fact
stringlengths
8
6.34k
type
stringclasses
15 values
library
stringclasses
5 values
imports
listlengths
1
4
filename
stringclasses
33 values
symbolic_name
stringlengths
1
59
docstring
stringclasses
1 value
Definitions . Set Implicit Arguments. Variables A B C : Set.
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Definitions
one (C : Set) (item : C) : list C := cons item nil.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
one
asn (A:Set) (B:Set) : Set := | VarAsn : atom -> A -> asn A B | AltAsn : B -> asn A B .
Inductive
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
asn
map (f1 : A -> A) (f2: B -> B) (E : list (asn A B)) : list (asn A B) := List.map (fun x => match x with | VarAsn _ x a => VarAsn B x (f1 a) | AltAsn _ b => AltAsn A (f2 b) end) E.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map
dom (A: Set) (B: Set) (E : list (asn A B)) {struct E} : atoms := match E with | nil => empty | (VarAsn _ x _) :: E' => add x (dom E') | _ :: E' => dom E' end.
Fixpoint
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom
disjoint (E : list (asn A B)) (F : list (asn A B)) : Prop := Subset (inter (dom E) (dom F)) empty.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint
binds (x : atom) (a : A) (E : list (asn A B)) : Prop := List.In (VarAsn B x a) E.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds
bindsAlt (b : B) (E : list (asn A B)) : Prop := List.In (AltAsn A b) E.
Definition
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
bindsAlt
uniq : list (asn A B) -> Prop := | uniq_nil : uniq nil | uniq_push : forall x a E, uniq E -> x `notin` dom E -> uniq ((x ~~ a) ++ E) | uniq_alt : forall b E, uniq E -> uniq (one (AltAsn A b) ++ E).
Inductive
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq
erase (E : list (asn A B)) : list B := match E with | nil => nil | (AltAsn _ b) :: E => b :: erase E | (VarAsn _ x a) :: E => erase E end. Unset Implicit Arguments.
Fixpoint
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
erase
ListProperties . Variables X : Set. Variables x y : X. Variables l l1 l2 l3 : list X.
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
ListProperties
cons_app_one : cons x l = [ x ] ++ l. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
cons_app_one
cons_app_assoc : (cons x l1) ++ l2 = cons x (l1 ++ l2). Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
cons_app_assoc
app_assoc : (l1 ++ l2) ++ l3 = l1 ++ (l2 ++ l3). Proof. clear. apply app_ass. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
app_assoc
app_nil_1 : nil ++ l = l. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
app_nil_1
app_nil_2 : l ++ nil = l. Proof. clear. auto with datatypes. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
app_nil_2
in_one : List.In x [ y ] <-> x = y. Proof. clear. simpl. intuition congruence. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
in_one
in_app : List.In x (l1 ++ l2) <-> List.In x l1 \/ List.In x l2. Proof. clear. split; auto using in_or_app, in_app_or. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
in_app
AssortedListProperties . Variables X : Set. Variables x y : X. Variables l l1 l2 l3 : list X.
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
AssortedListProperties
one_eq_app : [ x ] ++ l1 = l2 ++ l3 -> (exists qs, l2 = x :: qs /\ l1 = qs ++ l3) \/ (l2 = nil /\ l3 = x :: l1). Proof. simpl. auto using CoqListFacts.cons_eq_app. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
one_eq_app
app_eq_one : l2 ++ l3 = [ x ] ++ l1 -> (exists qs, l2 = x :: qs /\ l1 = qs ++ l3) \/ (l2 = nil /\ l3 = x :: l1). Proof. simpl. auto using CoqListFacts.app_eq_cons. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
app_eq_one
nil_neq_one_mid : nil <> l1 ++ [ x ] ++ l2. Proof. simpl. apply List.app_cons_not_nil. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
nil_neq_one_mid
one_mid_neq_nil : l1 ++ [ x ] ++ l2 <> nil. Proof. intros H; symmetry in H; revert H. simpl. apply List.app_cons_not_nil. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
one_mid_neq_nil
Properties . Variables A B : Set. Variables f1 : A -> A. Variables f2 : B -> B. Variables x : atom. Variables b : A. Variables a : B. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Properties
map_nil : map f1 f2 nil = nil. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_nil
map_consVar : map f1 f2 ((VarAsn B x b) :: E) = (VarAsn B x (f1 b)) :: map f1 f2 E. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_consVar
map_consAlt : map f1 f2 ((AltAsn A a) :: E) = (AltAsn A (f2 a)) :: map f1 f2 E. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_consAlt
map_oneVar : map f1 f2 (one (VarAsn B x b)) = one (VarAsn B x (f1 b)). Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_oneVar
map_oneAlt : map f1 f2 (one (AltAsn A a)) = one (AltAsn A (f2 a)). Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_oneAlt
map_app : map f1 f2 (E ++ F) = map f1 f2 E ++ map f1 f2 F. Proof. clear. unfold map. rewrite -> List.map_app. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
map_app
dom_nil : (@dom A B nil) = empty. Proof. clear. reflexivity. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_nil
dom_consVar : dom (VarAsn B x b :: E) [=] singleton x `union` dom E. Proof. clear. simpl. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_consVar
dom_consAlt : dom (AltAsn A a :: E) [=] dom E. Proof. clear. simpl. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_consAlt
dom_one : dom (one (VarAsn B x b)) [=] singleton x. Proof. clear. simpl. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_one
dom_app : dom (E ++ F) [=] dom E `union` dom F. Proof. clear. induction E as [ | a ]; simpl; try (destruct a); fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_app
dom_map : dom (map f1 f2 E) [=] dom E. Proof. clear. induction E as [ | a ]; simpl; try (destruct a); fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
dom_map
simpl_asnlist := autorewrite with rewr_list rewr_list_in rewr_map rewr_dom.
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
simpl_asnlist
Notation "simpl_asnlist" "in" hyp(H) := autorewrite with rewr_list rewr_list_in rewr_map rewr_dom in H.
Tactic
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Notation
Notation "simpl_asnlist" "in" "*" := autorewrite with rewr_list rewr_list_in rewr_map rewr_dom in *. (* ********************************************************************* *) (** ** The [rewrite_alist] tactic *) (** The tactic [(rewrite_alist E)] replaces an association list in the conclusion of the goal with [E]. Suitability for replacement is determined by whether [simpl_alist] can put [E] and the chosen environment in the same normal form, up to convertibility's in Coq. We also define an "[in H]" variant that performs the replacement in a hypothesis [H]. *)
Tactic
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Notation
Notation "rewrite_asnlist" constr(E) := match goal with | |- context[?x] => change x with E | |- context[?x] => replace x with E; [ | try reflexivity; simpl_asnlist; reflexivity ] end.
Tactic
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Notation
Notation "rewrite_asnlist" constr(E) "in" hyp(H) := match type of H with | context[?x] => change x with E in H | context[?x] => replace x with E in H; [ | try reflexivity; simpl_asnlist; reflexivity ] end. (* ********************************************************************* *) (** ** Basic facts about [disjoint] *)
Tactic
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
Notation
BasicDisjointFacts . Implicit Types A B C D : Set.
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
BasicDisjointFacts
disjoint_sym_1 : forall A B (E : list (asn A B)) (F : list (asn A B)), disjoint E F -> disjoint F E. Proof. unfold disjoint. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_sym_1
disjoint_sym : forall A B (E : list (asn A B)) (F : list (asn A B)), disjoint E F <-> disjoint F E. Proof. intuition auto using disjoint_sym_1. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_sym
disjoint_one_1 : forall A B (x : atom) (a : A) (F : list (asn A B)), disjoint (one (VarAsn B x a)) F -> x `notin` dom F. Proof. unfold disjoint. intros. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_one_1
disjoint_one_2 : forall A B (x : atom) (a : A) (F : list (asn A B)), x `notin` dom F -> disjoint (one (VarAsn B x a)) F. Proof. unfold disjoint. intros. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_one_2
disjoint_one_l : forall A B (x : atom) (a : A) (E : list (asn A B)), disjoint (one (VarAsn B x a)) E <-> x `notin` dom E. Proof. intros. unfold disjoint; simpl_asnlist; split; fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_one_l
disjoint_one_r : forall A B (x : atom) (a : A) (E : list (asn A B)), disjoint E (one (VarAsn B x a)) <-> x `notin` dom E. Proof. intros. rewrite -> disjoint_sym. apply disjoint_one_l. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_one_r
disjoint_app_1 : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint (E ++ F) G -> disjoint E G. Proof. intros. unfold disjoint in *. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_1
disjoint_app_2 : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint (E ++ F) G -> disjoint F G. Proof. intros. unfold disjoint in *. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_2
disjoint_app_3 : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint E G -> disjoint F G -> disjoint (E ++ F) G. Proof. intros. unfold disjoint in *. simpl_asnlist in *. fsetdec. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_3
disjoint_app_l : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint (E ++ F) G <-> disjoint E G /\ disjoint F G. Proof. intros; intuition eauto using disjoint_app_1, disjoint_app_2, disjoint_app_3. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_l
disjoint_app_r : forall A B (E F : list (asn A B)) (G : list (asn A B)), disjoint G (E ++ F) <-> disjoint E G /\ disjoint F G. Proof. intros. rewrite -> disjoint_sym. apply disjoint_app_l. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_app_r
disjoint_map_1 : forall A B C (E : list (asn A B)) (F : list (asn A B)) (f1 : A -> A) (f2 : B -> B), disjoint (map f1 f2 E) F -> disjoint E F. Proof. unfold disjoint. intros. simpl_asnlist in *. trivial. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_map_1
disjoint_map_2 : forall A B C (E : list (asn A B)) (F : list (asn A B)) (f1 : A -> A)(f2: B -> B), disjoint E F -> disjoint (map f1 f2 E) F. Proof. unfold disjoint. intros. simpl_asnlist in *. trivial. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_map_2
disjoint_map_l : forall A B C (E : list (asn A B)) (F : list (asn A B)) (f1 : A -> A) (f2: B -> B), disjoint (map f1 f2 E) F <-> disjoint E F. Proof. intros; intuition eauto using disjoint_map_1, disjoint_map_2. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_map_l
disjoint_map_r : forall A B C (E : list (asn A B)) (F : list (asn A B)) (f1 : A -> A) (f2: B -> B), disjoint F (map f1 f2 E) <-> disjoint E F. Proof. intros. rewrite -> disjoint_sym. apply disjoint_map_l. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
disjoint_map_r
UniqProperties . Variables A B : Set. Variables f1 : A -> A. Variables f2 : B -> B. Variables x : atom. Variables b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
UniqProperties
uniq_one_1 : uniq (one (VarAsn B x b)). Proof. clear. rewrite_asnlist ((one (VarAsn B x b)) ++ nil). apply uniq_push; [ apply uniq_nil | fsetdec ]. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_one_1
uniq_app_1 : uniq (E ++ F) -> uniq E. Proof. clear. intros H; induction E as [ | a E']; simpl_asnlist in *. apply uniq_nil. destruct a. apply uniq_push; inversion H; subst. auto. simpl_asnlist in *. fsetdec. apply uniq_alt; inversion H; subst. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app_1
uniq_app_2 : uniq (E ++ F) -> uniq F. Proof. clear. intros H; induction E as [ | a E']. apply H. inversion H; subst. auto. inversion H; subst. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app_2
uniq_app_3 : uniq (E ++ F) -> disjoint E F. Proof. clear. intros H. red. induction E as [ | a E']. fsetdec. inversion H; subst. simpl_asnlist in *. lapply IHE'. fsetdec. assumption. inversion H; subst. simpl_asnlist in *. lapply IHE'. fsetdec. assumption. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app_3
uniq_app_4 : uniq E -> uniq F -> disjoint E F -> uniq (E ++ F). Proof. clear. intros HE HF Hd. induction E as [ | a E']; simpl_asnlist in *. assumption. rewrite -> disjoint_app_l in Hd. inversion HE; subst. apply uniq_push. intuition. rewrite disjoint_one_l in Hd. simpl_asnlist. fsetdec. apply uniq_alt. inversion HE; subst. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app_4
uniq_app : uniq (E ++ F) <-> uniq E /\ uniq F /\ disjoint E F. Proof. clear; intuition eauto using uniq_app_1, uniq_app_2, uniq_app_3, uniq_app_4. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_app
uniq_map_1 : uniq (map f1 f2 E) -> uniq E. Proof. clear. intros H. induction E as [ | a E']; simpl_asnlist in *. apply uniq_nil. destruct a. inversion H; subst. apply uniq_push; simpl_asnlist in *; auto. inversion H; subst. apply uniq_alt; simpl_asnlist in *; auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_map_1
uniq_map_2 : uniq E -> uniq (map f1 f2 E). Proof. clear. intros J. induction E as [ | a E']; simpl_asnlist in *. apply uniq_nil. inversion J; subst. simpl_asnlist. apply uniq_push. auto. rewrite dom_map. trivial. inversion J; subst. simpl_asnlist. apply uniq_alt. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_map_2
uniq_map : uniq (map f1 f2 E) <-> uniq E. Proof. clear. intuition eauto using uniq_map_1, uniq_map_2. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_map
solve_uniq := try trivial; simpl_asnlist in *; autorewrite with rewr_uniq in *; simpl_asnlist in *; intuition ( auto using uniq_nil, uniq_one_1 || (rewrite -> disjoint_sym; auto) || (unfold disjoint in *; fsetdec)) || fail. (* ********************************************************************* *) (** ** Facts about [uniq] *)
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
solve_uniq
UniqDerived . Variables A B : Set. Variables x y : atom. Variables a b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
UniqDerived
uniq_cons_3 : uniq E -> x `notin` dom E -> uniq ((VarAsn B x a) :: E). Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_cons_3
uniq_insert_mid : uniq (G ++ E) -> x `notin` dom (G ++ E) -> uniq (G ++ (one (VarAsn B x a)) ++ E). Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_insert_mid
uniq_remove_mid : uniq (E ++ F ++ G) -> uniq (E ++ G). Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_remove_mid
uniq_map_app_l : forall (f1 : A -> A)(f2: B -> B), uniq (F ++ E) -> uniq (map f1 f2 F ++ E). Proof. clear. intros. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
uniq_map_app_l
fresh_mid_tail : uniq (F ++ (one (VarAsn B x a)) ++ E) -> x `notin` dom E. Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
fresh_mid_tail
fresh_mid_head : uniq (F ++ (one (VarAsn B x a)) ++ E) -> x `notin` dom F. Proof. clear. solve_uniq. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
fresh_mid_head
BindsProperties . Variables A B : Set. Variables x y : atom. Variables a b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
BindsProperties
binds_nil : binds x a (@nil (asn A B)) <-> False. Proof. clear. split. inversion 1. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_nil
binds_one_3 : x = y -> a = b -> binds x a (one (VarAsn B y b)). Proof. clear. intros. red. simpl. left. congruence. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_one_3
binds_one_1 : binds x a (one (VarAsn B y b)) -> x = y. Proof. clear. intros H1. inversion H1 as [HEq | HIn]. inversion HEq; intuition. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_one_1
binds_one_2 : binds x a (one (VarAsn B y b)) -> a = b. Proof. clear. intros H1. inversion H1 as [HEq | HIn]. inversion HEq; intuition. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_one_2
binds_one_iff : binds x a (one (VarAsn B y b)) <-> x = y /\ a = b. Proof. clear. split. intros H1. intuition eauto using binds_one_1, binds_one_2. intros H1. intuition auto using binds_one_3. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_one_iff
binds_cons_1 : binds x a ((VarAsn B y b) :: E) -> (x = y /\ a = b) \/ binds x a E. Proof. clear. inversion 1 as [J | J]; try injection J; auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_cons_1
binds_cons_2 : x = y -> a = b -> binds x a ((VarAsn B y b) :: E). Proof. clear. unfold binds. simpl. left. f_equal; auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_cons_2
binds_cons_3 : binds x a E -> binds x a ((VarAsn B y b) :: E). Proof. clear. unfold binds. simpl. right. trivial. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_cons_3
binds_cons_iff : binds x a ((VarAsn B y b) :: E) <-> (x = y /\ a = b) \/ binds x a E. Proof. clear. intuition auto using binds_cons_1, binds_cons_2, binds_cons_3. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_cons_iff
binds_app_1 : binds x a E -> binds x a (E ++ F). Proof. clear. intros H. red in H |- *. rewrite -> in_app. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app_1
binds_app_2 : binds x a F -> binds x a (E ++ F). Proof. clear. intros H. red in H |- *. rewrite -> in_app. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app_2
binds_app_3 : binds x a (E ++ F) -> binds x a E \/ binds x a F. Proof. clear. induction E as [ | a1 E' ]. auto. unfold binds. simpl. intros [H | H]. inversion H; subst. auto. unfold binds in *. apply IHE' in H. intuition. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app_3
binds_app : binds x a (E ++ F) <-> binds x a E \/ binds x a F. Proof. clear. intuition auto using binds_app_1, binds_app_2, binds_app_3. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app
MoreBindsProperties . Variables A B : Set. Variables x y : atom. Variables a b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
MoreBindsProperties
binds_dom_contradiction : forall (E : list (asn A B)), binds x a E -> x `notin` dom E -> False. Proof. clear. induction E as [ | a1 E' ]; simpl. intros H. inversion H. unfold binds in *. simpl. intros [H | H] J. inversion H; subst. fsetdec. apply IHE' in H. trivial. destruct a1. fsetdec. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_dom_contradiction
binds_app_uniq : uniq (E ++ F) -> (binds x a (E ++ F) <-> (binds x a E /\ x `notin` dom F) \/ (binds x a F /\ x `notin` dom E)). Proof with intuition (fsetdec || eauto using binds_dom_contradiction). clear. intros H1. autorewrite with rewr_uniq in H1. unfold disjoint in H1. assert (H : x `notin` dom F \/ x `notin` dom E) by fsetdec. rewrite binds_app... Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_app_uniq
apply_binds_dom_contradiction := match goal with | H : binds ?x ?a ?E, J : ?x `notin` (dom ?E) |- _ => assert False by apply (@binds_dom_contradiction _ _ _ _ H J); intuition | H : binds ?x ?a ?E, J : ?x `in` (dom ?E) -> False |- _ => assert False by apply (@binds_dom_contradiction _ _ _ _ H J); intuition end. (** The [solve_binds] tactic attempts to solve goals about [binds]. Given its definition, it's likely to work only when the hypotheses in the goal already contain all the relevant [binds] propositions. Thus, the tactic may not be generally useful. It is useful, however, for proving facts about [binds] such as the ones below. *)
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
apply_binds_dom_contradiction
solve_binds := simpl_asnlist in *; autorewrite with rewr_binds in *; intuition (auto || fsetdec || apply_binds_dom_contradiction) || fail. (** The tactics [analyze_binds] and [analyze_binds_uniq] tactics take as an argument a hypotheses about [binds] and perform a case analysis based on the structure of the association list. In the case of [analyze_binds_uniq], the analysis is performed assuming that the association list is [uniq]. The lemmas [binds_app] and [binds_app_uniq] are examples of such case analysis. Implementation notes: - The initial calls to [simpl_asnlist] put the relevant association lists into normal form. - In the case of [binds_app_uniq], we assert that the association list is [uniq]. This enables the [autorewrite] step to succeed. - Rather than work on [H] itself, we copy it and work on the copy. Thus, in instances where the analysis leaves unsolved subgoals, it is still possible to see the original hypothesis. - The rest of the tactic breaks apart the copy of H and tries several simple means for solving the resulting subgoals. *)
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
solve_binds
analyze_binds H := simpl_asnlist; simpl_asnlist in H; match type of H with | binds ?x ?a ?E => let J := fresh in pose proof H as J; autorewrite with rewr_binds in J; simpl_asnlist in J; try (progress decompose [and or] J; clear J); try solve [trivial | discriminate | intuition | fsetdec] end.
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
analyze_binds
analyze_binds_uniq H := simpl_asnlist; simpl_asnlist in H; match type of H with | binds ?x ?a ?E => match goal with | H : uniq ?E |- _ => idtac | _ => assert (uniq E); [ try solve_uniq | ] end; let J := fresh in pose proof H as J; autorewrite with rewr_binds_uniq in J; simpl_asnlist in J; try (progress decompose [and or] J; clear J); try solve [trivial | discriminate | intuition | fsetdec] end. (* ********************************************************************* *) (** ** Facts about [binds] *)
Ltac
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
analyze_binds_uniq
BindsDerived . Variables A B : Set. Variables f1 : A -> A. Variables f2 : B -> B. Variables x y : atom. Variables a b : A. Variables E F G : list (asn A B).
Section
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
BindsDerived
binds_map_2 : binds x a E -> binds x (f1 a) (map f1 f2 E). Proof. clear. induction E; simpl_asnlist. inversion 1. unfold binds in *. simpl. intros [? | ?]. destruct a0. inversion H; subst. left. congruence. inversion H. destruct a0. right. auto. right. auto. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_map_2
binds_weaken : binds x a (E ++ G) -> binds x a (E ++ F ++ G). Proof. clear. intros. solve_binds. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_weaken
binds_In : forall x a (E : list (asn A B)), binds x a E -> x `in` dom E. Proof. clear. induction E as [ | y ? F ]; intros J; simpl_asnlist. analyze_binds J. analyze_binds J; subst; auto with set. inversion H0;subst. simpl. fsetdec. inversion H. Qed.
Lemma
Attic
[ "Require Import Coq.", "Require Import Metalib." ]
Attic/AssumeList.v
binds_In