fact
stringlengths
8
2.79k
type
stringclasses
8 values
library
stringclasses
9 values
imports
listlengths
0
14
filename
stringclasses
132 values
symbolic_name
stringlengths
1
71
docstring
stringlengths
18
10.2k
Function.id_def : @id α = fun x => x := rfl /-! ## decidable -/ protected alias ⟨Decidable.exists_not_of_not_forall, _⟩ := Decidable.not_forall /-! ## classical logic -/
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
Function.id_def
null
heq_iff_eq {a b : α} : a ≍ b ↔ a = b := ⟨eq_of_heq, heq_of_eq⟩ @[simp] theorem eq_rec_constant {α : Sort _} {a a' : α} {β : Sort _} (y : β) (h : a = a') : (@Eq.rec α a (fun _ _ => β) y a' h) = y := by cases h; rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
heq_iff_eq
null
congrArg₂ (f : α → β → γ) {x x' : α} {y y' : β} (hx : x = x') (hy : y = y') : f x y = f x' y' := by subst hx hy; rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
congrArg₂
null
congrFun₂ {β : α → Sort _} {γ : ∀ a, β a → Sort _} {f g : ∀ a b, γ a b} (h : f = g) (a : α) (b : β a) : f a b = g a b := congrFun (congrFun h _) _
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
congrFun₂
null
congrFun₃ {β : α → Sort _} {γ : ∀ a, β a → Sort _} {δ : ∀ a b, γ a b → Sort _} {f g : ∀ a b c, δ a b c} (h : f = g) (a : α) (b : β a) (c : γ a b) : f a b c = g a b c := congrFun₂ (congrFun h _) _ _
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
congrFun₃
null
funext₂ {β : α → Sort _} {γ : ∀ a, β a → Sort _} {f g : ∀ a b, γ a b} (h : ∀ a b, f a b = g a b) : f = g := funext fun _ => funext <| h _
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
funext₂
null
funext₃ {β : α → Sort _} {γ : ∀ a, β a → Sort _} {δ : ∀ a b, γ a b → Sort _} {f g : ∀ a b c, δ a b c} (h : ∀ a b c, f a b c = g a b c) : f = g := funext fun _ => funext₂ <| h _
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
funext₃
null
protected Eq.congr (h₁ : x₁ = y₁) (h₂ : x₂ = y₂) : x₁ = x₂ ↔ y₁ = y₂ := by subst h₁; subst h₂; rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
Eq.congr
null
Eq.congr_left {x y z : α} (h : x = y) : x = z ↔ y = z := by rw [h]
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
Eq.congr_left
null
Eq.congr_right {x y z : α} (h : x = y) : z = x ↔ z = y := by rw [h] alias congr_arg := congrArg alias congr_arg₂ := congrArg₂ alias congr_fun := congrFun alias congr_fun₂ := congrFun₂ alias congr_fun₃ := congrFun₃
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
Eq.congr_right
null
heq_of_cast_eq : ∀ (e : α = β) (_ : cast e a = a'), a ≍ a' | rfl, rfl => .rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
heq_of_cast_eq
null
cast_eq_iff_heq : cast e a = a' ↔ a ≍ a' := ⟨heq_of_cast_eq _, fun h => by cases h; rfl⟩
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
cast_eq_iff_heq
null
eqRec_eq_cast {α : Sort _} {a : α} {motive : (a' : α) → a = a' → Sort _} (x : motive a rfl) {a' : α} (e : a = a') : @Eq.rec α a motive x a' e = cast (e ▸ rfl) x := by subst e; rfl --Porting note: new theorem. More general version of `eqRec_heq`
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
eqRec_eq_cast
null
eqRec_heq_self {α : Sort _} {a : α} {motive : (a' : α) → a = a' → Sort _} (x : motive a rfl) {a' : α} (e : a = a') : @Eq.rec α a motive x a' e ≍ x := by subst e; rfl @[simp]
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
eqRec_heq_self
null
eqRec_heq_iff_heq {α : Sort _} {a : α} {motive : (a' : α) → a = a' → Sort _} {x : motive a rfl} {a' : α} {e : a = a'} {β : Sort _} {y : β} : @Eq.rec α a motive x a' e ≍ y ↔ x ≍ y := by subst e; rfl @[simp]
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
eqRec_heq_iff_heq
null
heq_eqRec_iff_heq {α : Sort _} {a : α} {motive : (a' : α) → a = a' → Sort _} {x : motive a rfl} {a' : α} {e : a = a'} {β : Sort _} {y : β} : y ≍ @Eq.rec α a motive x a' e ↔ y ≍ x := by subst e; rfl /-! ## miscellaneous -/ @[simp] theorem not_nonempty_empty : ¬Nonempty Empty := fun ⟨h⟩ => h.elim @[simp] theorem not_nonempty_pempty : ¬Nonempty PEmpty := fun ⟨h⟩ => h.elim -- TODO(Mario): profile first, this is a dangerous instance -- instance (priority := 10) {α} [Subsingleton α] : DecidableEq α -- | a, b => isTrue (Subsingleton.elim a b) -- TODO(Mario): profile adding `@[simp]` to `eq_iff_true_of_subsingleton`
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
heq_eqRec_iff_heq
null
subsingleton_of_forall_eq (x : α) (h : ∀ y, y = x) : Subsingleton α := ⟨fun a b => h a ▸ h b ▸ rfl⟩
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
subsingleton_of_forall_eq
If all points are equal to a given point `x`, then `α` is a subsingleton.
subsingleton_iff_forall_eq (x : α) : Subsingleton α ↔ ∀ y, y = x := ⟨fun _ y => Subsingleton.elim y x, subsingleton_of_forall_eq x⟩
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
subsingleton_iff_forall_eq
null
congr_eqRec {β : α → Sort _} (f : (x : α) → β x → γ) (h : x = x') (y : β x) : f x' (Eq.rec y h) = f x y := by cases h; rfl
theorem
Batteries.Logic
[ "Batteries.Tactic.Alias" ]
Batteries/Logic.lean
congr_eqRec
null
@[deprecated Std.OrientedCmp (since := "2025-07-01")] OrientedCmp (cmp : α → α → Ordering) : Prop where /-- The comparator operation is symmetric, in the sense that if `cmp x y` equals `.lt` then `cmp y x = .gt` and vice versa. -/ symm (x y) : (cmp x y).swap = cmp y x attribute [deprecated Std.OrientedOrd.eq_swap (since := "2025-07-01")] OrientedCmp.symm
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedCmp
`OrientedCmp cmp` asserts that `cmp` is determined by the relation `cmp x y = .lt`.
@[deprecated Std.OrientedCmp.gt_iff_lt (since := "2025-07-01")] cmp_eq_gt [OrientedCmp cmp] : cmp x y = .gt ↔ cmp y x = .lt := by rw [← Ordering.swap_inj, symm]; exact .rfl @[deprecated Std.OrientedCmp.le_iff_ge (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_eq_gt
null
cmp_ne_gt [OrientedCmp cmp] : cmp x y ≠ .gt ↔ cmp y x ≠ .lt := not_congr cmp_eq_gt @[deprecated Std.OrientedCmp.eq_comm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_ne_gt
null
cmp_eq_eq_symm [OrientedCmp cmp] : cmp x y = .eq ↔ cmp y x = .eq := by rw [← Ordering.swap_inj, symm]; exact .rfl @[deprecated Std.ReflCmp.compare_self (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_eq_eq_symm
null
cmp_refl [OrientedCmp cmp] : cmp x x = .eq := match e : cmp x x with | .lt => nomatch e.symm.trans (cmp_eq_gt.2 e) | .eq => rfl | .gt => nomatch (cmp_eq_gt.1 e).symm.trans e @[deprecated Std.OrientedCmp.not_lt_of_lt (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_refl
null
lt_asymm [OrientedCmp cmp] (h : cmp x y = .lt) : cmp y x ≠ .lt := fun h' => nomatch h.symm.trans (cmp_eq_gt.2 h') @[deprecated Std.OrientedCmp.not_gt_of_gt (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
lt_asymm
null
gt_asymm [OrientedCmp cmp] (h : cmp x y = .gt) : cmp y x ≠ .gt := mt cmp_eq_gt.1 <| lt_asymm <| cmp_eq_gt.1 h
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
gt_asymm
null
@[deprecated Std.TransCmp (since := "2025-07-01")] TransCmp (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- The comparator operation is transitive. -/ le_trans : cmp x y ≠ .gt → cmp y z ≠ .gt → cmp x z ≠ .gt attribute [deprecated Std.TransCmp.le_trans (since := "2025-07-01")] TransCmp.le_trans
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransCmp
`TransCmp cmp` asserts that `cmp` induces a transitive relation.
@[deprecated Std.TransCmp.ge_trans (since := "2025-07-01")] ge_trans (h₁ : cmp x y ≠ .lt) (h₂ : cmp y z ≠ .lt) : cmp x z ≠ .lt := by have := @TransCmp.le_trans _ cmp _ z y x simp [cmp_eq_gt] at *; exact this h₂ h₁ @[deprecated Std.TransCmp.lt_of_le_of_lt (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
ge_trans
null
le_lt_trans (h₁ : cmp x y ≠ .gt) (h₂ : cmp y z = .lt) : cmp x z = .lt := byContradiction fun h₃ => ge_trans (mt cmp_eq_gt.2 h₁) h₃ h₂ @[deprecated Std.TransCmp.lt_of_lt_of_le (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
le_lt_trans
null
lt_le_trans (h₁ : cmp x y = .lt) (h₂ : cmp y z ≠ .gt) : cmp x z = .lt := byContradiction fun h₃ => ge_trans h₃ (mt cmp_eq_gt.2 h₂) h₁ @[deprecated Std.TransCmp.lt_trans (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
lt_le_trans
null
lt_trans (h₁ : cmp x y = .lt) (h₂ : cmp y z = .lt) : cmp x z = .lt := le_lt_trans (gt_asymm <| cmp_eq_gt.2 h₁) h₂ @[deprecated Std.TransCmp.gt_trans (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
lt_trans
null
gt_trans (h₁ : cmp x y = .gt) (h₂ : cmp y z = .gt) : cmp x z = .gt := by rw [cmp_eq_gt] at h₁ h₂ ⊢; exact lt_trans h₂ h₁ @[deprecated Std.TransCmp.congr_left (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
gt_trans
null
cmp_congr_left (xy : cmp x y = .eq) : cmp x z = cmp y z := match yz : cmp y z with | .lt => byContradiction (ge_trans (nomatch ·.symm.trans (cmp_eq_eq_symm.1 xy)) · yz) | .gt => byContradiction (le_trans (nomatch ·.symm.trans (cmp_eq_eq_symm.1 xy)) · yz) | .eq => match xz : cmp x z with | .lt => nomatch ge_trans (nomatch ·.symm.trans xy) (nomatch ·.symm.trans yz) xz | .gt => nomatch le_trans (nomatch ·.symm.trans xy) (nomatch ·.symm.trans yz) xz | .eq => rfl @[deprecated Std.TransCmp.congr_left (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_congr_left
null
cmp_congr_left' (xy : cmp x y = .eq) : cmp x = cmp y := funext fun _ => cmp_congr_left xy @[deprecated Std.TransCmp.congr_right (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_congr_left'
null
cmp_congr_right (yz : cmp y z = .eq) : cmp x y = cmp x z := by rw [← Ordering.swap_inj, symm, symm, cmp_congr_left yz]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
cmp_congr_right
null
@[deprecated Std.LawfulBEqCmp (since := "2025-07-01")] BEqCmp [BEq α] (cmp : α → α → Ordering) : Prop where /-- `cmp x y = .eq` holds iff `x == y` is true. -/ cmp_iff_beq : cmp x y = .eq ↔ x == y attribute [deprecated Std.LawfulBEqCmp.compare_eq_iff_beq (since := "2025-07-01")] BEqCmp.cmp_iff_beq @[deprecated Std.LawfulEqCmp.compare_eq_iff_eq (since := "2025-07-01")]
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
BEqCmp
`BEqCmp cmp` asserts that `cmp x y = .eq` and `x == y` coincide.
BEqCmp.cmp_iff_eq [BEq α] [LawfulBEq α] [BEqCmp (α := α) cmp] : cmp x y = .eq ↔ x = y := by simp [BEqCmp.cmp_iff_beq]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
BEqCmp.cmp_iff_eq
null
@[deprecated Std.LawfulLTCmp (since := "2025-07-01")] LTCmp [LT α] (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- `cmp x y = .lt` holds iff `x < y` is true. -/ cmp_iff_lt : cmp x y = .lt ↔ x < y attribute [deprecated Std.LawfulLTCmp.eq_lt_iff_lt (since := "2025-07-01")] LTCmp.cmp_iff_lt @[deprecated Std.LawfulLTCmp.eq_gt_iff_gt (since := "2025-07-01")]
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp
`LTCmp cmp` asserts that `cmp x y = .lt` and `x < y` coincide.
LTCmp.cmp_iff_gt [LT α] [LTCmp (α := α) cmp] : cmp x y = .gt ↔ y < x := by rw [OrientedCmp.cmp_eq_gt, LTCmp.cmp_iff_lt]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp.cmp_iff_gt
null
@[deprecated Std.LawfulLECmp (since := "2025-07-01")] LECmp [LE α] (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- `cmp x y ≠ .gt` holds iff `x ≤ y` is true. -/ cmp_iff_le : cmp x y ≠ .gt ↔ x ≤ y attribute [deprecated Std.LawfulLECmp.ne_gt_iff_le (since := "2025-07-01")] LECmp.cmp_iff_le @[deprecated Std.LawfulLECmp.ne_lt_iff_ge (since := "2025-07-01")]
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LECmp
`LECmp cmp` asserts that `cmp x y ≠ .gt` and `x ≤ y` coincide.
LECmp.cmp_iff_ge [LE α] [LECmp (α := α) cmp] : cmp x y ≠ .lt ↔ y ≤ x := by rw [← OrientedCmp.cmp_ne_gt, LECmp.cmp_iff_le]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LECmp.cmp_iff_ge
null
@[deprecated Std.LawfulBCmp (since := "2025-07-01")] LawfulCmp [LE α] [LT α] [BEq α] (cmp : α → α → Ordering) : Prop extends TransCmp cmp, BEqCmp cmp, LTCmp cmp, LECmp cmp
class
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LawfulCmp
`LawfulCmp cmp` asserts that the `LE`, `LT`, `BEq` instances are all coherent with each other and with `cmp`, describing a strict weak order (a linear order except for antisymmetry).
@[deprecated Std.OrientedOrd (since := "2025-07-01")] OrientedOrd (α) [Ord α] := OrientedCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd
`OrientedOrd α` asserts that the `Ord` instance satisfies `OrientedCmp`.
@[deprecated Std.TransOrd (since := "2025-07-01")] TransOrd (α) [Ord α] := TransCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd
`TransOrd α` asserts that the `Ord` instance satisfies `TransCmp`.
@[deprecated Std.LawfulBEqOrd (since := "2025-07-01")] BEqOrd (α) [BEq α] [Ord α] := BEqCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
BEqOrd
`BEqOrd α` asserts that the `Ord` and `BEq` instances are coherent via `BEqCmp`.
@[deprecated Std.LawfulLTOrd (since := "2025-07-01")] LTOrd (α) [LT α] [Ord α] := LTCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTOrd
`LTOrd α` asserts that the `Ord` instance satisfies `LTCmp`.
@[deprecated Std.LawfulLEOrd (since := "2025-07-01")] LEOrd (α) [LE α] [Ord α] := LECmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LEOrd
`LEOrd α` asserts that the `Ord` instance satisfies `LECmp`.
@[deprecated Std.LawfulBOrd (since := "2025-07-01")] LawfulOrd (α) [LE α] [LT α] [BEq α] [Ord α] := LawfulCmp (α := α) compare @[deprecated Std.TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm (since := "2025-07-01")]
abbrev
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LawfulOrd
`LawfulOrd α` asserts that the `Ord` instance satisfies `LawfulCmp`.
protected TransCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : TransCmp (α := α) (compareOfLessAndEq · ·) := by have : OrientedCmp (α := α) (compareOfLessAndEq · ·) := by refine { symm := fun x y => ?_ } simp [compareOfLessAndEq]; split <;> [rename_i xy; split <;> [subst y; rename_i xy ne]] · rw [if_neg, if_neg]; rfl · rintro rfl; exact lt_irrefl _ xy · exact fun yx => lt_irrefl _ (lt_trans xy yx) · rw [if_neg ‹_›, if_pos rfl]; rfl · split <;> [rfl; rename_i yx] cases ne (lt_antisymm xy yx) refine { this with le_trans := fun {x y z} yx zy => ?_ } rw [Ne, this.cmp_eq_gt, compareOfLessAndEq_eq_lt] at yx zy ⊢ intro zx if xy : x < y then exact zy (lt_trans zx xy) else exact zy (lt_antisymm yx xy ▸ zx) @[deprecated Std.TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransCmp.compareOfLessAndEq
null
TransCmp.compareOfLessAndEq_of_le [LT α] [LE α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : TransCmp (α := α) (compareOfLessAndEq · ·) := .compareOfLessAndEq lt_irrefl lt_trans fun xy yx => le_antisymm (not_lt yx) (not_lt xy) @[deprecated Std.LawfulBEqCmp.compareOfLessAndEq_of_lt_irrefl (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransCmp.compareOfLessAndEq_of_le
null
protected BEqCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [BEq α] [LawfulBEq α] (lt_irrefl : ∀ x : α, ¬x < x) : BEqCmp (α := α) (compareOfLessAndEq · ·) where cmp_iff_beq {x y} := by simp [compareOfLessAndEq] split <;> [skip; split] <;> simp [*] rintro rfl; exact lt_irrefl _ ‹_› @[deprecated Std.LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
BEqCmp.compareOfLessAndEq
null
protected LTCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : LTCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq lt_irrefl lt_trans lt_antisymm with cmp_iff_lt := compareOfLessAndEq_eq_lt } @[deprecated Std.LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp.compareOfLessAndEq
null
protected LTCmp.compareOfLessAndEq_of_le [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [LE α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : LTCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt le_antisymm with cmp_iff_lt := compareOfLessAndEq_eq_lt } @[deprecated Std.LawfulLECmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp.compareOfLessAndEq_of_le
null
protected LECmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [LE α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y ↔ y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : LECmp (α := α) (compareOfLessAndEq · ·) := have := TransCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt.1 le_antisymm { this with cmp_iff_le := (this.cmp_ne_gt).trans <| (not_congr compareOfLessAndEq_eq_lt).trans not_lt } @[deprecated Std.LawfulCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LECmp.compareOfLessAndEq
null
protected LawfulCmp.compareOfLessAndEq [LT α] [DecidableRel (LT.lt (α := α))] [DecidableEq α] [BEq α] [LawfulBEq α] [LE α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y ↔ y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : LawfulCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt.1 le_antisymm, LTCmp.compareOfLessAndEq_of_le lt_irrefl lt_trans not_lt.1 le_antisymm, LECmp.compareOfLessAndEq lt_irrefl lt_trans not_lt le_antisymm, BEqCmp.compareOfLessAndEq lt_irrefl with } @[deprecated Std.LawfulLTCmp.eq_compareOfLessAndEq (since := "2025-07-01")]
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LawfulCmp.compareOfLessAndEq
null
LTCmp.eq_compareOfLessAndEq [LT α] [DecidableEq α] [BEq α] [LawfulBEq α] [BEqCmp cmp] [LTCmp cmp] (x y : α) [Decidable (x < y)] : cmp x y = compareOfLessAndEq x y := by simp [compareOfLessAndEq] split <;> rename_i h1 <;> [skip; split <;> rename_i h2] · exact LTCmp.cmp_iff_lt.2 h1 · exact BEqCmp.cmp_iff_eq.2 h2 · cases e : cmp x y · cases h1 (LTCmp.cmp_iff_lt.1 e) · cases h2 (BEqCmp.cmp_iff_eq.1 e) · rfl
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
LTCmp.eq_compareOfLessAndEq
null
@[deprecated "instance exists" (since := "2025-07-01")] OrientedOrd.instLexOrd [Ord α] [Ord β] [OrientedOrd α] [OrientedOrd β] : @OrientedOrd (α × β) lexOrd := by rw [OrientedOrd, lexOrd_def]; infer_instance
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instLexOrd
Local instance for `OrientedOrd lexOrd`.
@[deprecated "instance exists" (since := "2025-07-01")] TransOrd.instLexOrd [Ord α] [Ord β] [TransOrd α] [TransOrd β] : @TransOrd (α × β) lexOrd := by rw [TransOrd, lexOrd_def]; infer_instance
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instLexOrd
Local instance for `TransOrd lexOrd`.
@[deprecated Std.OrientedOrd.opposite (since := "2025-07-01")] OrientedOrd.instOpposite [ord : Ord α] [inst : OrientedOrd α] : @OrientedOrd _ ord.opposite where symm _ _ := inst.symm ..
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instOpposite
Local instance for `OrientedOrd ord.opposite`.
@[deprecated Std.TransOrd.opposite (since := "2025-07-01")] TransOrd.instOpposite [ord : Ord α] [inst : TransOrd α] : @TransOrd _ ord.opposite := { OrientedOrd.instOpposite with le_trans := fun h1 h2 => inst.le_trans h2 h1 }
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instOpposite
Local instance for `TransOrd ord.opposite`.
@[deprecated Std.OrientedOrd.instOn (since := "2025-07-01")] OrientedOrd.instOn [ord : Ord β] [OrientedOrd β] (f : α → β) : @OrientedOrd _ (ord.on f) := inferInstanceAs (@OrientedCmp _ (compareOn f))
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instOn
Local instance for `OrientedOrd (ord.on f)`.
@[deprecated Std.TransOrd.instOn (since := "2025-07-01")] TransOrd.instOn [ord : Ord β] [TransOrd β] (f : α → β) : @TransOrd _ (ord.on f) := inferInstanceAs (@TransCmp _ (compareOn f))
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instOn
Local instance for `TransOrd (ord.on f)`.
@[deprecated "instance exists" (since := "2025-07-01")] OrientedOrd.instOrdLex [oα : Ord α] [oβ : Ord β] [OrientedOrd α] [OrientedOrd β] : @OrientedOrd _ (oα.lex oβ) := OrientedOrd.instLexOrd
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instOrdLex
Local instance for `OrientedOrd (oα.lex oβ)`.
@[deprecated "instance exists" (since := "2025-07-01")] TransOrd.instOrdLex [oα : Ord α] [oβ : Ord β] [TransOrd α] [TransOrd β] : @TransOrd _ (oα.lex oβ) := TransOrd.instLexOrd
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instOrdLex
Local instance for `TransOrd (oα.lex oβ)`.
@[deprecated Std.OrientedOrd.instOrdLex' (since := "2025-07-01")] OrientedOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@OrientedOrd _ ord₁] [@OrientedOrd _ ord₂] : @OrientedOrd _ (ord₁.lex' ord₂) := inferInstanceAs (OrientedCmp (compareLex ord₁.compare ord₂.compare))
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
OrientedOrd.instOrdLex'
Local instance for `OrientedOrd (oα.lex' oβ)`.
@[deprecated Std.TransOrd.instOrdLex' (since := "2025-07-01")] TransOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@TransOrd _ ord₁] [@TransOrd _ ord₂] : @TransOrd _ (ord₁.lex' ord₂) := inferInstanceAs (TransCmp (compareLex ord₁.compare ord₂.compare))
theorem
Batteries.Classes
[ "Batteries.Classes.Order" ]
Batteries/Classes/Deprecated.lean
TransOrd.instOrdLex'
Local instance for `TransOrd (oα.lex' oβ)`.
lexOrd_def [Ord α] [Ord β] : (lexOrd : Ord (α × β)).compare = compareLex (compareOn (·.1)) (compareOn (·.2)) := rfl
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
lexOrd_def
null
@[inline] Ordering.byKey (f : α → β) (cmp : β → β → Ordering) (a b : α) : Ordering := cmp (f a) (f b)
def
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
Ordering.byKey
Pull back a comparator by a function `f`, by applying the comparator to both arguments.
TotalBLE (le : α → α → Bool) : Prop where /-- `le` is total: either `le a b` or `le b a`. -/ total : le a b ∨ le b a
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TotalBLE
`TotalBLE le` asserts that `le` has a total order, that is, `le a b ∨ le b a`.
compareOfLessAndEq_eq_lt {x y : α} [LT α] [Decidable (x < y)] [DecidableEq α] : compareOfLessAndEq x y = .lt ↔ x < y := by simp [compareOfLessAndEq] split <;> simp
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
compareOfLessAndEq_eq_lt
null
le_iff_ge : cmp x y ≠ .gt ↔ cmp y x ≠ .lt := not_congr OrientedCmp.gt_iff_lt
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
le_iff_ge
null
le_trans : cmp x y ≠ .gt → cmp y z ≠ .gt → cmp x z ≠ .gt := by simp only [ne_eq, ← Ordering.isLE_iff_ne_gt]; exact isLE_trans
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
le_trans
null
lt_of_lt_of_le : cmp x y = .lt → cmp y z ≠ .gt → cmp x z = .lt := by simp only [ne_eq, ← Ordering.isLE_iff_ne_gt]; exact lt_of_lt_of_isLE
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
lt_of_lt_of_le
null
lt_of_le_of_lt : cmp x y ≠ .gt → cmp y z = .lt → cmp x z = .lt := by simp only [ne_eq, ← Ordering.isLE_iff_ne_gt]; exact lt_of_isLE_of_lt
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
lt_of_le_of_lt
null
ge_trans : cmp x y ≠ .lt → cmp y z ≠ .lt → cmp x z ≠ .lt := by simp only [ne_eq, ← Ordering.isGE_iff_ne_lt]; exact isGE_trans
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
ge_trans
null
gt_of_gt_of_ge : cmp x y = .gt → cmp y z ≠ .lt → cmp x z = .gt := by simp only [ne_eq, ← Ordering.isGE_iff_ne_lt]; exact gt_of_gt_of_isGE
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
gt_of_gt_of_ge
null
gt_of_ge_of_gt : cmp x y ≠ .lt → cmp y z = .gt → cmp x z = .gt := by simp only [ne_eq, ← Ordering.isGE_iff_ne_lt]; exact gt_of_isGE_of_gt
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
gt_of_ge_of_gt
null
LawfulLTCmp [LT α] (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- `cmp x y = .lt` holds iff `x < y` is true. -/ eq_lt_iff_lt : cmp x y = .lt ↔ x < y
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp
`LawfulLTCmp cmp` asserts that `cmp x y = .lt` and `x < y` coincide.
LawfulLTCmp.eq_gt_iff_gt [LT α] [LawfulLTCmp (α := α) cmp] : cmp x y = .gt ↔ y < x := by rw [OrientedCmp.gt_iff_lt, eq_lt_iff_lt]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp.eq_gt_iff_gt
null
LawfulLECmp [LE α] (cmp : α → α → Ordering) : Prop extends OrientedCmp cmp where /-- `cmp x y ≠ .gt` holds iff `x ≤ y` is true. -/ isLE_iff_le : (cmp x y).isLE ↔ x ≤ y
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLECmp
`LawfulLECmp cmp` asserts that `(cmp x y).isLE` and `x ≤ y` coincide.
LawfulLECmp.isGE_iff_ge [LE α] [LawfulLECmp (α := α) cmp] : (cmp x y).isGE ↔ y ≤ x := by rw [← Ordering.isLE_swap, ← OrientedCmp.eq_swap, isLE_iff_le]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLECmp.isGE_iff_ge
null
LawfulLECmp.ne_gt_iff_le [LE α] [LawfulLECmp (α := α) cmp] : cmp x y ≠ .gt ↔ x ≤ y := by rw [← isLE_iff_le (cmp := cmp), Ordering.isLE_iff_ne_gt]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLECmp.ne_gt_iff_le
null
LawfulLECmp.ne_lt_iff_ge [LE α] [LawfulLECmp (α := α) cmp] : cmp x y ≠ .lt ↔ y ≤ x := by rw [← isGE_iff_ge (cmp := cmp), Ordering.isGE_iff_ne_lt]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLECmp.ne_lt_iff_ge
null
LawfulBCmp [LE α] [LT α] [BEq α] (cmp : α → α → Ordering) : Prop extends TransCmp cmp, LawfulBEqCmp cmp, LawfulLTCmp cmp, LawfulLECmp cmp
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulBCmp
`LawfulBCmp cmp` asserts that the `LE`, `LT`, `BEq` are all coherent with each other and with `cmp`, describing a strict weak order (a linear order except for antisymmetry).
LawfulCmp [LE α] [LT α] (cmp : α → α → Ordering) : Prop extends TransCmp cmp, LawfulEqCmp cmp, LawfulLTCmp cmp, LawfulLECmp cmp
class
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulCmp
`LawfulBCmp cmp` asserts that the `LE`, `LT`, `Eq` are all coherent with each other and with `cmp`, describing a linear order.
LawfulLTOrd (α) [LT α] [Ord α] := LawfulLTCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTOrd
Class for types where the ordering function is compatible with the `LT`.
LawfulLEOrd (α) [LE α] [Ord α] := LawfulLECmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLEOrd
Class for types where the ordering function is compatible with the `LE`.
LawfulBOrd (α) [LE α] [LT α] [BEq α] [Ord α] := LawfulBCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulBOrd
Class for types where the ordering function is compatible with the `LE`, `LT` and `BEq`.
LawfulOrd (α) [LE α] [LT α] [Ord α] := LawfulCmp (α := α) compare
abbrev
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulOrd
Class for types where the ordering function is compatible with the `LE`, `LT` and `Eq`.
OrientedOrd.instOn [ord : Ord β] [OrientedOrd β] (f : α → β) : @OrientedOrd _ (ord.on f) := inferInstanceAs (@OrientedCmp _ (compareOn f))
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
OrientedOrd.instOn
null
TransOrd.instOn [ord : Ord β] [TransOrd β] (f : α → β) : @TransOrd _ (ord.on f) := inferInstanceAs (@TransCmp _ (compareOn f))
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TransOrd.instOn
null
OrientedOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@OrientedOrd _ ord₁] [@OrientedOrd _ ord₂] : @OrientedOrd _ (ord₁.lex' ord₂) := inferInstanceAs (OrientedCmp (compareLex ord₁.compare ord₂.compare))
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
OrientedOrd.instOrdLex'
null
TransOrd.instOrdLex' (ord₁ ord₂ : Ord α) [@TransOrd _ ord₁] [@TransOrd _ ord₂] : @TransOrd _ (ord₁.lex' ord₂) := inferInstanceAs (TransCmp (compareLex ord₁.compare ord₂.compare))
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TransOrd.instOrdLex'
null
LawfulLTCmp.eq_compareOfLessAndEq [LT α] [DecidableEq α] [LawfulEqCmp cmp] [LawfulLTCmp cmp] (x y : α) [Decidable (x < y)] : cmp x y = compareOfLessAndEq x y := by simp only [compareOfLessAndEq] split <;> rename_i h1 <;> [skip; split <;> rename_i h2] · exact LawfulLTCmp.eq_lt_iff_lt.2 h1 · exact LawfulEqCmp.compare_eq_iff_eq.2 h2 · cases e : cmp x y · cases h1 (LawfulLTCmp.eq_lt_iff_lt.1 e) · cases h2 (LawfulEqCmp.compare_eq_iff_eq.1 e) · rfl
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp.eq_compareOfLessAndEq
null
ReflCmp.compareOfLessAndEq_of_lt_irrefl [LT α] [DecidableLT α] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬ x < x) : ReflCmp (α := α) (compareOfLessAndEq · ·) where compare_self {x} := by simp [compareOfLessAndEq, if_neg (lt_irrefl x)]
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
ReflCmp.compareOfLessAndEq_of_lt_irrefl
null
LawfulBEqCmp.compareOfLessAndEq_of_lt_irrefl [LT α] [DecidableLT α] [DecidableEq α] [BEq α] [LawfulBEq α] (lt_irrefl : ∀ x : α, ¬x < x) : LawfulBEqCmp (α := α) (compareOfLessAndEq · ·) where compare_eq_iff_beq {x y} := by simp [compareOfLessAndEq] split <;> [skip; split] <;> simp [*] rintro rfl; exact lt_irrefl _ ‹_› -- redundant? See `compareOfLessAndEq_of_lt_trans_of_lt_iff` in core
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulBEqCmp.compareOfLessAndEq_of_lt_irrefl
null
TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm [LT α] [DecidableLT α] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : TransCmp (α := α) (compareOfLessAndEq · ·) := TransOrd.compareOfLessAndEq_of_lt_trans_of_lt_iff lt_trans <| by intros constructor · intro h₁ constructor · intro h₂ apply lt_irrefl exact lt_trans h₁ h₂ · intro | rfl => exact lt_irrefl _ h₁ · intro ⟨h₁, h₂⟩ by_contra h₃ apply h₂ exact lt_antisymm h₃ h₁ -- redundant? See `compareOfLessAndEq_of_antisymm_of_trans_of_total_of_not_le` in core
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm
null
TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm [LT α] [LE α] [DecidableLT α] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : TransCmp (α := α) (compareOfLessAndEq · ·) := .compareOfLessAndEq_of_irrefl_of_trans_of_antisymm lt_irrefl lt_trans fun xy yx => le_antisymm (not_lt yx) (not_lt xy) -- make redundant?
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm
null
LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm [LT α] [DecidableLT α] [DecidableEq α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (lt_antisymm : ∀ {x y : α}, ¬x < y → ¬y < x → x = y) : LawfulLTCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm lt_irrefl lt_trans lt_antisymm with eq_lt_iff_lt := Batteries.compareOfLessAndEq_eq_lt } -- make redundant?
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_antisymm
null
LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm [LT α] [DecidableLT α] [DecidableEq α] [LE α] (lt_irrefl : ∀ x : α, ¬x < x) (lt_trans : ∀ {x y z : α}, x < y → y < z → x < z) (not_lt : ∀ {x y : α}, ¬x < y → y ≤ x) (le_antisymm : ∀ {x y : α}, x ≤ y → y ≤ x → x = y) : LawfulLTCmp (α := α) (compareOfLessAndEq · ·) := { TransCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm lt_irrefl lt_trans not_lt le_antisymm with eq_lt_iff_lt := Batteries.compareOfLessAndEq_eq_lt } -- make redundant?
theorem
Batteries.Classes
[ "Batteries.Tactic.Basic", "Batteries.Tactic.SeqFocus" ]
Batteries/Classes/Order.lean
LawfulLTCmp.compareOfLessAndEq_of_irrefl_of_trans_of_not_lt_of_antisymm
null