Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
8
2.79k
type
stringclasses
8 values
library
stringclasses
9 values
imports
listlengths
0
14
filename
stringclasses
132 values
symbolic_name
stringlengths
1
71
docstring
stringlengths
18
10.2k
Function.id_def : @id α = fun x => x := rfl /-! ## decidable -/ protected alias ⟨Decidable.exists_not_of_not_forall, _⟩ := Decidable.not_forall /-! ## classical logic -/
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
Function.id_def
null
heq_iff_eq {a b : α} : a ≍ b ↔ a = b := ⟨eq_of_heq, heq_of_eq⟩ @[simp] theorem eq_rec_constant {α : Sort _} {a a' : α} {β : Sort _} (y : β) (h : a = a') : (@Eq.rec α a (fun _ _ => β) y a' h) = y := by cases h; rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
heq_iff_eq
null
congrArg₂ (f : α → β → γ) {x x' : α} {y y' : β} (hx : x = x') (hy : y = y') : f x y = f x' y' := by subst hx hy; rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
congrArg₂
null
congrFun₂ {β : α → Sort _} {γ : ∀ a, β a → Sort _} {f g : ∀ a b, γ a b} (h : f = g) (a : α) (b : β a) : f a b = g a b := congrFun (congrFun h _) _
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
congrFun₂
null
congrFun₃ {β : α → Sort _} {γ : ∀ a, β a → Sort _} {δ : ∀ a b, γ a b → Sort _} {f g : ∀ a b c, δ a b c} (h : f = g) (a : α) (b : β a) (c : γ a b) : f a b c = g a b c := congrFun₂ (congrFun h _) _ _
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
congrFun₃
null
funext₂ {β : α → Sort _} {γ : ∀ a, β a → Sort _} {f g : ∀ a b, γ a b} (h : ∀ a b, f a b = g a b) : f = g := funext fun _ => funext <| h _
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
funext₂
null
funext₃ {β : α → Sort _} {γ : ∀ a, β a → Sort _} {δ : ∀ a b, γ a b → Sort _} {f g : ∀ a b c, δ a b c} (h : ∀ a b c, f a b c = g a b c) : f = g := funext fun _ => funext₂ <| h _
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
funext₃
null
protected Eq.congr (h₁ : x₁ = y₁) (h₂ : x₂ = y₂) : x₁ = x₂ ↔ y₁ = y₂ := by subst h₁; subst h₂; rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
Eq.congr
null
Eq.congr_left {x y z : α} (h : x = y) : x = z ↔ y = z := by rw [h]
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
Eq.congr_left
null
Eq.congr_right {x y z : α} (h : x = y) : z = x ↔ z = y := by rw [h] alias congr_arg := congrArg alias congr_arg₂ := congrArg₂ alias congr_fun := congrFun alias congr_fun₂ := congrFun₂ alias congr_fun₃ := congrFun₃
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
Eq.congr_right
null
heq_of_cast_eq : ∀ (e : α = β) (_ : cast e a = a'), a ≍ a' | rfl, rfl => .rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
heq_of_cast_eq
null
cast_eq_iff_heq : cast e a = a' ↔ a ≍ a' := ⟨heq_of_cast_eq _, fun h => by cases h; rfl⟩
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
cast_eq_iff_heq
null
eqRec_eq_cast {α : Sort _} {a : α} {motive : (a' : α) → a = a' → Sort _} (x : motive a rfl) {a' : α} (e : a = a') : @Eq.rec α a motive x a' e = cast (e ▸ rfl) x := by subst e; rfl --Porting note: new theorem. More general version of `eqRec_heq`
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
eqRec_eq_cast
null
eqRec_heq_self {α : Sort _} {a : α} {motive : (a' : α) → a = a' → Sort _} (x : motive a rfl) {a' : α} (e : a = a') : @Eq.rec α a motive x a' e ≍ x := by subst e; rfl @[simp]
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
eqRec_heq_self
null
eqRec_heq_iff_heq {α : Sort _} {a : α} {motive : (a' : α) → a = a' → Sort _} {x : motive a rfl} {a' : α} {e : a = a'} {β : Sort _} {y : β} : @Eq.rec α a motive x a' e ≍ y ↔ x ≍ y := by subst e; rfl @[simp]
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
eqRec_heq_iff_heq
null
heq_eqRec_iff_heq {α : Sort _} {a : α} {motive : (a' : α) → a = a' → Sort _} {x : motive a rfl} {a' : α} {e : a = a'} {β : Sort _} {y : β} : y ≍ @Eq.rec α a motive x a' e ↔ y ≍ x := by subst e; rfl /-! ## miscellaneous -/ @[simp] theorem not_nonempty_empty : ¬Nonempty Empty := fun ⟨h⟩ => h.elim @[simp] theorem not_nonempty_pempty : ¬Nonempty PEmpty := fun ⟨h⟩ => h.elim -- TODO(Mario): profile first, this is a dangerous instance -- instance (priority := 10) {α} [Subsingleton α] : DecidableEq α -- | a, b => isTrue (Subsingleton.elim a b) -- TODO(Mario): profile adding `@[simp]` to `eq_iff_true_of_subsingleton`
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
heq_eqRec_iff_heq
null
subsingleton_of_forall_eq (x : α) (h : ∀ y, y = x) : Subsingleton α := ⟨fun a b => h a ▸ h b ▸ rfl⟩
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
subsingleton_of_forall_eq
If all points are equal to a given point `x`, then `α` is a subsingleton.
subsingleton_iff_forall_eq (x : α) : Subsingleton α ↔ ∀ y, y = x := ⟨fun _ y => Subsingleton.elim y x, subsingleton_of_forall_eq x⟩
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
subsingleton_iff_forall_eq
null
congr_eqRec {β : α → Sort _} (f : (x : α) → β x → γ) (h : x = x') (y : β x) : f x' (Eq.rec y h) = f x y := by cases h; rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
congr_eqRec
null
@[deprecated Std.OrientedCmp (since := "2025-07-01")] OrientedCmp (cmp : α → α → Ordering) : Prop where /-- The comparator operation is symmetric, in the sense that if `cmp x y` equals `.lt` then `cmp y x = .gt` and vice versa. -/ symm (x y) : (cmp x y).swap = cmp y x attribute [deprecated Std.OrientedOrd.eq_swap (since := "2025-07-01")] OrientedCmp.symm
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedCmp
`OrientedCmp cmp` asserts that `cmp` is determined by the relation `cmp x y = .lt`.
@[deprecated Std.OrientedCmp.gt_iff_lt (since := "2025-07-01")] cmp_eq_gt [OrientedCmp cmp] : cmp x y = .gt ↔ cmp y x = .lt := by rw [← Ordering.swap_inj, symm]; exact .rfl @[deprecated Std.OrientedCmp.le_iff_ge (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_eq_gt
null
cmp_ne_gt [OrientedCmp cmp] : cmp x y ≠ .gt ↔ cmp y x ≠ .lt := not_congr cmp_eq_gt @[deprecated Std.OrientedCmp.eq_comm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_ne_gt
null
cmp_eq_eq_symm [OrientedCmp cmp] : cmp x y = .eq ↔ cmp y x = .eq := by rw [← Ordering.swap_inj, symm]; exact .rfl @[deprecated Std.ReflCmp.compare_self (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_eq_eq_symm
null
cmp_refl [OrientedCmp cmp] : cmp x x = .eq := match e : cmp x x with | .lt => nomatch e.symm.trans (cmp_eq_gt.2 e) | .eq => rfl | .gt => nomatch (cmp_eq_gt.1 e).symm.trans e @[deprecated Std.OrientedCmp.not_lt_of_lt (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_refl
null
lt_asymm [OrientedCmp cmp] (h : cmp x y = .lt) : cmp y x ≠ .lt := fun h' => nomatch h.symm.trans (cmp_eq_gt.2 h') @[deprecated Std.OrientedCmp.not_gt_of_gt (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
lt_asymm
null
gt_asymm [OrientedCmp cmp] (h : cmp x y = .gt) : cmp y x ≠ .gt := mt cmp_eq_gt.1 <| lt_asymm <| cmp_eq_gt.1 h
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
gt_asymm
null
@[deprecated Std.TransCmp (since := "2025-07-01")] TransCmp (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- The comparator operation is transitive. -/ le_trans : cmp x y ≠ .gt → cmp y z ≠ .gt → cmp x z ≠ .gt attribute [deprecated Std.TransCmp.le_trans (since := "2025-07-01")] TransCmp.le_trans
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransCmp
`TransCmp cmp` asserts that `cmp` induces a transitive relation.
@[deprecated Std.TransCmp.ge_trans (since := "2025-07-01")] ge_trans (h₁ : cmp x y ≠ .lt) (h₂ : cmp y z ≠ .lt) : cmp x z ≠ .lt := by have := @TransCmp.le_trans _ cmp _ z y x simp [cmp_eq_gt] at *; exact this h₂ h₁ @[deprecated Std.TransCmp.lt_of_le_of_lt (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
ge_trans
null
le_lt_trans (h₁ : cmp x y ≠ .gt) (h₂ : cmp y z = .lt) : cmp x z = .lt := byContradiction fun h₃ => ge_trans (mt cmp_eq_gt.2 h₁) h₃ h₂ @[deprecated Std.TransCmp.lt_of_lt_of_le (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
le_lt_trans
null
lt_le_trans (h₁ : cmp x y = .lt) (h₂ : cmp y z ≠ .gt) : cmp x z = .lt := byContradiction fun h₃ => ge_trans h₃ (mt cmp_eq_gt.2 h₂) h₁ @[deprecated Std.TransCmp.lt_trans (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
lt_le_trans
null
lt_trans (h₁ : cmp x y = .lt) (h₂ : cmp y z = .lt) : cmp x z = .lt := le_lt_trans (gt_asymm <| cmp_eq_gt.2 h₁) h₂ @[deprecated Std.TransCmp.gt_trans (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
lt_trans
null
gt_trans (h₁ : cmp x y = .gt) (h₂ : cmp y z = .gt) : cmp x z = .gt := by rw [cmp_eq_gt] at h₁ h₂ ⊢; exact lt_trans h₂ h₁ @[deprecated Std.TransCmp.congr_left (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
gt_trans
null
cmp_congr_left (xy : cmp x y = .eq) : cmp x z = cmp y z := match yz : cmp y z with | .lt => byContradiction (ge_trans (nomatch ·.symm.trans (cmp_eq_eq_symm.1 xy)) · yz) | .gt => byContradiction (le_trans (nomatch ·.symm.trans (cmp_eq_eq_symm.1 xy)) · yz) | .eq => match xz : cmp x z with | .lt => nomatch ge_trans (nomatch ·.symm.trans xy) (nomatch ·.symm.trans yz) xz | .gt => nomatch le_trans (nomatch ·.symm.trans xy) (nomatch ·.symm.trans yz) xz | .eq => rfl @[deprecated Std.TransCmp.congr_left (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_congr_left
null
cmp_congr_left' (xy : cmp x y = .eq) : cmp x = cmp y := funext fun _ => cmp_congr_left xy @[deprecated Std.TransCmp.congr_right (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_congr_left'
null
cmp_congr_right (yz : cmp y z = .eq) : cmp x y = cmp x z := by rw [← Ordering.swap_inj, symm, symm, cmp_congr_left yz]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_congr_right
null
@[deprecated Std.LawfulBEqCmp (since := "2025-07-01")] BEqCmp [BEq α] (cmp : α → α → Ordering) : Prop where /-- `cmp x y = .eq` holds iff `x == y` is true. -/ cmp_iff_beq : cmp x y = .eq ↔ x == y attribute [deprecated Std.LawfulBEqCmp.compare_eq_iff_beq (since := "2025-07-01")] BEqCmp.cmp_iff_beq @[deprecated Std.LawfulEqCmp.compare_eq_iff_eq (since := "2025-07-01")]
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
BEqCmp
`BEqCmp cmp` asserts that `cmp x y = .eq` and `x == y` coincide.
BEqCmp.cmp_iff_eq [BEq α] [LawfulBEq α] [BEqCmp (α := α) cmp] : cmp x y = .eq ↔ x = y := by simp [BEqCmp.cmp_iff_beq]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
BEqCmp.cmp_iff_eq
null
@[deprecated Std.LawfulLTCmp (since := "2025-07-01")] LTCmp [LT α] (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- `cmp x y = .lt` holds iff `x < y` is true. -/ cmp_iff_lt : cmp x y = .lt ↔ x < y attribute [deprecated Std.LawfulLTCmp.eq_lt_iff_lt (since := "2025-07-01")] LTCmp.cmp_iff_lt @[deprecated Std.LawfulLTCmp.eq_gt_iff_gt (since := "2025-07-01")]
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp
`LTCmp cmp` asserts that `cmp x y = .lt` and `x < y` coincide.
LTCmp.cmp_iff_gt [LT α] [LTCmp (α := α) cmp] : cmp x y = .gt ↔ y < x := by rw [OrientedCmp.cmp_eq_gt, LTCmp.cmp_iff_lt]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp.cmp_iff_gt
null
@[deprecated Std.LawfulLECmp (since := "2025-07-01")] LECmp [LE α] (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- `cmp x y ≠ .gt` holds iff `x ≤ y` is true. -/ cmp_iff_le : cmp x y ≠ .gt ↔ x ≤ y attribute [deprecated Std.LawfulLECmp.ne_gt_iff_le (since := "2025-07-01")] LECmp.cmp_iff_le @[deprecated Std.LawfulLECmp.ne_lt_iff_ge (since := "2025-07-01")]
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LECmp
`LECmp cmp` asserts that `cmp x y ≠ .gt` and `x ≤ y` coincide.
LECmp.cmp_iff_ge [LE α] [LECmp (α := α) cmp] : cmp x y ≠ .lt ↔ y ≤ x := by rw [← OrientedCmp.cmp_ne_gt, LECmp.cmp_iff_le]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LECmp.cmp_iff_ge
null
@[deprecated Std.LawfulBCmp (since := "2025-07-01")] LawfulCmp [LE α] [LT α] [BEq α] (cmp : α → α → Ordering) : Prop extends TransCmp cmp, BEqCmp cmp, LTCmp cmp, LECmp cmp
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LawfulCmp
`LawfulCmp cmp` asserts that the `LE`, `LT`, `BEq` instances are all coherent with each other and with `cmp`, describing a strict weak order (a linear order except for antisymmetry).
@[deprecated Std.OrientedOrd (since := "2025-07-01")] OrientedOrd (α) [Ord α] := OrientedCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd
`OrientedOrd α` asserts that the `Ord` instance satisfies `OrientedCmp`.
@[deprecated Std.TransOrd (since := "2025-07-01")] TransOrd (α) [Ord α] := TransCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd
`TransOrd α` asserts that the `Ord` instance satisfies `TransCmp`.
@[deprecated Std.LawfulBEqOrd (since := "2025-07-01")] BEqOrd (α) [BEq α] [Ord α] := BEqCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
BEqOrd
`BEqOrd α` asserts that the `Ord` and `BEq` instances are coherent via `BEqCmp`.
@[deprecated Std.LawfulLTOrd (since := "2025-07-01")] LTOrd (α) [LT α] [Ord α] := LTCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTOrd
`LTOrd α` asserts that the `Ord` instance satisfies `LTCmp`.
@[deprecated Std.LawfulLEOrd (since := "2025-07-01")] LEOrd (α) [LE α] [Ord α] := LECmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LEOrd
`LEOrd α` asserts that the `Ord` instance satisfies `LECmp`.
@[deprecated Std.LawfulBOrd (since := "2025-07-01")] LawfulOrd (α) [LE α] [LT α] [BEq α] [Ord α] := LawfulCmp (α := α) compare @[deprecated Std.TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm (since := "2025-07-01")]
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LawfulOrd
`LawfulOrd α` asserts that the `Ord` instance satisfies `LawfulCmp`.
protected TransCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : TransCmp (α := α) (compareOfLessAndEq · ·) := by have : OrientedCmp (α := α) (compareOfLessAndEq · ·) := by refine { symm := fun x y => ?_ } simp [compareOfLessAndEq]; split <;> [rename_i xy; split <;> [subst y; rename_i xy ne]] · rw [if_neg, if_neg]; rfl · rintro rfl; exact lt_irrefl _ xy · exact fun yx => lt_irrefl _ (lt_trans xy yx) · rw [if_neg ‹_›, if_pos rfl]; rfl · split <;> [rfl; rename_i yx] cases ne (lt_antisymm xy yx) refine { this with le_trans := fun {x y z} yx zy => ?_ } rw [Ne, this.cmp_eq_gt, compareOfLessAndEq_eq_lt] at yx zy ⊢ intro zx if xy : x < y then exact zy (lt_trans zx xy) else exact zy (lt_antisymm yx xy ▸ zx) @[deprecated Std.TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransCmp.compareOfLessAndEq
null
TransCmp.compareOfLessAndEq_of_le [LT α] [LE α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : TransCmp (α := α) (compareOfLessAndEq · ·) := .compareOfLessAndEq lt_irrefl lt_trans fun xy yx => le_antisymm (not_lt yx) (not_lt xy) @[deprecated Std.LawfulBEqCmp.compareOfLessAndEq_of_lt_irrefl (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransCmp.compareOfLessAndEq_of_le
null
protected BEqCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [BEq α] [LawfulBEq α] (lt_irrefl : ∀ x : α, ¬x < x) : BEqCmp (α := α) (compareOfLessAndEq · ·) where cmp_iff_beq {x y} := by simp [compareOfLessAndEq] split <;> [skip; split] <;> simp [*] rintro rfl; exact lt_irrefl _ ‹_› @[deprecated Std.LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
BEqCmp.compareOfLessAndEq
null
protected LTCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : LTCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq lt_irrefl lt_trans lt_antisymm with cmp_iff_lt := compareOfLessAndEq_eq_lt } @[deprecated Std.LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp.compareOfLessAndEq
null
protected LTCmp.compareOfLessAndEq_of_le [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [LE α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : LTCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt le_antisymm with cmp_iff_lt := compareOfLessAndEq_eq_lt } @[deprecated Std.LawfulLECmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp.compareOfLessAndEq_of_le
null
protected LECmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [LE α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y ↔ y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : LECmp (α := α) (compareOfLessAndEq · ·) := have := TransCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt.1 le_antisymm { this with cmp_iff_le := (this.cmp_ne_gt).trans <| (not_congr compareOfLessAndEq_eq_lt).trans not_lt } @[deprecated Std.LawfulCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LECmp.compareOfLessAndEq
null
protected LawfulCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [BEq α] [LawfulBEq α] [LE α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y ↔ y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : LawfulCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt.1 le_antisymm, LTCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt.1 le_antisymm, LECmp.compareOfLessAndEq lt_irrefl lt_trans not_lt le_antisymm, BEqCmp.compareOfLessAndEq lt_irrefl with } @[deprecated Std.LawfulLTCmp.eq_compareOfLessAndEq (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LawfulCmp.compareOfLessAndEq
null
LTCmp.eq_compareOfLessAndEq [LT α] [DecidableEq α] [BEq α] [LawfulBEq α] [BEqCmp cmp] [LTCmp cmp] (x y : α) [Decidable (x < y)] : cmp x y = compareOfLessAndEq x y := by simp [compareOfLessAndEq] split <;> rename_i h1 <;> [skip; split <;> rename_i h2] · exact LTCmp.cmp_iff_lt.2 h1 · exact BEqCmp.cmp_iff_eq.2 h2 · cases e : cmp x y · cases h1 (LTCmp.cmp_iff_lt.1 e) · cases h2 (BEqCmp.cmp_iff_eq.1 e) · rfl
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp.eq_compareOfLessAndEq
null
@[deprecated "instance exists" (since := "2025-07-01")] OrientedOrd.instLexOrd [Ord α] [Ord β] [OrientedOrd α] [OrientedOrd β] : @OrientedOrd (α × β) lexOrd := by rw [OrientedOrd, lexOrd_def]; infer_instance
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instLexOrd
Local instance for `OrientedOrd lexOrd`.
@[deprecated "instance exists" (since := "2025-07-01")] TransOrd.instLexOrd [Ord α] [Ord β] [TransOrd α] [TransOrd β] : @TransOrd (α × β) lexOrd := by rw [TransOrd, lexOrd_def]; infer_instance
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instLexOrd
Local instance for `TransOrd lexOrd`.
@[deprecated Std.OrientedOrd.opposite (since := "2025-07-01")] OrientedOrd.instOpposite [ord : Ord α] [inst : OrientedOrd α] : @OrientedOrd _ ord.opposite where symm _ _ := inst.symm ..
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instOpposite
Local instance for `OrientedOrd ord.opposite`.
@[deprecated Std.TransOrd.opposite (since := "2025-07-01")] TransOrd.instOpposite [ord : Ord α] [inst : TransOrd α] : @TransOrd _ ord.opposite := { OrientedOrd.instOpposite with le_trans := fun h1 h2 => inst.le_trans h2 h1 }
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instOpposite
Local instance for `TransOrd ord.opposite`.
@[deprecated Std.OrientedOrd.instOn (since := "2025-07-01")] OrientedOrd.instOn [ord : Ord β] [OrientedOrd β] (f : α → β) : @OrientedOrd _ (ord.on f) := inferInstanceAs (@OrientedCmp _ (compareOn f))
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instOn
Local instance for `OrientedOrd (ord.on f)`.
@[deprecated Std.TransOrd.instOn (since := "2025-07-01")] TransOrd.instOn [ord : Ord β] [TransOrd β] (f : α → β) : @TransOrd _ (ord.on f) := inferInstanceAs (@TransCmp _ (compareOn f))
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instOn
Local instance for `TransOrd (ord.on f)`.
@[deprecated "instance exists" (since := "2025-07-01")] OrientedOrd.instOrdLex [oα : Ord α] [oβ : Ord β] [OrientedOrd α] [OrientedOrd β] : @OrientedOrd _ (oα.lex oβ) := OrientedOrd.instLexOrd
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instOrdLex
Local instance for `OrientedOrd (oα.lex oβ)`.
@[deprecated "instance exists" (since := "2025-07-01")] TransOrd.instOrdLex [oα : Ord α] [oβ : Ord β] [TransOrd α] [TransOrd β] : @TransOrd _ (oα.lex oβ) := TransOrd.instLexOrd
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instOrdLex
Local instance for `TransOrd (oα.lex oβ)`.
@[deprecated Std.OrientedOrd.instOrdLex' (since := "2025-07-01")] OrientedOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@OrientedOrd _ ord₁] [@OrientedOrd _ ord₂] : @OrientedOrd _ (ord₁.lex' ord₂) := inferInstanceAs (OrientedCmp (compareLex ord₁.compare ord₂.compare))
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instOrdLex'
Local instance for `OrientedOrd (oα.lex' oβ)`.
@[deprecated Std.TransOrd.instOrdLex' (since := "2025-07-01")] TransOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@TransOrd _ ord₁] [@TransOrd _ ord₂] : @TransOrd _ (ord₁.lex' ord₂) := inferInstanceAs (TransCmp (compareLex ord₁.compare ord₂.compare))
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instOrdLex'
Local instance for `TransOrd (oα.lex' oβ)`.
lexOrd_def [Ord α] [Ord β] : (lexOrd : Ord (α × β)).compare = compareLex (compareOn (·.1)) (compareOn (·.2)) := rfl
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
lexOrd_def
null
@[inline] Ordering.byKey (f : α → β) (cmp : β → β → Ordering) (a b : α) : Ordering := cmp (f a) (f b)
def
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
Ordering.byKey
Pull back a comparator by a function `f`, by applying the comparator to both arguments.
TotalBLE (le : α → α → Bool) : Prop where /-- `le` is total: either `le a b` or `le b a`. -/ total : le a b ∨ le b a
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TotalBLE
`TotalBLE le` asserts that `le` has a total order, that is, `le a b ∨ le b a`.
compareOfLessAndEq_eq_lt {x y : α} [LT α] [Decidable (x < y)] [DecidableEq α] : compareOfLessAndEq x y = .lt ↔ x < y := by simp [compareOfLessAndEq] split <;> simp
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
compareOfLessAndEq_eq_lt
null
le_iff_ge : cmp x y ≠ .gt ↔ cmp y x ≠ .lt := not_congr OrientedCmp.gt_iff_lt
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
le_iff_ge
null
le_trans : cmp x y ≠ .gt → cmp y z ≠ .gt → cmp x z ≠ .gt := by simp only [ne_eq, ← Ordering.isLE_iff_ne_gt]; exact isLE_trans
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
le_trans
null
lt_of_lt_of_le : cmp x y = .lt → cmp y z ≠ .gt → cmp x z = .lt := by simp only [ne_eq, ← Ordering.isLE_iff_ne_gt]; exact lt_of_lt_of_isLE
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
lt_of_lt_of_le
null
lt_of_le_of_lt : cmp x y ≠ .gt → cmp y z = .lt → cmp x z = .lt := by simp only [ne_eq, ← Ordering.isLE_iff_ne_gt]; exact lt_of_isLE_of_lt
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
lt_of_le_of_lt
null
ge_trans : cmp x y ≠ .lt → cmp y z ≠ .lt → cmp x z ≠ .lt := by simp only [ne_eq, ← Ordering.isGE_iff_ne_lt]; exact isGE_trans
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
ge_trans
null
gt_of_gt_of_ge : cmp x y = .gt → cmp y z ≠ .lt → cmp x z = .gt := by simp only [ne_eq, ← Ordering.isGE_iff_ne_lt]; exact gt_of_gt_of_isGE
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
gt_of_gt_of_ge
null
gt_of_ge_of_gt : cmp x y ≠ .lt → cmp y z = .gt → cmp x z = .gt := by simp only [ne_eq, ← Ordering.isGE_iff_ne_lt]; exact gt_of_isGE_of_gt
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
gt_of_ge_of_gt
null
LawfulLTCmp [LT α] (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- `cmp x y = .lt` holds iff `x < y` is true. -/ eq_lt_iff_lt : cmp x y = .lt ↔ x < y
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp
`LawfulLTCmp cmp` asserts that `cmp x y = .lt` and `x < y` coincide.
LawfulLTCmp.eq_gt_iff_gt [LT α] [LawfulLTCmp (α := α) cmp] : cmp x y = .gt ↔ y < x := by rw [OrientedCmp.gt_iff_lt, eq_lt_iff_lt]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp.eq_gt_iff_gt
null
LawfulLECmp [LE α] (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- `cmp x y ≠ .gt` holds iff `x ≤ y` is true. -/ isLE_iff_le : (cmp x y).isLE ↔ x ≤ y
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLECmp
`LawfulLECmp cmp` asserts that `(cmp x y).isLE` and `x ≤ y` coincide.
LawfulLECmp.isGE_iff_ge [LE α] [LawfulLECmp (α := α) cmp] : (cmp x y).isGE ↔ y ≤ x := by rw [← Ordering.isLE_swap, ← OrientedCmp.eq_swap, isLE_iff_le]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLECmp.isGE_iff_ge
null
LawfulLECmp.ne_gt_iff_le [LE α] [LawfulLECmp (α := α) cmp] : cmp x y ≠ .gt ↔ x ≤ y := by rw [← isLE_iff_le (cmp := cmp), Ordering.isLE_iff_ne_gt]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLECmp.ne_gt_iff_le
null
LawfulLECmp.ne_lt_iff_ge [LE α] [LawfulLECmp (α := α) cmp] : cmp x y ≠ .lt ↔ y ≤ x := by rw [← isGE_iff_ge (cmp := cmp), Ordering.isGE_iff_ne_lt]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLECmp.ne_lt_iff_ge
null
LawfulBCmp [LE α] [LT α] [BEq α] (cmp : α → α → Ordering) : Prop extends TransCmp cmp, LawfulBEqCmp cmp, LawfulLTCmp cmp, LawfulLECmp cmp
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulBCmp
`LawfulBCmp cmp` asserts that the `LE`, `LT`, `BEq` are all coherent with each other and with `cmp`, describing a strict weak order (a linear order except for antisymmetry).
LawfulCmp [LE α] [LT α] (cmp : α → α → Ordering) : Prop extends TransCmp cmp, LawfulEqCmp cmp, LawfulLTCmp cmp, LawfulLECmp cmp
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulCmp
`LawfulBCmp cmp` asserts that the `LE`, `LT`, `Eq` are all coherent with each other and with `cmp`, describing a linear order.
LawfulLTOrd (α) [LT α] [Ord α] := LawfulLTCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTOrd
Class for types where the ordering function is compatible with the `LT`.
LawfulLEOrd (α) [LE α] [Ord α] := LawfulLECmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLEOrd
Class for types where the ordering function is compatible with the `LE`.
LawfulBOrd (α) [LE α] [LT α] [BEq α] [Ord α] := LawfulBCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulBOrd
Class for types where the ordering function is compatible with the `LE`, `LT` and `BEq`.
LawfulOrd (α) [LE α] [LT α] [Ord α] := LawfulCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulOrd
Class for types where the ordering function is compatible with the `LE`, `LT` and `Eq`.
OrientedOrd.instOn [ord : Ord β] [OrientedOrd β] (f : α → β) : @OrientedOrd _ (ord.on f) := inferInstanceAs (@OrientedCmp _ (compareOn f))
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
OrientedOrd.instOn
null
TransOrd.instOn [ord : Ord β] [TransOrd β] (f : α → β) : @TransOrd _ (ord.on f) := inferInstanceAs (@TransCmp _ (compareOn f))
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TransOrd.instOn
null
OrientedOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@OrientedOrd _ ord₁] [@OrientedOrd _ ord₂] : @OrientedOrd _ (ord₁.lex' ord₂) := inferInstanceAs (OrientedCmp (compareLex ord₁.compare ord₂.compare))
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
OrientedOrd.instOrdLex'
null
TransOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@TransOrd _ ord₁] [@TransOrd _ ord₂] : @TransOrd _ (ord₁.lex' ord₂) := inferInstanceAs (TransCmp (compareLex ord₁.compare ord₂.compare))
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TransOrd.instOrdLex'
null
LawfulLTCmp.eq_compareOfLessAndEq [LT α] [DecidableEq α] [LawfulEqCmp cmp] [LawfulLTCmp cmp] (x y : α) [Decidable (x < y)] : cmp x y = compareOfLessAndEq x y := by simp only [compareOfLessAndEq] split <;> rename_i h1 <;> [skip; split <;> rename_i h2] · exact LawfulLTCmp.eq_lt_iff_lt.2 h1 · exact LawfulEqCmp.compare_eq_iff_eq.2 h2 · cases e : cmp x y · cases h1 (LawfulLTCmp.eq_lt_iff_lt.1 e) · cases h2 (LawfulEqCmp.compare_eq_iff_eq.1 e) · rfl
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp.eq_compareOfLessAndEq
null
ReflCmp.compareOfLessAndEq_of_lt_irrefl [LT α] [DecidableLT α] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬ x < x) : ReflCmp (α := α) (compareOfLessAndEq · ·) where compare_self {x} := by simp [compareOfLessAndEq, if_neg (lt_irrefl x)]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
ReflCmp.compareOfLessAndEq_of_lt_irrefl
null
LawfulBEqCmp.compareOfLessAndEq_of_lt_irrefl [LT α] [DecidableLT α] [DecidableEq α] [BEq α] [LawfulBEq α] (lt_irrefl : ∀ x : α, ¬x < x) : LawfulBEqCmp (α := α) (compareOfLessAndEq · ·) where compare_eq_iff_beq {x y} := by simp [compareOfLessAndEq] split <;> [skip; split] <;> simp [*] rintro rfl; exact lt_irrefl _ ‹_› -- redundant? See `compareOfLessAndEq_of_lt_trans_of_lt_iff` in core
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulBEqCmp.compareOfLessAndEq_of_lt_irrefl
null
TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm [LT α] [DecidableLT α] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : TransCmp (α := α) (compareOfLessAndEq · ·) := TransOrd.compareOfLessAndEq_of_lt_trans_of_lt_iff lt_trans <| by intros constructor · intro h₁ constructor · intro h₂ apply lt_irrefl exact lt_trans h₁ h₂ · intro | rfl => exact lt_irrefl _ h₁ · intro ⟨h₁, h₂⟩ by_contra h₃ apply h₂ exact lt_antisymm h₃ h₁ -- redundant? See `compareOfLessAndEq_of_antisymm_of_trans_of_total_of_not_le` in core
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm
null
TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm [LT α] [LE α] [DecidableLT α] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : TransCmp (α := α) (compareOfLessAndEq · ·) := .compareOfLessAndEq_of_irrefl_of_trans_of_antisymm lt_irrefl lt_trans fun xy yx => le_antisymm (not_lt yx) (not_lt xy) -- make redundant?
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm
null
LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm [LT α] [DecidableLT α] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : LawfulLTCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm lt_irrefl lt_trans lt_antisymm with eq_lt_iff_lt := Batteries.compareOfLessAndEq_eq_lt } -- make redundant?
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm
null
LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm [LT α] [DecidableLT α] [DecidableEq α] [LE α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : LawfulLTCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm lt_irrefl lt_trans not_lt le_antisymm with eq_lt_iff_lt := Batteries.compareOfLessAndEq_eq_lt } -- make redundant?
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm
null
End of preview. Expand in Data Studio

Lean4-Batteries

Structured dataset from Lean 4 Batteries - the community standard library extensions.

Schema

Column Type Description
fact string Declaration body
type string theorem, def, class, structure, etc.
library string Batteries module
imports list Import statements
filename string Source file path
symbolic_name string Declaration identifier
docstring string Documentation (48% coverage)

Statistics

By Type

Type Count
theorem 1,257
def 951
abbrev 48
structure 38
inductive 24
class 22
instance 4
opaque 2

About Batteries

Batteries is the community-maintained extended standard library for Lean 4. It provides additional data structures, algorithms, and tactics beyond the core Init and Std libraries.

Related Datasets

Downloads last month
14

Collection including phanerozoic/Lean4-Batteries