Proof Assistant Projects
Collection
Digesting proof assistant libraries for AI ingestion.
β’
79 items
β’
Updated
β’
2
fact
stringlengths 9
1.52k
| type
stringclasses 12
values | library
stringclasses 3
values | imports
listlengths 2
11
| filename
stringclasses 54
values | symbolic_name
stringlengths 1
44
| docstring
stringclasses 420
values |
|---|---|---|---|---|---|---|
#[projections(primitive=yes)]
Record seal {A} (f : A) := { unseal : A; seal_eq : unseal = f }.
|
Record
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
seal
|
* Sealing off definitions
|
TCNoBackTrack (P : Prop) := TCNoBackTrack_intro { tc_no_backtrack : P }.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCNoBackTrack
|
The type class [TCNoBackTrack P] can be used to establish [P] without ever
backtracking on the instance of [P] that has been found. Backtracking may
normally happen when [P] contains evars that could be instanciated in different
ways depending on which instance is picked, and type class search somewhere else
depends on this evar.
The proper way of handling this would be by setting Coq's option
`Typeclasses Unique Instances`. However, this option seems to be broken, see Coq
issue #6714.
See https://gitlab.mpi-sws.org/FP/iris-coq/merge_requests/112 for a rationale
of this type class.
|
TCIf (P Q R : Prop) : Prop :=
| TCIf_true : P β Q β TCIf P Q R
| TCIf_false : R β TCIf P Q R.
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCIf
|
The type class [TCNoBackTrack P] can be used to establish [P] without ever
backtracking on the instance of [P] that has been found. Backtracking may
normally happen when [P] contains evars that could be instanciated in different
ways depending on which instance is picked, and type class search somewhere else
depends on this evar.
The proper way of handling this would be by setting Coq's option
`Typeclasses Unique Instances`. However, this option seems to be broken, see Coq
issue #6714.
See https://gitlab.mpi-sws.org/FP/iris-coq/merge_requests/112 for a rationale
of this type class.
|
Class TCIf.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
tc_opaque {A} (x : A) : A := x.
|
Definition
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
tc_opaque
|
The constant [tc_opaque] is used to make definitions opaque for just type
class search. Note that [simpl] is set up to always unfold [tc_opaque].
|
Class or.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Class and.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
TCOr (P1 P2 : Prop) : Prop :=
| TCOr_l : P1 β TCOr P1 P2
| TCOr_r : P2 β TCOr P1 P2.
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCOr
|
Below we define type class versions of the common logical operators. It is
important to note that we duplicate the definitions, and do not declare the
existing logical operators as type classes. That is, we do not say:
Existing Class or.
Existing Class and.
If we could define the existing logical operators as classes, there is no way
of disambiguating whether a premise of a lemma should be solved by type class
resolution or not.
These classes are useful for two purposes: writing complicated type class
premises in a more concise way, and for efficiency. For example, using the [Or]
class, instead of defining two instances [P β Q1 β R] and [P β Q2 β R] we could
have one instance [P β Or Q1 Q2 β R]. When we declare the instance that way, we
avoid the need to derive [P] twice.
|
Class TCOr.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Instance TCOr_l | 9.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
Instance TCOr_r | 10.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
TCAnd (P1 P2 : Prop) : Prop := TCAnd_intro : P1 β P2 β TCAnd P1 P2.
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCAnd
| null |
Class TCAnd.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Instance TCAnd_intro.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
TCTrue : Prop := TCTrue_intro : TCTrue.
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCTrue
| null |
Class TCTrue.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Instance TCTrue_intro.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
TCFalse : Prop :=.
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCFalse
|
The class [TCFalse] is not stricly necessary as one could also use
[False]. However, users might expect that TCFalse exists and if it
does not, it can cause hard to diagnose bugs due to automatic
generalization.
|
Class TCFalse.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
TCForall {A} (P : A β Prop) : list A β Prop :=
| TCForall_nil : TCForall P []
| TCForall_cons x xs : P x β TCForall P xs β TCForall P (x :: xs).
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCForall
| null |
Class TCForall.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Instance TCForall_nil.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
Instance TCForall_cons.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
TCForall2 {A B} (P : A β B β Prop) : list A β list B β Prop :=
| TCForall2_nil : TCForall2 P [] []
| TCForall2_cons x y xs ys :
P x y β TCForall2 P xs ys β TCForall2 P (x :: xs) (y :: ys).
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCForall2
|
The class [TCForall2 P l k] is commonly used to transform an input list [l]
into an output list [k], or the converse. Therefore there are two modes, either
[l] input and [k] output, or [k] input and [l] input.
|
Class TCForall2.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Instance TCForall2_nil.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
Instance TCForall2_cons.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
TCExists {A} (P : A β Prop) : list A β Prop :=
| TCExists_cons_hd x l : P x β TCExists P (x :: l)
| TCExists_cons_tl x l: TCExists P l β TCExists P (x :: l).
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCExists
| null |
Class TCExists.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Instance TCExists_cons_hd | 10.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
Instance TCExists_cons_tl | 20.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
TCElemOf {A} (x : A) : list A β Prop :=
| TCElemOf_here xs : TCElemOf x (x :: xs)
| TCElemOf_further y xs : TCElemOf x xs β TCElemOf x (y :: xs).
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCElemOf
| null |
Class TCElemOf.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Instance TCElemOf_here.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
Instance TCElemOf_further.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
TCEq {A} (x : A) : A β Prop := TCEq_refl : TCEq x x.
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCEq
|
The intended use of [TCEq x y] is to use [x] as input and [y] as output, but
this is not enforced. We use output mode [-] (instead of [!]) for [x] to ensure
that type class search succeed on goals like [TCEq (if ? then e1 else e2) ?y],
see https://gitlab.mpi-sws.org/iris/iris/merge_requests/391 for a use case.
Mode [-] is harmless, the only instance of [TCEq] is [TCEq_refl] below, so we
cannot create loops.
|
Class TCEq.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Instance TCEq_refl.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
TCEq_eq {A} (x1 x2 : A) : TCEq x1 x2 β x1 = x2.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCEq_eq
| null |
TCSimpl {A} (x x' : A) := TCSimpl_TCEq : TCEq x x'.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCSimpl
|
The [TCSimpl x y] type class is similar to [TCEq] but performs [simpl]
before proving the goal by reflexivity. Similar to [TCEq], the argument [x]
is the input and [y] the output. When solving [TCEq x y], the argument [x]
should be a concrete term and [y] an evar for the [simpl]ed result.
|
TCSimpl_eq {A} (x1 x2 : A) : TCSimpl x1 x2 β x1 = x2.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCSimpl_eq
| null |
TCDiag {A} (C : A β Prop) : A β A β Prop :=
| TCDiag_diag x : C x β TCDiag C x x.
|
Inductive
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TCDiag
| null |
Class TCDiag.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Class
| null |
Instance TCDiag_diag.
|
Existing
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Instance
| null |
tc_to_bool (P : Prop)
{p : bool} `{TCIf P (TCEq p true) (TCEq p false)} : bool := p.
|
Definition
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
tc_to_bool
|
Given a proposition [P] that is a type class, [tc_to_bool P] will return
[true] iff there is an instance of [P]. It is often useful in Ltac programming,
where one can do [lazymatch tc_to_bool P with true => .. | false => .. end].
|
Equiv A := equiv: relation A.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Equiv
|
We define an operational type class for setoid equality, i.e., the
"canonical" equivalence for a type. The typeclass is tied to the \equiv
symbol. This is based on (Spitters/van der Weegen, 2011).
|
equiv_rewrite_relation `{Equiv A} :
RewriteRelation (@equiv A _) | 150 := {}.
|
Instance
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
equiv_rewrite_relation
|
We instruct setoid rewriting to infer [equiv] as a relation on
type [A] when needed. This allows setoid_rewrite to solve constraints
of shape [Proper (eq ==> ?R) f] using [Proper (eq ==> (equiv (A:=A))) f]
when an equivalence relation is available on type [A]. We put this instance
at level 150 so it does not take precedence over Coq's stdlib instances,
favoring inference of [eq] (all Coq functions are automatically morphisms
for [eq]). We have [eq] (at 100) < [β‘] (at 150) < [β] (at 200).
|
LeibnizEquiv A `{Equiv A} :=
leibniz_equiv (x y : A) : x β‘ y β x = y.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
LeibnizEquiv
|
The type class [LeibnizEquiv] collects setoid equalities that coincide
with Leibniz equality. We provide the tactic [fold_leibniz] to transform such
setoid equalities into Leibniz equalities, and [unfold_leibniz] for the
reverse.
Various std++ tactics assume that this class is only instantiated if [β‘]
is an equivalence relation.
|
leibniz_equiv_iff `{LeibnizEquiv A, !Reflexive (β‘@{A})} (x y : A) :
x β‘ y β x = y.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
leibniz_equiv_iff
| null |
equivL {A} : Equiv A := (=).
|
Definition
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
equivL
| null |
equiv_default_relation `{Equiv A} :
DefaultRelation (β‘@{A}) | 3 := {}.
|
Instance
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
equiv_default_relation
|
The following instance forces [setoid_replace] to use setoid equality
(for types that have an [Equiv] instance) rather than the standard Leibniz
equality.
|
Decision (P : Prop) := decide : {P} + {Β¬P}.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Decision
|
This type class by (Spitters/van der Weegen, 2011) collects decidable
propositions.
|
RelDecision {A B} (R : A β B β Prop) :=
decide_rel x y :: Decision (R x y).
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
RelDecision
|
Although [RelDecision R] is just [β x y, Decision (R x y)], we make this
an explicit class instead of a notation for two reasons:
- It allows us to control [Hint Mode] more precisely. In particular, if it were
defined as a notation, the above [Hint Mode] for [Decision] would not prevent
diverging instance search when looking for [RelDecision (@eq ?A)], which would
result in it looking for [Decision (@eq ?A x y)], i.e. an instance where the
head position of [Decision] is not en evar.
- We use it to avoid inefficient computation due to eager evaluation of
propositions by [vm_compute]. This inefficiency arises for example if
[(x = y) := (f x = f y)]. Since [decide (x = y)] evaluates to
[decide (f x = f y)], this would then lead to evaluation of [f x] and [f y].
Using the [RelDecision], the [f] is hidden under a lambda, which prevents
unnecessary evaluation.
|
Inhabited (A : Type) : Type := populate { inhabitant : A }.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Inhabited
|
This type class collects types that are inhabited.
|
ProofIrrel (A : Type) : Prop := proof_irrel (x y : A) : x = y.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
ProofIrrel
|
This type class collects types that are proof irrelevant. That means, all
elements of the type are equal. We use this notion only used for propositions,
but by universe polymorphism we can generalize it.
|
Inj {A B} (R : relation A) (S : relation B) (f : A β B) : Prop :=
inj x y : S (f x) (f y) β R x y.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Inj
|
These operational type classes allow us to refer to common mathematical
properties in a generic way. For example, for injectivity of [(k ++.)] it
allows us to write [inj (k ++.)] instead of [app_inv_head k].
|
Inj2 {A B C} (R1 : relation A) (R2 : relation B)
(S : relation C) (f : A β B β C) : Prop :=
inj2 x1 x2 y1 y2 : S (f x1 x2) (f y1 y2) β R1 x1 y1 β§ R2 x2 y2.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Inj2
| null |
Cancel {A B} (S : relation B) (f : A β B) (g : B β A) : Prop :=
cancel x : S (f (g x)) x.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Cancel
| null |
Surj {A B} (R : relation B) (f : A β B) :=
surj y : β x, R (f x) y.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Surj
| null |
IdemP {A} (R : relation A) (f : A β A β A) : Prop :=
idemp x : R (f x x) x.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
IdemP
| null |
Comm {A B} (R : relation A) (f : B β B β A) : Prop :=
comm x y : R (f x y) (f y x).
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Comm
| null |
LeftId {A} (R : relation A) (i : A) (f : A β A β A) : Prop :=
left_id x : R (f i x) x.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
LeftId
| null |
RightId {A} (R : relation A) (i : A) (f : A β A β A) : Prop :=
right_id x : R (f x i) x.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
RightId
| null |
Assoc {A} (R : relation A) (f : A β A β A) : Prop :=
assoc x y z : R (f x (f y z)) (f (f x y) z).
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Assoc
| null |
LeftAbsorb {A} (R : relation A) (i : A) (f : A β A β A) : Prop :=
left_absorb x : R (f i x) i.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
LeftAbsorb
| null |
RightAbsorb {A} (R : relation A) (i : A) (f : A β A β A) : Prop :=
right_absorb x : R (f x i) i.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
RightAbsorb
| null |
AntiSymm {A} (R S : relation A) : Prop :=
anti_symm x y : S x y β S y x β R x y.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
AntiSymm
| null |
Total {A} (R : relation A) := total x y : R x y β¨ R y x.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Total
| null |
Trichotomy {A} (R : relation A) :=
trichotomy x y : R x y β¨ x = y β¨ R y x.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
Trichotomy
| null |
TrichotomyT {A} (R : relation A) :=
trichotomyT x y : {R x y} + {x = y} + {R y x}.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TrichotomyT
| null |
involutive {A} {R : relation A} (f : A β A) `{Involutive R f} x :
R (f (f x)) x.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
involutive
| null |
not_symmetry `{R : relation A, !Symmetric R} x y : Β¬R x y β Β¬R y x.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
not_symmetry
| null |
symmetry_iff `(R : relation A) `{!Symmetric R} x y : R x y β R y x.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
symmetry_iff
| null |
not_inj `{Inj A B R R' f} x y : Β¬R x y β Β¬R' (f x) (f y).
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
not_inj
| null |
not_inj2_1 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
Β¬R x1 x2 β Β¬R'' (f x1 y1) (f x2 y2).
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
not_inj2_1
| null |
not_inj2_2 `{Inj2 A B C R R' R'' f} x1 x2 y1 y2 :
Β¬R' y1 y2 β Β¬R'' (f x1 y1) (f x2 y2).
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
not_inj2_2
| null |
inj_iff {A B} {R : relation A} {S : relation B} (f : A β B)
`{!Inj R S f} `{!Proper (R ==> S) f} x y : S (f x) (f y) β R x y.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
inj_iff
| null |
inj2_inj_1 `{Inj2 A B C R1 R2 R3 f} y : Inj R1 R3 (Ξ» x, f x y).
|
Instance
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
inj2_inj_1
| null |
inj2_inj_2 `{Inj2 A B C R1 R2 R3 f} x : Inj R2 R3 (f x).
|
Instance
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
inj2_inj_2
| null |
cancel_inj `{Cancel A B R1 f g, !Equivalence R1, !Proper (R2 ==> R1) f} :
Inj R1 R2 g.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
cancel_inj
|
Smart constructors for [Inj] and [Surj] based on [Cancel]. These are not
instances because they will blow-up the search space due to diamonds: in every
node of the search tree for [Inj] or [Surj] of composed functions these
instances could be applied. Note that [f] and [g] do not need to be given,
these are infered using [Cancel].
|
cancel_surj `{Cancel A B R1 f g} : Surj R1 f.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
cancel_surj
| null |
idemp_L {A} f `{!@IdemP A (=) f} x : f x x = x.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
idemp_L
|
The following lemmas are specific versions of the projections of the above
type classes for Leibniz equality. These lemmas allow us to enforce Coq not to
use the setoid rewriting mechanism.
|
comm_L {A B} f `{!@Comm A B (=) f} x y : f x y = f y x.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
comm_L
| null |
left_id_L {A} i f `{!@LeftId A (=) i f} x : f i x = x.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
left_id_L
| null |
right_id_L {A} i f `{!@RightId A (=) i f} x : f x i = x.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
right_id_L
| null |
assoc_L {A} f `{!@Assoc A (=) f} x y z : f x (f y z) = f (f x y) z.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
assoc_L
| null |
left_absorb_L {A} i f `{!@LeftAbsorb A (=) i f} x : f i x = i.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
left_absorb_L
| null |
right_absorb_L {A} i f `{!@RightAbsorb A (=) i f} x : f x i = i.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
right_absorb_L
| null |
strict {A} (R : relation A) : relation A := Ξ» X Y, R X Y β§ Β¬R Y X.
|
Definition
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
strict
|
The classes [PreOrder], [PartialOrder], and [TotalOrder] use an arbitrary
relation [R] instead of [β] to support multiple orders on the same type.
|
PartialOrder {A} (R : relation A) : Prop := {
partial_order_pre :: PreOrder R;
partial_order_anti_symm :: AntiSymm (=) R
}.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
PartialOrder
| null |
TotalOrder {A} (R : relation A) : Prop := {
total_order_partial :: PartialOrder R;
total_order_trichotomy :: Trichotomy (strict R)
}.
|
Class
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
TotalOrder
| null |
prop_inhabited : Inhabited Prop := populate True.
|
Instance
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
prop_inhabited
|
* Logic
|
or_l P Q : Β¬Q β P β¨ Q β P.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
or_l
| null |
or_r P Q : Β¬P β P β¨ Q β Q.
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
or_r
| null |
and_wlog_l (P Q : Prop) : (Q β P) β Q β (P β§ Q).
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
and_wlog_l
| null |
and_wlog_r (P Q : Prop) : P β (P β Q) β (P β§ Q).
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
and_wlog_r
| null |
impl_trans (P Q R : Prop) : (P β Q) β (Q β R) β (P β R).
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
impl_trans
| null |
forall_proper {A} (P Q : A β Prop) :
(β x, P x β Q x) β (β x, P x) β (β x, Q x).
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
forall_proper
| null |
exist_proper {A} (P Q : A β Prop) :
(β x, P x β Q x) β (β x, P x) β (β x, Q x).
|
Lemma
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
exist_proper
| null |
eq_comm {A} : Comm (β) (=@{A}).
|
Instance
|
stdpp
|
[
"Stdlib.Morphisms",
"Stdlib.RelationClasses",
"Stdlib.List",
"Stdlib.Bool",
"Stdlib.Setoid",
"Stdlib.Peano",
"Stdlib.Utf8",
"Stdlib.Permutation",
"Stdlib.Program.Basics",
"Stdlib.Program.Syntax",
"stdpp.options"
] |
stdpp/base.v
|
eq_comm
| null |
Structured dataset of formalizations from the std++ library (used by Iris).
| Column | Type | Description |
|---|---|---|
| fact | string | Full declaration (name, signature, body) |
| type | string | Lemma, Definition, Instance, Class, etc. |
| library | string | Sub-library (stdpp, stdpp_bitvector, stdpp_unstable) |
| imports | list | Import statements |
| filename | string | Source file path |
| symbolic_name | string | Declaration identifier |
| docstring | string | Documentation comment (9% coverage) |
| Type | Count |
|---|---|
| Lemma | 3,374 |
| Instance | 1,000 |
| Definition | 311 |
| Class | 103 |
| Fixpoint | 93 |
| Inductive | 43 |
| Existing | 30 |
| Record | 18 |
| Other | 10 |