Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
8
29k
type
stringclasses
12 values
library
stringclasses
1 value
imports
listlengths
0
132
filename
stringclasses
381 values
symbolic_name
stringlengths
1
2.01k
docstring
stringclasses
1 value
znz_inj : forall a b, a = b -> val a = val b. intros; subst; auto. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
znz_inj
Zeq_iok : forall x y, x = y -> Zeq_bool x y = true. intros x y H; subst. apply Zeq_is_eq_bool, eq_refl. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
Zeq_iok
modz : forall x, (x mod n) = (x mod n) mod n. intros x; rewrite Zmod_mod; auto with zarith. Qed.
Lemma
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
modz
zero := mkznz _ (modz 0).
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
zero
one := mkznz _ (modz 1).
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
one
add v1 v2 := mkznz _ (modz (val v1 + val v2)).
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
add
sub v1 v2 := mkznz _ (modz (val v1 - val v2)).
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
sub
mul v1 v2 := mkznz _ (modz (val v1 * val v2)).
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
mul
opp v := mkznz _ (modz (-val v)).
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
opp
zirr : forall x1 x2 H1 H2, x1 = x2 -> mkznz x1 H1 = mkznz x2 H2. Proof. intros x1 x2 H1 H2 H3. subst x1. rewrite (fun H => eq_proofs_unicity H H1 H2); auto. intros x y; case (Z.eq_dec x y); auto. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
zirr
znz1 : forall x, x mod 1 = 0. intros x; apply Zdivide_mod; auto with zarith. Qed.
Lemma
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
znz1
RZnZ : ring_theory zero one add mul sub opp (@eq znz). split; auto. intros p; case p; intros x H; refine (zirr _ _ _ _ _); simpl; auto. intros [x Hx] [y Hy]. refine (zirr _ _ _ _ _); simpl. rewrite Zplus_comm; auto. intros [x Hx] [y Hy] [z Hz]. refine (zirr _ _ _ _ _); simpl. rewrite Zplus_mod; auto. rewrite (Zplus_mod((x + y) mod n)); auto. repeat rewrite Zmod_mod; auto. repeat rewrite <- Zplus_mod; auto; rewrite Zplus_assoc; auto. intros p; case p; intros x H. refine (zirr _ _ _ _ _); simpl. case (Zle_lt_or_eq 1 n); auto with zarith; intros Hz. rewrite (Zmod_small 1); auto with zarith. rewrite Zmult_1_l; auto. clear p; subst n; rewrite znz1; rewrite H; rewrite znz1; auto. intros [x Hx] [y Hy]. refine (zirr _ _ _ _ _); simpl. rewrite Zmult_comm; auto. intros [x Hx] [y Hy] [z Hz]. refine (zirr _ _ _ _ _); simpl. rewrite Zmult_mod; auto. rewrite (Zmult_mod ((x * y) mod n)); auto. repeat rewrite Zmod_mod; auto. repeat rewrite <- Zmult_mod; auto; rewrite Zmult_assoc; auto. intros [x Hx] [y Hy] [z Hz]. refine (zirr _ _ _ _ _); simpl. rewrite Zmult_mod; auto. rewrite Zmod_mod; auto. rewrite <- Zmult_mod; auto. rewrite (Zplus_mod ((x*z) mod n)); auto. repeat rewrite Zmod_mod; auto. rewrite <- Zplus_mod; auto. apply f_equal2 with (f := Z.modulo); auto; ring. intros [x Hx] [y Hy]. refine (zirr _ _ _ _ _); simpl. rewrite Zplus_mod; auto. repeat rewrite Zmod_mod; auto. rewrite <- Zplus_mod; auto. intros [x Hx]. refine (zirr _ _ _ _ _); simpl. rewrite Zplus_mod; auto. repeat rewrite Zmod_mod; auto. rewrite <- Zplus_mod; auto. apply f_equal2 with (f := Z.modulo); auto; ring. Defined.
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
RZnZ
Ring RZnZ : RZnZ. (* It is finite *)
Add
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
Ring
mklist (n: nat): list nat := match n with O => nil | (S n) => cons n (mklist n) end.
Fixpoint
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
mklist
mklist_length : forall n1, length (mklist n1) = n1. Proof. intros n1; elim n1; simpl; auto; clear n1. Qed.
Lemma
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
mklist_length
mklist_lt : forall n1 x, (In x (mklist n1)) -> (x < n1)%nat. intros n1; elim n1; simpl; auto; clear n1. intros x H; case H. intros n1 Hrec x [H1 | H1]; try subst x; auto with arith. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
mklist_lt
lt_mklist_lt : forall n1 x, (x < n1)%nat -> (In x (mklist n1)). intros n1 x H; elim H; simpl; auto. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
lt_mklist_lt
uniq_mklist : forall m, ulist (mklist m). intros m; elim m; simpl; auto; clear m. intros m H; constructor; auto. intros H1; absurd (m < m)%nat; auto with arith. apply mklist_lt; auto. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
uniq_mklist
nat_z_kt : forall x, (x < Z.abs_nat n)%nat -> (Z_of_nat x) = (Z_of_nat x) mod n. Proof. intros x H; rewrite Zmod_small; lia. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
nat_z_kt
mkzlist : forall (l: list nat), (forall x, In x l -> (x < Z.abs_nat n)%nat) -> list znz. fix mkzlist 1; intros l; case l. intros; exact nil. intros n1 l1 Hn. assert (F1: forall x, In x l1 -> (x < Z.abs_nat n)%nat). intros; apply Hn; simpl; auto. assert (F2: (n1 < Z.abs_nat n)%nat). apply Hn; simpl; auto. exact (cons (mkznz _ (nat_z_kt _ F2)) (mkzlist _ F1)). Defined.
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
mkzlist
mkzlist_length : forall l H, length (mkzlist l H) = length l. Proof. intros l; elim l; simpl; auto; clear l. Qed.
Lemma
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
mkzlist_length
in_mkzlist : forall l a Ha Hl, In (mkznz (Z_of_nat a) Ha) (mkzlist l Hl) -> In a l. intros l1; elim l1; simpl; auto; clear l1. intros a1 l1 Hrec1 a2 l2 Hl2 [H4 | H4]. generalize (znz_inj _ _ H4); simpl; clear H4; intros H4; left. rewrite <- (Zabs_nat_Z_of_nat a1); rewrite H4; rewrite Zabs_nat_Z_of_nat; auto. right; apply (Hrec1 _ _ _ H4). Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
in_mkzlist
mkzlist_in : forall l a Ha Hl, In (Z.abs_nat a) l -> In (mkznz a Ha) (mkzlist l Hl). intros l1; elim l1; simpl; auto; clear l1. intros a1 l1 Hrec1 a2 l2 Hl2 [H4 | H4]; auto. left; apply zirr; auto. rewrite H4; rewrite inj_Zabs_nat; auto. rewrite Z.abs_eq; auto with zarith. case (Z_mod_lt a2 n); auto with zarith. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
mkzlist_in
mkzlist_uniq : forall l H, ulist l -> ulist (mkzlist l H). intros l H H1; generalize H; elim H1; simpl; auto; clear l H H1. intros a l H1 H2 Hrec H3; constructor; auto. intros HH; case H1; generalize HH; clear HH H1. assert (F1: forall l a Ha Hl, In (mkznz (Z_of_nat a) Ha) (mkzlist l Hl) -> In a l); auto. intros l1; elim l1; simpl; auto; clear l1. intros a1 l1 Hrec1 a2 l2 Hl2 [H4 | H4]. generalize (znz_inj _ _ H4); simpl; clear H4; intros H4; left. rewrite <- (Zabs_nat_Z_of_nat a1); rewrite H4; rewrite Zabs_nat_Z_of_nat; auto. right; apply (Hrec1 _ _ _ H4). apply in_mkzlist. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
mkzlist_uniq
all_znz : list znz := (mkzlist (mklist (Z.abs_nat n)) (mklist_lt _)).
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
all_znz
all_znz_length : length all_znz = (Z.abs_nat n). Proof. unfold all_znz; rewrite mkzlist_length. rewrite mklist_length; auto. Qed.
Lemma
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
all_znz_length
uniq_all_znz : ulist all_znz. unfold all_znz; apply mkzlist_uniq. apply uniq_mklist. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
uniq_all_znz
in_all_znz : forall z, In z all_znz. intros (z1, Hz1). unfold all_znz; apply mkzlist_in. apply lt_mklist_lt. case (Z_mod_lt z1 n). auto with zarith. rewrite <- Hz1; intros H1 H2. case (Nat.le_gt_cases (Z.abs_nat n) (Z.abs_nat z1)); auto; intros H3. absurd (z1 < n); auto; apply Zle_not_lt. rewrite <- Z.abs_eq; auto. rewrite <- inj_Zabs_nat; auto. rewrite <- (Z.abs_eq n) by auto with zarith. rewrite <- (inj_Zabs_nat n); auto. apply inj_le; auto. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
in_all_znz
p_pos : 0 < p. generalize (prime_ge_2 _ p_prime); auto with zarith. Qed.
Theorem
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
p_pos
inv v := mkznz _ _ (modz p (fst (fst (Zegcd (val p v) p)))).
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
inv
div v1 v2 := mul _ v1 (inv v2).
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
div
FZpZ : field_theory (zero _) (one _) (add _) (mul _) (sub _) (opp _) div inv (@eq (znz p)). assert (Hmp := p_pos). split; auto. exact (RZnZ _ p_pos). intros H; injection H; repeat rewrite Zmod_small; auto with zarith. generalize (prime_ge_2 _ p_prime); auto with zarith. intros (n, Hn); unfold zero, one, inv, mul; simpl. intros H; apply zirr. generalize (Zegcd_is_egcd n p); case Zegcd; intros (u,v) w (Hu, (Hv, Hw)); simpl. assert (F1: rel_prime n p). apply rel_prime_le_prime; auto. rewrite Hn; auto. case (Z_mod_lt n p); try (intros H1 H2; split); auto with zarith. case (Zle_lt_or_eq _ _ H1); auto with zarith. rewrite <- Hn; intros H3; case H; apply zirr; rewrite <- H3; auto. red in F1. case (Zis_gcd_unique _ _ _ _ Hv F1); auto with zarith; intros; subst w. rewrite <- H0. rewrite Zmult_mod; repeat rewrite Zmod_mod; try rewrite <- Zmult_mod; auto. rewrite Z_mod_plus; auto with zarith. Defined.
Definition
src
[ "From Coq Require Import ZArith Znumtheory.", "From Coq Require Import Eqdep_dec.", "From Coq Require Import List.", "From Coq Require Import Lia.", "From Coqprime Require Import UList.", "From Coq Require Import Field.", "From Coqprime Require Import Pmod." ]
src/Coqprime/elliptic/GZnZ.v
FZpZ
ell_theory : Prop := mk_ell_theory { (* field properties *) Kfth : field_theory kO kI kplus kmul ksub kopp kdiv kinv (@eq K); NonSingular: 4 * A * A * A + 27 * B * B <> 0; (* Characteristic greater than 2 *) one_not_zero: 1 <> 0; two_not_zero: 2 <> 0; is_zero_correct: forall k, is_zero k = true <-> k = 0 }. Variable Eth: ell_theory.
Record
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
ell_theory
pow (k: K) (n: nat) := match n with O => 1 | 1%nat => k | S n1 => k * pow k n1 end.
Fixpoint
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
pow
pow_S : forall k n, k ^ (S n) = k * k ^ n. intros k n; simpl; auto; case n; auto. simpl; rewrite Eth.(Kfth).(F_R).(Rmul_comm). rewrite Eth.(Kfth).(F_R).(Rmul_1_l); auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
pow_S
Mkmul := rmul_ext3_Proper (Eq_ext kplus kmul kopp).
Let
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Mkmul
Kpower_theory : power_theory 1 kmul (eq (A:=K)) BinNat.nat_of_N pow. constructor. intros r n; case n; simpl; auto. intros p; elim p using BinPos.Pind; auto. intros p1 H. rewrite Pnat.nat_of_P_succ_morphism; rewrite pow_S. rewrite (pow_pos_succ (Eqsth K) Mkmul); auto. rewrite H; auto. exact Eth.(Kfth).(F_R).(Rmul_assoc). Qed.
Lemma
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kpower_theory
iskpow_coef t := match t with | (S ?x) => iskpow_coef x | O => true | _ => false end.
Ltac
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
iskpow_coef
kpow_tac t := match iskpow_coef t with | true => constr:(BinNat.N_of_nat t) | _ => constr:(NotConstant) end.
Ltac
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
kpow_tac
Ring Rfth : (F_R (Eth.(Kfth))) (power_tac Kpower_theory [kpow_tac]).
Add
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Ring
Field Kfth : Eth.(Kfth) (power_tac Kpower_theory [kpow_tac]).
Add
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Field
Kdiv_def := (Fdiv_def Eth.(Kfth)).
Let
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kdiv_def
Kinv_ext : forall p q, p = q -> / p = / q. Proof. intros p q H; rewrite H; auto. Qed.
Lemma
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kinv_ext
Ksth := (Eqsth K).
Let
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Ksth
Keqe := (Eq_ext kplus kmul kopp).
Let
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Keqe
AFth := Field_theory.F2AF Ksth Keqe Eth.(Kfth).
Let
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
AFth
Kmorph := InitialRing.gen_phiZ_morph Ksth Keqe (F_R Eth.(Kfth)). Hint Resolve one_not_zero two_not_zero : core.
Let
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kmorph
Kdiv1 : forall r, r /1 = r. Proof. intros r; field; auto. Qed. (* Some stuff for K *)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kdiv1
n2k (n: nat) : K := match n with O => kO | (S O) => kI | (S n1) => (1 + n2k n1) end.
Fixpoint
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
n2k
N2k := n2k.
Coercion
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
N2k
Kdiff_2_0 : (2:K) <> 0. Proof. simpl; auto. Qed. Hint Resolve Kdiff_2_0 : core.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kdiff_2_0
Keq_minus_eq : forall x y, x - y = 0 -> x = y. Proof. intros x y H. apply trans_equal with (y + (x - y)); try ring. rewrite H; ring. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Keq_minus_eq
Keq_minus_eq_inv : forall x y, x = y -> x - y = 0. Proof. intros x y HH; rewrite HH; ring. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Keq_minus_eq_inv
Kdiff_diff_minus_eq : forall x y, x <> y -> x - y <> 0. Proof. intros x y H H1; case H; apply Keq_minus_eq; auto. Qed. Hint Resolve Kdiff_diff_minus_eq : core.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kdiff_diff_minus_eq
Kmult_integral : forall x y, x * y = 0 -> x = 0 \/ y = 0. Proof. intros x y H. generalize (Eth.(is_zero_correct) x); case (is_zero x); intros (H1, H2); auto; right. apply trans_equal with ((/x) * (x * y)); try field. intros H3; assert (H4 := H2 H3); discriminate. rewrite H; ring. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kmult_integral
Kmult_integral_contrapositive : forall x y, x <> 0 -> y <> 0 -> x * y <> 0. Proof. intros x y H H1 H2. case (Kmult_integral H2); auto. Qed. Hint Resolve Kmult_integral_contrapositive : core.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kmult_integral_contrapositive
Kmult_eq_compat_l : forall x y z, y = z -> x * y = x * z. intros x y z H; rewrite H; auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kmult_eq_compat_l
Keq_opp_is_zero : forall x, x = - x -> x = 0. Proof. intros x H. case (@Kmult_integral (1+1:K) x); simpl; auto. apply trans_equal with (x + x); simpl; try ring. pattern x at 1; rewrite H; ring. intros H1; case two_not_zero; auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Keq_opp_is_zero
Kdiv_inv_eq_0 : forall x y, x/y = 0 -> y<>0 -> x = 0. Proof. intros x y H1 H2. apply trans_equal with (y * (x/y)); try field; auto. rewrite H1; ring. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kdiv_inv_eq_0
is_zero_diff : forall x y, (x - y) ?0 = true -> x = y. Proof. intros x y H. apply trans_equal with (y + (x - y)); try ring. case (Eth.(is_zero_correct) (x - y)); intros H1 H2; rewrite H1; auto; ring. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
is_zero_diff
is_zero_diff_inv : forall x y, x = y -> (x - y) ?0 = true. Proof. intros x y H; rewrite H. case (Eth.(is_zero_correct) (y - y)); intros H1 H2; apply H2; ring. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
is_zero_diff_inv
Ksqr_eq : forall x y, x^2 = y^2 -> x = y \/ x = - y. Proof. intros x y H. case (@Kmult_integral (x - y) (x + y)); auto. ring [H]. intros H1; left; apply trans_equal with (y + (x - y)); try ring. rewrite H1; ring. intros H1; right; apply trans_equal with (-y + (x + y)); try ring. rewrite H1; ring. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Ksqr_eq
diff_rm_quo : forall x y, x/y <> 0 -> y<>0 -> x <> 0. intros x y H H0 H1; case H; field [H1]; auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
diff_rm_quo
dtac H := match type of H with ?X <> 0 => field_simplify X in H end; [ match type of H with ?X/?Y <> 0 => cut (X <> 0); [clear H; intros H | apply diff_rm_quo with Y; auto] end | auto]. (***********************************************************) (* *) (* Definition of the elements of the curve *) (* *) (***********************************************************)
Ltac
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
dtac
elt : Set := (* The infinity point *) inf_elt: elt (* A point of the curve *) | curve_elt: forall x y, y^2 = x^3 + A * x + B -> elt.
Inductive
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
elt
Kdec : forall a b: K, {a = b} + {a <> b}. intros a b; case_eq ((a - b) ?0); intros H. left; apply is_zero_diff; auto. right; intros H1. rewrite (is_zero_diff_inv H1) in H; discriminate. Defined.
Definition
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
Kdec
curve_elt_irr : forall x1 x2 y1 y2 H1 H2, x1 = x2 -> y1 = y2 -> @curve_elt x1 y1 H1 = @curve_elt x2 y2 H2. Proof. intros x1 x2 y1 y2 H1 H2 H3 H4. subst. rewrite (fun H => eq_proofs_unicity H H1 H2); auto. intros x y; case (Kdec x y); auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
curve_elt_irr
curve_elt_irr1 : forall x1 x2 y1 y2 H1 H2, x1 = x2 -> (x1 = x2 -> y1 = y2) -> @curve_elt x1 y1 H1 = @curve_elt x2 y2 H2. Proof. intros x1 x2 y1 y2 H1 H2 H3 H4. apply curve_elt_irr; auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
curve_elt_irr1
ceqb : forall a b: elt, {a = b} + {a<>b}. Proof. intros a b; case a; case b; auto; try (intros; right; intros; discriminate). intros x1 y1 H1 x2 y2 H2; case (Kdec x1 x2); intros H3. case (Kdec y1 y2); intros H4. left; apply curve_elt_irr1; auto. right; intros H; injection H; intros H5 H6; case H4; auto. right; intros H; injection H; intros H4 H5; case H3; auto. Defined.
Definition
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
ceqb
is_zero_true : forall e, is_zero e = true -> e = 0. intro e; generalize (Eth.(is_zero_correct) e); case is_zero; auto; intros (H,_); auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
is_zero_true
is_zero_false : forall e, is_zero e = false -> e <> 0. intro e; generalize (Eth.(is_zero_correct) e); case is_zero; auto; intros (_,H); auto. intros; discriminate. intros _ H1; generalize (H H1); discriminate. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
is_zero_false
opp_lem : forall x y, y ^ 2 = x ^ 3 + A * x + B -> (- y) ^ 2 = x ^ 3 + A * x + B. Proof. intros x y H. Time field [H]. Qed. (***********************************************************) (* *) (* Opposite function *) (* *) (***********************************************************)
Lemma
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
opp_lem
opp : elt -> elt. refine (fun p => match p with inf_elt => inf_elt | @curve_elt x y H => @curve_elt x (-y) _ end). apply opp_lem; auto. Defined.
Definition
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
opp
opp_opp : forall p, opp (opp p) = p. Proof. intros p; case p; simpl; auto; intros; apply curve_elt_irr; ring. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
opp_opp
curve_elt_opp : forall x1 x2 y1 y2 H1 H2, x1 = x2 -> @curve_elt x1 y1 H1 = @curve_elt x2 y2 H2 \/ @curve_elt x1 y1 H1 = opp (@curve_elt x2 y2 H2). intros x1 x2 y1 y2 H1 H2 H3. case (@Kmult_integral (y1 - y2) (y1 + y2)); try intros H4. ring_simplify. ring [H1 H2 H3]. left; apply curve_elt_irr; auto. apply Keq_minus_eq; auto. right; unfold opp; apply curve_elt_irr; auto. apply Keq_minus_eq; rewrite <- H4; ring. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
curve_elt_opp
add_lem1 : forall x1 y1, y1 <> 0 -> y1 ^ 2 = x1 ^ 3 + A * x1 + B -> let l := (3 * x1 * x1 + A) / (2 * y1) in let x3 := l ^ 2 - 2 * x1 in (- y1 - l * (x3 - x1)) ^ 2 = x3 ^ 3 + A * x3 + B. Proof. intros x1 y1 H H1 l x3; unfold x3, l. Time field [H1]. split; auto. Qed.
Lemma
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_lem1
add_lem2 : forall x1 y1 x2 y2, x1 <> x2 -> y1 ^ 2 = x1 ^ 3 + A * x1 + B -> y2 ^ 2 = x2 ^ 3 + A * x2 + B -> let l := (y2 - y1) / (x2 - x1) in let x3 := l ^ 2 - x1 - x2 in (- y1 - l * (x3 - x1)) ^ 2 = x3 ^ 3 + A * x3 + B. Proof. intros x1 y1 x2 y2 H H1 H2 l x3; unfold x3, l. Time field [H1 H2]; auto. Qed.
Lemma
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_lem2
add_zero : forall x1 x2 y1 y2, x1 = x2 -> y1 ^ 2 = x1 ^ 3 + A * x1 + B -> y2 ^ 2 = x2 ^ 3 + A * x2 + B -> y1 <> -y2 -> y1 = y2. Proof. intros x1 x2 y1 y2 H H1 H2 H3; subst x2. case (@Kmult_integral (y1 - y2) (y1 + y2)); try (intros H4; apply Keq_minus_eq; auto). ring [H1 H2]. case H3; apply Keq_minus_eq; rewrite <- H4; ring. Qed.
Lemma
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_zero
add_zero_diff : forall x1 x2 y1 y2, x1 = x2 -> y1 ^ 2 = x1 ^ 3 + A * x1 + B -> y2 ^ 2 = x2 ^ 3 + A * x2 + B -> y1 <> -y2 -> y1 <>0. Proof. intros x1 x2 y1 y2 H H1 H2 H3 H4. assert (H5:= add_zero H H1 H2 H3). case H3; rewrite <- H5; ring [H4]. Qed. (***********************************************************) (* *) (* Addition *) (* *) (***********************************************************)
Lemma
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_zero_diff
add : elt -> elt -> elt. refine (fun p1 p2 => match p1 with inf_elt => p2 | @curve_elt x1 y1 H1 => match p2 with inf_elt => p1 | @curve_elt x2 y2 H2 => if x1 ?= x2 then (* we have p1 = p2 or p1 = - p2 *) if (y1 ?= -y2) then (* we do p - p *) inf_elt else (* we do the tangent *) let l := (3*x1*x1 + A)/(2*y1) in let x3 := l^2 - 2 * x1 in @curve_elt x3 (-y1 - l * (x3 - x1)) _ else (* general case *) let l := (y2 - y1)/(x2 - x1) in let x3 := l ^ 2 - x1 -x2 in @curve_elt x3 (-y1 - l * (x3 - x1)) _ end end). apply (@add_lem1 x1 y1); auto. apply (@add_zero_diff x1 x2 y1 y2); auto. apply (@add_lem2 x1 y1 x2 y2); auto. Defined. (***********************************************************) (* *) (* Direct case predicate for add *) (* *) (***********************************************************)
Definition
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add
kauto := auto; match goal with H: ~ ?A, H1: ?A |- _ => case H; auto end. (* A little tactic to split kdec *)
Ltac
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
kauto
ksplit := let h := fresh "KD" in case Kdec; intros h; try (case h; kauto; fail).
Ltac
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
ksplit
add_case : forall P, (forall p, P inf_elt p p) -> (forall p, P p inf_elt p) -> (forall p, P p (opp p) inf_elt) -> (forall p1 x1 y1 H1 p2 x2 y2 H2 l, p1 = (@curve_elt x1 y1 H1) -> p2 = (@curve_elt x2 y2 H2) -> p2 = add p1 p1 -> y1<>0 -> l = (3 * x1 * x1 + A) / (2 * y1) -> x2 = l ^ 2 - 2 * x1 -> y2 = - y1 - l * (x2 - x1) -> P p1 p1 p2) -> (forall p1 x1 y1 H1 p2 x2 y2 H2 p3 x3 y3 H3 l, p1 = (@curve_elt x1 y1 H1) -> p2 = (@curve_elt x2 y2 H2) -> p3 = (@curve_elt x3 y3 H3) -> p3 = add p1 p2 -> x1 <> x2 -> l = (y2 - y1) / (x2 - x1) -> x3 = l ^ 2 - x1 - x2 -> y3 = -y1 - l * (x3 - x1) -> P p1 p2 p3)-> forall p q, P p q (add p q). Proof. intros P H1 H2 H3 H4 H5 p q; case p; case q; auto. intros x2 y2 e2 x1 y1 e1; unfold add. repeat ksplit. replace (@curve_elt x2 y2 e2) with (opp (@curve_elt x1 y1 e1)); auto; simpl. apply curve_elt_irr; auto; ring [KD0]. assert (HH: y1 <> 0). apply (@add_zero_diff x1 x2 y1 y2); auto. replace (@curve_elt x2 y2 e2) with (@curve_elt x1 y1 e1); auto. eapply H4; eauto; simpl; repeat ksplit; try apply curve_elt_irr; auto. case HH; apply Keq_opp_is_zero; auto. apply curve_elt_irr; auto. case (@Kmult_integral (y1 - y2) (y1 + y2)); try intros HH1. ring [e1 e2 KD]. apply Keq_minus_eq; auto. case KD0; apply Keq_minus_eq; ring_simplify; auto. eapply H5; eauto; simpl; repeat ksplit. apply curve_elt_irr; auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_case
add_casew : forall P, (forall p, P inf_elt p p) -> (forall p, P p inf_elt p) -> (forall p, P p (opp p) inf_elt) -> (forall p1 x1 y1 H1 p2 x2 y2 H2 p3 x3 y3 H3 l, p1 = (@curve_elt x1 y1 H1) -> p2 = (@curve_elt x2 y2 H2) -> p3 = (@curve_elt x3 y3 H3) -> p3 = add p1 p2 -> p1 <> opp p2 -> ((x1 = x2 /\ y1 = y2 /\ l = (3 * x1 * x1 + A) / (2 * y1)) \/ (x1 <> x2 /\ l = (y2 - y1) / (x2 - x1)) ) -> x3 = l ^ 2 - x1 - x2 -> y3 = -y1 - l * (x3 - x1) -> P p1 p2 p3)-> forall p q, P p q (add p q). intros; apply add_case; auto. intros; eapply X2; eauto. rewrite H; simpl; intros tmp; case H4; injection tmp; apply Keq_opp_is_zero. ring [H6]. intros; eapply X2; eauto. rewrite H; rewrite H0; simpl; intros tmp; case H6; injection tmp; auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_casew
is_tangent p1 p2 := p1 <> inf_elt /\ p1 = p2 /\ p1 <> opp p2.
Definition
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
is_tangent
is_generic p1 p2 := p1 <> inf_elt /\ p2 <> inf_elt /\ p1 <> p2 /\ p1 <> opp p2.
Definition
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
is_generic
is_gotan p1 p2 := p1 <> inf_elt /\ p2 <> inf_elt /\ p1 <> opp p2.
Definition
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
is_gotan
kcase X Y := pattern X, Y, (add X Y); apply add_case; auto; clear X Y.
Ltac
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
kcase
kcasew X Y := pattern X, Y, (add X Y); apply add_casew; auto; clear X Y. (***********************************************************) (* *) (* Generic case for associativity *) (* (A + B) + C = A + (B + C) *) (* *) (***********************************************************)
Ltac
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
kcasew
spec1_assoc : forall p1 p2 p3, is_generic p1 p2 -> is_generic p2 p3 -> is_generic (add p1 p2) p3 -> is_generic p1 (add p2 p3) -> add p1 (add p2 p3) = add (add p1 p2) p3. intros p1 p2; kcase p1 p2. intros p p3 _ _ (HH, _); case HH; auto. intros p3 _ _ _ p4 _ _ _ _ _ _ _ _ _ _ _ p5 (_, (_, (HH, _))); case HH; auto. intros p1 x1 y1 H1 p2 x2 y2 H2 p4 x4 y4 H4 l Hp Hp2 Hp4 Hp4b Hx Hl Hx4 Hy4 p3. generalize Hp2 Hp4b; clear Hp2 Hp4b; kcase p2 p3. intros; discriminate. intros p _ _ _ (_,(HH, _)); case HH; auto. intros p _ _ _ (_,(_,(_,HH))); case HH; rewrite opp_opp; auto. intros p2 _ _ _ p3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ (_, (_, (HH, _))); case HH; auto. intros p2 x2b y2b H2b p3 x3 y3 H3 p5 x5 y5 H5 l1. intros Hp2; pattern p2 at 2; rewrite Hp2; clear Hp2. intros Hp3 Hp5 Hp5b Hd Hl1 Hx5 Hy5 tmp. injection tmp; intros; subst y2b x2b; clear tmp H2b. generalize Hp Hp5 Hp5b Hp4b H6 H9; clear Hp Hp5 Hp5b Hp4b H6 H9. kcase p1 p5. intros; discriminate. intros; discriminate. intros p _ _ _ _ _ (_,(_,(_,HH))); case HH; rewrite opp_opp; auto. intros p1 _ _ _ p5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (_,(_,(HH,_))); case HH; auto. intros p1 x1b y1b H1b. intros p5b x5b y5b H5b p6 x6 y6 H6 l2. intros Hp1; pattern p1 at 2; rewrite Hp1; clear Hp1. intros Hp5; pattern p5b at 2; rewrite Hp5; clear Hp5. intros Hp6 _ Hd2 Hl2 Hx6 Hy6. intros tmp; injection tmp; intros HH1 HH2; subst y1b x1b; clear tmp H1b. intros tmp; injection tmp; intros HH1 HH2; subst y5b x5b; clear tmp H5b. intros _ Hp4b _ _. generalize Hp3 Hp4 Hp4b H7 H8; clear Hp3 Hp4 Hp4b H7 H8. kcase p4 p3. intros; discriminate. intros; discriminate. intros p _ _ _ _ (_, (_, (_,HH))); case HH; rewrite opp_opp; auto. intros p3 _ _ _ p4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (_,(_,(HH, _))); case HH; auto. intros p4b x4b y4b H4b p3b x3b y3b H3b p7 x7 y7 H7 l3. intros Hp4b; pattern p4b at 2; rewrite Hp4b; clear Hp4b. intros Hp3b; pattern p3b at 2; rewrite Hp3b; clear Hp3b. intros Hp7 _ Hd3 Hl3 Hx7 Hy7. intros tmp; injection tmp; intros HH1 HH2; subst y3b x3b; clear tmp H3b. intros tmp; injection tmp; intros HH1 HH2; subst y4b x4b; clear tmp H4b. intros _ _ _. subst p6 p7; apply curve_elt_irr; clear H6 H7; apply Keq_minus_eq; clear H4 H5; subst. Time field [H1 H2 H3]; auto; repeat split; auto. intros VV; field_simplify_eq[H1 H2] in VV. case Hd3; symmetry; apply Keq_minus_eq; field_simplify_eq [H1 H2]; auto. intros VV; field_simplify_eq[H1 H2] in VV. case Hd2; symmetry; apply Keq_minus_eq; field_simplify_eq [H1 H2]; auto. Time field [H1 H2 H3]; auto; repeat split; auto. intros VV; field_simplify_eq[H1 H2] in VV. case Hd3; symmetry; apply Keq_minus_eq; field_simplify_eq [H1 H2]; auto. intros VV; field_simplify_eq[H1 H2] in VV. case Hd2; symmetry; apply Keq_minus_eq; field_simplify_eq [H1 H2]; auto. Qed. (***********************************************************) (* *) (* Tangent case for associativity *) (* A + (B + B) = (A + B) + B *) (* *) (***********************************************************)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
spec1_assoc
spec2_assoc : forall p1 p2 p3, is_generic p1 p2 -> is_tangent p2 p3 -> is_generic (add p1 p2) p3 -> is_generic p1 (add p2 p3) -> add p1 (add p2 p3) = add (add p1 p2) p3. intros p1 p2; kcase p1 p2. intros p p3 _ _ (HH, _); case HH; auto. intros p3 _ _ _ p4 _ _ _ _ _ _ _ _ _ _ _ p5 (_, (_, (HH, _))); case HH; auto. intros p1 x1 y1 H1 p2 x2 y2 H2 p4 x4 y4 H4 l Hp Hp2 Hp4 Hp4b Hx Hl Hx4 Hy4 p3. generalize Hp2 Hp4b; clear Hp2 Hp4b. kcase p2 p3. intros; discriminate. intros p _ _ _ _ (_, (HH, _)); case HH; auto. intros p _ _ _ _ _ (_, (HH, _)); case HH; auto. intros p2 x2b y2b H2b p5 x5 y5 H5 l1. intros Hp2b. intros Hp5 Hp5b Hd Hl1 Hx5 Hy5 Hp2. rewrite Hp2 in Hp2b. injection Hp2b; intros HH HH1; subst y2b x2b; clear Hp2b. generalize Hp Hp5 Hp5b; clear Hp Hp5 Hp5b. kcase p1 p5. intros; discriminate. intros; discriminate. intros p _ _ _ _ _ _ _ (_,(_,(_,HH))); case HH; rewrite opp_opp; auto. intros p1 _ _ _ p5 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (_,(_,(HH,_))); case HH; auto. intros p1 x1b y1b H1b. intros p5b x5b y5b H5b p6 x6 y6 H6 l2. intros Hp1; pattern p1 at 2; rewrite Hp1; clear Hp1. intros Hp5; pattern p5b at 2; rewrite Hp5; clear Hp5. intros Hp6 _ Hd2 Hl2 Hx6 Hy6. intros tmp; injection tmp; intros HH1 HH2; subst y1b x1b; clear tmp H1b. intros tmp; injection tmp; intros HH1 HH2; subst y5b x5b; clear tmp H5b. intros _ Hp4b _ _. generalize Hp2 Hp4 Hp4b; clear Hp2 Hp4 Hp4b. kcase p4 p2. intros; discriminate. intros; discriminate. intros p _ _ _ (_, (_, (_,HH))); case HH; rewrite opp_opp; auto. intros p3 _ _ _ p4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ (_,(_,(HH, _))); case HH; auto. intros p4b x4b y4b H4b p3b x3b y3b H3b p7 x7 y7 H7 l3. intros Hp4b; pattern p4b at 2; rewrite Hp4b; clear Hp4b. intros Hp3b; pattern p3b at 2; rewrite Hp3b; clear Hp3b. intros Hp7 _ Hd3 Hl3 Hx7 Hy7. intros tmp; injection tmp; intros HH1 HH2; subst y3b x3b; clear tmp H3b. intros tmp; injection tmp; intros HH1 HH2; subst y4b x4b; clear tmp H4b. intros _ _ _. subst p6 p7; apply curve_elt_irr; clear H6 H7 H2b; apply Keq_minus_eq; clear H4 H5; subst. Time field [H1 H2]; auto; repeat split; auto. intros VV; field_simplify_eq[H1 H2] in VV. case Hd3; symmetry; apply Keq_minus_eq; field_simplify_eq [H1 H2]; auto. intros VV; field_simplify_eq[H1 H2] in VV. case Hd2; symmetry; apply Keq_minus_eq; field_simplify_eq [H1 H2]; auto. Time field [H1 H2]; auto; repeat split; auto. intros VV; field_simplify_eq[H1 H2] in VV. case Hd3; symmetry; apply Keq_minus_eq; field_simplify_eq [H1 H2]; auto. intros VV; field_simplify_eq[H1 H2] in VV. case Hd2; symmetry; apply Keq_minus_eq; field_simplify_eq [H1 H2]; auto. intros p3 x3 y3 H3 p5 x5 y5 H5 p6 x6 y6 H6 l1 Hp3 Hp5 _ _ Hd _ _ _ _ _ _. rewrite Hp3; rewrite Hp5; intros (_, (HH,_)); case Hd; injection HH; auto. Time Qed. (***********************************************************) (* *) (* Identity case for associativity *) (* (A + A) + (A + A) = A + (A + (A + A)) *) (* *) (***********************************************************)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
spec2_assoc
spec3_assoc : forall p1 p2 p3, is_generic p1 p2 -> is_tangent p2 p3 -> is_generic (add p1 p2) p3 -> is_tangent p1 (add p2 p3) -> add p1 (add p2 p3) = add (add p1 p2) p3. intros p1 p2. kcase p1 p2. intros p p3 _ _ (HH, _); case HH; auto. intros p3 _ _ _ p4 _ _ _ _ _ _ _ _ _ _ _ p5 (_, (_, (HH, _))); case HH; auto. intros p1 x1 y1 H1 p2 x2 y2 H2 p4 x4 y4 H4 l Hp Hp2 Hp4 Hp4b Hx Hl Hx4 Hy4 p3. generalize Hp2 Hp4b; clear Hp2 Hp4b. kcase p2 p3. intros; discriminate. intros p _ _ _ _ (_, (HH, _)); case HH; auto. intros p _ _ _ (_ ,(_ , HH)); case HH; rewrite opp_opp; auto. intros p2 x2b y2b H2b p5 x5 y5 H5 l1. intros Hp2b. intros Hp5 Hp5b Hd Hl1 Hx5 Hy5 Hp2. rewrite Hp2 in Hp2b. injection Hp2b; intros HH HH1; subst y2b x2b; clear Hp2b H2b. generalize Hp Hp5 Hp5b; clear Hp Hp5 Hp5b. kcase p1 p5. intros; discriminate. intros; discriminate. intros p _ _ _ _ _ _ _ (_, (_,HH)); case HH; rewrite opp_opp; auto. intros p1 x1b y1b H1b. intros p6 x6 y6 H6 l2. intros Hp1; pattern p1 at 3 4; rewrite Hp1; clear Hp1. intros Hp6 _ Hd2 Hl2 Hx6 Hy6. intros tmp; injection tmp; intros HH1 HH2; subst y1b x1b; clear tmp. intros tmp; injection tmp; intros HH1 HH2. subst y5 x5; clear tmp H5. rename HH1 into Hy1; rename HH2 into Hx1. generalize Hp2 Hp4; clear Hp2 Hp4. kcase p4 p2. intros; discriminate. intros; discriminate. intros p _ _ _ _ _ _ (_, (_, (_, HH))); case HH; rewrite opp_opp; auto. intros p3 _ _ _ p4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ (_,(_,(HH, _))); case HH; auto. intros p4b x4b y4b H4b p2b x2b y2b H2b. intros p7 x7 y7 H7 l3. intros Hp4b; pattern p4b at 2; rewrite Hp4b; clear Hp4b. intros Hp2b; pattern p2b at 2; rewrite Hp2b; clear Hp2b. intros Hp7 _ Hd1 Hl3 Hx7 Hy7. intros tmp; injection tmp; intros HH1 HH2; subst y2b x2b; clear tmp H2b. intros tmp; injection tmp; intros HH1 HH2; subst y4b x4b; clear tmp H4b. intros _ _ _ _ _ _. subst p6 p7; apply curve_elt_irr; clear H6 H7; apply Keq_minus_eq; clear H4 H1b; subst. Time field [H2]; auto; repeat split; auto; intros HH; field_simplify_eq in HH; auto. case Hx; symmetry; apply Keq_minus_eq. field_simplify_eq; auto. case Hd1; symmetry; apply Keq_minus_eq; field_simplify_eq; repeat split; auto. intros HH1; ring_simplify in HH1; auto. case Hx; symmetry; apply Keq_minus_eq. field_simplify_eq; auto. case Hd2; apply Keq_minus_eq; field_simplify_eq; auto. Time field [H2]; auto; repeat split; auto; intros HH; field_simplify_eq in HH; auto. case Hx; symmetry; apply Keq_minus_eq. field_simplify_eq; auto. case Hd1; symmetry; apply Keq_minus_eq; field_simplify_eq; repeat split; auto. intros HH1; ring_simplify in HH1; auto. case Hx; symmetry; apply Keq_minus_eq. field_simplify_eq; auto. case Hd2; apply Keq_minus_eq; field_simplify_eq; auto. intros p1b x1b y1b H1b. intros p5b x5b y5b H5b. intros p3 x3 y3 H3 l2. intros Hp1b; pattern p1b at 2 5; rewrite Hp1b; clear Hp1b. intros Hp5b; pattern p5b at 2 4; rewrite Hp5b; clear Hp5b. intros Hp3 _; rewrite Hp3; clear Hp3. intros Hx1 _ _ _. intros tmp; injection tmp; intros HH1 HH2; subst y1b x1b; clear tmp. intros tmp; injection tmp; intros HH1 HH2; subst y5b x5b; clear tmp. intros _ _ _ _ _ (_,(HH, _)); case Hx1; injection HH; auto. intros p2b x2b y2b H2b. intros p3 x3 y3 H3. intros p5 x5 y5 H5 l2. intros Hp2b; pattern p2b at 2 5; rewrite Hp2b; clear Hp2b. intros Hp3; rewrite Hp3; clear Hp3. intros _ _ Hx1 _ _ _. intros tmp; injection tmp; intros HH1 HH2; subst y2b x2b; clear tmp. intros _ _ (_,(HH, _)); case Hx1; injection HH; auto. Time Qed. (***********************************************************) (* *) (* inf_elt is the zero *) (* *) (***********************************************************)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
spec3_assoc
add_0_l : forall p, add inf_elt p = p. Proof. auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_0_l
add_0_r : forall p, add p inf_elt = p. Proof. intros p; case p; auto. Qed. (***********************************************************) (* *) (* opp is the opposite *) (* *) (***********************************************************)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_0_r
add_opp : forall p, add p (opp p) = inf_elt. Proof. intros p; case p; unfold add; simpl; auto. intros x1 y1 H1. repeat ksplit. case KD0; ring. Qed. (***********************************************************) (* *) (* Addition is commutative *) (* *) (***********************************************************)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_opp
add_comm : forall p1 p2, add p1 p2 = add p2 p1. Proof. intros p1 p2; case p1. rewrite add_0_r; rewrite add_0_l; auto. intros x1 y1 H1; case p2. rewrite add_0_r; rewrite add_0_l; auto. intros x2 y2 H2; simpl; repeat ksplit. case KD2; ring [KD0]. case KD0; ring [KD2]. assert (H3 := add_zero KD H1 H2 KD0). apply curve_elt_irr; subst x2 y2; auto. case KD; auto. case KD; auto. apply curve_elt_irr; field; auto. Qed.
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
add_comm
aux1 : forall x1 y1 x2 y2, y1 ^ 2 = x1 ^ 3 + A * x1 + B -> y2 ^ 2 = x2 ^ 3 + A * x2 + B -> x1 <> x2 -> y2 = 0 -> ((y2 - y1) / (x2 - x1))^2 - x1 - x2 = x2 -> False. Proof. intros x1 y1 x2 y2 H H1 H2 H3 H4. subst y2. assert (Hu : x2 ^ 3 = -(A * x2 + B)). apply trans_equal with ((x2 ^ 3 + A * x2 + B) - (A * x2 + B)); try ring. rewrite <- H1; ring. assert (H5:= (Keq_minus_eq_inv H4)); clear H4. field_simplify_eq [H Hu] in H5; auto. generalize (Kmult_eq_compat_l x2 H5); rename H5 into H4. replace (x2 * 0) with 0; try ring; intros H5. field_simplify_eq [Hu] in H5. generalize H5; clear H5. match goal with |- (?X = _ -> _) => replace X with ((x2 - x1) * (2* A *x2 + 3* B)); try ring end. intros tmp; case (Kmult_integral tmp); clear tmp; intros HH2. case H2; apply sym_equal; apply Keq_minus_eq; auto. generalize (Kmult_eq_compat_l ((2 * A )^3) (sym_equal H1)). replace ((2 * A)^3 * 0 ^ 2) with 0; try (ring). intros H5; ring_simplify in H5; auto. match type of H5 with (?X + ?Y + _ = _) => let x := (constr:(2 * A * x2)) in ((replace Y with (x ^ 3) in H5; try ring); (replace X with (4 * A^3 * x) in H5; try ring); replace x with (-(3) * B) in H5) end. 2: apply sym_equal; apply Keq_minus_eq; apply trans_equal with (2:= HH2); ring. ring_simplify in H5; auto. match type of Eth.(NonSingular) with ?X <> 0 => case (@Kmult_integral (-B) X); try intros HH3; try (case NonSingular; auto; fail) end. rewrite <- H5; ring. assert (HH3b : B = 0). replace B with (-(-B)); try ring; rewrite HH3; ring. case (@Kmult_integral 2 (A * x2)); try intros HH4; auto. apply trans_equal with (2:= HH2). rewrite HH3b; ring. case (Kmult_integral HH4); try intros HH5; auto. case Eth.(NonSingular); rewrite HH3b; rewrite HH5; simpl; ring. ring_simplify [HH5] in H4; auto. case (@Kmult_integral A x1); try intros HH6; auto. apply trans_equal with (2 := H4); rewrite HH3b; ring. case Eth.(NonSingular); rewrite HH3b; rewrite HH6; ring. case H2; rewrite HH6; auto. Qed. (***********************************************************) (* *) (* There is only one zero *) (* *) (***********************************************************)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
aux1
uniq_zero : forall p1 p2, add p1 p2 = p2 -> p1 = inf_elt. Proof. intros p1 p2; kcase p1 p2. intros p; case p; simpl; auto; intros; discriminate. intros. subst p1 p2; injection H8; intros H9 H10. generalize (Keq_minus_eq_inv H7); clear H7; intros H7. ring_simplify [H9 H10] in H7. case (Kmult_integral H7); auto; intros H11. case Kdiff_2_0; auto. case H4; auto. intros p1 x1 y1 H1 p2 x2 y2 H2 p3 x3 y3 H3 l Hp1 Hp2 Hp3 Hp3b Hd Hl Hx3 Hy3 Hp. apply False_ind. subst p2; subst p3; injection Hp; clear p1 Hp1 Hp Hp3b; intros. case (@aux1 x1 y1 x2 y2); auto. generalize (Keq_minus_eq_inv Hy3); rewrite Hl; rewrite H; rewrite H0; clear Hy3; intros Hy3. field_simplify_eq in Hy3; auto. assert (HH: 2 * y2 * (x2 - x1) = 0). rewrite Hy3; ring. clear Hy3; rename HH into Hy3. case (Kmult_integral Hy3); auto; clear Hy3; intros Hy3. case (Kmult_integral Hy3); auto; clear Hy3; intros Hy3. case Kdiff_2_0; auto. case Hd. symmetry; apply Keq_minus_eq; auto. rewrite <- Hl; rewrite <- Hx3; auto. Qed. (***********************************************************) (* *) (* There is only one opposite *) (* *) (***********************************************************)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
uniq_zero
uniq_opp : forall p1 p2, add p1 p2 = inf_elt -> p2 = opp p1. Proof. intros p1 p2; kcase p1 p2. intros p H; rewrite H; auto. intros; subst; discriminate. intros; subst; discriminate. Qed. (***********************************************************) (* *) (* Opposite of zero is zero *) (* *) (***********************************************************)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
uniq_opp
opp_0 : opp (inf_elt) = inf_elt. Proof. auto. Qed. (***********************************************************) (* *) (* Opposite of a sum is the sum of opposite *) (* *) (***********************************************************)
Theorem
src
[ "From Coq Require Import Arith_base.", "From Coq Require Import Field_tac.", "From Coq Require Import Ring.", "From Coq Require Import Eqdep_dec.", "From Coqprime Require Import FGroup.", "From Coq Require Import List.", "From Coqprime Require Import UList.", "From Coq Require Import ZArith." ]
src/Coqprime/elliptic/SMain.v
opp_0
End of preview. Expand in Data Studio

Coq-Prime

Structured dataset from CoqPrime — Primality certificates and number theory.

11,692 declarations extracted from Coq source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string Lemma, Definition, Theorem, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
16

Collection including phanerozoic/Coq-Prime