int_num_subproof. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intrP
| |
intr_intm : m%:~R \is a int_num. Proof. by apply/intrP; exists m. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intr_int
| |
natr_natn : n%:R \is a nat_num. Proof. by apply/natrP; exists n. Qed.
#[local] Hint Resolve intr_int natr_nat : core.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natr_nat
| |
rpred_int_num(S : subringClosed R) x : x \is a int_num -> x \in S.
Proof. by move=> /intrP[n ->]; rewrite rpred_int. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
rpred_int_num
| |
rpred_nat_num(S : semiringClosed R) x : x \is a nat_num -> x \in S.
Proof. by move=> /natrP[n ->]; apply: rpred_nat. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
rpred_nat_num
| |
int_num0: 0 \is a int_num. Proof. exact: (intr_int 0). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
int_num0
| |
int_num1: 1 \is a int_num. Proof. exact: (intr_int 1). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
int_num1
| |
nat_num0: 0 \is a nat_num. Proof. exact: (natr_nat 0). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
nat_num0
| |
nat_num1: 1 \is a nat_num. Proof. exact: (natr_nat 1). Qed.
#[local] Hint Resolve int_num0 int_num1 nat_num0 nat_num1 : core.
Fact int_num_subring : subring_closed int_num.
Proof.
by split=> // _ _ /intrP[n ->] /intrP[m ->]; rewrite -(intrB, intrM).
Qed.
#[export]
HB.instance Definition _ := GRing.isSubringClosed.Build R int_num_subdef
int_num_subring.
Fact nat_num_semiring : semiring_closed nat_num.
Proof.
by do 2![split] => //= _ _ /natrP[n ->] /natrP[m ->]; rewrite -(natrD, natrM).
Qed.
#[export]
HB.instance Definition _ := GRing.isSemiringClosed.Build R nat_num_subdef
nat_num_semiring.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
nat_num1
| |
Rreal_nat: {subset nat_num <= real_num}.
Proof. exact: rpred_nat_num. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
Rreal_nat
| |
intr_nat: {subset nat_num <= int_num}.
Proof. by move=> _ /natrP[n ->]; rewrite pmulrn intr_int. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intr_nat
| |
Rreal_int: {subset int_num <= real_num}.
Proof. exact: rpred_int_num. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
Rreal_int
| |
intrEx : (x \is a int_num) = (x \is a nat_num) || (- x \is a nat_num).
Proof.
apply/idP/orP => [/intrP[[n|n] ->]|[]/intr_nat]; rewrite ?rpredN //.
by left; apply/natrP; exists n.
by rewrite NegzE intrN opprK; right; apply/natrP; exists n.+1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intrE
| |
intr_normKx : x \is a int_num -> `|x| ^+ 2 = x ^+ 2.
Proof. by move/Rreal_int/real_normK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intr_normK
| |
natr_normKx : x \is a nat_num -> `|x| ^+ 2 = x ^+ 2.
Proof. by move/Rreal_nat/real_normK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natr_normK
| |
natr_norm_intx : x \is a int_num -> `|x| \is a nat_num.
Proof. by move=> /intrP[m ->]; rewrite -intr_norm rpred_nat_num ?natr_nat. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natr_norm_int
| |
natr_ge0x : x \is a nat_num -> 0 <= x.
Proof. by move=> /natrP[n ->]; apply: ler0n. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natr_ge0
| |
natr_gt0x : x \is a nat_num -> (0 < x) = (x != 0).
Proof. by move/natr_ge0; case: comparableP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natr_gt0
| |
natrEintx : (x \is a nat_num) = (x \is a int_num) && (0 <= x).
Proof.
apply/idP/andP=> [Nx | [Zx x_ge0]]; first by rewrite intr_nat ?natr_ge0.
by rewrite -(ger0_norm x_ge0) natr_norm_int.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natrEint
| |
intrEge0x : 0 <= x -> (x \is a int_num) = (x \is a nat_num).
Proof. by rewrite natrEint andbC => ->. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intrEge0
| |
intrEsignx : x \is a int_num -> x = (-1) ^+ (x < 0)%R * `|x|.
Proof. by move/Rreal_int/realEsign. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intrEsign
| |
norm_natrx : x \is a nat_num -> `|x| = x.
Proof. by move/natr_ge0/ger0_norm. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
norm_natr
| |
natr_exp_evenx n : ~~ odd n -> x \is a int_num -> x ^+ n \is a nat_num.
Proof.
move=> n_oddF x_intr.
by rewrite natrEint rpredX //= real_exprn_even_ge0 // Rreal_int.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natr_exp_even
| |
norm_intr_ge1x : x \is a int_num -> x != 0 -> 1 <= `|x|.
Proof.
rewrite -normr_eq0 => /natr_norm_int/natrP[n ->].
by rewrite pnatr_eq0 ler1n lt0n.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
norm_intr_ge1
| |
sqr_intr_ge1x : x \is a int_num -> x != 0 -> 1 <= x ^+ 2.
Proof.
by move=> Zx nz_x; rewrite -intr_normK // expr_ge1 ?normr_ge0 ?norm_intr_ge1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
sqr_intr_ge1
| |
intr_ler_sqrx : x \is a int_num -> x <= x ^+ 2.
Proof.
move=> Zx; have [-> | nz_x] := eqVneq x 0; first by rewrite expr0n.
apply: le_trans (_ : `|x| <= _); first by rewrite real_ler_norm ?Rreal_int.
by rewrite -intr_normK // ler_eXnr // norm_intr_ge1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intr_ler_sqr
| |
real_floor_itvx :
x \is real_num -> (floor x)%:~R <= x < (floor x + 1)%:~R.
Proof. by case: ifP (floorP x). Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floor_itv
| |
real_floor_lex : x \is real_num -> (floor x)%:~R <= x.
Proof. by case/real_floor_itv/andP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floor_le
| |
real_floorD1_gtx : x \is real_num -> x < (floor x + 1)%:~R.
Proof. by case/real_floor_itv/andP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floorD1_gt
| |
floor_defx m : m%:~R <= x < (m + 1)%:~R -> floor x = m.
Proof.
case/andP=> lemx ltxm1; apply/eqP; rewrite eq_le -!ltzD1.
move: (ger_real lemx); rewrite realz => /real_floor_itv/andP[lefx ltxf1].
by rewrite -!(ltr_int R) 2?(@le_lt_trans _ _ x).
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floor_def
| |
real_floor_ge_intx n : x \is real_num -> (n <= floor x) = (n%:~R <= x).
Proof.
move=> /real_floor_itv /andP[lefx ltxf1]; apply/idP/idP => lenx.
by apply: le_trans lefx; rewrite ler_int.
by rewrite -ltzD1 -(ltr_int R); apply: le_lt_trans ltxf1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floor_ge_int
| |
real_floor_lt_intx n : x \is real_num -> (floor x < n) = (x < n%:~R).
Proof.
by move=> ?; rewrite [RHS]real_ltNge ?realz -?real_floor_ge_int -?ltNge.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floor_lt_int
| |
real_floor_eqx n : x \is real_num ->
(floor x == n) = (n%:~R <= x < (n + 1)%:~R).
Proof.
by move=> xr; apply/eqP/idP => [<-|]; [exact: real_floor_itv|exact: floor_def].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floor_eq
| |
le_floor: {homo floor : x y / x <= y}.
Proof.
move=> x y lexy; move: (floorP x) (floorP y); rewrite (ger_real lexy).
case: ifP => [_ /andP[lefx _] /andP[_] | _ /eqP-> /eqP-> //].
by move=> /(le_lt_trans lexy) /(le_lt_trans lefx); rewrite ltr_int ltzD1.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
le_floor
| |
intrKfloor: cancel intr floor.
Proof. by move=> m; apply: floor_def; rewrite lexx rmorphD ltrDl ltr01. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intrKfloor
| |
natr_intn : n%:R \is a int_num.
Proof. by rewrite intrE natr_nat. Qed.
#[local] Hint Resolve natr_int : core.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
natr_int
| |
intrEfloorx : x \is a int_num = ((floor x)%:~R == x).
Proof.
by apply/intrP/eqP => [[n ->] | <-]; [rewrite intrKfloor | exists (floor x)].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intrEfloor
| |
floorK: {in int_num, cancel floor intr}.
Proof. by move=> z; rewrite intrEfloor => /eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floorK
| |
floor0: floor 0 = 0. Proof. exact: intrKfloor 0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floor0
| |
floor1: floor 1 = 1. Proof. exact: intrKfloor 1. Qed.
#[local] Hint Resolve floor0 floor1 : core.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floor1
| |
real_floorDzr: {in int_num & real_num, {morph floor : x y / x + y}}.
Proof.
move=> _ y /intrP[m ->] Ry; apply: floor_def.
by rewrite -addrA 2!rmorphD /= intrKfloor lerD2l ltrD2l real_floor_itv.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floorDzr
| |
real_floorDrz: {in real_num & int_num, {morph floor : x y / x + y}}.
Proof. by move=> x y xr yz; rewrite addrC real_floorDzr // addrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floorDrz
| |
floorN: {in int_num, {morph floor : x / - x}}.
Proof. by move=> _ /intrP[m ->]; rewrite -rmorphN !intrKfloor. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floorN
| |
floorM: {in int_num &, {morph floor : x y / x * y}}.
Proof.
by move=> _ _ /intrP[m1 ->] /intrP[m2 ->]; rewrite -rmorphM !intrKfloor.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floorM
| |
floorXn : {in int_num, {morph floor : x / x ^+ n}}.
Proof. by move=> _ /intrP[m ->]; rewrite -rmorphXn !intrKfloor. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floorX
| |
real_floor_ge0x : x \is real_num -> (0 <= floor x) = (0 <= x).
Proof. by move=> ?; rewrite real_floor_ge_int. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floor_ge0
| |
floor_lt0x : (floor x < 0) = (x < 0).
Proof.
case: ifP (floorP x) => [xr _ | xr /eqP <-]; first by rewrite real_floor_lt_int.
by rewrite ltxx; apply/esym/(contraFF _ xr)/ltr0_real.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floor_lt0
| |
real_floor_le0x : x \is real_num -> (floor x <= 0) = (x < 1).
Proof. by move=> ?; rewrite -ltzD1 add0r real_floor_lt_int. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_floor_le0
| |
floor_gt0x : (floor x > 0) = (x >= 1).
Proof.
case: ifP (floorP x) => [xr _ | xr /eqP->].
by rewrite gtz0_ge1 real_floor_ge_int.
by rewrite ltxx; apply/esym/(contraFF _ xr)/ger1_real.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floor_gt0
| |
floor_neq0x : (floor x != 0) = (x < 0) || (x >= 1).
Proof.
case: ifP (floorP x) => [xr _ | xr /eqP->]; rewrite ?eqxx/=.
by rewrite neq_lt floor_lt0 floor_gt0.
by apply/esym/(contraFF _ xr) => /orP[/ltr0_real|/ger1_real].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floor_neq0
| |
floorpK: {in polyOver int_num, cancel (map_poly floor) (map_poly intr)}.
Proof.
move=> p /(all_nthP 0) Zp; apply/polyP=> i.
rewrite coef_map coef_map_id0 //= -[p]coefK coef_poly.
by case: ifP => [/Zp/floorK // | _]; rewrite floor0.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floorpK
| |
floorpP(p : {poly R}) :
p \is a polyOver int_num -> {q | p = map_poly intr q}.
Proof. by exists (map_poly floor p); rewrite floorpK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
floorpP
| |
real_ceil_itvx : x \is real_num -> (ceil x - 1)%:~R < x <= (ceil x)%:~R.
Proof.
rewrite ceilNfloor -opprD !intrN ltrNl lerNr andbC -realN.
exact: real_floor_itv.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceil_itv
| |
real_ceilB1_ltx : x \is real_num -> (ceil x - 1)%:~R < x.
Proof. by case/real_ceil_itv/andP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceilB1_lt
| |
real_ceil_gex : x \is real_num -> x <= (ceil x)%:~R.
Proof. by case/real_ceil_itv/andP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceil_ge
| |
ceil_defx m : (m - 1)%:~R < x <= m%:~R -> ceil x = m.
Proof.
rewrite -ltrN2 -lerN2 andbC -!intrN opprD opprK ceilNfloor.
by move=> /floor_def ->; rewrite opprK.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceil_def
| |
real_ceil_le_intx n : x \is real_num -> (ceil x <= n) = (x <= n%:~R).
Proof.
rewrite ceilNfloor lerNl -realN => /real_floor_ge_int ->.
by rewrite intrN lerN2.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceil_le_int
| |
real_ceil_gt_intx n : x \is real_num -> (n < ceil x) = (n%:~R < x).
Proof.
by move=> ?; rewrite [RHS]real_ltNge ?realz -?real_ceil_le_int ?ltNge.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceil_gt_int
| |
real_ceil_eqx n : x \is real_num ->
(ceil x == n) = ((n - 1)%:~R < x <= n%:~R).
Proof.
by move=> xr; apply/eqP/idP => [<-|]; [exact: real_ceil_itv|exact: ceil_def].
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceil_eq
| |
le_ceil: {homo ceil : x y / x <= y}.
Proof. by move=> x y lexy; rewrite !ceilNfloor lerN2 le_floor ?lerN2. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
le_ceil
| |
intrKceil: cancel intr ceil.
Proof. by move=> m; rewrite ceilNfloor -intrN intrKfloor opprK. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intrKceil
| |
intrEceilx : x \is a int_num = ((ceil x)%:~R == x).
Proof. by rewrite -rpredN intrEfloor -eqr_oppLR -intrN -ceilNfloor. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
intrEceil
| |
ceilK: {in int_num, cancel ceil intr}.
Proof. by move=> z; rewrite intrEceil => /eqP. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceilK
| |
ceil0: ceil 0 = 0. Proof. exact: intrKceil 0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceil0
| |
ceil1: ceil 1 = 1. Proof. exact: intrKceil 1. Qed.
#[local] Hint Resolve ceil0 ceil1 : core.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceil1
| |
real_ceilDzr: {in int_num & real_num, {morph ceil : x y / x + y}}.
Proof.
move=> x y x_int y_real.
by rewrite ceilNfloor opprD real_floorDzr ?rpredN // opprD -!ceilNfloor.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceilDzr
| |
real_ceilDrz: {in real_num & int_num, {morph ceil : x y / x + y}}.
Proof. by move=> x y xr yz; rewrite addrC real_ceilDzr // addrC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceilDrz
| |
ceilN: {in int_num, {morph ceil : x / - x}}.
Proof. by move=> ? ?; rewrite !ceilNfloor !opprK floorN. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceilN
| |
ceilM: {in int_num &, {morph ceil : x y / x * y}}.
Proof.
by move=> _ _ /intrP[m1 ->] /intrP[m2 ->]; rewrite -rmorphM !intrKceil.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceilM
| |
ceilXn : {in int_num, {morph ceil : x / x ^+ n}}.
Proof. by move=> _ /intrP[m ->]; rewrite -rmorphXn !intrKceil. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceilX
| |
real_ceil_ge0x : x \is real_num -> (0 <= ceil x) = (-1 < x).
Proof.
by move=> ?; rewrite ceilNfloor oppr_ge0 real_floor_le0 ?realN 1?ltrNl.
Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceil_ge0
| |
ceil_lt0x : (ceil x < 0) = (x <= -1).
Proof. by rewrite ceilNfloor oppr_lt0 floor_gt0 lerNr. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceil_lt0
| |
real_ceil_le0x : x \is real_num -> (ceil x <= 0) = (x <= 0).
Proof. by move=> ?; rewrite real_ceil_le_int. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
real_ceil_le0
| |
ceil_gt0x : (ceil x > 0) = (x > 0).
Proof. by rewrite ceilNfloor oppr_gt0 floor_lt0 oppr_lt0. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceil_gt0
| |
ceil_neq0x : (ceil x != 0) = (x <= -1) || (x > 0).
Proof. by rewrite ceilNfloor oppr_eq0 floor_neq0 oppr_lt0 lerNr orbC. Qed.
|
Lemma
|
algebra
|
[
"From HB Require Import structures",
"From mathcomp Require Import ssreflect ssrfun ssrbool eqtype ssrnat seq choice",
"From mathcomp Require Import fintype bigop order ssralg poly ssrnum ssrint"
] |
algebra/archimedean.v
|
ceil_neq0
|
Structured dataset from the Mathematical Components library (MathComp) for Coq.
| Column | Type | Description |
|---|---|---|
| fact | string | Declaration body |
| type | string | Lemma, Definition, HB.structure, HB.mixin, Canonical, etc. |
| library | string | Module (algebra, boot, fingroup, character, etc.) |
| imports | list | Require/Import statements |
| filename | string | Source file path |
| symbolic_name | string | Declaration identifier |
| Type | Count |
|---|---|
| Lemma | 14,917 |
| Definition | 2,850 |
| Notation | 808 |
| Canonical | 425 |
| HB.instance | 247 |
| Fixpoint | 138 |
| Coercion | 116 |
| Variant | 104 |
| Theorem | 63 |
| HB.structure | 51 |
| HB.mixin | 50 |
| Library | Count |
|---|---|
| algebra | 7,455 |
| boot | 4,591 |
| fingroup | 1,995 |
| character | 1,864 |
| solvable | 1,747 |
| order | 1,197 |
| field | 1,048 |
Mathematical Components is a library of formalized mathematics for Coq, including algebra, number theory, and finite group theory. It uses the SSReflect proof language and Hierarchy Builder (HB) for structure definitions.