Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
8
6.34k
type
stringclasses
15 values
library
stringclasses
5 values
imports
listlengths
1
4
filename
stringclasses
33 values
symbolic_name
stringlengths
1
59
docstring
stringclasses
1 value
Definitions . Set Implicit Arguments. Variables A B C : Set.
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Definitions
one (C : Set) (item : C) : list C := cons item nil.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
one
asn (A:Set) (B:Set) : Set := | VarAsn : atom -> A -> asn A B | AltAsn : B -> asn A B .
Inductive
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
asn
map (f1 : A -> A) (f2: B -> B) (E : list (asn A B)) : list (asn A B) := List.map (fun x => match x with | VarAsn _ x a => VarAsn B x (f1 a) | AltAsn _ b => AltAsn A (f2 b) end) E.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map
dom (A: Set) (B: Set) (E : list (asn A B)) {struct E} : atoms := match E with | nil => empty | (VarAsn _ x _) :: E' => add x (dom E') | _ :: E' => dom E' end.
Fixpoint
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom
disjoint (E : list (asn A B)) (F : list (asn A B)) : Prop := Subset (inter (dom E) (dom F)) empty.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint
binds (x : atom) (a : A) (E : list (asn A B)) : Prop := List.In (VarAsn B x a) E.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds
bindsAlt (b : B) (E : list (asn A B)) : Prop := List.In (AltAsn A b) E.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
bindsAlt
uniq : list (asn A B) -> Prop := | uniq_nil : uniq nil | uniq_push : forall x a E, uniq E -> x `notin` dom E -> uniq ((x ~~ a) ++ E) | uniq_alt : forall b E, uniq E -> uniq (one (AltAsn A b) ++ E).
Inductive
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq
erase (E : list (asn A B)) : list B := match E with | nil => nil | (AltAsn _ b) :: E => b :: erase E | (VarAsn _ x a) :: E => erase E end. Unset Implicit Arguments.
Fixpoint
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
erase
ListProperties . Variables X : Set. Variables x y : X. Variables l l1 l2 l3 : list X.
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
ListProperties
cons_app_one : cons x l = [ x ] ++ l. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
cons_app_one
cons_app_assoc : (cons x l1) ++ l2 = cons x (l1 ++ l2). Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
cons_app_assoc
app_assoc : (l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3). Proof. clear. apply app_ass. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
app_assoc
app_nil_1 : nil ++ l = l. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
app_nil_1
app_nil_2 : l ++ nil = l. Proof. clear. auto with datatypes. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
app_nil_2
in_one : List.In x [ y ] <-> x = y. Proof. clear. simpl. intuition congruence. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
in_one
in_app : List.In x (l1 ++ l2) <-> List.In x l1 \/ List.In x l2. Proof. clear. split; auto using in_or_app, in_app_or. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
in_app
AssortedListProperties . Variables X : Set. Variables x y : X. Variables l l1 l2 l3 : list X.
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
AssortedListProperties
one_eq_app : [ x ] ++ l1 = l2 ++ l3 -> (exists qs, l2 = x :: qs /\ l1 = qs ++ l3) \/ (l2 = nil /\ l3 = x :: l1). Proof. simpl. auto using CoqListFacts.cons_eq_app. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
one_eq_app
app_eq_one : l2 ++ l3 = [ x ] ++ l1 -> (exists qs, l2 = x :: qs /\ l1 = qs ++ l3) \/ (l2 = nil /\ l3 = x :: l1). Proof. simpl. auto using CoqListFacts.app_eq_cons. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
app_eq_one
nil_neq_one_mid : nil <> l1 ++ [ x ] ++ l2. Proof. simpl. apply List.app_cons_not_nil. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
nil_neq_one_mid
one_mid_neq_nil : l1 ++ [ x ] ++ l2 <> nil. Proof. intros H; symmetry in H; revert H. simpl. apply List.app_cons_not_nil. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
one_mid_neq_nil
Properties . Variables A B : Set. Variables f1 : A -> A. Variables f2 : B -> B. Variables x : atom. Variables b : A. Variables a : B. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Properties
map_nil : map f1 f2 nil = nil. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_nil
map_consVar : map f1 f2 ((VarAsn B x b) :: E) = (VarAsn B x (f1 b)) :: map f1 f2 E. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_consVar
map_consAlt : map f1 f2 ((AltAsn A a) :: E) = (AltAsn A (f2 a)) :: map f1 f2 E. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_consAlt
map_oneVar : map f1 f2 (one (VarAsn B x b)) = one (VarAsn B x (f1 b)). Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_oneVar
map_oneAlt : map f1 f2 (one (AltAsn A a)) = one (AltAsn A (f2 a)). Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_oneAlt
map_app : map f1 f2 (E ++ F) = map f1 f2 E ++ map f1 f2 F. Proof. clear. unfold map. rewrite -> List.map_app. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_app
dom_nil : (@dom A B nil) = empty. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_nil
dom_consVar : dom (VarAsn B x b :: E) [=] singleton x `union` dom E. Proof. clear. simpl. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_consVar
dom_consAlt : dom (AltAsn A a :: E) [=] dom E. Proof. clear. simpl. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_consAlt
dom_one : dom (one (VarAsn B x b)) [=] singleton x. Proof. clear. simpl. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_one
dom_app : dom (E ++ F) [=] dom E `union` dom F. Proof. clear. induction E as [ | a ]; simpl; try (destruct a); fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_app
dom_map : dom (map f1 f2 E) [=] dom E. Proof. clear. induction E as [ | a ]; simpl; try (destruct a); fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_map
simpl_asnlist := autorewrite with rewr_list rewr_list_in rewr_map rewr_dom.
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
simpl_asnlist
Notation "simpl_asnlist" "in" hyp(H) := autorewrite with rewr_list rewr_list_in rewr_map rewr_dom in H.
Tactic
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Notation
Notation "simpl_asnlist" "in" "*" := autorewrite with rewr_list rewr_list_in rewr_map rewr_dom in *. (* ********************************************************************* *) (** ** The [rewrite_alist] tactic *) (** The tactic [(rewrite_alist E)] replaces an association list in the conclusion of the goal with [E]. Suitability for replacement is determined by whether [simpl_alist] can put [E] and the chosen environment in the same normal form, up to convertibility's in Coq. We also define an "[in H]" variant that performs the replacement in a hypothesis [H]. *)
Tactic
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Notation
Notation "rewrite_asnlist" constr(E) := match goal with | |- context[?x] => change x with E | |- context[?x] => replace x with E; [ | try reflexivity; simpl_asnlist; reflexivity ] end.
Tactic
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Notation
Notation "rewrite_asnlist" constr(E) "in" hyp(H) := match type of H with | context[?x] => change x with E in H | context[?x] => replace x with E in H; [ | try reflexivity; simpl_asnlist; reflexivity ] end. (* ********************************************************************* *) (** ** Basic facts about [disjoint] *)
Tactic
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Notation
BasicDisjointFacts . Implicit Types A B C D : Set.
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
BasicDisjointFacts
disjoint_sym_1 : forall A B (E : list (asn A B)) (F : list (asn A B)), disjoint E F -> disjoint F E. Proof. unfold disjoint. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_sym_1
disjoint_sym : forall A B (E : list (asn A B)) (F : list (asn A B)), disjoint E F <-> disjoint F E. Proof. intuition auto using disjoint_sym_1. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_sym
disjoint_one_1 : forall A B (x : atom) (a : A) (F : list (asn A B)), disjoint (one (VarAsn B x a)) F -> x `notin` dom F. Proof. unfold disjoint. intros. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_one_1
disjoint_one_2 : forall A B (x : atom) (a : A) (F : list (asn A B)), x `notin` dom F -> disjoint (one (VarAsn B x a)) F. Proof. unfold disjoint. intros. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_one_2
disjoint_one_l : forall A B (x : atom) (a : A) (E : list (asn A B)), disjoint (one (VarAsn B x a)) E <-> x `notin` dom E. Proof. intros. unfold disjoint; simpl_asnlist; split; fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_one_l
disjoint_one_r : forall A B (x : atom) (a : A) (E : list (asn A B)), disjoint E (one (VarAsn B x a)) <-> x `notin` dom E. Proof. intros. rewrite -> disjoint_sym. apply disjoint_one_l. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_one_r
disjoint_app_1 : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint (E ++ F) G -> disjoint E G. Proof. intros. unfold disjoint in *. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_1
disjoint_app_2 : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint (E ++ F) G -> disjoint F G. Proof. intros. unfold disjoint in *. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_2
disjoint_app_3 : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint E G -> disjoint F G -> disjoint (E ++ F) G. Proof. intros. unfold disjoint in *. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_3
disjoint_app_l : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint (E ++ F) G <-> disjoint E G /\ disjoint F G. Proof. intros; intuition eauto using disjoint_app_1, disjoint_app_2, disjoint_app_3. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_l
disjoint_app_r : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint G (E ++ F) <-> disjoint E G /\ disjoint F G. Proof. intros. rewrite -> disjoint_sym. apply disjoint_app_l. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_r
disjoint_map_1 : forall A B C (E : list (asn A B)) (F : list (asn A B)) (f1 : A -> A) (f2 : B -> B), disjoint (map f1 f2 E) F -> disjoint E F. Proof. unfold disjoint. intros. simpl_asnlist in *. trivial. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_map_1
disjoint_map_2 : forall A B C (E : list (asn A B)) (F : list (asn A B)) (f1 : A -> A)(f2: B -> B), disjoint E F -> disjoint (map f1 f2 E) F. Proof. unfold disjoint. intros. simpl_asnlist in *. trivial. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_map_2
disjoint_map_l : forall A B C (E : list (asn A B)) (F : list (asn A B)) (f1 : A -> A) (f2: B -> B), disjoint (map f1 f2 E) F <-> disjoint E F. Proof. intros; intuition eauto using disjoint_map_1, disjoint_map_2. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_map_l
disjoint_map_r : forall A B C (E : list (asn A B)) (F : list (asn A B)) (f1 : A -> A) (f2: B -> B), disjoint F (map f1 f2 E) <-> disjoint E F. Proof. intros. rewrite -> disjoint_sym. apply disjoint_map_l. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_map_r
UniqProperties . Variables A B : Set. Variables f1 : A -> A. Variables f2 : B -> B. Variables x : atom. Variables b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
UniqProperties
uniq_one_1 : uniq (one (VarAsn B x b)). Proof. clear. rewrite_asnlist ((one (VarAsn B x b)) ++ nil). apply uniq_push; [ apply uniq_nil | fsetdec ]. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_one_1
uniq_app_1 : uniq (E ++ F) -> uniq E. Proof. clear. intros H; induction E as [ | a E']; simpl_asnlist in *. apply uniq_nil. destruct a. apply uniq_push; inversion H; subst. auto. simpl_asnlist in *. fsetdec. apply uniq_alt; inversion H; subst. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app_1
uniq_app_2 : uniq (E ++ F) -> uniq F. Proof. clear. intros H; induction E as [ | a E']. apply H. inversion H; subst. auto. inversion H; subst. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app_2
uniq_app_3 : uniq (E ++ F) -> disjoint E F. Proof. clear. intros H. red. induction E as [ | a E']. fsetdec. inversion H; subst. simpl_asnlist in *. lapply IHE'. fsetdec. assumption. inversion H; subst. simpl_asnlist in *. lapply IHE'. fsetdec. assumption. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app_3
uniq_app_4 : uniq E -> uniq F -> disjoint E F -> uniq (E ++ F). Proof. clear. intros HE HF Hd. induction E as [ | a E']; simpl_asnlist in *. assumption. rewrite -> disjoint_app_l in Hd. inversion HE; subst. apply uniq_push. intuition. rewrite disjoint_one_l in Hd. simpl_asnlist. fsetdec. apply uniq_alt. inversion HE; subst. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app_4
uniq_app : uniq (E ++ F) <-> uniq E /\ uniq F /\ disjoint E F. Proof. clear; intuition eauto using uniq_app_1, uniq_app_2, uniq_app_3, uniq_app_4. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app
uniq_map_1 : uniq (map f1 f2 E) -> uniq E. Proof. clear. intros H. induction E as [ | a E']; simpl_asnlist in *. apply uniq_nil. destruct a. inversion H; subst. apply uniq_push; simpl_asnlist in *; auto. inversion H; subst. apply uniq_alt; simpl_asnlist in *; auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_map_1
uniq_map_2 : uniq E -> uniq (map f1 f2 E). Proof. clear. intros J. induction E as [ | a E']; simpl_asnlist in *. apply uniq_nil. inversion J; subst. simpl_asnlist. apply uniq_push. auto. rewrite dom_map. trivial. inversion J; subst. simpl_asnlist. apply uniq_alt. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_map_2
uniq_map : uniq (map f1 f2 E) <-> uniq E. Proof. clear. intuition eauto using uniq_map_1, uniq_map_2. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_map
solve_uniq := try trivial; simpl_asnlist in *; autorewrite with rewr_uniq in *; simpl_asnlist in *; intuition ( auto using uniq_nil, uniq_one_1 || (rewrite -> disjoint_sym; auto) || (unfold disjoint in *; fsetdec)) || fail. (* ********************************************************************* *) (** ** Facts about [uniq] *)
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
solve_uniq
UniqDerived . Variables A B : Set. Variables x y : atom. Variables a b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
UniqDerived
uniq_cons_3 : uniq E -> x `notin` dom E -> uniq ((VarAsn B x a) :: E). Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_cons_3
uniq_insert_mid : uniq (G ++ E) -> x `notin` dom (G ++ E) -> uniq (G ++ (one (VarAsn B x a)) ++ E). Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_insert_mid
uniq_remove_mid : uniq (E ++ F ++ G) -> uniq (E ++ G). Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_remove_mid
uniq_map_app_l : forall (f1 : A -> A)(f2: B -> B), uniq (F ++ E) -> uniq (map f1 f2 F ++ E). Proof. clear. intros. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_map_app_l
fresh_mid_tail : uniq (F ++ (one (VarAsn B x a)) ++ E) -> x `notin` dom E. Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
fresh_mid_tail
fresh_mid_head : uniq (F ++ (one (VarAsn B x a)) ++ E) -> x `notin` dom F. Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
fresh_mid_head
BindsProperties . Variables A B : Set. Variables x y : atom. Variables a b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
BindsProperties
binds_nil : binds x a (@nil (asn A B)) <-> False. Proof. clear. split. inversion 1. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_nil
binds_one_3 : x = y -> a = b -> binds x a (one (VarAsn B y b)). Proof. clear. intros. red. simpl. left. congruence. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_one_3
binds_one_1 : binds x a (one (VarAsn B y b)) -> x = y. Proof. clear. intros H1. inversion H1 as [HEq | HIn]. inversion HEq; intuition. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_one_1
binds_one_2 : binds x a (one (VarAsn B y b)) -> a = b. Proof. clear. intros H1. inversion H1 as [HEq | HIn]. inversion HEq; intuition. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_one_2
binds_one_iff : binds x a (one (VarAsn B y b)) <-> x = y /\ a = b. Proof. clear. split. intros H1. intuition eauto using binds_one_1, binds_one_2. intros H1. intuition auto using binds_one_3. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_one_iff
binds_cons_1 : binds x a ((VarAsn B y b) :: E) -> (x = y /\ a = b) \/ binds x a E. Proof. clear. inversion 1 as [J | J]; try injection J; auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_cons_1
binds_cons_2 : x = y -> a = b -> binds x a ((VarAsn B y b) :: E). Proof. clear. unfold binds. simpl. left. f_equal; auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_cons_2
binds_cons_3 : binds x a E -> binds x a ((VarAsn B y b) :: E). Proof. clear. unfold binds. simpl. right. trivial. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_cons_3
binds_cons_iff : binds x a ((VarAsn B y b) :: E) <-> (x = y /\ a = b) \/ binds x a E. Proof. clear. intuition auto using binds_cons_1, binds_cons_2, binds_cons_3. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_cons_iff
binds_app_1 : binds x a E -> binds x a (E ++ F). Proof. clear. intros H. red in H |- *. rewrite -> in_app. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app_1
binds_app_2 : binds x a F -> binds x a (E ++ F). Proof. clear. intros H. red in H |- *. rewrite -> in_app. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app_2
binds_app_3 : binds x a (E ++ F) -> binds x a E \/ binds x a F. Proof. clear. induction E as [ | a1 E' ]. auto. unfold binds. simpl. intros [H | H]. inversion H; subst. auto. unfold binds in *. apply IHE' in H. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app_3
binds_app : binds x a (E ++ F) <-> binds x a E \/ binds x a F. Proof. clear. intuition auto using binds_app_1, binds_app_2, binds_app_3. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app
MoreBindsProperties . Variables A B : Set. Variables x y : atom. Variables a b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
MoreBindsProperties
binds_dom_contradiction : forall (E : list (asn A B)), binds x a E -> x `notin` dom E -> False. Proof. clear. induction E as [ | a1 E' ]; simpl. intros H. inversion H. unfold binds in *. simpl. intros [H | H] J. inversion H; subst. fsetdec. apply IHE' in H. trivial. destruct a1. fsetdec. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_dom_contradiction
binds_app_uniq : uniq (E ++ F) -> (binds x a (E ++ F) <-> (binds x a E /\ x `notin` dom F) \/ (binds x a F /\ x `notin` dom E)). Proof with intuition (fsetdec || eauto using binds_dom_contradiction). clear. intros H1. autorewrite with rewr_uniq in H1. unfold disjoint in H1. assert (H : x `notin` dom F \/ x `notin` dom E) by fsetdec. rewrite binds_app... Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app_uniq
apply_binds_dom_contradiction := match goal with | H : binds ?x ?a ?E, J : ?x `notin` (dom ?E) |- _ => assert False by apply (@binds_dom_contradiction _ _ _ _ H J); intuition | H : binds ?x ?a ?E, J : ?x `in` (dom ?E) -> False |- _ => assert False by apply (@binds_dom_contradiction _ _ _ _ H J); intuition end. (** The [solve_binds] tactic attempts to solve goals about [binds]. Given its definition, it's likely to work only when the hypotheses in the goal already contain all the relevant [binds] propositions. Thus, the tactic may not be generally useful. It is useful, however, for proving facts about [binds] such as the ones below. *)
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
apply_binds_dom_contradiction
solve_binds := simpl_asnlist in *; autorewrite with rewr_binds in *; intuition (auto || fsetdec || apply_binds_dom_contradiction) || fail. (** The tactics [analyze_binds] and [analyze_binds_uniq] tactics take as an argument a hypotheses about [binds] and perform a case analysis based on the structure of the association list. In the case of [analyze_binds_uniq], the analysis is performed assuming that the association list is [uniq]. The lemmas [binds_app] and [binds_app_uniq] are examples of such case analysis. Implementation notes: - The initial calls to [simpl_asnlist] put the relevant association lists into normal form. - In the case of [binds_app_uniq], we assert that the association list is [uniq]. This enables the [autorewrite] step to succeed. - Rather than work on [H] itself, we copy it and work on the copy. Thus, in instances where the analysis leaves unsolved subgoals, it is still possible to see the original hypothesis. - The rest of the tactic breaks apart the copy of H and tries several simple means for solving the resulting subgoals. *)
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
solve_binds
analyze_binds H := simpl_asnlist; simpl_asnlist in H; match type of H with | binds ?x ?a ?E => let J := fresh in pose proof H as J; autorewrite with rewr_binds in J; simpl_asnlist in J; try (progress decompose [and or] J; clear J); try solve [trivial | discriminate | intuition | fsetdec] end.
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
analyze_binds
analyze_binds_uniq H := simpl_asnlist; simpl_asnlist in H; match type of H with | binds ?x ?a ?E => match goal with | H : uniq ?E |- _ => idtac | _ => assert (uniq E); [ try solve_uniq | ] end; let J := fresh in pose proof H as J; autorewrite with rewr_binds_uniq in J; simpl_asnlist in J; try (progress decompose [and or] J; clear J); try solve [trivial | discriminate | intuition | fsetdec] end. (* ********************************************************************* *) (** ** Facts about [binds] *)
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
analyze_binds_uniq
BindsDerived . Variables A B : Set. Variables f1 : A -> A. Variables f2 : B -> B. Variables x y : atom. Variables a b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
BindsDerived
binds_map_2 : binds x a E -> binds x (f1 a) (map f1 f2 E). Proof. clear. induction E; simpl_asnlist. inversion 1. unfold binds in *. simpl. intros [? | ?]. destruct a0. inversion H; subst. left. congruence. inversion H. destruct a0. right. auto. right. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_map_2
binds_weaken : binds x a (E ++ G) -> binds x a (E ++ F ++ G). Proof. clear. intros. solve_binds. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_weaken
binds_In : forall x a (E : list (asn A B)), binds x a E -> x `in` dom E. Proof. clear. induction E as [ | y ? F ]; intros J; simpl_asnlist. analyze_binds J. analyze_binds J; subst; auto with set. inversion H0;subst. simpl. fsetdec. inversion H. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_In
End of preview. Expand in Data Studio

Coq-Metalib

Structured declarations from Metalib - a Coq library for programming language metatheory using locally nameless representation. Source: github.com/plclub/metalib

Schema

Column Type Description
fact string Declaration body (without type keyword)
type string Declaration type (Lemma, Definition, etc.)
library string Source module
imports list Import statements
filename string Source file path
symbolic_name string Declaration identifier

Statistics

  • Total entries: 1748
  • Unique files: 33
  • Declaration types: Axiom, Class, Coercion, Definition, Fixpoint, Inductive, Lemma, Local Notation, Ltac, Module, Notation, Parameter, Section, Tactic, Theorem

Usage

from datasets import load_dataset
ds = load_dataset("phanerozoic/Coq-Metalib")

License

mit

Downloads last month
22

Collection including phanerozoic/Coq-Metalib