Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
5
2k
type
stringclasses
22 values
library
stringclasses
1 value
imports
listlengths
0
15.1k
filename
stringlengths
13
83
symbolic_name
stringlengths
1
82
docstring
stringclasses
1 value
prog = "term" default_sort prog
class
src
[ "Gfp" ]
src/CCL/CCL.thy
prog
i :: prog .. consts (*** Evaluation Judgement ***) Eval :: "[i,i]\<Rightarrow>prop" (infixl \<open>\<longlongrightarrow>\<close> 20) (*** Bisimulations for pre-order and equality ***) po :: "['a,'a]\<Rightarrow>o" (infixl \<open>[=\<close> 50) (*** Term Formers ***) true :: "i" false :: "i" pair :: "[i,i]\<Rightarrow>i" (\<open>(\<open>indent=1 notation=\<open>mixfix pair\<close>\<close><_,/_>)\<close>) lambda :: "(i\<Rightarrow>i)\<Rightarrow>i" (binder \<open>lam \<close> 55) "case" :: "[i,i,i,[i,i]\<Rightarrow>i,(i\<Rightarrow>i)\<Rightarrow>i]\<Rightarrow>i" "apply" :: "[i,i]\<Rightarrow>i" (infixl \<open>`\<close> 56) bot :: "i" (******* EVALUATION SEMANTICS *******) (** This is the evaluation semantics from which the axioms below were derived. **) (** It is included here just as an evaluator for FUN and has no influence on **) (** inference in the theory CCL. **)
instance
src
[ "Gfp" ]
src/CCL/CCL.thy
i
where trueV: "true \<longlongrightarrow> true" and falseV: "false \<longlongrightarrow> false" and pairV: "<a,b> \<longlongrightarrow> <a,b>" and lamV: "\<And>b. lam x. b(x) \<longlongrightarrow> lam x. b(x)" and caseVtrue: "\<lbrakk>t \<longlongrightarrow> true; d \<longlongrightarrow> c\<rbrakk> \<Longrightarrow> case(t,d,e,f,g) \<longlongrightarrow> c" and caseVfalse: "\<lbrakk>t \<longlongrightarrow> false; e \<longlongrightarrow> c\<rbrakk> \<Longrightarrow> case(t,d,e,f,g) \<longlongrightarrow> c" and caseVpair: "\<lbrakk>t \<longlongrightarrow> <a,b>; f(a,b) \<longlongrightarrow> c\<rbrakk> \<Longrightarrow> case(t,d,e,f,g) \<longlongrightarrow> c" and caseVlam: "\<And>b. \<lbrakk>t \<longlongrightarrow> lam x. b(x); g(b) \<longlongrightarrow> c\<rbrakk> \<Longrightarrow> case(t,d,e,f,g) \<longlongrightarrow> c" (*** Properties of evaluation: note that "t \<longlongrightarrow> c" impies that c is canonical ***)
axiomatization
src
[ "Gfp" ]
src/CCL/CCL.thy
where
where canonical: "\<lbrakk>t \<longlongrightarrow> c; c==true \<Longrightarrow> u\<longlongrightarrow>v; c==false \<Longrightarrow> u\<longlongrightarrow>v; \<And>a b. c==<a,b> \<Longrightarrow> u\<longlongrightarrow>v; \<And>f. c==lam x. f(x) \<Longrightarrow> u\<longlongrightarrow>v\<rbrakk> \<Longrightarrow> u\<longlongrightarrow>v" (* Should be derivable - but probably a bitch! *)
axiomatization
src
[ "Gfp" ]
src/CCL/CCL.thy
where
where substitute: "\<lbrakk>a==a'; t(a)\<longlongrightarrow>c(a)\<rbrakk> \<Longrightarrow> t(a')\<longlongrightarrow>c(a')" (************** LOGIC ***************) (*** Definitions used in the following rules ***)
axiomatization
src
[ "Gfp" ]
src/CCL/CCL.thy
where
where bot_def: "bot == (lam x. x`x)`(lam x. x`x)" and apply_def: "f ` t == case(f, bot, bot, \<lambda>x y. bot, \<lambda>u. u(t))"
axiomatization
src
[ "Gfp" ]
src/CCL/CCL.thy
where
SIM :: "[i,i,i set]\<Rightarrow>o" where "SIM(t,t',R) == (t=true \<and> t'=true) | (t=false \<and> t'=false) | (\<exists>a a' b b'. t=<a,b> \<and> t'=<a',b'> \<and> <a,a'> : R \<and> <b,b'> : R) | (\<exists>f f'. t=lam x. f(x) \<and> t'=lam x. f'(x) \<and> (ALL x.<f(x),f'(x)> : R))"
definition
src
[ "Gfp" ]
src/CCL/CCL.thy
SIM
POgen :: "i set \<Rightarrow> i set" where "POgen(R) == {p. \<exists>t t'. p=<t,t'> \<and> (t = bot | SIM(t,t',R))}"
definition
src
[ "Gfp" ]
src/CCL/CCL.thy
POgen
EQgen :: "i set \<Rightarrow> i set" where "EQgen(R) == {p. \<exists>t t'. p=<t,t'> \<and> (t = bot \<and> t' = bot | SIM(t,t',R))}"
definition
src
[ "Gfp" ]
src/CCL/CCL.thy
EQgen
PO :: "i set" where "PO == gfp(POgen)"
definition
src
[ "Gfp" ]
src/CCL/CCL.thy
PO
EQ :: "i set" where "EQ == gfp(EQgen)" (*** Rules ***) (** Partial Order **)
definition
src
[ "Gfp" ]
src/CCL/CCL.thy
EQ
where po_refl: "a [= a" and po_trans: "\<lbrakk>a [= b; b [= c\<rbrakk> \<Longrightarrow> a [= c" and po_cong: "a [= b \<Longrightarrow> f(a) [= f(b)" and (* Extend definition of [= to program fragments of higher type *) po_abstractn: "(\<And>x. f(x) [= g(x)) \<Longrightarrow> (\<lambda>x. f(x)) [= (\<lambda>x. g(x))" (** Equality - equivalence axioms inherited from FOL.thy **) (** - congruence of "=" is axiomatised implicitly **)
axiomatization
src
[ "Gfp" ]
src/CCL/CCL.thy
where
where eq_iff: "t = t' \<longleftrightarrow> t [= t' \<and> t' [= t" (** Properties of canonical values given by greatest fixed point definitions **)
axiomatization
src
[ "Gfp" ]
src/CCL/CCL.thy
where
where PO_iff: "t [= t' \<longleftrightarrow> <t,t'> : PO" and EQ_iff: "t = t' \<longleftrightarrow> <t,t'> : EQ" (** Behaviour of non-canonical terms (ie case) given by the following beta-rules **)
axiomatization
src
[ "Gfp" ]
src/CCL/CCL.thy
where
where caseBtrue: "case(true,d,e,f,g) = d" and caseBfalse: "case(false,d,e,f,g) = e" and caseBpair: "case(<a,b>,d,e,f,g) = f(a,b)" and caseBlam: "\<And>b. case(lam x. b(x),d,e,f,g) = g(b)" and caseBbot: "case(bot,d,e,f,g) = bot" (* strictness *) (** The theory is non-trivial **)
axiomatization
src
[ "Gfp" ]
src/CCL/CCL.thy
where
where distinctness: "\<not> lam x. b(x) = bot" (*** Definitions of Termination and Divergence ***)
axiomatization
src
[ "Gfp" ]
src/CCL/CCL.thy
where
Dvg :: "i \<Rightarrow> o" where "Dvg(t) == t = bot"
definition
src
[ "Gfp" ]
src/CCL/CCL.thy
Dvg
Trm :: "i \<Rightarrow> o" where "Trm(t) == \<not> Dvg(t)" text \<open> Would be interesting to build a similar theory for a typed programming language: ie. true :: bool, fix :: ('a\<Rightarrow>'a)\<Rightarrow>'a etc...... This is starting to look like LCF. What are the advantages of this approach? - less axiomatic - wfd induction / coinduction and fixed point induction available \<close> lemmas ccl_data_defs = apply_def fix_def declare po_refl [simp]
definition
src
[ "Gfp" ]
src/CCL/CCL.thy
Trm
fun_cong : "(f::'a\<Rightarrow>'b) = g \<Longrightarrow> f(x)=g(x)" by simp (*similar to AP_TERM in Gordon's HOL and FOL's subst_context*)
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
fun_cong
arg_cong : "x=y \<Longrightarrow> f(x)=f(y)" by simp
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
arg_cong
abstractn : "(\<And>x. f(x) = g(x)) \<Longrightarrow> f = g" apply (simp add: eq_iff) apply (blast intro: po_abstractn) done lemmas caseBs = caseBtrue caseBfalse caseBpair caseBlam caseBbot
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
abstractn
Trm_iff : "Trm(t) \<longleftrightarrow> \<not> t = bot" by (simp add: Trm_def Dvg_def)
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
Trm_iff
Dvg_iff : "Dvg(t) \<longleftrightarrow> t = bot" by (simp add: Trm_def Dvg_def)
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
Dvg_iff
eq_lemma : "\<lbrakk>x=a; y=b; x=y\<rbrakk> \<Longrightarrow> a=b" by simp ML \<open>
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
eq_lemma
ccl_injs : "<a,b> = <a',b'> \<longleftrightarrow> (a=a' \<and> b=b')" "\<And>b b'. (lam x. b(x) = lam x. b'(x)) \<longleftrightarrow> ((ALL z. b(z)=b'(z)))" by (inj_rl caseBs)
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
ccl_injs
pair_inject : "<a,b> = <a',b'> \<Longrightarrow> (a = a' \<Longrightarrow> b = b' \<Longrightarrow> R) \<Longrightarrow> R" by (simp add: ccl_injs)
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
pair_inject
lem : "t=t' \<Longrightarrow> case(t,b,c,d,e) = case(t',b,c,d,e)" by simp ML \<open> local
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
lem
mk_dstnct_thms ctxt defs inj_rls xs = let val thy = Proof_Context.theory_of ctxt;
fun
src
[ "Gfp" ]
src/CCL/CCL.thy
mk_dstnct_thms
mkall_dstnct_thms ctxt defs i_rls xss = maps (mk_dstnct_thms ctxt defs i_rls) xss (*** Rewriting and Proving ***)
fun
src
[ "Gfp" ]
src/CCL/CCL.thy
mkall_dstnct_thms
XH_to_I rl = rl RS @{thm iffD2}
fun
src
[ "Gfp" ]
src/CCL/CCL.thy
XH_to_I
XH_to_D rl = rl RS @{thm iffD1} val XH_to_E = make_elim o XH_to_D val XH_to_Is = map XH_to_I val XH_to_Ds = map XH_to_D val XH_to_Es = map XH_to_E; ML_Thms.bind_thms ("ccl_rews", @{thms caseBs} @ @{thms ccl_injs} @ ccl_dstncts); ML_Thms.bind_thms ("ccl_dstnctsEs", ccl_dstncts RL [@{thm notE}]); ML_Thms.bind_thms ("ccl_injDs", XH_to_Ds @{thms ccl_injs}); \<close> lemmas [simp] = ccl_rews and [elim!] = pair_inject ccl_dstnctsEs and [dest!] = ccl_injDs
fun
src
[ "Gfp" ]
src/CCL/CCL.thy
XH_to_D
XHlemma1 : "\<lbrakk>A=B; a:B \<longleftrightarrow> P\<rbrakk> \<Longrightarrow> a:A \<longleftrightarrow> P" by simp
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
XHlemma1
XHlemma2 : "(P(t,t') \<longleftrightarrow> Q) \<Longrightarrow> (<t,t'> : {p. \<exists>t t'. p=<t,t'> \<and> P(t,t')} \<longleftrightarrow> Q)" by blast
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
XHlemma2
POgen_mono : "mono(\<lambda>X. POgen(X))" apply (unfold POgen_def SIM_def) apply (rule monoI) apply blast done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
POgen_mono
POgenXH : "<t,t'> : POgen(R) \<longleftrightarrow> t= bot | (t=true \<and> t'=true) | (t=false \<and> t'=false) | (EX a a' b b'. t=<a,b> \<and> t'=<a',b'> \<and> <a,a'> : R \<and> <b,b'> : R) | (EX f f'. t=lam x. f(x) \<and> t'=lam x. f'(x) \<and> (ALL x. <f(x),f'(x)> : R))" apply (unfold POgen_def SIM_def) apply (rule iff_refl [THEN XHlemma2]) done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
POgenXH
poXH : "t [= t' \<longleftrightarrow> t=bot | (t=true \<and> t'=true) | (t=false \<and> t'=false) | (EX a a' b b'. t=<a,b> \<and> t'=<a',b'> \<and> a [= a' \<and> b [= b') | (EX f f'. t=lam x. f(x) \<and> t'=lam x. f'(x) \<and> (ALL x. f(x) [= f'(x)))" apply (simp add: PO_iff del: ex_simps) apply (rule POgen_mono [THEN PO_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded POgen_def SIM_def]) apply (rule iff_refl [THEN XHlemma2]) done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
poXH
po_bot : "bot [= b" apply (rule poXH [THEN iffD2]) apply simp done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
po_bot
bot_poleast : "a [= bot \<Longrightarrow> a=bot" apply (drule poXH [THEN iffD1]) apply simp done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
bot_poleast
po_pair : "<a,b> [= <a',b'> \<longleftrightarrow> a [= a' \<and> b [= b'" apply (rule poXH [THEN iff_trans]) apply simp done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
po_pair
po_lam : "lam x. f(x) [= lam x. f'(x) \<longleftrightarrow> (ALL x. f(x) [= f'(x))" apply (rule poXH [THEN iff_trans]) apply fastforce done lemmas ccl_porews = po_bot po_pair po_lam
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
po_lam
case_pocong : assumes 1: "t [= t'" and 2: "a [= a'" and 3: "b [= b'" and 4: "\<And>x y. c(x,y) [= c'(x,y)" and 5: "\<And>u. d(u) [= d'(u)" shows "case(t,a,b,c,d) [= case(t',a',b',c',d')" apply (rule 1 [THEN po_cong, THEN po_trans]) apply (rule 2 [THEN po_cong, THEN po_trans]) apply (rule 3 [THEN po_cong, THEN po_trans]) apply (rule 4 [THEN po_abstractn, THEN po_abstractn, THEN po_cong, THEN po_trans]) apply (rule_tac f1 = "\<lambda>d. case (t',a',b',c',d)" in 5 [THEN po_abstractn, THEN po_cong, THEN po_trans]) apply (rule po_refl) done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
case_pocong
apply_pocong : "\<lbrakk>f [= f'; a [= a'\<rbrakk> \<Longrightarrow> f ` a [= f' ` a'" unfolding ccl_data_defs apply (rule case_pocong, (rule po_refl | assumption)+) apply (erule po_cong) done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
apply_pocong
npo_lam_bot : "\<not> lam x. b(x) [= bot" apply (rule notI) apply (drule bot_poleast) apply (erule distinctness [THEN notE]) done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
npo_lam_bot
po_lemma : "\<lbrakk>x=a; y=b; x[=y\<rbrakk> \<Longrightarrow> a[=b" by simp
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
po_lemma
npo_pair_lam : "\<not> <a,b> [= lam x. f(x)" apply (rule notI) apply (rule npo_lam_bot [THEN notE]) apply (erule case_pocong [THEN caseBlam [THEN caseBpair [THEN po_lemma]]]) apply (rule po_refl npo_lam_bot)+ done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
npo_pair_lam
npo_lam_pair : "\<not> lam x. f(x) [= <a,b>" apply (rule notI) apply (rule npo_lam_bot [THEN notE]) apply (erule case_pocong [THEN caseBpair [THEN caseBlam [THEN po_lemma]]]) apply (rule po_refl npo_lam_bot)+ done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
npo_lam_pair
npo_rls1 : "\<not> true [= false" "\<not> false [= true" "\<not> true [= <a,b>" "\<not> <a,b> [= true" "\<not> true [= lam x. f(x)" "\<not> lam x. f(x) [= true" "\<not> false [= <a,b>" "\<not> <a,b> [= false" "\<not> false [= lam x. f(x)" "\<not> lam x. f(x) [= false" by (rule notI, drule case_pocong, erule_tac [5] rev_mp, simp_all, (rule po_refl npo_lam_bot)+)+ lemmas npo_rls = npo_pair_lam npo_lam_pair npo_rls1
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
npo_rls1
po_coinduct : "\<lbrakk><t,u> : R; R <= POgen(R)\<rbrakk> \<Longrightarrow> t [= u" apply (rule PO_def [THEN def_coinduct, THEN PO_iff [THEN iffD2]]) apply assumption+ done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
po_coinduct
EQgen_mono : "mono(\<lambda>X. EQgen(X))" apply (unfold EQgen_def SIM_def) apply (rule monoI) apply blast done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
EQgen_mono
EQgenXH : "<t,t'> : EQgen(R) \<longleftrightarrow> (t=bot \<and> t'=bot) | (t=true \<and> t'=true) | (t=false \<and> t'=false) | (EX a a' b b'. t=<a,b> \<and> t'=<a',b'> \<and> <a,a'> : R \<and> <b,b'> : R) | (EX f f'. t=lam x. f(x) \<and> t'=lam x. f'(x) \<and> (ALL x.<f(x),f'(x)> : R))" apply (unfold EQgen_def SIM_def) apply (rule iff_refl [THEN XHlemma2]) done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
EQgenXH
eqXH : "t=t' \<longleftrightarrow> (t=bot \<and> t'=bot) | (t=true \<and> t'=true) | (t=false \<and> t'=false) | (EX a a' b b'. t=<a,b> \<and> t'=<a',b'> \<and> a=a' \<and> b=b') | (EX f f'. t=lam x. f(x) \<and> t'=lam x. f'(x) \<and> (ALL x. f(x)=f'(x)))" apply (subgoal_tac "<t,t'> : EQ \<longleftrightarrow> (t=bot \<and> t'=bot) | (t=true \<and> t'=true) | (t=false \<and> t'=false) | (EX a a' b b'. t=<a,b> \<and> t'=<a',b'> \<and> <a,a'> : EQ \<and> <b,b'> : EQ) | (EX f f'. t=lam x. f (x) \<and> t'=lam x. f' (x) \<and> (ALL x. <f (x) ,f' (x) > : EQ))") apply (erule rev_mp) apply (simp add: EQ_iff [THEN iff_sym]) apply (rule EQgen_mono [THEN EQ_def [THEN def_gfp_Tarski], THEN XHlemma1, unfolded EQgen_def SIM_def]) apply (rule iff_refl [THEN XHlemma2]) done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
eqXH
eq_coinduct : "\<lbrakk><t,u> : R; R <= EQgen(R)\<rbrakk> \<Longrightarrow> t = u" apply (rule EQ_def [THEN def_coinduct, THEN EQ_iff [THEN iffD2]]) apply assumption+ done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
eq_coinduct
eq_coinduct3 : "\<lbrakk><t,u> : R; R <= EQgen(lfp(\<lambda>x. EQgen(x) Un R Un EQ))\<rbrakk> \<Longrightarrow> t = u" apply (rule EQ_def [THEN def_coinduct3, THEN EQ_iff [THEN iffD2]]) apply (rule EQgen_mono | assumption)+ done method_setup eq_coinduct3 = \<open> Scan.lift Parse.embedded_inner_syntax >> (fn s => fn ctxt => SIMPLE_METHOD' (Rule_Insts.res_inst_tac ctxt [((("R", 0), Position.none), s)] [] @{thm eq_coinduct3})) \<close>
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
eq_coinduct3
cond_eta : "(EX f. t=lam x. f(x)) \<Longrightarrow> t = lam x.(t ` x)" by (auto simp: apply_def)
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
cond_eta
exhaustion : "(t=bot) | (t=true) | (t=false) | (EX a b. t=<a,b>) | (EX f. t=lam x. f(x))" apply (cut_tac refl [THEN eqXH [THEN iffD1]]) apply blast done
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
exhaustion
term_case : "\<lbrakk>P(bot); P(true); P(false); \<And>x y. P(<x,y>); \<And>b. P(lam x. b(x))\<rbrakk> \<Longrightarrow> P(t)" using exhaustion [of t] by blast
lemma
src
[ "Gfp" ]
src/CCL/CCL.thy
term_case
idgen :: "i \<Rightarrow> i" where "idgen(f) == lam t. case(t,true,false, \<lambda>x y.<f`x, f`y>, \<lambda>u. lam x. f ` u(x))"
definition
src
[ "Type" ]
src/CCL/Fix.thy
idgen
INCL :: "[i\<Rightarrow>o]\<Rightarrow>o" where INCL_def: "INCL(\<lambda>x. P(x)) == (ALL f.(ALL n:Nat. P(f^n`bot)) \<longrightarrow> P(fix(f)))" and po_INCL: "INCL(\<lambda>x. a(x) [= b(x))" and INCL_subst: "INCL(P) \<Longrightarrow> INCL(\<lambda>x. P((g::i\<Rightarrow>i)(x)))"
axiomatization
src
[ "Type" ]
src/CCL/Fix.thy
INCL
fix_ind : assumes base: "P(bot)" and step: "\<And>x. P(x) \<Longrightarrow> P(f(x))" and incl: "INCL(P)" shows "P(fix(f))" apply (rule incl [unfolded INCL_def, rule_format]) apply (rule Nat_ind [THEN ballI], assumption) apply simp_all apply (rule base) apply (erule step) done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
fix_ind
inclXH : "INCL(P) \<longleftrightarrow> (ALL f. (ALL n:Nat. P(f ^ n ` bot)) \<longrightarrow> P(fix(f)))" by (simp add: INCL_def)
lemma
src
[ "Type" ]
src/CCL/Fix.thy
inclXH
inclI : "\<lbrakk>\<And>f. ALL n:Nat. P(f^n`bot) \<Longrightarrow> P(fix(f))\<rbrakk> \<Longrightarrow> INCL(\<lambda>x. P(x))" unfolding inclXH by blast
lemma
src
[ "Type" ]
src/CCL/Fix.thy
inclI
inclD : "\<lbrakk>INCL(P); \<And>n. n:Nat \<Longrightarrow> P(f^n`bot)\<rbrakk> \<Longrightarrow> P(fix(f))" unfolding inclXH by blast
lemma
src
[ "Type" ]
src/CCL/Fix.thy
inclD
inclE : "\<lbrakk>INCL(P); (ALL n:Nat. P(f^n`bot)) \<longrightarrow> P(fix(f)) \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" by (blast dest: inclD)
lemma
src
[ "Type" ]
src/CCL/Fix.thy
inclE
npo_INCL : "INCL(\<lambda>x. \<not> a(x) [= t)" apply (rule inclI) apply (drule bspec) apply (rule zeroT) apply (erule contrapos) apply (rule po_trans) prefer 2 apply assumption apply (subst napplyBzero) apply (rule po_cong, rule po_bot) done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
npo_INCL
conj_INCL : "\<lbrakk>INCL(P); INCL(Q)\<rbrakk> \<Longrightarrow> INCL(\<lambda>x. P(x) \<and> Q(x))" by (blast intro!: inclI dest!: inclD)
lemma
src
[ "Type" ]
src/CCL/Fix.thy
conj_INCL
all_INCL : "(\<And>a. INCL(P(a))) \<Longrightarrow> INCL(\<lambda>x. ALL a. P(a,x))" by (blast intro!: inclI dest!: inclD)
lemma
src
[ "Type" ]
src/CCL/Fix.thy
all_INCL
ball_INCL : "(\<And>a. a:A \<Longrightarrow> INCL(P(a))) \<Longrightarrow> INCL(\<lambda>x. ALL a:A. P(a,x))" by (blast intro!: inclI dest!: inclD)
lemma
src
[ "Type" ]
src/CCL/Fix.thy
ball_INCL
eq_INCL : "INCL(\<lambda>x. a(x) = (b(x)::'a::prog))" apply (simp add: eq_iff) apply (rule conj_INCL po_INCL)+ done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
eq_INCL
fix_idgenfp : "idgen(fix(idgen)) = fix(idgen)" apply (rule fixB [symmetric]) done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
fix_idgenfp
id_idgenfp : "idgen(lam x. x) = lam x. x" apply (simp add: idgen_def) apply (rule term_case [THEN allI]) apply simp_all done (* All fixed points are lam-expressions *) schematic_goal idgenfp_lam: "idgen(d) = d \<Longrightarrow> d = lam x. ?f(x)" apply (unfold idgen_def) apply (erule ssubst) apply (rule refl) done (* Lemmas for rewriting fixed points of idgen *)
lemma
src
[ "Type" ]
src/CCL/Fix.thy
id_idgenfp
l_lemma : "\<lbrakk>a = b; a ` t = u\<rbrakk> \<Longrightarrow> b ` t = u" by (simp add: idgen_def)
lemma
src
[ "Type" ]
src/CCL/Fix.thy
l_lemma
idgen_lemmas : "idgen(d) = d \<Longrightarrow> d ` bot = bot" "idgen(d) = d \<Longrightarrow> d ` true = true" "idgen(d) = d \<Longrightarrow> d ` false = false" "idgen(d) = d \<Longrightarrow> d ` <a,b> = <d ` a,d ` b>" "idgen(d) = d \<Longrightarrow> d ` (lam x. f(x)) = lam x. d ` f(x)" by (erule l_lemma, simp add: idgen_def)+ (* Proof of Reachability law - show that fix and lam x.x both give LEAST fixed points of idgen and hence are they same *)
lemma
src
[ "Type" ]
src/CCL/Fix.thy
idgen_lemmas
po_eta : "\<lbrakk>ALL x. t ` x [= u ` x; EX f. t=lam x. f(x); EX f. u=lam x. f(x)\<rbrakk> \<Longrightarrow> t [= u" apply (drule cond_eta)+ apply (erule ssubst) apply (erule ssubst) apply (rule po_lam [THEN iffD2]) apply simp done schematic_goal po_eta_lemma: "idgen(d) = d \<Longrightarrow> d = lam x. ?f(x)" apply (unfold idgen_def) apply (erule sym) done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
po_eta
lemma1 : "idgen(d) = d \<Longrightarrow> {p. EX a b. p=<a,b> \<and> (EX t. a=fix(idgen) ` t \<and> b = d ` t)} <= POgen({p. EX a b. p=<a,b> \<and> (EX t. a=fix(idgen) ` t \<and> b = d ` t)})" apply clarify apply (rule_tac t = t in term_case) apply (simp_all add: POgenXH idgen_lemmas idgen_lemmas [OF fix_idgenfp]) apply blast apply fast done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
lemma1
fix_least_idgen : "idgen(d) = d \<Longrightarrow> fix(idgen) [= d" apply (rule allI [THEN po_eta]) apply (rule lemma1 [THEN [2] po_coinduct]) apply (blast intro: po_eta_lemma fix_idgenfp)+ done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
fix_least_idgen
lemma2 : "idgen(d) = d \<Longrightarrow> {p. EX a b. p=<a,b> \<and> b = d ` a} <= POgen({p. EX a b. p=<a,b> \<and> b = d ` a})" apply clarify apply (rule_tac t = a in term_case) apply (simp_all add: POgenXH idgen_lemmas) apply fast done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
lemma2
id_least_idgen : "idgen(d) = d \<Longrightarrow> lam x. x [= d" apply (rule allI [THEN po_eta]) apply (rule lemma2 [THEN [2] po_coinduct]) apply simp apply (fast intro: po_eta_lemma fix_idgenfp)+ done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
id_least_idgen
reachability : "fix(idgen) = lam x. x" apply (fast intro: eq_iff [THEN iffD2] id_idgenfp [THEN fix_least_idgen] fix_idgenfp [THEN id_least_idgen]) done (********)
lemma
src
[ "Type" ]
src/CCL/Fix.thy
reachability
id_apply : "f = lam x. x \<Longrightarrow> f`t = t" apply (erule ssubst) apply (rule applyB) done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
id_apply
term_ind : assumes 1: "P(bot)" and 2: "P(true)" and 3: "P(false)" and 4: "\<And>x y. \<lbrakk>P(x); P(y)\<rbrakk> \<Longrightarrow> P(<x,y>)" and 5: "\<And>u.(\<And>x. P(u(x))) \<Longrightarrow> P(lam x. u(x))" and 6: "INCL(P)" shows "P(t)" apply (rule reachability [THEN id_apply, THEN subst]) apply (rule_tac x = t in spec) apply (rule fix_ind) apply (unfold idgen_def) apply (rule allI) apply (subst applyBbot) apply (rule 1) apply (rule allI) apply (rule applyB [THEN ssubst]) apply (rule_tac t = "xa" in term_case) apply simp_all apply (fast intro: assms INCL_subst all_INCL)+ done
lemma
src
[ "Type" ]
src/CCL/Fix.thy
term_ind
gfp :: "['a set\<Rightarrow>'a set] \<Rightarrow> 'a set" where \<comment> \<open>greatest fixed point\<close> "gfp(f) == Union({u. u <= f(u)})" (* gfp(f) is the least upper bound of {u. u <= f(u)} *)
definition
src
[ "Lfp" ]
src/CCL/Gfp.thy
gfp
gfp_upperbound : "A <= f(A) \<Longrightarrow> A <= gfp(f)" unfolding gfp_def by blast
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
gfp_upperbound
gfp_least : "(\<And>u. u <= f(u) \<Longrightarrow> u <= A) \<Longrightarrow> gfp(f) <= A" unfolding gfp_def by blast
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
gfp_least
gfp_lemma2 : "mono(f) \<Longrightarrow> gfp(f) <= f(gfp(f))" by (rule gfp_least, rule subset_trans, assumption, erule monoD, rule gfp_upperbound, assumption)
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
gfp_lemma2
gfp_lemma3 : "mono(f) \<Longrightarrow> f(gfp(f)) <= gfp(f)" by (rule gfp_upperbound, frule monoD, rule gfp_lemma2, assumption+)
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
gfp_lemma3
gfp_Tarski : "mono(f) \<Longrightarrow> gfp(f) = f(gfp(f))" by (rule equalityI gfp_lemma2 gfp_lemma3 | assumption)+ (*** Coinduction rules for greatest fixed points ***) (*weak version*)
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
gfp_Tarski
coinduct : "\<lbrakk>a: A; A <= f(A)\<rbrakk> \<Longrightarrow> a : gfp(f)" by (blast dest: gfp_upperbound)
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
coinduct
coinduct2_lemma : "\<lbrakk>A <= f(A) Un gfp(f); mono(f)\<rbrakk> \<Longrightarrow> A Un gfp(f) <= f(A Un gfp(f))" apply (rule subset_trans) prefer 2 apply (erule mono_Un) apply (rule subst, erule gfp_Tarski) apply (erule Un_least) apply (rule Un_upper2) done (*strong version, thanks to Martin Coen*)
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
coinduct2_lemma
coinduct2 : "\<lbrakk>a: A; A <= f(A) Un gfp(f); mono(f)\<rbrakk> \<Longrightarrow> a : gfp(f)" apply (rule coinduct) prefer 2 apply (erule coinduct2_lemma, assumption) apply blast done (*** Even Stronger version of coinduct [by Martin Coen] - instead of the condition A <= f(A) consider A <= (f(A) Un f(f(A)) ...) Un gfp(A) ***)
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
coinduct2
coinduct3_mono_lemma : "mono(f) \<Longrightarrow> mono(\<lambda>x. f(x) Un A Un B)" by (rule monoI) (blast dest: monoD)
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
coinduct3_mono_lemma
coinduct3_lemma : assumes prem: "A <= f(lfp(\<lambda>x. f(x) Un A Un gfp(f)))" and mono: "mono(f)" shows "lfp(\<lambda>x. f(x) Un A Un gfp(f)) <= f(lfp(\<lambda>x. f(x) Un A Un gfp(f)))" apply (rule subset_trans) apply (rule mono [THEN coinduct3_mono_lemma, THEN lfp_lemma3]) apply (rule Un_least [THEN Un_least]) apply (rule subset_refl) apply (rule prem) apply (rule mono [THEN gfp_Tarski, THEN equalityD1, THEN subset_trans]) apply (rule mono [THEN monoD]) apply (subst mono [THEN coinduct3_mono_lemma, THEN lfp_Tarski]) apply (rule Un_upper2) done
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
coinduct3_lemma
coinduct3 : assumes 1: "a:A" and 2: "A <= f(lfp(\<lambda>x. f(x) Un A Un gfp(f)))" and 3: "mono(f)" shows "a : gfp(f)" apply (rule coinduct) prefer 2 apply (rule coinduct3_lemma [OF 2 3]) apply (subst lfp_Tarski [OF coinduct3_mono_lemma, OF 3]) using 1 apply blast done
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
coinduct3
def_gfp_Tarski : "\<lbrakk>h == gfp(f); mono(f)\<rbrakk> \<Longrightarrow> h = f(h)" apply unfold apply (erule gfp_Tarski) done
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
def_gfp_Tarski
def_coinduct : "\<lbrakk>h == gfp(f); a:A; A <= f(A)\<rbrakk> \<Longrightarrow> a: h" apply unfold apply (erule coinduct) apply assumption done
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
def_coinduct
def_coinduct2 : "\<lbrakk>h == gfp(f); a:A; A <= f(A) Un h; mono(f)\<rbrakk> \<Longrightarrow> a: h" apply unfold apply (erule coinduct2) apply assumption apply assumption done
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
def_coinduct2
def_coinduct3 : "\<lbrakk>h == gfp(f); a:A; A <= f(lfp(\<lambda>x. f(x) Un A Un h)); mono(f)\<rbrakk> \<Longrightarrow> a: h" apply unfold apply (erule coinduct3) apply assumption apply assumption done (*Monotonicity of gfp!*)
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
def_coinduct3
gfp_mono : "\<lbrakk>mono(f); \<And>Z. f(Z) <= g(Z)\<rbrakk> \<Longrightarrow> gfp(f) <= gfp(g)" apply (rule gfp_upperbound) apply (rule subset_trans) apply (rule gfp_lemma2) apply assumption apply (erule meta_spec) done
lemma
src
[ "Lfp" ]
src/CCL/Gfp.thy
gfp_mono
HTTgen :: "i set \<Rightarrow> i set" where "HTTgen(R) == {t. t=true | t=false | (EX a b. t= <a, b> \<and> a : R \<and> b : R) | (EX f. t = lam x. f(x) \<and> (ALL x. f(x) : R))}"
definition
src
[ "Type" ]
src/CCL/Hered.thy
HTTgen
HTT :: "i set" where "HTT == gfp(HTTgen)"
definition
src
[ "Type" ]
src/CCL/Hered.thy
HTT
HTTgen_mono : "mono(\<lambda>X. HTTgen(X))" apply (unfold HTTgen_def) apply (rule monoI) apply blast done
lemma
src
[ "Type" ]
src/CCL/Hered.thy
HTTgen_mono
End of preview. Expand in Data Studio

Isabelle-Stdlib

Structured dataset from the Isabelle/HOL standard library - core theories and analysis.

78,022 declarations extracted from Isabelle theory files.

Includes HOL, HOL-Library, HOL-Analysis, and other foundational Isabelle theories.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string theorem, lemma, definition, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
Downloads last month
23

Collection including phanerozoic/Isabelle-Stdlib