Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
5
7.52k
type
stringclasses
9 values
library
stringclasses
2 values
imports
listlengths
0
15
filename
stringclasses
121 values
symbolic_name
stringlengths
1
53
docstring
stringlengths
6
446
compileCargo (name : String) (manifestFile : FilePath) (cargo : FilePath := "cargo") (env : Array (String × Option String)) : LogIO Unit := do logInfo s!"Creating {name}" proc { env := env cmd := cargo.toString args := #["build", "--release", "--manifest-path", manifestFile.toString] }
def
root
[ "import Lake" ]
lakefile.lean
compileCargo
null
buildCargo (targetFile : FilePath) (manifestFile : FilePath) (targetDest : FilePath) (oFileJobs : Array (BuildJob FilePath)) (stopOnSuccess : Bool) : SpawnM (BuildJob FilePath) := let name := targetFile.fileName.getD targetFile.toString buildFileAfterDepArray targetFile oFileJobs fun _ => do let env := if stopOnSuccess then #[("RUSTFLAGS", some "--cfg stop_on_success")] else #[] compileCargo name manifestFile (env := env) createParentDirs targetDest proc { cmd := "cp" args := #[targetFile.toString, targetDest.toString] } target EggPreDCP (pkg) : FilePath := do let buildDir := pkg.dir / "egg-pre-dcp" let binFile := buildDir / "target" / "release" / "egg-pre-dcp" let dest := buildDir / "utils" / "egg-pre-dcp" let manifestFile := buildDir / "Cargo.toml" buildCargo binFile manifestFile dest #[] false target EggPreDCPStopOnSuccess (pkg) : FilePath := do let buildDir := pkg.dir / "egg-pre-dcp" let binFile := buildDir / "target" / "release" / "egg-pre-dcp" let dest := buildDir / "utils" / "egg-pre-dcp" let manifestFile := buildDir / "Cargo.toml" buildCargo binFile manifestFile dest #[] true script EggClean := do let targetDir : FilePath := "." / "egg-pre-dcp" / "target" let utilsDir : FilePath := "." / "egg-pre-dcp" / "utils" let out ← IO.Process.output { cmd := "rm" args := #["-rf", targetDir.toString] } *> IO.Process.output { cmd := "rm" args := #["-rf", utilsDir.toString] } pure out.exitCode
def
root
[ "import Lake" ]
lakefile.lean
buildCargo
null
runEquivalenceTactic (mvarId : MVarId) (stx : Syntax) : TermElabM Unit := do runTransformationTactic TransformationGoal.Equivalence mvarId stx /-- Run equivalence tactic and return both the right-hand term (`q`) and the equivalence proof, of type `Equivalence p q`. -/
def
CvxLean
[ "import CvxLean.Lib.Equivalence", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Equivalence", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Equivalence.lean
runEquivalenceTactic
/-- Run a transformation tactic indicating that an equivalence is expected. -/
elabEquivalenceProof (lhs : Expr) (rhsName : Name) (stx : Syntax) : TermElabM (Expr × Expr) := elabTransformationProof TransformationGoal.Equivalence lhs rhsName stx /-- Open an equivalence environment. -/ syntax (name := equivalence) "equivalence" ident "/" ident declSig ":=" Lean.Parser.Term.byTactic : command /-- Open an equivalence environment and try to generate a computable backward map. -/ syntax (name := equivalenceAndBwdMap) "equivalence*" ident "/" ident declSig ":=" Lean.Parser.Term.byTactic : command /-- Open an equivalence environment with a given left-hand-side problem (`lhsStx`) and perhaps some parameters (`xs`). From this, an equivalence goal is set to a target problem which is represented by a metavariable. The proof (`proofStx`) is evaluated to produce the desired equivalence. The metavariable is then instantiated and the resulting problem is stored using the identifier `probIdStx`. The equivalence witness is stored according to the identifier `redIdStx`. Optionally, a floating-point backward solution map is created. See `evalEquivalence` and `evalEquivalenceAndBwdMap`. -/
def
CvxLean
[ "import CvxLean.Lib.Equivalence", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Equivalence", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Equivalence.lean
elabEquivalenceProof
/-- Run equivalence tactic and return both the right-hand term (`q`) and the equivalence proof, of type `Equivalence p q`. -/
evalEquivalenceAux (probIdStx eqvIdStx : TSyntax `ident) (xs : Array (Syntax × Expr)) (lhsStx : Syntax) (proofStx : TSyntax `Lean.Parser.Term.byTactic) (bwdMap : Bool) : TermElabM Unit := do let D ← Meta.mkFreshTypeMVar let R ← Meta.mkFreshTypeMVar let lhsTy := mkApp2 (Lean.mkConst ``Minimization) D R let lhs ← elabTermAndSynthesizeEnsuringType lhsStx (some lhsTy) -- NOTE: `instantiateMVars` does not infer the preorder instance. for mvarId in ← getMVars lhs do try { let mvarVal ← synthInstance (← mvarId.getDecl).type mvarId.assign mvarVal } catch _ => pure () let rhsName := probIdStx.getId let (rhs, eqv) ← elabEquivalenceProof lhs rhsName proofStx -- Names for new definitions. let currNamespace ← getCurrNamespace let probId := currNamespace ++ probIdStx.getId let eqvId := currNamespace ++ eqvIdStx.getId -- Add equivalent problem to the environment. let rhs ← instantiateMVars rhs let rhs ← mkLambdaFVars (xs.map Prod.snd) rhs let rhs ← instantiateMVars rhs simpleAddDefn probId rhs -- Add equivalence proof to the environment. let eqv ← instantiateMVars eqv let eqv ← mkLambdaFVars (xs.map Prod.snd) eqv let eqv ← instantiateMVars eqv simpleAddDefn eqvId eqv if bwdMap then lambdaTelescope eqv fun eqvArgs eqvBody => do -- Get psi, reduce it appropriately and convert to float. let psi := (← whnf eqvBody).getArg! 7 trace[CvxLean.debug] "psi: {psi}" let mut simpCtx ← Simp.Context.mkDefault simpCtx := { simpCtx with config := aggressiveSimpConfig } let (.some ext) ← getSimpExtension? `equiv | throwEquivalenceError "could not find `equiv` simp extension." let mut simpThms ← ext.getTheorems simpThms ← simpThms.addDeclToUnfold ``Minimization.Equivalence.mk simpThms ← simpThms.addDeclToUnfold ``Minimization.Equivalence.psi simpThms ← simpThms.addDeclToUnfold ``Eq.mp simpThms ← simpThms.addDeclToUnfold ``Eq.mpr simpCtx := { simpCtx with simpTheorems := #[simpThms] } let (res, _) ← simp psi simpCtx -- NOTE: We ignore arguments with `Prop`s here as keeping them would only mean requiring -- proofs about floats. let eqvNonPropArgs ← eqvArgs.filterM fun arg => do return !(← inferType (← inferType arg)).isProp let psi ← mkLambdaFVars eqvNonPropArgs res.expr trace[CvxLean.debug] "simplified psi: {psi}" try let psiF ← realToFloat psi Lean.simpleAddAndCompileDefn (eqvId ++ `backward_map) psiF catch e => trace[CvxLean.debug] "`equivalence` warning: failed to create `{eqvId}.backward_map`.\n{e.toMessageData}" /-- Create `equivalence` command. -/ @[command_elab «equivalence»]
def
CvxLean
[ "import CvxLean.Lib.Equivalence", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Equivalence", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Equivalence.lean
evalEquivalenceAux
null
evalEquivalence : CommandElab := fun stx => match stx with | `(equivalence $eqvId / $probId $declSig := $proofStx) => do liftTermElabM do let (binders, lhsStx) := expandDeclSig declSig.raw elabBindersEx binders.getArgs fun xs => evalEquivalenceAux probId eqvId xs lhsStx proofStx false | _ => throwUnsupportedSyntax /-- Same as `equivalence` but also adds the backward map to the environment. -/ @[command_elab «equivalenceAndBwdMap»]
def
CvxLean
[ "import CvxLean.Lib.Equivalence", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Equivalence", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Equivalence.lean
evalEquivalence
/-- Create `equivalence` command. -/
evalEquivalenceAndBwdMap : CommandElab := fun stx => match stx with | `(equivalence* $eqvId / $probId $declSig := $proofStx) => do liftTermElabM do let (binders, lhsStx) := expandDeclSig declSig.raw elabBindersEx binders.getArgs fun xs => evalEquivalenceAux probId eqvId xs lhsStx proofStx true | _ => throwUnsupportedSyntax
def
CvxLean
[ "import CvxLean.Lib.Equivalence", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Equivalence", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Equivalence.lean
evalEquivalenceAndBwdMap
/-- Same as `equivalence` but also adds the backward map to the environment. -/
runReductionTactic (mvarId : MVarId) (stx : Syntax) : TermElabM Unit := runTransformationTactic TransformationGoal.Reduction mvarId stx /-- Run reduction tactic and return both the right-hand term (`q`) and the reduction proof, of type `Reduction p q`. -/
def
CvxLean
[ "import Lean", "import CvxLean.Lib.Reduction", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Reduction", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Reduction.lean
runReductionTactic
/-- Run a transformation tactic indicating that a reduction is expected. -/
elabReductionProof (lhs : Expr) (rhsName : Name) (stx : Syntax) : TermElabM (Expr × Expr) := elabTransformationProof TransformationGoal.Reduction lhs rhsName stx /-- Open a reduction environment. -/ syntax (name := reduction) "reduction" ident "/" ident declSig ":=" Lean.Parser.Term.byTactic : command /-- Open a reduction environment and try to generate a computable backward map. -/ syntax (name := reductionAndBwdMap) "reduction*" ident "/" ident declSig ":=" Lean.Parser.Term.byTactic : command /-- Open a reduction environment with a given left-hand-side problem (`lhsStx`) and perhaps some parameters (`xs`). From this, a reduction goal is set to a target problem which is represented by a metavariable. The proof (`proofStx`) is evaluated to produce the desired reduction. The metavariable is then instantiated and the resulting problem is stored using the identifier `probIdStx`. The reduction witness is stored according to the identifier `redIdStx`. Optionally, a floating-point backward solution map is created. See `evalReduction` and `evalReductionAndBwdMap`. -/
def
CvxLean
[ "import Lean", "import CvxLean.Lib.Reduction", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Reduction", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Reduction.lean
elabReductionProof
/-- Run reduction tactic and return both the right-hand term (`q`) and the reduction proof, of type `Reduction p q`. -/
evalReductionAux (probIdStx redIdStx : TSyntax `ident) (xs : Array (Syntax × Expr)) (lhsStx : Syntax) (proofStx : TSyntax `Lean.Parser.Term.byTactic) (bwdMap : Bool) : TermElabM Unit := do let D ← Meta.mkFreshTypeMVar let R ← Meta.mkFreshTypeMVar let lhsTy := mkApp2 (Lean.mkConst ``Minimization) D R let lhs ← elabTermAndSynthesizeEnsuringType lhsStx (some lhsTy) -- NOTE: `instantiateMVars` does not infer the preorder instance. for mvarId in ← getMVars lhs do try { let mvarVal ← synthInstance (← mvarId.getDecl).type mvarId.assign mvarVal } catch _ => pure () let rhsName := probIdStx.getId let (rhs, red) ← elabReductionProof lhs rhsName proofStx -- Names for new definitions. let currNamespace ← getCurrNamespace let probId := currNamespace ++ probIdStx.getId let redId := currNamespace ++ redIdStx.getId -- Add reduced problem to the environment. let rhs ← instantiateMVars rhs let rhs ← mkLambdaFVars (xs.map Prod.snd) rhs let rhs ← instantiateMVars rhs simpleAddDefn probId rhs -- Add reduction proof to the environment. let red ← instantiateMVars red let red ← mkLambdaFVars (xs.map Prod.snd) red let red ← instantiateMVars red simpleAddDefn redId red if bwdMap then lambdaTelescope red fun eqvArgs redBody => do -- Get psi, reduce it appropriately and convert to float. let psi := (← whnf redBody).getArg! 6 trace[CvxLean.debug] "psi: {psi}" let mut simpCtx ← Simp.Context.mkDefault simpCtx := { simpCtx with config := aggressiveSimpConfig } let (.some redExt) ← getSimpExtension? `red | throwReductionError "could not find `red` simp extension." let (.some equivExt) ← getSimpExtension? `equiv | throwReductionError "could not find `equiv` simp extension." let mut simpEqvThms ← equivExt.getTheorems simpEqvThms ← simpEqvThms.addDeclToUnfold ``Minimization.Equivalence.mk simpEqvThms ← simpEqvThms.addDeclToUnfold ``Minimization.Equivalence.psi let mut simpRedThms ← redExt.getTheorems simpRedThms ← simpRedThms.addDeclToUnfold ``Minimization.Reduction.mk simpRedThms ← simpRedThms.addDeclToUnfold ``Minimization.Reduction.psi simpRedThms ← simpRedThms.addDeclToUnfold ``Eq.mp simpRedThms ← simpRedThms.addDeclToUnfold ``Eq.mpr simpCtx := { simpCtx with simpTheorems := #[simpRedThms, simpEqvThms] } let (res, _) ← simp psi simpCtx -- NOTE: We ignore arguments with `Prop`s here as keeping them would only mean requiring -- proofs about floats. let redNonPropArgs ← eqvArgs.filterM fun arg => do return !(← inferType (← inferType arg)).isProp let psi ← mkLambdaFVars redNonPropArgs res.expr trace[CvxLean.debug] "simplified psi: {psi}" try let psiF ← realToFloat psi Lean.simpleAddAndCompileDefn (redId ++ `backward_map) psiF catch e => trace[CvxLean.debug] "`reduction` warning: failed to create `{redId}.backward_map`.\n{e.toMessageData}" /-- Create `reduction` command. It is similar to the `equivalence` command, but requires a `Reduction` instead of an `Equivalence`. -/ @[command_elab «reduction»]
def
CvxLean
[ "import Lean", "import CvxLean.Lib.Reduction", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Reduction", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Reduction.lean
evalReductionAux
null
evalReduction : CommandElab := fun stx => match stx with | `(reduction $eqvId / $probId $declSig := $proofStx) => do liftTermElabM do let (binders, lhsStx) := expandDeclSig declSig.raw elabBindersEx binders.getArgs fun xs => evalReductionAux probId eqvId xs lhsStx proofStx false | _ => throwUnsupportedSyntax /-- Same as `reduction` but also adds the backward map to the environment. -/ @[command_elab «reductionAndBwdMap»]
def
CvxLean
[ "import Lean", "import CvxLean.Lib.Reduction", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Reduction", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Reduction.lean
evalReduction
/-- Create `reduction` command. It is similar to the `equivalence` command, but requires a `Reduction` instead of an `Equivalence`. -/
evalReductionAndBwdMap : CommandElab := fun stx => match stx with | `(reduction* $eqvId / $probId $declSig := $proofStx) => do liftTermElabM do let (binders, lhsStx) := expandDeclSig declSig.raw elabBindersEx binders.getArgs fun xs => evalReductionAux probId eqvId xs lhsStx proofStx true | _ => throwUnsupportedSyntax
def
CvxLean
[ "import Lean", "import CvxLean.Lib.Reduction", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Util.Simp", "import CvxLean.Meta.Util.Error", "import CvxLean.Meta.Util.Debug", "import CvxLean.Meta.Reduction", "import CvxLean.Meta.TacticBuilder", "import CvxLean.Command.Solve.Float.RealToFloatLibrary" ]
CvxLean/Command/Reduction.lean
evalReductionAndBwdMap
/-- Same as `reduction` but also adds the backward map to the environment. -/
runRelaxationTactic (mvarId : MVarId) (stx : Syntax) : TermElabM Unit := runTransformationTactic TransformationGoal.Relaxation mvarId stx /-- Run relaxation tactic and return both the right-hand term (`q`) and the relaxation proof, of type `Relaxation p q`. -/
def
CvxLean
[ "import Lean", "import CvxLean.Lib.Relaxation", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Relaxation", "import CvxLean.Meta.TacticBuilder" ]
CvxLean/Command/Relaxation.lean
runRelaxationTactic
/-- Run a transformation tactic indicating that a relaxation is expected. -/
elabRelaxationProof (lhs : Expr) (rhsName : Name) (stx : Syntax) : TermElabM (Expr × Expr) := elabTransformationProof TransformationGoal.Relaxation lhs rhsName stx /-- Open a relaxation environment. -/ syntax (name := relaxation) "relaxation" ident "/" ident declSig ":=" Lean.Parser.Term.byTactic : command /-- Definition of the `relaxation` command. -/ @[command_elab «relaxation»]
def
CvxLean
[ "import Lean", "import CvxLean.Lib.Relaxation", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Relaxation", "import CvxLean.Meta.TacticBuilder" ]
CvxLean/Command/Relaxation.lean
elabRelaxationProof
/-- Run relaxation tactic and return both the right-hand term (`q`) and the relaxation proof, of type `Relaxation p q`. -/
evalRelaxation : CommandElab := fun stx => match stx with | `(relaxation $relIdStx / $probIdStx $declSig := $proofStx) => do liftTermElabM do let (binders, lhsStx) := expandDeclSig declSig.raw elabBindersEx binders.getArgs fun xs => do let D ← Meta.mkFreshTypeMVar let R ← Meta.mkFreshTypeMVar let lhsTy := mkApp2 (Lean.mkConst ``Minimization) D R let lhs ← elabTermAndSynthesizeEnsuringType lhsStx (some lhsTy) -- NOTE: `instantiateMVars` does not infer the preorder instance. for mvarId in ← getMVars lhs do try { let mvarVal ← synthInstance (← mvarId.getDecl).type mvarId.assign mvarVal } catch _ => pure () let rhsName := probIdStx.getId let (rhs, proof) ← elabRelaxationProof lhs rhsName proofStx.raw -- Names for new definitions. let currNamespace ← getCurrNamespace let probId := currNamespace ++ probIdStx.getId let relId := currNamespace ++ relIdStx.getId -- Add relaxed problem to the environment. let rhs ← instantiateMVars rhs let rhs ← mkLambdaFVars (xs.map Prod.snd) rhs let rhs ← instantiateMVars rhs simpleAddDefn probId rhs -- Add Relaxation proof to the environment. let proof ← mkLambdaFVars (xs.map Prod.snd) proof let proof ← instantiateMVars proof simpleAddDefn relId proof | _ => throwUnsupportedSyntax
def
CvxLean
[ "import Lean", "import CvxLean.Lib.Relaxation", "import CvxLean.Syntax.Minimization", "import CvxLean.Meta.Util.Expr", "import CvxLean.Meta.Relaxation", "import CvxLean.Meta.TacticBuilder" ]
CvxLean/Command/Relaxation.lean
evalRelaxation
/-- Definition of the `relaxation` command. -/
getProblemName (stx : Syntax) : MetaM Name := do -- TODO: Full name with parameters? let idStx := match stx with | Syntax.ident _ _ _ _ => stx | Syntax.node _ _ args => args.getD 0 Syntax.missing | _ => Syntax.missing if ¬ idStx.getId.isStr then throwError "Invalid name for minimization problem: {idStx}." let currNamespace ← getCurrNamespace return currNamespace ++ idStx.getId /-- Call DCP and get the problem in conic form as well as `ψ`, the backward map from the equivalence. -/
def
CvxLean
[ "import CvxLean.Tactic.DCP.AtomLibrary.All", "import CvxLean.Command.Solve.Conic" ]
CvxLean/Command/Solve.lean
getProblemName
/-- Get problem name. Used to add information about the solution to the environment. -/
getCanonizedProblemAndBwdMap (prob : Expr) : MetaM (MinimizationExpr × Expr) := do let ogProb ← MinimizationExpr.fromExpr prob let (canonProb, eqvProof) ← DCP.canonize ogProb let backwardMap ← mkAppM ``Minimization.Equivalence.psi #[eqvProof] return (canonProb, backwardMap) syntax (name := solve) "solve " term : command /-- The `solve` command. It works as follows: 1. Canonize optimization problem to conic form. 2. Extract problem data using `determineCoeffsFromExpr`. 3. Obtain a solution using `solutionDataFromProblemData`, which calls an external solver. 4. Store the result in the enviroment. -/ @[command_elab «solve»]
def
CvxLean
[ "import CvxLean.Tactic.DCP.AtomLibrary.All", "import CvxLean.Command.Solve.Conic" ]
CvxLean/Command/Solve.lean
getCanonizedProblemAndBwdMap
/-- Call DCP and get the problem in conic form as well as `ψ`, the backward map from the equivalence. -/
evalSolve : CommandElab := fun stx => match stx with | `(solve $probInstance) => liftTermElabM <| do let probTerm ← elabTerm probInstance.raw none let probTerm ← whnf probTerm let probTerm ← instantiateMVars probTerm -- NOTE: Needed to solve the "OfNat" mvar bug. for mvarId in ← getMVars probTerm do try { let mvarVal ← synthInstance (← mvarId.getDecl).type mvarId.assign mvarVal } catch _ => pure () -- Create prob.conicForm. let (canonProb, backwardMap) ← getCanonizedProblemAndBwdMap probTerm let canonProbExpr := canonProb.toExpr let probName ← getProblemName probInstance.raw simpleAddDefn (probName ++ `conicForm) canonProbExpr -- Call the solver on prob.conicForm and get a point in E. let (coeffsData, sections) ← determineCoeffsFromExpr canonProb trace[CvxLean.debug] "Coeffs data:\n{coeffsData}" let solData ← solutionDataFromProblemData canonProb coeffsData sections trace[CvxLean.debug] "Solution data:\n{solData}" -- Add status to the environment. simpleAddAndCompileDefn (probName ++ `status) (mkStrLit solData.status) -- TODO: For now, we are only handling this case. if solData.status != "PRIMAL_AND_DUAL_FEASIBLE" then pure () -- Solution makes sense, handle the numerical solution. let solPointExpr ← exprFromSolutionData canonProb solData trace[CvxLean.debug] "Solution point (canonized problem): {solPointExpr}" let backwardMapFloat ← realToFloat <| ← whnf backwardMap let solPointExprFloat ← realToFloat solPointExpr let probSolPointFloat ← whnf <| mkAppN backwardMapFloat #[solPointExprFloat] trace[CvxLean.debug] "Float solution point (original problem): {probSolPointFloat}" -- Add the solution point to the environment. simpleAddAndCompileDefn (probName ++ `solution) probSolPointFloat -- Also add value of optimal point. let probSolValue := mkApp canonProb.objFun solPointExpr let probSolValueFloat ← realToFloat probSolValue check probSolValueFloat let mut probSolValueFloat := Expr.headBeta probSolValueFloat trace[CvxLean.debug] "Float problem value (original problem): {probSolValueFloat}" if probSolValueFloat.getAppFn.isConstOf `CvxLean.maximizeNeg then probSolValueFloat := probSolValueFloat.getAppArgs[2]! simpleAddAndCompileDefn (probName ++ `value) probSolValueFloat pure () | _ => throwUnsupportedSyntax
def
CvxLean
[ "import CvxLean.Tactic.DCP.AtomLibrary.All", "import CvxLean.Command.Solve.Conic" ]
CvxLean/Command/Solve.lean
evalSolve
/-- The `solve` command. It works as follows: 1. Canonize optimization problem to conic form. 2. Extract problem data using `determineCoeffsFromExpr`. 3. Obtain a solution using `solutionDataFromProblemData`, which calls an external solver. 4. Store the result in the enviroment. -/
p₁ := optimization (x y : ℝ) maximize sqrt (x - y) subject to c1 : y = 2 * x - 3 c2 : x ^ (2 : ℝ) ≤ 2 c3 : 0 ≤ x - y #check p₁ -- Apply DCP transformation and call solver. solve p₁ #eval p₁.status #eval p₁.solution #eval p₁.value /- Second example. -/
def
CvxLean
[ "import CvxLean" ]
CvxLean/Demos/LT2024.lean
p₁
null
p₂ := optimization (x : ℝ) minimize (x) subject to c1 : 1 / 1000 ≤ x c2 : 1 / sqrt x ≤ exp x -- solve p₂ -- set_option trace.Meta.debug true -- Equivalence mode. equivalence eqv₂/q₂ : p₂ := by pre_dcp solve q₂ #print q₂.conicForm #eval q₂.status #eval q₂.solution #eval q₂.value /- Third example (geometric programming). -/ /-- Maximizing the volume of a box. See: https://www.cvxpy.org/examples/dgp/max_volume_box.html -/
def
CvxLean
[ "import CvxLean" ]
CvxLean/Demos/LT2024.lean
p₂
null
p₃ (Awall Aflr α β γ δ : ℝ) := optimization (h w d : ℝ) minimize (1 / (h * w * d)) subject to c1 : 0 < h c2 : 0 < w c3 : 0 < d c4 : 2 * (h * w + h * d) ≤ Awall c5 : w * d ≤ Aflr c6 : α ≤ h / w c7 : h / w ≤ β c8 : γ ≤ d / w c9 : d / w ≤ δ equivalence* eqv₃/q₃ : p₃ 100 10 0.5 2 0.5 2 := by change_of_variables! (h') (h ↦ exp h') change_of_variables! (w') (w ↦ exp w') change_of_variables! (d') (d ↦ exp d') pre_dcp solve q₃ #print q₃.conicForm #eval q₃.status #eval q₃.solution #eval q₃.value #check eqv₃
def
CvxLean
[ "import CvxLean" ]
CvxLean/Demos/LT2024.lean
p₃
/-- Maximizing the volume of a box. See: https://www.cvxpy.org/examples/dgp/max_volume_box.html -/
p₃.solution := eqv₃.backward_map q₃.solution #eval p₃.solution
def
CvxLean
[ "import CvxLean" ]
CvxLean/Demos/LT2024.lean
p₃.solution
null
h := p₃.solution.1
def
CvxLean
[ "import CvxLean" ]
CvxLean/Demos/LT2024.lean
h
null
w := p₃.solution.2.1
def
CvxLean
[ "import CvxLean" ]
CvxLean/Demos/LT2024.lean
w
null
d := p₃.solution.2.2 #eval h * w * d #eval 2 * (h * w + h * d) ≤ 100 #eval w * d ≤ 10 #eval 0.5 ≤ h / w #eval h / w ≤ 2 #eval 0.5 ≤ d / w #eval d / w ≤ 2
def
CvxLean
[ "import CvxLean" ]
CvxLean/Demos/LT2024.lean
d
null
p := optimization (x y : ℝ) minimize -2 * x subject to c₁ : 0 ≤ x c₂ : 1 < y c₃ : log (y - 1) ≤ 2 * sqrt x + 1 c₄ : 3 * x + 5 * y ≤ 10 -- Transform (proving `p ≡ q`). equivalence* eqv/q : p := by change_of_variables! (v) (y ↦ v + 1) change_of_variables! (w) (v ↦ exp w) remove_constr c₂ => field_simp; arith -- Make DCP-compliant automatically: -- pre_dcp -- Or, manually: rw_constr c₃ into (w ≤ 2 * sqrt x + 1) => field_simp #print q #check eqv -- Solve (proving `q ≡ q.conicForm`). solve q #print q.conicForm #eval q.status #eval q.value #eval q.solution #eval eqv.backward_map q.solution
def
CvxLean
[ "import CvxLean" ]
CvxLean/Demos/README.lean
p
null
covEstimation (n : ℕ) (N : ℕ) (α : ℝ) (y : Fin N → Fin n → ℝ) := optimization (R : Matrix (Fin n) (Fin n) ℝ) maximize (∏ i, gaussianPdf R (y i)) subject to c_pos_def : R.PosDef c_sparse : R⁻¹.abs.sum ≤ α reduction* red/covEstimationConvex (n : ℕ) (N : ℕ) (α : ℝ) (y : Fin N → Fin n → ℝ) : covEstimation n N α y := by -- Change objective function. reduction_step => apply Reduction.map_objFun_of_order_reflecting (g := fun x => -log (-x)) · intros R S hR hS h apply neg_le_neg simp only [maximizeNeg] at h rwa [neg_neg, neg_neg, neg_le_neg_iff, log_le_log_iff] at h exact prod_gaussianPdf_pos S y hS.1 exact prod_gaussianPdf_pos R y hR.1 conv_opt => simp only [Function.comp, neg_neg, maximizeNeg] -- Move logarithm and sum inward. reduction_step => apply Reduction.rewrite_objFun · intros R hR simp only [log_prod_gaussianPdf _ R hR.1, Finset.sum_add_distrib, Finset.sum_neg_distrib, neg_div] rewrite [Finset.sum_const, Finset.sum_const, Finset.card_fin] rw [← Finset.sum_div, sum_quadForm, @Real.log_sqrt (det R)] apply hR.1.posSemidef.det_nonneg -- Change of variables using matrix inverse. reduction_step => apply Reduction.map_domain (fwd := (·⁻¹)) (bwd := (·⁻¹)) · intros R hR simp only [nonsing_inv_nonsing_inv R hR.1.isUnit_det] -- Dissolve matrix inverse. conv_opt => simp only [Function.comp, Matrix.PosDef_inv_iff_PosDef] reduction_step => apply Reduction.rewrite_objFun · intros R hR rewrite [nonsing_inv_nonsing_inv R (hR.1.isUnit_det), Matrix.det_nonsing_inv] rewrite [Real.inverse_eq_inv, Real.log_inv] rfl reduction_step => apply Reduction.rewrite_constraints · intros R rw [and_congr_right_iff] intro hR rw [nonsing_inv_nonsing_inv R hR.isUnit_det] #print covEstimationConvex -- optimization (R : Matrix (Fin n) (Fin n) ℝ) -- minimize -- -(-(N • log (sqrt ((2 * π) ^ n)) + N • (-log (det R) / 2)) + -- -(↑N * trace ((covarianceMatrix fun x => y x) * Rᵀ) / 2)) -- subject to -- c_pos_def : PosDef R -- c_sparse : sum (Matrix.abs R) ≤ α -- We solve the problem for a simple example. @[optimization_param, reducible]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/CovarianceEstimation.lean
covEstimation
null
nₚ : ℕ := 2 @[optimization_param, reducible]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/CovarianceEstimation.lean
nₚ
null
Nₚ : ℕ := 4 @[optimization_param]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/CovarianceEstimation.lean
Nₚ
null
αₚ : ℝ := 1 @[optimization_param]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/CovarianceEstimation.lean
αₚ
null
yₚ : Fin Nₚ → Fin nₚ → ℝ := ![![0, 2], ![2, 0], ![-2, 0], ![0, -2]] solve covEstimationConvex nₚ Nₚ αₚ yₚ #print covEstimationConvex.conicForm -- minimize -- -(-(Nₚ • log (sqrt ((2 * π) ^ nₚ)) + Nₚ • (-Vec.sum t.0 / 2)) + -- -(↑Nₚ * trace ((covarianceMatrix fun i => yₚ i) * Rᵀ) / 2)) -- subject to -- _ : Real.nonnegOrthCone (αₚ - sum T.2) -- _ : Vec.expCone t.0 1 (diag Y.1) -- _ : -- PSDCone -- (let Z := toUpperTri Y.1; -- let D := diagonal (diag Y.1); -- let X := fromBlocks D Z Zᵀ R; -- X) -- _ : Matrix.nonnegOrthCone (T.2 - R) -- _ : Matrix.nonnegOrthCone (T.2 + R) #eval covEstimationConvex.status -- "PRIMAL_AND_DUAL_FEASIBLE" #eval covEstimationConvex.value -- 14.124098 #eval covEstimationConvex.solution -- ![![0.499903, 0.000000], ![0.000000, 0.499905]] -- We recover the optimal solution in the original problem.
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/CovarianceEstimation.lean
yₚ
null
Rₚ_opt := red.backward_map nₚ Nₚ αₚ.float yₚ.float covEstimationConvex.solution #eval Rₚ_opt -- !![2.000240, -0.000000; -0.000000, 2.000232]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/CovarianceEstimation.lean
Rₚ_opt
null
leastSquares {n : ℕ} (a : Fin n → ℝ) := optimization (x : ℝ) minimize (∑ i, ((a i - x) ^ 2) : ℝ) @[reducible]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
leastSquares
null
mean {n : ℕ} (a : Fin n → ℝ) : ℝ := (1 / n) * ∑ i, (a i) /-- It is useful to rewrite the sum of squares in the following way to prove `leastSquares_optimal_eq_mean`, following Marty Cohen's answer in https://math.stackexchange.com/questions/2554243. -/
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
mean
null
leastSquares_alt_objFun {n : ℕ} (hn : 0 < n) (a : Fin n → ℝ) (x : ℝ) : (∑ i, ((a i - x) ^ 2)) = n * ((x - mean a) ^ 2 + (mean (a ^ 2) - (mean a) ^ 2)) := by calc -- 1) Σ (aᵢ - x)² = Σ (aᵢ² - 2aᵢx + x²) _ = ∑ i, ((a i) ^ 2 - 2 * (a i) * x + (x ^ 2)) := by congr; funext i; simp; ring -- 2) ... = Σ aᵢ² - 2xΣ aᵢ + nx² _ = ∑ i, ((a i) ^ 2) - 2 * x * ∑ i, (a i) + n * (x ^ 2) := by rw [sum_add_distrib, sum_sub_distrib, ← sum_mul, ← mul_sum]; simp [sum_const]; ring -- 3) ... = n{a²} - 2xn{a} + nx² _ = n * mean (a ^ 2) - 2 * x * n * mean a + n * (x ^ 2) := by simp [mean]; field_simp; ring -- 4) ... = n((x - {a})² + ({a²} - {a}²)) _ = n * ((x - mean a) ^ 2 + (mean (a ^ 2) - (mean a) ^ 2)) := by simp [mean]; field_simp; ring /-- Key result about least squares: `x* = mean a`. -/
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
leastSquares_alt_objFun
/-- It is useful to rewrite the sum of squares in the following way to prove `leastSquares_optimal_eq_mean`, following Marty Cohen's answer in https://math.stackexchange.com/questions/2554243. -/
leastSquares_optimal_eq_mean {n : ℕ} (hn : 0 < n) (a : Fin n → ℝ) (x : ℝ) (h : (leastSquares a).optimal x) : x = mean a := by simp [optimal, feasible, leastSquares] at h replace h : ∀ y, (x - mean a) ^ 2 ≤ (y - mean a) ^ 2 := by intros y have hy := h y have h_rw_x := leastSquares_alt_objFun hn a x have h_rw_y := leastSquares_alt_objFun hn a y simp only [rpow_two] at h_rw_x h_rw_y ⊢ rwa [h_rw_x, h_rw_y, mul_le_mul_left (by positivity), add_le_add_iff_right] at hy have hmean := h (mean a) simp at hmean have h_sq_eq_zero := le_antisymm hmean (sq_nonneg _) rwa [sq_eq_zero_iff, sub_eq_zero] at h_sq_eq_zero
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
leastSquares_optimal_eq_mean
/-- Key result about least squares: `x* = mean a`. -/
leastSquaresVec {n : ℕ} (a : Fin n → ℝ) := optimization (x : ℝ) minimize (Vec.sum ((a - Vec.const n x) ^ 2) : ℝ) /-- Same as `leastSquares_optimal_eq_mean` in vector notation. -/
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
leastSquaresVec
null
leastSquaresVec_optimal_eq_mean {n : ℕ} (hn : 0 < n) (a : Fin n → ℝ) (x : ℝ) (h : (leastSquaresVec a).optimal x) : x = mean a := by apply leastSquares_optimal_eq_mean hn a simp [leastSquaresVec, leastSquares, optimal, feasible] at h ⊢ intros y simp only [Vec.sum, Pi.pow_apply, Pi.sub_apply, Vec.const, rpow_two] at h exact h y
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
leastSquaresVec_optimal_eq_mean
/-- Same as `leastSquares_optimal_eq_mean` in vector notation. -/
fittingSphere := optimization (c : Fin n → ℝ) (r : ℝ) minimize (∑ i, (‖(x i) - c‖ ^ 2 - r ^ 2) ^ 2 : ℝ) subject to h₁ : 0 ≤ r -- Changes of variables ensuring bijection, which must also add the condition on `E` in the -- equivalence. TODO: Move to `CvxLean` core.
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
fittingSphere
null
ChangeOfVariablesBij {D E} (c : E → D) where c_inv : D → E cond_D : D → Prop cond_E : E → Prop prop_D : ∀ x, cond_D x → c (c_inv x) = x prop_E : ∀ y, cond_E y → c_inv (c y) = y @[equiv]
structure
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
ChangeOfVariablesBij
null
ChangeOfVariablesBij.toEquivalence {D E R} [Preorder R] {f : D → R} {cs : D → Prop} (c : E → D) (cov : ChangeOfVariablesBij c) (hD : ∀ x, cs x → cov.cond_D x) (hE : ∀ x, cs x → cov.cond_E (cov.c_inv x)) : ⟨f, cs⟩ ≡ ⟨fun y => f (c y), fun y => cs (c y) ∧ cov.cond_E y⟩ := Equivalence.ofStrongEquivalence <| { phi := fun x => cov.c_inv x psi := fun y => c y phi_feasibility := fun x hx => by simp [feasible, cov.prop_D x (hD x hx)]; exact ⟨hx, hE x hx⟩ psi_feasibility := fun y ⟨hy, _⟩ => hy phi_optimality := fun x hx => by simp [cov.prop_D x (hD x hx)] psi_optimality := fun y _ => by simp }
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
ChangeOfVariablesBij.toEquivalence
null
covBij {n} : ChangeOfVariablesBij (fun ((c, t) : (Fin n → ℝ) × ℝ) => (c, sqrt (t + ‖c‖ ^ 2))) := { c_inv := fun (c, r) => (c, r ^ 2 - ‖c‖ ^ 2), cond_D := fun (_, r) => 0 ≤ r, cond_E := fun (c, t) => 0 ≤ t + ‖c‖ ^ 2, prop_D := fun (c, r) h => by simp [sqrt_sq h], prop_E := fun (c, t) h => by simp at h; simp [sq_sqrt h] } equivalence* eqv/fittingSphereT (n m : ℕ) (x : Fin m → Fin n → ℝ) : fittingSphere n m x := by -- Change of variables (bijective) + some clean up. -- TODO: Do this with `change_of_variables` (or a new command `change_of_variables_bij`). equivalence_step => apply ChangeOfVariablesBij.toEquivalence (fun (ct : (Fin n → ℝ) × ℝ) => (ct.1, sqrt (ct.2 + ‖ct.1‖ ^ 2))) covBij · rintro cr h; exact h · rintro ct _; simp [covBij, sq_nonneg] rename_vars [c, t] rename_constrs [h₁, h₂] conv_constr h₁ => dsimp conv_constr h₂ => dsimp [covBij] -- Rewrite objective. rw_obj into (Vec.sum (((Vec.norm x) ^ 2 - 2 * (Matrix.mulVec x c) - Vec.const m t) ^ 2)) => simp [Vec.sum, Vec.norm, Vec.const]; congr; funext i; congr 1; rw [norm_sub_sq (𝕜 := ℝ) (E := Fin n → ℝ), sq_sqrt (rpow_two _ ▸ h₂)] simp [mulVec, inner, dotProduct] -- Remove redundant h₁. remove_constr h₁ => exact sqrt_nonneg _ #print fittingSphereT -- optimization (c : Fin n → ℝ) (t : ℝ) -- minimize Vec.sum ((Vec.norm x ^ 2 - 2 * mulVec x c - Vec.const m t) ^ 2) -- subject to -- h₂ : 0 ≤ t + ‖c‖ ^ 2 -- Next, we proceed to remove the non-convex constraint by arguing that any point that minimizes the -- objective function without the constraint, also satisfies the constraint. We define the problem -- directly, but note that we could also remove the constraint using the `reduction` command.
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
covBij
null
fittingSphereConvex (n m : ℕ) (x : Fin m → Fin n → ℝ) := optimization (c : Fin n → ℝ) (t : ℝ) minimize (Vec.sum ((Vec.norm x ^ 2 - 2 * mulVec x c - Vec.const m t) ^ 2) : ℝ) /-- This tells us that solving the relaxed problem is sufficient (i.e., it is a valid reduction). -/
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
fittingSphereConvex
null
optimal_convex_implies_optimal_t (hm : 0 < m) (c : Fin n → ℝ) (t : ℝ) (h_opt : (fittingSphereConvex n m x).optimal (c, t)) : (fittingSphereT n m x).optimal (c, t) := by simp [fittingSphereT, fittingSphereConvex, optimal, feasible] at h_opt ⊢ constructor -- Feasibility. · let a := Vec.norm x ^ 2 - 2 * mulVec x c have h_ls : optimal (leastSquaresVec a) t := by refine ⟨trivial, ?_⟩ intros y _ simp [objFun, leastSquaresVec] exact h_opt c y -- Apply key result about least squares to `a` and `t`. have h_t_eq := leastSquaresVec_optimal_eq_mean hm a t h_ls have h_c2_eq : ‖c‖ ^ 2 = (1 / m) * ∑ i : Fin m, ‖c‖ ^ 2 := by simp [sum_const] field_simp have h_t_add_c2_eq : t + ‖c‖ ^ 2 = (1 / m) * ∑ i, ‖(x i) - c‖ ^ 2 := by rw [h_t_eq]; dsimp [mean] rw [h_c2_eq, mul_sum, mul_sum, mul_sum, ← sum_add_distrib] congr; funext i; rw [← mul_add] congr; simp [Vec.norm] rw [norm_sub_sq (𝕜 := ℝ) (E := Fin n → ℝ)] simp [a]; congr -- We use the result to establish that `t + ‖c‖ ^ 2` is non-negative. rw [← rpow_two, h_t_add_c2_eq] apply mul_nonneg (by norm_num) apply sum_nonneg intros i _ rw [rpow_two] exact sq_nonneg _ -- Optimality. · intros c' x' _ exact h_opt c' x' /-- We show that we have a reduction via the identity map. -/
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
optimal_convex_implies_optimal_t
/-- This tells us that solving the relaxed problem is sufficient (i.e., it is a valid reduction). -/
red (hm : 0 < m) : (fittingSphereT n m x) ≼ (fittingSphereConvex n m x) := { psi := id, psi_optimality := fun (c, t) h_opt => optimal_convex_implies_optimal_t n m x hm c t h_opt } #print fittingSphereConvex -- optimization (c : Fin n → ℝ) (t : ℝ) -- minimize Vec.sum ((Vec.norm x ^ 2 - 2 * mulVec x c - Vec.const m t) ^ 2) -- We proceed to solve the problem on a concrete example. -- https://github.com/cvxgrp/cvxbook_additional_exercises/blob/main/python/sphere_fit_data.py @[optimization_param]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
red
/-- We show that we have a reduction via the identity map. -/
nₚ := 2 @[optimization_param]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
nₚ
null
mₚ := 10 @[optimization_param]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
mₚ
null
xₚ : Fin mₚ → Fin nₚ → ℝ := Matrix.transpose <| ![ ![1.824183228637652032e+00, 1.349093690455489103e+00, 6.966316403935147727e-01, 7.599387854623529392e-01, 2.388321695850912363e+00, 8.651370608981923116e-01, 1.863922545015865406e+00, 7.099743941474848663e-01, 6.005484882320809570e-01, 4.561429569892232472e-01], ![-9.644136284187876385e-01, 1.069547315003422927e+00, 6.733229334437943470e-01, 7.788072961810316164e-01, -9.467465278344706636e-01, -8.591303443863639311e-01, 1.279527420871080956e+00, 5.314829019311283487e-01, 6.975676079749143499e-02, -4.641873429414754559e-01]] -- We use the `solve` command on the data above. solve fittingSphereConvex nₚ mₚ xₚ -- Finally, we recover the solution to the original problem.
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
xₚ
null
sol := eqv.backward_map nₚ mₚ xₚ.float fittingSphereConvex.solution
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
sol
null
cₚ_opt := sol.1
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
cₚ_opt
null
rₚ_opt := sol.2 #eval cₚ_opt -- ![1.664863, 0.031932] #eval rₚ_opt -- 1.159033
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/FittingSphere.lean
rₚ_opt
null
hypersonicShapeDesign := optimization (Δx : ℝ) minimize sqrt ((1 / Δx ^ 2) - 1) subject to h₁ : 10e-6 ≤ Δx h₂ : Δx ≤ 1 h₃ : a * (1 / Δx) - (1 - b) * sqrt (1 - Δx ^ 2) ≤ 0 equivalence* eqv₁/hypersonicShapeDesignConvex (a b : ℝ) (ha : 0 ≤ a) (hb₁ : 0 ≤ b) (hb₂ : b < 1) : hypersonicShapeDesign a b := by pre_dcp #print hypersonicShapeDesignConvex -- optimization (Δx : ℝ) -- minimize Δx ^ (-2) - 1 -- subject to -- h₁ : 1 / 100000 ≤ Δx -- h₂ : Δx ≤ 1 -- h₃ : sqrt a ^ 2 / Δx / (1 - b) ≤ sqrt (1 - Δx ^ 2) @[optimization_param]
def
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
hypersonicShapeDesign
null
aₚ : ℝ := 0.05 @[simp high]
def
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
aₚ
null
aₚ_nonneg : 0 ≤ aₚ := by unfold aₚ; norm_num @[optimization_param]
lemma
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
aₚ_nonneg
null
bₚ : ℝ := 0.65
def
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
bₚ
null
bₚ_nonneg : 0 ≤ bₚ := by unfold bₚ; norm_num
lemma
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
bₚ_nonneg
null
bₚ_lt_one : bₚ < 1 := by unfold bₚ; norm_num @[simp high]
lemma
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
bₚ_lt_one
null
one_sub_bₚ_nonneg : 0 ≤ 1 - bₚ := by unfold bₚ; norm_num time_cmd solve hypersonicShapeDesignConvex aₚ bₚ aₚ_nonneg bₚ_nonneg bₚ_lt_one #print hypersonicShapeDesignConvex.conicForm -- Final width of wedge.
lemma
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
one_sub_bₚ_nonneg
null
wₚ_opt := eqv₁.backward_map aₚ.float bₚ.float hypersonicShapeDesignConvex.solution #eval wₚ_opt -- 0.989524 #eval aₚ.float * (1 / wₚ_opt) - (1 - bₚ.float) * Float.sqrt (1 - wₚ_opt ^ 2) ≤ 0 #eval aₚ.float * (1 / wₚ_opt) - (1 - bₚ.float) * Float.sqrt (1 - wₚ_opt ^ 2) ≤ 0.000001 -- Final height of wedge.
def
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
wₚ_opt
null
hₚ_opt := Float.sqrt (1 - wₚ_opt ^ 2) #eval hₚ_opt -- 0.144368 -- Final L/D ratio.
def
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
hₚ_opt
null
ldRatioₚ := 1 / (Float.sqrt ((1 / wₚ_opt ^ 2) - 1)) #eval ldRatioₚ -- 6.854156 -- While the above is good enough, we simplify the problem further by performing a change of -- variables and simplifying appropriately. equivalence* eqv₂/hypersonicShapeDesignSimpler (a b : ℝ) (ha : 0 ≤ a) (hb₁ : 0 ≤ b) (hb₂ : b < 1) : hypersonicShapeDesignConvex a b ha hb₁ hb₂ := by change_of_variables (z) (Δx ↦ sqrt z) conv_constr h₁ => rewrite [le_sqrt' (by norm_num)]; norm_num conv_constr h₂ => rewrite [sqrt_le_iff]; norm_num rw_constr h₃ into (a ^ 2 * z⁻¹ ≤ (1 - b) ^ 2 * (1 - z)) => have hz : 0 ≤ z := by arith have h_one_sub_z : 0 ≤ 1 - z := by arith rw [rpow_two (sqrt a), sq_sqrt ha, rpow_two (sqrt z), sq_sqrt hz] rw [div_le_iff (by arith)] have hlhs : 0 ≤ a / sqrt z := div_nonneg ha (sqrt_nonneg _) have hrhs : 0 ≤ sqrt (1 - z) * (1 - b) := mul_nonneg (sqrt_nonneg _) (by arith) rw [← pow_two_le_pow_two hlhs hrhs] rw [div_rpow ha (sqrt_nonneg _), rpow_two (sqrt z), sq_sqrt hz] rw [mul_rpow (sqrt_nonneg _) (by arith), rpow_two (sqrt (1 - z)), sq_sqrt h_one_sub_z] rw [← mul_one_div, ← inv_eq_one_div, mul_comm (1 - z) _] rename_constrs [h₁, h₂, h₃] rw_obj into (z⁻¹ - 1) => rw [rpow_neg (sqrt_nonneg _), rpow_two (sqrt z), sq_sqrt (by arith)] #print hypersonicShapeDesignSimpler -- optimization (z : ℝ) -- minimize z⁻¹ - 1 -- subject to -- h₁ : 1 / 10000000000 ≤ z -- h₂ : z ≤ 1 -- h₃ : a ^ 2 * z⁻¹ ≤ (1 - b) ^ 2 * (1 - z) time_cmd solve hypersonicShapeDesignSimpler aₚ bₚ aₚ_nonneg bₚ_nonneg bₚ_lt_one #print hypersonicShapeDesignSimpler.conicForm -- Final width of wedge.
def
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
ldRatioₚ
null
wₚ'_opt := eqv₁.backward_map aₚ.float bₚ.float <| eqv₂.backward_map aₚ.float bₚ.float hypersonicShapeDesignSimpler.solution #eval wₚ'_opt -- 0.989524 #eval aₚ.float * (1 / wₚ'_opt) - (1 - bₚ.float) * Float.sqrt (1 - wₚ'_opt ^ 2) ≤ 0 -- Final height of wedge.
def
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
wₚ'_opt
null
hₚ'_opt := Float.sqrt (1 - wₚ'_opt ^ 2) #eval hₚ'_opt -- 0.144371 -- Final L/D ratio.
def
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
hₚ'_opt
null
ldRatioₚ' := 1 / (Float.sqrt ((1 / wₚ'_opt ^ 2) - 1)) #eval ldRatioₚ' -- 6.854031
def
CvxLean
[ "import CvxLean", "import CvxLean.Command.Util.TimeCmd" ]
CvxLean/Examples/HypersonicShapeDesign.lean
ldRatioₚ'
null
trussDesign := optimization (h w r R : ℝ) with A := 2 * π * (R ^ 2 - r ^ 2) minimize 2 * A * sqrt (w ^ 2 + h ^ 2) subject to c_r : 0 < r c_F₁ : F₁ * sqrt (w ^ 2 + h ^ 2) / (2 * h) ≤ σ * A c_F₂ : F₂ * sqrt (w ^ 2 + h ^ 2) / (2 * w) ≤ σ * A c_hmin : hmin ≤ h c_hmax : h ≤ hmax c_wmin : wmin ≤ w c_wmax : w ≤ wmax c_R_lb : 1.1 * r ≤ R c_R_ub : R ≤ Rmax
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
trussDesign
null
hminₚ : ℝ := 1 @[optimization_param]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
hminₚ
null
hmaxₚ : ℝ := 100 @[simp high]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
hmaxₚ
null
hminₚ_pos : 0 < hminₚ := by unfold hminₚ; norm_num
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
hminₚ_pos
null
hminₚ_le_hmaxₚ : hminₚ ≤ hmaxₚ := by unfold hminₚ hmaxₚ; norm_num @[optimization_param]
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
hminₚ_le_hmaxₚ
null
wminₚ : ℝ := 1 @[optimization_param]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
wminₚ
null
wmaxₚ : ℝ := 100 @[simp high]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
wmaxₚ
null
wminₚ_pos : 0 < wminₚ := by unfold wminₚ; norm_num
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
wminₚ_pos
null
wminₚ_le_wmaxₚ : wminₚ ≤ wmaxₚ := by unfold wminₚ wmaxₚ; norm_num @[optimization_param]
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
wminₚ_le_wmaxₚ
null
Rmaxₚ : ℝ := 10 @[simp high]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
Rmaxₚ
null
Rmaxₚ_pos : 0 < Rmaxₚ := by unfold Rmaxₚ; norm_num @[optimization_param]
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
Rmaxₚ_pos
null
σₚ : ℝ := 0.5 @[simp high]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
σₚ
null
σₚ_pos : 0 < σₚ := by unfold σₚ; norm_num @[optimization_param]
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
σₚ_pos
null
F₁ₚ : ℝ := 10 @[simp high]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
F₁ₚ
null
F₁ₚ_pos : 0 < F₁ₚ := by unfold F₁ₚ; norm_num @[optimization_param]
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
F₁ₚ_pos
null
F₂ₚ : ℝ := 20 @[simp high]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
F₂ₚ
null
F₂ₚ_pos : 0 < F₂ₚ := by unfold F₂ₚ; norm_num solve trussDesignDCP hminₚ hmaxₚ hminₚ_pos hminₚ_le_hmaxₚ wminₚ wmaxₚ wminₚ_pos wminₚ_le_wmaxₚ Rmaxₚ Rmaxₚ_pos σₚ σₚ_pos F₁ₚ F₁ₚ_pos F₂ₚ F₂ₚ_pos -- There are two non-trivial backward maps here, one from `eqv₁` and one from `eqv₂`, so we need to -- apply both of them.
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
F₂ₚ_pos
null
eqv₁.backward_mapₚ := eqv₁.backward_map hminₚ.float hmaxₚ.float wminₚ.float wmaxₚ.float Rmaxₚ.float σₚ.float F₁ₚ.float F₂ₚ.float
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
eqv₁.backward_mapₚ
null
eqv₂.backward_mapₚ := eqv₂.backward_map hminₚ.float hmaxₚ.float wminₚ.float wmaxₚ.float Rmaxₚ.float σₚ.float F₁ₚ.float F₂ₚ.float
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
eqv₂.backward_mapₚ
null
sol := eqv₁.backward_mapₚ (eqv₂.backward_mapₚ trussDesignDCP.solution) -- Finally, we obtain the optimal height, width, inner radius, and outer radius.
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
sol
null
hₚ_opt := sol.1
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
hₚ_opt
null
wₚ_opt := sol.2.1
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
wₚ_opt
null
rₚ_opt := sol.2.2.1
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
rₚ_opt
null
Rₚ_opt := sol.2.2.2 -- NOTE: These numbers may differ slighlty depending on the rewrites found by `pre_dcp`. #eval hₚ_opt -- 1.000000 #eval wₚ_opt -- 1.000517 #eval rₚ_opt -- 0.010162 #eval Rₚ_opt -- 2.121443
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
Rₚ_opt
null
valueₚ := let pi := 2 * Float.acos 0; let Aₚ_opt := 2 * pi * (Rₚ_opt ^ 2 - rₚ_opt ^ 2); 2 * Aₚ_opt * Float.sqrt (wₚ_opt ^ 2 + hₚ_opt ^ 2) #eval valueₚ -- 79.999976
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/TrussDesign.lean
valueₚ
null
vehSpeedSched [Fact (0 < n)] := optimization (s : Fin n → ℝ) minimize ∑ i, (d i / s i) * F (s i) subject to c_smin : ∀ i, smin i ≤ s i c_smax : ∀ i, s i ≤ smax i c_τmin : ∀ i, τmin i ≤ ∑ j in [[0, i]], d j / s j c_τmax : ∀ i, ∑ j in [[0, i]], d j / s j ≤ τmax i variable {n}
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
vehSpeedSched
null
simp_vec_fraction (h_d_pos : StrongLT 0 d) (s : Fin n → ℝ) (i : Fin n) : d i / (d i / s i) = s i := by have h_di_pos := h_d_pos i; simp at h_di_pos; have h_di_nonzero : d i ≠ 0 := by linarith rw [← div_mul, div_self h_di_nonzero, one_mul]
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
simp_vec_fraction
null
fold_partial_sum [hn : Fact (0 < n)] (t : Fin n → ℝ) (i : Fin n) : ∑ j in [[0, i]], t j = Vec.cumsum t i := by simp [Vec.cumsum]; split_ifs · rfl · linarith [hn.out] equivalence* eqv₁/vehSpeedSchedConvex (n : ℕ) (d : Fin n → ℝ) (τmin τmax smin smax : Fin n → ℝ) (F : ℝ → ℝ) (h_n_pos : 0 < n) (h_d_pos : StrongLT 0 d) (h_smin_pos : StrongLT 0 smin) : @vehSpeedSched n d τmin τmax smin smax F ⟨h_n_pos⟩ := by replace h_d_pos : ∀ i, 0 < d i := h_d_pos replace h_smin_pos : ∀ i, 0 < smin i := h_smin_pos haveI : Fact (0 < n) := ⟨h_n_pos⟩ -- Change variables `s ↦ d / t`. -- TODO: This can be done by change of variables by detecting that the variable is a vector. equivalence_step => apply ChangeOfVariables.toEquivalence (fun t => d / t) · rintro s ⟨c_smin, _⟩ i; split_ands <;> linarith [h_smin_pos i, c_smin i, h_d_pos i] rename_vars [t] -- Clean up divisions introduced by the change of variables. conv_obj => simp only [Pi.div_apply, simp_vec_fraction d h_d_pos] conv_constr c_τmin => simp only [Pi.div_apply, simp_vec_fraction d h_d_pos] conv_constr c_τmax => simp only [Pi.div_apply, simp_vec_fraction d h_d_pos] -- Put in matrix form. rw_obj into (Vec.sum (t * (Vec.map F (d / t)))) => simp [Vec.sum]; rfl rw_constr c_smin into (smin ≤ d / t) => rfl rw_constr c_smax into (d / t ≤ smax) => rfl rw_constr c_τmin into (τmin ≤ Vec.cumsum t) => simp [fold_partial_sum t]; rfl rw_constr c_τmax into (Vec.cumsum t ≤ τmax) => simp [fold_partial_sum t]; rfl #print vehSpeedSchedConvex -- optimization (t : Fin n → ℝ) -- minimize Vec.sum (t * Vec.map F (d / t)) -- subject to -- c_smin : smin ≤ d / t -- c_smax : d / t ≤ smax -- c_τmin : τmin ≤ Vec.cumsum t -- c_τmax : Vec.cumsum t ≤ τmax #check eqv₁.backward_map -- The problem is technically in DCP form if `F` is DCP convex. The only issue is that we do not -- have an atom for the perspective function, so the objective function -- `Vec.sum (t * Vec.map F (d / t))` cannot be canonized directly. -- However, if we fix `F`, we can use other atoms. For example, if `F` is quadratic, the problem can -- be canonized. Let `F(s) = a * s^2 + b * s + c` with `0 ≤ a`. equivalence* eqv₂/vehSpeedSchedQuadratic (n : ℕ) (d : Fin n → ℝ) (τmin τmax smin smax : Fin n → ℝ) (a b c : ℝ) (h_n_pos : 0 < n) (h_d_pos : StrongLT 0 d) (h_smin_pos : StrongLT 0 smin) : vehSpeedSchedConvex n d τmin τmax smin smax (fun s => a • s ^ (2 : ℝ) + b • s + c) h_n_pos h_d_pos h_smin_pos := by have t_pos_of_c_smin : ∀ t, smin ≤ d / t → StrongLT 0 t := fun t h i => by have h_di_div_ti_pos := lt_of_lt_of_le (h_smin_pos i) (h i) cases div_pos_iff.mp h_di_div_ti_pos with | inl h_pos => exact h_pos.2 | inr h_neg => have d_pos_i := h_d_pos i; simp at d_pos_i ⊢; linarith [h_neg.1, d_pos_i] -- Add constraint to tell the system that `t` is positive. equivalence_step => apply Equivalence.add_constraint (cs' := fun t => StrongLT 0 t) · rintro t ⟨c_smin, _⟩ i exact t_pos_of_c_smin t c_smin i rename_vars [t] rename_constrs [c_t, c_smin, c_smax, c_τmin, c_τmax] -- Arithmetic simplification in the objective function. rw_obj into (Vec.sum (a • (d ^ (2 : ℝ)) * (1 / t) + b • d + c • t)) => congr; funext i; unfold Vec.map; dsimp have h_ti_pos : 0 < t i := c_t i field_simp; ring -- Rewrite linear constraints. rw_constr c_smin into (smin * t ≤ d) => rw [Vec.le_div_iff c_t] rw_constr c_smax into (d ≤ smax * t) => rw [Vec.div_le_iff c_t] -- Finally, we can apply `dcp`! (or we can call `solve`, as we do below). #print vehSpeedSchedQuadratic -- optimization (t : Fin n → ℝ) -- minimize Vec.sum (a • d ^ 2 * (1 / t) + b • d + c • t) -- subject to -- c_t : StrongLT 0 t -- c_smin : smin * t ≤ d -- c_smax : d ≤ smax * t -- c_τmin : τmin ≤ Vec.cumsum t -- c_τmax : Vec.cumsum t ≤ τmax #check eqv₂.backward_map -- Now, let's solve a concrete instance of the problem: -- https://github.com/cvxgrp/cvxbook_additional_exercises/blob/main/python/veh_speed_sched_data.py @[optimization_param, reducible]
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
fold_partial_sum
null
nₚ : ℕ := 10
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
nₚ
null
nₚ_pos : 0 < nₚ := by unfold nₚ; norm_num @[optimization_param, reducible]
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
nₚ_pos
null
dₚ : Fin nₚ → ℝ := ![1.9501, 1.2311, 1.6068, 1.4860, 1.8913, 1.7621, 1.4565, 1.0185, 1.8214, 1.4447]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
dₚ
null
dₚ_pos : StrongLT 0 dₚ := by intro i; fin_cases i <;> (dsimp [dₚ]; norm_num) @[optimization_param, reducible]
lemma
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
dₚ_pos
null
τminₚ : Fin nₚ → ℝ := ![1.0809, 2.7265, 3.5118, 5.3038, 5.4516, 7.1648, 9.2674, 12.1543, 14.4058, 16.6258] @[optimization_param, reducible]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
τminₚ
null
τmaxₚ : Fin nₚ → ℝ := ![4.6528, 6.5147, 7.5178, 9.7478, 9.0641, 10.3891, 13.1540, 16.0878, 17.4352, 20.9539] @[optimization_param, reducible]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
τmaxₚ
null
sminₚ : Fin nₚ → ℝ := ![0.7828, 0.6235, 0.7155, 0.5340, 0.6329, 0.4259, 0.7798, 0.9604, 0.7298, 0.8405] @[optimization_param, reducible]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
sminₚ
null
smaxₚ : Fin nₚ → ℝ := ![1.9624, 1.6036, 1.6439, 1.5641, 1.7194, 1.9090, 1.3193, 1.3366, 1.9470, 2.8803]
def
CvxLean
[ "import CvxLean" ]
CvxLean/Examples/VehicleSpeedScheduling.lean
smaxₚ
null
End of preview. Expand in Data Studio

Lean4-CvxLean

Structured dataset from CvxLean — Convex optimization.

1,218 declarations extracted from Lean 4 source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string theorem, def, lemma, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
docstring string Documentation (if present)
Downloads last month
17

Collection including phanerozoic/Lean4-CvxLean