Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
9
4.14k
type
stringclasses
2 values
library
stringclasses
29 values
imports
listlengths
0
15
filename
stringclasses
350 values
symbolic_name
stringlengths
2
67
docstring
null
ADD_0 : !m. m + 0 = m
theorem
core
[ "recursion.ml" ]
arith.ml
ADD_0
null
ADD_SUC : !m n. m + (SUC n) = SUC(m + n)
theorem
core
[ "recursion.ml" ]
arith.ml
ADD_SUC
null
ADD_CLAUSES : (!n. 0 + n = n) /\ (!m. m + 0 = m) /\ (!m n. (SUC m) + n = SUC(m + n)) /\ (!m n. m + (SUC n) = SUC(m + n))
theorem
core
[ "recursion.ml" ]
arith.ml
ADD_CLAUSES
null
ADD_SYM : !m n. m + n = n + m
theorem
core
[ "recursion.ml" ]
arith.ml
ADD_SYM
null
ADD_ASSOC : !m n p. m + (n + p) = (m + n) + p
theorem
core
[ "recursion.ml" ]
arith.ml
ADD_ASSOC
null
ADD_AC : (m + n = n + m) /\ ((m + n) + p = m + (n + p)) /\ (m + (n + p) = n + (m + p))
theorem
core
[ "recursion.ml" ]
arith.ml
ADD_AC
null
ADD_EQ_0 : !m n. (m + n = 0) <=> (m = 0) /\ (n = 0)
theorem
core
[ "recursion.ml" ]
arith.ml
ADD_EQ_0
null
EQ_ADD_LCANCEL : !m n p. (m + n = m + p) <=> (n = p)
theorem
core
[ "recursion.ml" ]
arith.ml
EQ_ADD_LCANCEL
null
EQ_ADD_RCANCEL : !m n p. (m + p = n + p) <=> (m = n)
theorem
core
[ "recursion.ml" ]
arith.ml
EQ_ADD_RCANCEL
null
EQ_ADD_LCANCEL_0 : !m n. (m + n = m) <=> (n = 0)
theorem
core
[ "recursion.ml" ]
arith.ml
EQ_ADD_LCANCEL_0
null
EQ_ADD_RCANCEL_0 : !m n. (m + n = n) <=> (m = 0)
theorem
core
[ "recursion.ml" ]
arith.ml
EQ_ADD_RCANCEL_0
null
BIT0 : !n. BIT0 n = n + n
theorem
core
[ "recursion.ml" ]
arith.ml
BIT0
null
BIT1 : !n. BIT1 n = SUC(n + n)
theorem
core
[ "recursion.ml" ]
arith.ml
BIT1
null
BIT0_THM : !n. NUMERAL (BIT0 n) = NUMERAL n + NUMERAL n
theorem
core
[ "recursion.ml" ]
arith.ml
BIT0_THM
null
BIT1_THM : !n. NUMERAL (BIT1 n) = SUC(NUMERAL n + NUMERAL n)
theorem
core
[ "recursion.ml" ]
arith.ml
BIT1_THM
null
ONE : 1 = SUC 0
theorem
core
[ "recursion.ml" ]
arith.ml
ONE
null
TWO : 2 = SUC 1
theorem
core
[ "recursion.ml" ]
arith.ml
TWO
null
ADD1 : !m. SUC m = m + 1
theorem
core
[ "recursion.ml" ]
arith.ml
ADD1
null
MULT_0 : !m. m * 0 = 0
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_0
null
MULT_SUC : !m n. m * (SUC n) = m + (m * n)
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_SUC
null
MULT_CLAUSES : (!n. 0 * n = 0) /\ (!m. m * 0 = 0) /\ (!n. 1 * n = n) /\ (!m. m * 1 = m) /\ (!m n. (SUC m) * n = (m * n) + n) /\ (!m n. m * (SUC n) = m + (m * n))
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_CLAUSES
null
MULT_SYM : !m n. m * n = n * m
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_SYM
null
LEFT_ADD_DISTRIB : !m n p. m * (n + p) = (m * n) + (m * p)
theorem
core
[ "recursion.ml" ]
arith.ml
LEFT_ADD_DISTRIB
null
RIGHT_ADD_DISTRIB : !m n p. (m + n) * p = (m * p) + (n * p)
theorem
core
[ "recursion.ml" ]
arith.ml
RIGHT_ADD_DISTRIB
null
MULT_ASSOC : !m n p. m * (n * p) = (m * n) * p
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_ASSOC
null
MULT_AC : (m * n = n * m) /\ ((m * n) * p = m * (n * p)) /\ (m * (n * p) = n * (m * p))
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_AC
null
MULT_EQ_0 : !m n. (m * n = 0) <=> (m = 0) \/ (n = 0)
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_EQ_0
null
EQ_MULT_LCANCEL : !m n p. (m * n = m * p) <=> (m = 0) \/ (n = p)
theorem
core
[ "recursion.ml" ]
arith.ml
EQ_MULT_LCANCEL
null
EQ_MULT_RCANCEL : !m n p. (m * p = n * p) <=> (m = n) \/ (p = 0)
theorem
core
[ "recursion.ml" ]
arith.ml
EQ_MULT_RCANCEL
null
MULT_2 : !n. 2 * n = n + n
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_2
null
MULT_EQ_1 : !m n. (m * n = 1) <=> (m = 1) /\ (n = 1)
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_EQ_1
null
EXP_EQ_0 : !m n. (m EXP n = 0) <=> (m = 0) /\ ~(n = 0)
theorem
core
[ "recursion.ml" ]
arith.ml
EXP_EQ_0
null
EXP_EQ_1 : !x n. x EXP n = 1 <=> x = 1 \/ n = 0
theorem
core
[ "recursion.ml" ]
arith.ml
EXP_EQ_1
null
EXP_ZERO : !n. 0 EXP n = if n = 0 then 1 else 0
theorem
core
[ "recursion.ml" ]
arith.ml
EXP_ZERO
null
EXP_ADD : !m n p. m EXP (n + p) = (m EXP n) * (m EXP p)
theorem
core
[ "recursion.ml" ]
arith.ml
EXP_ADD
null
EXP_ONE : !n. 1 EXP n = 1
theorem
core
[ "recursion.ml" ]
arith.ml
EXP_ONE
null
EXP_1 : !n. n EXP 1 = n
theorem
core
[ "recursion.ml" ]
arith.ml
EXP_1
null
EXP_2 : !n. n EXP 2 = n * n
theorem
core
[ "recursion.ml" ]
arith.ml
EXP_2
null
MULT_EXP : !p m n. (m * n) EXP p = m EXP p * n EXP p
theorem
core
[ "recursion.ml" ]
arith.ml
MULT_EXP
null
EXP_MULT : !m n p. m EXP (n * p) = (m EXP n) EXP p
theorem
core
[ "recursion.ml" ]
arith.ml
EXP_MULT
null
EXP_EXP : !x m n. (x EXP m) EXP n = x EXP (m * n)
theorem
core
[ "recursion.ml" ]
arith.ml
EXP_EXP
null
LE_SUC_LT : !m n. (SUC m <= n) <=> (m < n)
theorem
core
[ "recursion.ml" ]
arith.ml
LE_SUC_LT
null
LT_SUC_LE : !m n. (m < SUC n) <=> (m <= n)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_SUC_LE
null
LE_SUC : !m n. (SUC m <= SUC n) <=> (m <= n)
theorem
core
[ "recursion.ml" ]
arith.ml
LE_SUC
null
LT_SUC : !m n. (SUC m < SUC n) <=> (m < n)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_SUC
null
LE_0 : !n. 0 <= n
theorem
core
[ "recursion.ml" ]
arith.ml
LE_0
null
LT_0 : !n. 0 < SUC n
theorem
core
[ "recursion.ml" ]
arith.ml
LT_0
null
LE_REFL : !n. n <= n
theorem
core
[ "recursion.ml" ]
arith.ml
LE_REFL
null
LT_REFL : !n. ~(n < n)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_REFL
null
LT_IMP_NE : !m n:num. m < n ==> ~(m = n)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_IMP_NE
null
LE_ANTISYM : !m n. (m <= n /\ n <= m) <=> (m = n)
theorem
core
[ "recursion.ml" ]
arith.ml
LE_ANTISYM
null
LT_ANTISYM : !m n. ~(m < n /\ n < m)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_ANTISYM
null
LET_ANTISYM : !m n. ~(m <= n /\ n < m)
theorem
core
[ "recursion.ml" ]
arith.ml
LET_ANTISYM
null
LTE_ANTISYM : !m n. ~(m < n /\ n <= m)
theorem
core
[ "recursion.ml" ]
arith.ml
LTE_ANTISYM
null
LE_TRANS : !m n p. m <= n /\ n <= p ==> m <= p
theorem
core
[ "recursion.ml" ]
arith.ml
LE_TRANS
null
LT_TRANS : !m n p. m < n /\ n < p ==> m < p
theorem
core
[ "recursion.ml" ]
arith.ml
LT_TRANS
null
LET_TRANS : !m n p. m <= n /\ n < p ==> m < p
theorem
core
[ "recursion.ml" ]
arith.ml
LET_TRANS
null
LTE_TRANS : !m n p. m < n /\ n <= p ==> m < p
theorem
core
[ "recursion.ml" ]
arith.ml
LTE_TRANS
null
LE_CASES : !m n. m <= n \/ n <= m
theorem
core
[ "recursion.ml" ]
arith.ml
LE_CASES
null
LT_CASES : !m n. (m < n) \/ (n < m) \/ (m = n)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_CASES
null
LET_CASES : !m n. m <= n \/ n < m
theorem
core
[ "recursion.ml" ]
arith.ml
LET_CASES
null
LTE_CASES : !m n. m < n \/ n <= m
theorem
core
[ "recursion.ml" ]
arith.ml
LTE_CASES
null
LE_LT : !m n. (m <= n) <=> (m < n) \/ (m = n)
theorem
core
[ "recursion.ml" ]
arith.ml
LE_LT
null
LT_LE : !m n. (m < n) <=> (m <= n) /\ ~(m = n)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_LE
null
NOT_LE : !m n. ~(m <= n) <=> (n < m)
theorem
core
[ "recursion.ml" ]
arith.ml
NOT_LE
null
NOT_LT : !m n. ~(m < n) <=> n <= m
theorem
core
[ "recursion.ml" ]
arith.ml
NOT_LT
null
LT_IMP_LE : !m n. m < n ==> m <= n
theorem
core
[ "recursion.ml" ]
arith.ml
LT_IMP_LE
null
EQ_IMP_LE : !m n. (m = n) ==> m <= n
theorem
core
[ "recursion.ml" ]
arith.ml
EQ_IMP_LE
null
LT_NZ : !n. 0 < n <=> ~(n = 0)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_NZ
null
LE_1 : (!n. ~(n = 0) ==> 0 < n) /\ (!n. ~(n = 0) ==> 1 <= n) /\ (!n. 0 < n ==> ~(n = 0)) /\ (!n. 0 < n ==> 1 <= n) /\ (!n. 1 <= n ==> 0 < n) /\ (!n. 1 <= n ==> ~(n = 0))
theorem
core
[ "recursion.ml" ]
arith.ml
LE_1
null
LE_EXISTS : !m n. (m <= n) <=> (?d. n = m + d)
theorem
core
[ "recursion.ml" ]
arith.ml
LE_EXISTS
null
LT_EXISTS : !m n. (m < n) <=> (?d. n = m + SUC d)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_EXISTS
null
LE_ADD : !m n. m <= m + n
theorem
core
[ "recursion.ml" ]
arith.ml
LE_ADD
null
LE_ADDR : !m n. n <= m + n
theorem
core
[ "recursion.ml" ]
arith.ml
LE_ADDR
null
LT_ADD : !m n. (m < m + n) <=> (0 < n)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_ADD
null
LT_ADDR : !m n. (n < m + n) <=> (0 < m)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_ADDR
null
LE_ADD_LCANCEL : !m n p. (m + n) <= (m + p) <=> n <= p
theorem
core
[ "recursion.ml" ]
arith.ml
LE_ADD_LCANCEL
null
LE_ADD_RCANCEL : !m n p. (m + p) <= (n + p) <=> (m <= n)
theorem
core
[ "recursion.ml" ]
arith.ml
LE_ADD_RCANCEL
null
LT_ADD_LCANCEL : !m n p. (m + n) < (m + p) <=> n < p
theorem
core
[ "recursion.ml" ]
arith.ml
LT_ADD_LCANCEL
null
LT_ADD_RCANCEL : !m n p. (m + p) < (n + p) <=> (m < n)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_ADD_RCANCEL
null
LE_ADD2 : !m n p q. m <= p /\ n <= q ==> m + n <= p + q
theorem
core
[ "recursion.ml" ]
arith.ml
LE_ADD2
null
LET_ADD2 : !m n p q. m <= p /\ n < q ==> m + n < p + q
theorem
core
[ "recursion.ml" ]
arith.ml
LET_ADD2
null
LTE_ADD2 : !m n p q. m < p /\ n <= q ==> m + n < p + q
theorem
core
[ "recursion.ml" ]
arith.ml
LTE_ADD2
null
LT_ADD2 : !m n p q. m < p /\ n < q ==> m + n < p + q
theorem
core
[ "recursion.ml" ]
arith.ml
LT_ADD2
null
LT_MULT : !m n. (0 < m * n) <=> (0 < m) /\ (0 < n)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_MULT
null
LE_MULT2 : !m n p q. m <= n /\ p <= q ==> m * p <= n * q
theorem
core
[ "recursion.ml" ]
arith.ml
LE_MULT2
null
LT_LMULT : !m n p. ~(m = 0) /\ n < p ==> m * n < m * p
theorem
core
[ "recursion.ml" ]
arith.ml
LT_LMULT
null
LE_MULT_LCANCEL : !m n p. (m * n) <= (m * p) <=> (m = 0) \/ n <= p
theorem
core
[ "recursion.ml" ]
arith.ml
LE_MULT_LCANCEL
null
LE_MULT_RCANCEL : !m n p. (m * p) <= (n * p) <=> (m <= n) \/ (p = 0)
theorem
core
[ "recursion.ml" ]
arith.ml
LE_MULT_RCANCEL
null
LT_MULT_LCANCEL : !m n p. (m * n) < (m * p) <=> ~(m = 0) /\ n < p
theorem
core
[ "recursion.ml" ]
arith.ml
LT_MULT_LCANCEL
null
LT_MULT_RCANCEL : !m n p. (m * p) < (n * p) <=> (m < n) /\ ~(p = 0)
theorem
core
[ "recursion.ml" ]
arith.ml
LT_MULT_RCANCEL
null
LT_MULT2 : !m n p q. m < n /\ p < q ==> m * p < n * q
theorem
core
[ "recursion.ml" ]
arith.ml
LT_MULT2
null
LE_SQUARE_REFL : !n. n <= n * n
theorem
core
[ "recursion.ml" ]
arith.ml
LE_SQUARE_REFL
null
LT_POW2_REFL : !n. n < 2 EXP n
theorem
core
[ "recursion.ml" ]
arith.ml
LT_POW2_REFL
null
WLOG_LE : (!m n. P m n <=> P n m) /\ (!m n. m <= n ==> P m n) ==> !m n. P m n
theorem
core
[ "recursion.ml" ]
arith.ml
WLOG_LE
null
WLOG_LT : (!m. P m m) /\ (!m n. P m n <=> P n m) /\ (!m n. m < n ==> P m n) ==> !m y. P m y
theorem
core
[ "recursion.ml" ]
arith.ml
WLOG_LT
null
WLOG_LE_3 : !P. (!x y z. P x y z ==> P y x z /\ P x z y) /\ (!x y z. x <= y /\ y <= z ==> P x y z) ==> !x y z. P x y z
theorem
core
[ "recursion.ml" ]
arith.ml
WLOG_LE_3
null
num_WF : !P. (!n. (!m. m < n ==> P m) ==> P n) ==> !n. P n
theorem
core
[ "recursion.ml" ]
arith.ml
num_WF
null
num_WOP : !P. (?n. P n) <=> (?n. P(n) /\ !m. m < n ==> ~P(m))
theorem
core
[ "recursion.ml" ]
arith.ml
num_WOP
null
num_MAX : !P. (?x. P x) /\ (?M. !x. P x ==> x <= M) <=> ?m. P m /\ (!x. P x ==> x <= m)
theorem
core
[ "recursion.ml" ]
arith.ml
num_MAX
null
End of preview. Expand in Data Studio

HOL-Light

A structured dataset of theorems and definitions from HOL Light, an interactive theorem prover for higher-order logic written in OCaml.

Source

Statistics

Property Value
Total Entries 34,572
Theorems 32,614
Definitions 1,958
Source Files 556

Top Libraries

Library Count
Multivariate 16,190
Library 7,326
core 2,584
100 (Flyspeck) 2,519
RichterHilbertAxiomGeometry 1,368

Schema

Column Type Description
fact string Theorem statement or definition body
type string "theorem" or "definition"
library string HOL Light library directory
imports list[string] OCaml needs statements
filename string Source .ml file
symbolic_name string Theorem/definition name

About HOL Light

HOL Light is known for:

  • Flyspeck project (formal proof of Kepler conjecture)
  • Multivariate analysis library
  • Floating-point verification
  • Formalization of complex analysis

Creator

Charles Norton (phanerozoic)

Downloads last month
20

Collection including phanerozoic/HOL-Light