Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
9
121k
type
stringclasses
10 values
library
stringclasses
2 values
imports
listlengths
0
18
filename
stringclasses
194 values
symbolic_name
stringlengths
1
49
docstring
stringclasses
225 values
e : ℕ ≃ ℕ ⊕ α := Classical.choice (inferInstance : Nonempty (ℕ ≃ ℕ ⊕ α))
def
equational_theories
[ "import Mathlib.Data.Countable.Defs", "import Mathlib.Data.Sum.Basic", "import Mathlib.SetTheory.Cardinal.Arithmetic" ]
equational_theories/AdjoinFresh.lean
e
null
adjoinFresh (m : ℕ) : ℕ ≃ ℕ ⊕ α where toFun n := if n < m then .inl n else match e (n - m) with | .inl k => .inl (k + m) | .inr c => .inr c invFun | .inl k => if k < m then k else e.symm (.inl (k-m)) + m | .inr c => e.symm (.inr c) + m left_inv n := by dsimp by_cases h : n < m · simp [h] · simp [h] cases h' : (e (α:=α) (n -m)) · simp only [add_lt_iff_neg_right, not_lt_zero', ↓reduceIte, add_tsub_cancel_right] rw [← h'] simp only [Equiv.symm_apply_apply] aesop · simp [← h'] omega right_inv a := by cases a case inl n => simp only by_cases h : n < m · simp [h] · simp only [h, ↓reduceIte, Nat.add_sub_cancel, Equiv.apply_symm_apply] have : ¬ ((e (α := α)).symm (Sum.inl (n - m)) + m < m) := by omega simp only [this, ↓reduceIte, Sum.inl.injEq] omega case inr => simp
def
equational_theories
[ "import Mathlib.Data.Countable.Defs", "import Mathlib.Data.Sum.Basic", "import Mathlib.SetTheory.Cardinal.Arithmetic" ]
equational_theories/AdjoinFresh.lean
adjoinFresh
null
adjoinFresh_fixed {m k: ℕ} (h : k < m) : adjoinFresh (α := α) m k = .inl k := by unfold adjoinFresh; simp [h]
theorem
equational_theories
[ "import Mathlib.Data.Countable.Defs", "import Mathlib.Data.Sum.Basic", "import Mathlib.SetTheory.Cardinal.Arithmetic" ]
equational_theories/AdjoinFresh.lean
adjoinFresh_fixed
null
adjoinFresh_fixed' {m k: ℕ} (h : k < m) : (adjoinFresh (α := α ) m).symm (.inl k) = k := by unfold adjoinFresh; simp [h]
theorem
equational_theories
[ "import Mathlib.Data.Countable.Defs", "import Mathlib.Data.Sum.Basic", "import Mathlib.SetTheory.Cardinal.Arithmetic" ]
equational_theories/AdjoinFresh.lean
adjoinFresh_fixed'
null
PartialSolution where E0 : Finset (G × G) E1 : Finset (G × G) f : G → G → G E0_subset_E1 : E0 ⊆ E1 t_mem_of_mem_E0' : ∀ x ∈ E0, (x.2, f x.1 x.2) ∈ E1 mem_2_of_mem_E0 : ∀ x ∈ E0, (x.1, f x.2 (f x.1 x.2)) ∈ E1 eq_of_mem_E0 : ∀ x ∈ E0, f x.1 (f x.2 (f x.1 x.2)) = x.2 undef_of_not_mem_E0' : ∀ x ∈ E1 \ E0, (x.2, f x.1 x.2) ∉ E1 strange: ∀ x ∈ E1, f x.1 x.2 = x.1 → ((x.2, x.2) ∈ E1 ∧ f x.2 x.2 = x.1)
structure
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution
null
PartialSolution.g (f : PartialSolution G) : G × G → G × G := fun (x, y) => (y, f.f x y)
abbrev
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.g
null
PartialSolution.le_def {a b : PartialSolution G} : a ≤ b ↔ a.E0 ≤ b.E0 ∧ a.E1 ≤ b.E1 ∧ Set.EqOn a.f.uncurry b.f.uncurry a.E1 := Iff.rfl
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.le_def
null
PartialSolution.t_mem_of_mem_E0 (f : PartialSolution G) {x : G × G} (hx : x ∈ f.E0) : f.g x ∈ f.E1 := f.t_mem_of_mem_E0' x hx
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.t_mem_of_mem_E0
null
PartialSolution.undef_of_not_mem_E0 (f : PartialSolution G) (x : G × G) (hx : x ∉ f.E0) (hx2 : x ∈ f.E1) : f.g x ∉ f.E1 := f.undef_of_not_mem_E0' x (by simp [*])
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.undef_of_not_mem_E0
null
PartialSolution.move_rev_good (f : PartialSolution G) (x y : G) (z : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1 → f.f x y ≠ x) (hz1 : ∀ x ∈ f.E1, x.2 ≠ z) (hz2 : ∀ x ∈ f.E1, f.f x.1 x.2 ≠ z) (hz3 : ∀ x ∈ f.E1, x.1 ≠ z) (hzx : z ≠ x) (hzy : z ≠ y) : PartialSolution G := let f' y' x' := if y' = y ∧ x' = x then z else if x' = z then y else f.f y' x' have f'_of_mem_E1 {a b : G} (ha : (a, b) ∈ f.E1) : f' a b = f.f a b := by dsimp [f'] rw [if_neg, if_neg] · exact hz1 _ ha · rintro ⟨rfl, rfl⟩; exact h1 ha have f'_of_mem_E0 {a b : G} (ha : (a, b) ∈ f.E0) : f' a b = f.f a b := f'_of_mem_E1 (f.E0_subset_E1 ha) have f'_y_x : f' y x = z := by simp [f'] have f'_z {a : G} : f' a z = y := by simp [f', hzx] { E0 := f.E0 ∪ (f.E1.filter fun ⟨y', x'⟩ ↦ x' = y ∧ f.f y' x' = x) E1 := f.E1 ∪ {(y, x), (z, z)} ∪ (f.E1.filter fun ⟨y', x'⟩ ↦ x' = y ∧ f.f y' x' = x).image fun ⟨y', _⟩ ↦ (y', z) f := f' E0_subset_E1 := by trans f.E1 · exact Finset.union_subset (f.E0_subset_E1) (Finset.filter_subset ..) · rw [Finset.union_assoc]; exact Finset.subset_union_left t_mem_of_mem_E0' := by rintro ⟨x', y'⟩ ha simp only [Finset.mem_union, Finset.mem_filter] at ha rcases ha with ha | ⟨ha, rfl, rfl⟩ · rw [f'_of_mem_E0 ha]; simp [f.t_mem_of_mem_E0 ha] · rw [f'_of_mem_E1 ha]; simp mem_2_of_mem_E0 := by rintro ⟨x', y'⟩ ha simp only [Finset.mem_union, Finset.mem_filter] at ha rcases ha with ha | ⟨ha, rfl, rfl⟩ · rw [f'_of_mem_E0 ha, f'_of_mem_E1 (f.t_mem_of_mem_E0 ha)] simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, f.mem_2_of_mem_E0 _ ha, Finset.mem_singleton, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right, true_or, or_true] · rw [f'_of_mem_E1 ha, f'_y_x] apply Finset.mem_union_right simp only [Finset.mem_image, Finset.mem_filter, Prod.mk.injEq, and_true, Prod.exists, exists_and_right, exists_eq_right] use y' eq_of_mem_E0 := by rintro ⟨x', y'⟩ ha simp only [Finset.mem_union, Finset.mem_filter] at ha rcases ha with ha | ⟨ha, rfl, rfl⟩ · rw [f'_of_mem_E0 ha, f'_of_mem_E1 (f.t_mem_of_mem_E0 ha), f'_of_mem_E1 (f.mem_2_of_mem_E0 _ ha)] apply f.eq_of_mem_E0 _ ha · rw [f'_of_mem_E1 ha, f'_y_x, f'_z] undef_of_not_mem_E0' := by rintro ⟨x', y'⟩ ha simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_sdiff, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right, not_or, not_and] at ha obtain ⟨⟨rfl, rfl⟩ | ha | ⟨rfl, rfl⟩ | ⟨a, ⟨⟨x, ha, rfl, rfl⟩, rfl, rfl⟩⟩, ha2, ha3⟩ := ha · rw [f'_y_x] intro mem simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, and_true, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right, exists_eq_right] at mem obtain ⟨rfl, rfl⟩ | mem | rfl | ⟨x, mem, rfl, mem2⟩ := mem · exact hzx rfl · exact hz1 _ mem rfl · exact hzx rfl · exact h2 mem mem2 · rw [f'_of_mem_E1 ha] intro mem simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right] at mem obtain ⟨rfl, rfl⟩ | mem | ⟨rfl, mem⟩ | ⟨x, -, rfl, mem2⟩ := mem · exact ha3 ha rfl rfl · exact f.undef_of_not_mem_E0 _ ha2 ha mem · exact hz1 _ ha rfl · exact hz2 _ ha mem2.symm · rw [f'_z] intro mem simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, true_and, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right] at mem obtain ⟨rfl, rfl⟩ | mem | ⟨rfl, mem⟩ | ⟨x, mem, rfl, rfl⟩ := mem · exact hzx rfl · exact hz3 _ mem rfl · exact hzy rfl · exact hzy rfl · rw [f'_z] intro mem simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, true_and, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right] at mem obtain ⟨rfl, mem⟩ | mem | ⟨rfl, mem⟩ | ⟨x, mem, rfl, rfl⟩ := mem · exact hzy rfl · exact hz3 _ mem rfl · exact hzy rfl · exact hzy rfl strange := by rintro ⟨x', y'⟩ ha heq simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right] at ha dsimp only at heq ⊢ obtain ⟨rfl, rfl⟩ | ha | ⟨rfl, rfl⟩ | ⟨a, ⟨⟨x, -, rfl, rfl⟩, rfl, rfl⟩⟩ := ha · exact (hzy (f'_y_x ▸ heq)).elim · rw [f'_of_mem_E1 ha] at heq simp [f.strange _ ha heq, f'_of_mem_E1] · simp [heq] · simp only [Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, true_or, or_true, f'_z, true_and] rw [← heq, f'_z] }
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.move_rev_good
null
PartialSolution.le_move_rev_good (f : PartialSolution G) (x y : G) (z : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1 → f.f x y ≠ x) (hz1 : ∀ x ∈ f.E1, x.2 ≠ z) (hz2 : ∀ x ∈ f.E1, f.f x.1 x.2 ≠ z) (hz3 : ∀ x ∈ f.E1, x.1 ≠ z) (hzx : z ≠ x) (hzy : z ≠ y) : f ≤ f.move_rev_good x y z h1 h2 hz1 hz2 hz3 hzx hzy := by simp only [move_rev_good, Finset.union_assoc, le_def, Finset.le_eq_subset, Finset.subset_union_left, true_and] rintro ⟨x', y'⟩ mem simp only [Function.uncurry_apply_pair] rw [if_neg, if_neg] · exact hz1 _ mem · rintro ⟨rfl, rfl⟩ exact h1 mem
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.le_move_rev_good
null
PartialSolution.mem_move_rev_good (f : PartialSolution G) (x y : G) (z : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1 → f.f x y ≠ x) (hz1 : ∀ x ∈ f.E1, x.2 ≠ z) (hz2 : ∀ x ∈ f.E1, f.f x.1 x.2 ≠ z) (hz3 : ∀ x ∈ f.E1, x.1 ≠ z) (hzx : z ≠ x) (hzy : z ≠ y) : (y, x) ∈ (f.move_rev_good x y z h1 h2 hz1 hz2 hz3 hzx hzy).E1 := by simp [move_rev_good]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_move_rev_good
null
PartialSolution.mem_move_rev_good_of_app_eq (f : PartialSolution G) (x y : G) (z : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1 → f.f x y ≠ x) (hz1 : ∀ x ∈ f.E1, x.2 ≠ z) (hz2 : ∀ x ∈ f.E1, f.f x.1 x.2 ≠ z) (hz3 : ∀ x ∈ f.E1, x.1 ≠ z) (hzx : z ≠ x) (hzy : z ≠ y) (a : G) (hbm : (a, y) ∈ f.E1) (hp : f.f a y = x) : (a, y) ∈ (f.move_rev_good x y z h1 h2 hz1 hz2 hz3 hzx hzy).E0 := by simp [move_rev_good, hbm, hp]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_move_rev_good_of_app_eq
null
PartialSolution.move_rev_bad (f : PartialSolution G) (x y : G) (z : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1) (h22 : f.f x y = x) (hz1 : ∀ x ∈ f.E1, x.2 ≠ z) (hz2 : ∀ x ∈ f.E1, f.f x.1 x.2 ≠ z) (hz3 : ∀ x ∈ f.E1, x.1 ≠ z) (hzx : z ≠ x) (hzy : z ≠ y) : PartialSolution G := let f' y' x' := if y' = y ∧ x' = x then z else if x' = z then y else f.f y' x' have f'_of_mem_E1 {a b : G} (ha : (a, b) ∈ f.E1) : f' a b = f.f a b := by dsimp [f'] rw [if_neg, if_neg] · exact hz1 _ ha · rintro ⟨rfl, rfl⟩ exact h1 ha have f'_of_mem_E0 {a b : G} (ha : (a, b) ∈ f.E0) : f' a b = f.f a b := f'_of_mem_E1 (f.E0_subset_E1 ha) have f'_y_x : f' y x = z := by simp [f'] have f'_z {a : G} : f' a z = y := by simp [f', hzx] { E0 := f.E0 ∪ {(y, x)} ∪ (f.E1.filter fun ⟨y', x'⟩ ↦ x' = y ∧ f.f y' x' = x) E1 := f.E1 ∪ {(y, x), (z, z)} ∪ (f.E1.filter fun ⟨y', x'⟩ ↦ x' = y ∧ f.f y' x' = x).image fun ⟨y', _⟩ ↦ (y', z) f := f' E0_subset_E1 := by nth_rw 2 [Finset.union_assoc] apply Finset.union_subset apply Finset.union_subset · trans f.E1 exact f.E0_subset_E1 exact Finset.subset_union_left · trans {(y, x), (z, z)} simp only [Finset.singleton_subset_iff, Finset.mem_insert, Finset.mem_singleton, Prod.mk.injEq, true_or] exact fun x hx ↦ Finset.mem_union_right _ (Finset.mem_union_left _ hx) · trans f.E1 apply Finset.filter_subset exact Finset.subset_union_left t_mem_of_mem_E0' := by rintro ⟨x', y'⟩ ha simp only [Finset.union_assoc, Finset.mem_union, Finset.mem_singleton, Prod.mk.injEq, Finset.mem_filter] at ha rcases ha with ha | ⟨rfl, rfl⟩ | ⟨ha, rfl, rfl⟩ · rw [f'_of_mem_E0 ha]; simp [f.t_mem_of_mem_E0 ha] · simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right] right; right; right use y' simp only [f'_y_x, and_self, and_true] use x' · rw [f'_of_mem_E1 ha]; simp mem_2_of_mem_E0 := by rintro ⟨x', y'⟩ ha simp only [Finset.union_assoc, Finset.mem_union, Finset.mem_singleton, Prod.mk.injEq, Finset.mem_filter] at ha rcases ha with ha | ⟨rfl, rfl⟩ | ⟨ha, rfl, rfl⟩ · rw [f'_of_mem_E0 ha, f'_of_mem_E1 (f.t_mem_of_mem_E0 ha)] simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, f.mem_2_of_mem_E0 _ ha, Finset.mem_singleton, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right, true_or, or_true] · simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, f'_y_x, f'_z, Finset.mem_insert, Prod.mk.injEq, true_and, Finset.mem_union, f.strange _ h2 h22, Finset.mem_singleton, and_self, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right, true_or, or_true] · rw [f'_of_mem_E1 ha, f'_y_x] apply Finset.mem_union_right simp only [Finset.mem_image, Finset.mem_filter, Prod.mk.injEq, and_true, Prod.exists, exists_and_right, exists_eq_right] use y' eq_of_mem_E0 := by rintro ⟨x', y'⟩ ha simp only [Finset.union_assoc, Finset.mem_union, Finset.mem_singleton, Prod.mk.injEq, Finset.mem_filter] at ha rcases ha with ha | ⟨rfl, rfl⟩ | ⟨ha, rfl, rfl⟩ · rw [f'_of_mem_E0 ha, f'_of_mem_E1 (f.t_mem_of_mem_E0 ha), f'_of_mem_E1 (f.mem_2_of_mem_E0 _ ha)] apply f.eq_of_mem_E0 _ ha · simp only [f'_y_x, f'_z, f.strange _ h2 h22, f'_of_mem_E1] · rw [f'_of_mem_E1 ha, f'_y_x, f'_z] undef_of_not_mem_E0' := by rintro ⟨x', y'⟩ ha simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_sdiff, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right, not_or, not_and] at ha obtain ⟨⟨rfl, rfl⟩ | ha | ⟨rfl, rfl⟩ | ⟨a, ⟨⟨x, ha, rfl, rfl⟩, rfl, rfl⟩⟩, ha2, ha3, ha4⟩ := ha · simp at ha3 · rw [f'_of_mem_E1 ha] intro mem simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right] at mem obtain ⟨rfl, rfl⟩ | mem | ⟨rfl, mem⟩ | ⟨x, -, rfl, mem2⟩ := mem · exact ha4 ha rfl rfl · exact f.undef_of_not_mem_E0 _ ha2 ha mem · exact hz1 _ ha rfl · exact hz2 _ ha mem2.symm · rw [f'_z] intro mem simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, true_and, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right] at mem obtain ⟨rfl, rfl⟩ | mem | ⟨rfl, mem⟩ | ⟨x, mem, rfl, rfl⟩ := mem · exact hzx rfl · exact hz3 _ mem rfl · exact hzy rfl · exact hzy rfl · rw [f'_z] intro mem simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, true_and, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right] at mem obtain ⟨rfl, mem⟩ | mem | ⟨rfl, mem⟩ | ⟨x, mem, rfl, rfl⟩ := mem · exact hzy rfl · exact hz3 _ mem rfl · exact hzy rfl · exact hzy rfl strange := by rintro ⟨x', y'⟩ ha heq simp only [Finset.union_insert, Finset.insert_union, Finset.union_assoc, Finset.mem_insert, Prod.mk.injEq, Finset.mem_union, Finset.mem_singleton, Finset.mem_image, Finset.mem_filter, Prod.exists, exists_and_right] at ha dsimp only at heq ⊢ obtain ⟨rfl, rfl⟩ | ha | ⟨rfl, rfl⟩ | ⟨a, ⟨⟨x, -, rfl, rfl⟩, rfl, rfl⟩⟩ := ha · exact (hzy (f'_y_x ▸ heq)).elim · rw [f'_of_mem_E1 ha] at heq simp [f.strange _ ha heq, f'_of_mem_E1] · simp [heq] · simp only [Finset.mem_insert, Finset.mem_union, Finset.mem_singleton, true_or, or_true, f'_z, true_and] rw [← heq, f'_z] }
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.move_rev_bad
null
PartialSolution.le_move_rev_bad (f : PartialSolution G) (x y : G) (z : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1) (h22 : f.f x y = x) (hz1 : ∀ x ∈ f.E1, x.2 ≠ z) (hz2 : ∀ x ∈ f.E1, f.f x.1 x.2 ≠ z) (hz3 : ∀ x ∈ f.E1, x.1 ≠ z) (hzx : z ≠ x) (hzy : z ≠ y) : f ≤ f.move_rev_bad x y z h1 h2 h22 hz1 hz2 hz3 hzx hzy := by simp only [move_rev_bad, Finset.union_assoc, le_def, Finset.le_eq_subset, Finset.subset_union_left, true_and] rintro ⟨x', y'⟩ mem simp only [Function.uncurry_apply_pair] rw [if_neg, if_neg] · exact hz1 _ mem · rintro ⟨rfl, rfl⟩ exact h1 mem
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.le_move_rev_bad
null
PartialSolution.mem_move_rev_bad (f : PartialSolution G) (x y : G) (z : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1) (h22 : f.f x y = x) (hz1 : ∀ x ∈ f.E1, x.2 ≠ z) (hz2 : ∀ x ∈ f.E1, f.f x.1 x.2 ≠ z) (hz3 : ∀ x ∈ f.E1, x.1 ≠ z) (hzx : z ≠ x) (hzy : z ≠ y) : (y, x) ∈ (f.move_rev_bad x y z h1 h2 h22 hz1 hz2 hz3 hzx hzy).E1 := by simp [move_rev_bad]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_move_rev_bad
null
PartialSolution.mem_move_rev_bad_of_app_eq (f : PartialSolution G) (x y : G) (z : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1) (h22 : f.f x y = x) (hz1 : ∀ x ∈ f.E1, x.2 ≠ z) (hz2 : ∀ x ∈ f.E1, f.f x.1 x.2 ≠ z) (hz3 : ∀ x ∈ f.E1, x.1 ≠ z) (hzx : z ≠ x) (hzy : z ≠ y) (a : G) (hbm : (a, y) ∈ f.E1) (hp : f.f a y = x) : (a, y) ∈ (f.move_rev_bad x y z h1 h2 h22 hz1 hz2 hz3 hzx hzy).E0 := by simp [move_rev_bad, hbm, hp] variable [Denumerable G]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_move_rev_bad_of_app_eq
null
Denumerable.notMemFinset (s : Finset G) : G := Denumerable.ofNat G (Nat.find (Infinite.exists_notMem_finset (s.image Encodable.encode))) omit [DecidableEq G] in
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
Denumerable.notMemFinset
null
Denumerable.notMemFinset_prop (s : Finset G) : Denumerable.notMemFinset s ∉ s := by simp only [notMemFinset, Finset.mem_image, not_exists, not_and, Denumerable.decode_eq_ofNat, Option.some.injEq] intro mem have : Nat.find (Infinite.exists_notMem_finset (s.image Encodable.encode)) ∈ s.image Encodable.encode := by rw [Finset.mem_image] exact ⟨_, mem, by simp⟩ have : Nat.find (Infinite.exists_notMem_finset (s.image Encodable.encode)) ∉ s.image Encodable.encode := Nat.find_spec (Infinite.exists_notMem_finset (s.image Encodable.encode)) contradiction
theorem
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
Denumerable.notMemFinset_prop
null
PartialSolution.move_rev_good' (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1 → f.f x y ≠ x) : PartialSolution G := by -- This intentionally used `by` for data. let z : G := Denumerable.notMemFinset (f.E1.image (·.1) ∪ f.E1.image (·.2) ∪ f.E1.image (fun ⟨a, b⟩ ↦ f.f a b) ∪ {x, y}) have zp := Denumerable.notMemFinset_prop (f.E1.image (·.1) ∪ f.E1.image (·.2) ∪ f.E1.image (fun ⟨a, b⟩ ↦ f.f a b) ∪ {x, y}) change z ∉ _ at zp simp only [Finset.union_assoc, Finset.union_insert, Finset.mem_insert, Finset.mem_union, Finset.mem_image, Prod.exists, exists_and_right, exists_eq_right, Finset.mem_singleton, not_or, not_exists, not_and] at zp exact f.move_rev_good x y z h1 h2 (fun x hx nh ↦ zp.2.2.1 x.1 (by convert hx; simp [nh])) (fun x hx ↦ zp.2.2.2.1 x.1 x.2 hx) (fun x hx nh ↦ zp.2.1 x.2 (by convert hx; simp [nh])) zp.1 zp.2.2.2.2
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.move_rev_good'
null
PartialSolution.le_move_rev_good' (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1 → f.f x y ≠ x) : f ≤ f.move_rev_good' x y h1 h2 := by simp [move_rev_good', le_move_rev_good]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.le_move_rev_good'
null
PartialSolution.mem_move_rev_good' (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1 → f.f x y ≠ x) : (y, x) ∈ (f.move_rev_good' x y h1 h2).E1 := by simp [move_rev_good', mem_move_rev_good]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_move_rev_good'
null
PartialSolution.mem_move_rev_good'_of_app_eq (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1 → f.f x y ≠ x) (a : G) (hbm : (a, y) ∈ f.E1) (hp : f.f a y = x) : (a, y) ∈ (f.move_rev_good' x y h1 h2).E0 := by simp [move_rev_good', mem_move_rev_good_of_app_eq, hbm, hp]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_move_rev_good'_of_app_eq
null
PartialSolution.move_rev_bad' (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1) (h22 : f.f x y = x) : PartialSolution G := by let z : G := Denumerable.notMemFinset (f.E1.image (·.1) ∪ f.E1.image (·.2) ∪ f.E1.image (fun ⟨a, b⟩ ↦ f.f a b) ∪ {x, y}) have zp := Denumerable.notMemFinset_prop (f.E1.image (·.1) ∪ f.E1.image (·.2) ∪ f.E1.image (fun ⟨a, b⟩ ↦ f.f a b) ∪ {x, y}) change z ∉ _ at zp simp only [Finset.union_assoc, Finset.union_insert, Finset.mem_insert, Finset.mem_union, Finset.mem_image, Prod.exists, exists_and_right, exists_eq_right, Finset.mem_singleton, not_or, not_exists, not_and] at zp exact f.move_rev_bad x y z h1 h2 h22 (fun x hx nh ↦ zp.2.2.1 x.1 (by convert hx; simp [nh])) (fun x hx ↦ zp.2.2.2.1 x.1 x.2 hx) (fun x hx nh ↦ zp.2.1 x.2 (by convert hx; simp [nh])) zp.1 zp.2.2.2.2
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.move_rev_bad'
null
PartialSolution.le_move_rev_bad' (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1) (h22 : f.f x y = x) : f ≤ f.move_rev_bad' x y h1 h2 h22 := by simp [move_rev_bad', le_move_rev_bad]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.le_move_rev_bad'
null
PartialSolution.mem_move_rev_bad' (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1) (h22 : f.f x y = x) : (y, x) ∈ (f.move_rev_bad' x y h1 h2 h22).E1 := by simp [move_rev_bad', mem_move_rev_bad]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_move_rev_bad'
null
PartialSolution.mem_move_rev_bad'_of_app_eq (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) (h2 : (x, y) ∈ f.E1) (h22 : f.f x y = x) (a : G) (hbm : (a, y) ∈ f.E1) (hp : f.f a y = x) : (a, y) ∈ (f.move_rev_bad' x y h1 h2 h22).E0 := by simp [move_rev_bad', mem_move_rev_bad_of_app_eq, hbm, hp]
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_move_rev_bad'_of_app_eq
null
PartialSolution.act (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) : PartialSolution G := if h2 : (x, y) ∈ f.E1 → f.f x y ≠ x then f.move_rev_good' x y h1 h2 else f.move_rev_bad' x y h1 (by simp_all) (by simp_all)
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.act
null
PartialSolution.le_act (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) : f ≤ f.act x y h1 := by unfold act split · apply le_move_rev_good' · apply le_move_rev_bad'
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.le_act
null
PartialSolution.mem_act (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) : (y, x) ∈ (f.act x y h1).E1 := by unfold act split · apply mem_move_rev_good' · apply mem_move_rev_bad'
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_act
null
PartialSolution.mem_act_of_app_eq (f : PartialSolution G) (x y : G) (h1 : (y, x) ∉ f.E1) (a : G) (hbm : (a, y) ∈ f.E1) (hp : f.f a y = x) : (a, y) ∈ (f.act x y h1).E0 := by unfold act split · apply mem_move_rev_good'_of_app_eq <;> assumption · apply mem_move_rev_bad'_of_app_eq <;> assumption -- add (y, x)
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_act_of_app_eq
null
PartialSolution.add_e1 (f : PartialSolution G) (x y : G) : PartialSolution G := if h1 : (y, x) ∈ f.E1 then f else f.act x y h1
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.add_e1
null
PartialSolution.le_add_e1 (f : PartialSolution G) (x y : G) : f ≤ f.add_e1 x y := by unfold add_e1 split · rfl · apply le_act
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.le_add_e1
null
PartialSolution.mem_add_e1 (f : PartialSolution G) (x y : G) : (y, x) ∈ (f.add_e1 x y).E1 := by unfold add_e1 split · assumption · apply mem_act
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_add_e1
null
PartialSolution.mem_add_e1_of_app_eq (f : PartialSolution G) (x y : G) (a : G) (hbm : (a, y) ∈ f.E1) (hp : f.f a y = x) : (a, y) ∈ (f.add_e1 x y).E0 := by unfold add_e1 split · by_contra! nh apply f.undef_of_not_mem_E0 _ nh hbm simpa [g, hp] · apply mem_act_of_app_eq <;> assumption
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_add_e1_of_app_eq
null
PartialSolution.add_e0 (f : PartialSolution G) (x y : G) : PartialSolution G := let f' := f.add_e1 x y f'.add_e1 (f'.f y x) x
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.add_e0
null
PartialSolution.le_add_e0 (f : PartialSolution G) (x y : G) : f ≤ f.add_e0 x y := by unfold add_e0 trans f.add_e1 x y <;> apply le_add_e1
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.le_add_e0
null
PartialSolution.mem_add_e0 (f : PartialSolution G) (x y : G) : (y, x) ∈ (f.add_e0 x y).E0 := by apply mem_add_e1_of_app_eq · apply mem_add_e1 · rfl
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
PartialSolution.mem_add_e0
null
closureSeq (f : PartialSolution G) : ℕ → PartialSolution G | 0 => f | n+1 => (closureSeq f n).add_e0 (Denumerable.ofNat (G × G) n).2 (Denumerable.ofNat (G × G) n).1
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
closureSeq
null
closureSeq_le_closureSeq_succ (f : PartialSolution G) (n : ℕ) : closureSeq f n ≤ closureSeq f (n + 1) := PartialSolution.le_add_e0 ..
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
closureSeq_le_closureSeq_succ
null
mem_closureSeq_e0 (f : PartialSolution G) (a b : G) : (a, b) ∈ (closureSeq f (Encodable.encode (a, b) + 1)).E0 := by simp only [closureSeq, ge_iff_le, Equiv.symm_apply_apply, Denumerable.ofNat_encode] apply PartialSolution.mem_add_e0
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
mem_closureSeq_e0
null
closureSeq_mono (f : PartialSolution G) : Monotone (closureSeq f) := by intro n m hnm obtain ⟨m, rfl⟩ := Nat.exists_eq_add_of_le hnm clear hnm induction m with | zero => rfl | succ m hm => exact hm.trans (closureSeq_le_closureSeq_succ ..)
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
closureSeq_mono
null
le_closureSeq (f : PartialSolution G) (n : ℕ) : f ≤ closureSeq f n := closureSeq_mono f (Nat.zero_le n)
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
le_closureSeq
null
closure (f : PartialSolution G) : G → G → G := fun a b ↦ (closureSeq f (Encodable.encode (a, b) + 1)).f a b
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
closure
null
closure_eq_of_mem_e1 (f : PartialSolution G) (n : ℕ) (a b : G) (hn : (a, b) ∈ (closureSeq f n).E1) : closure f a b = (closureSeq f n).f a b := by simp only [closure, Prod.mk.eta] rcases le_total n (Encodable.encode (a, b) + 1) with h | h · exact (closureSeq_mono f h).2.2.symm hn · exact (closureSeq_mono f h).2.2 (PartialSolution.E0_subset_E1 _ (mem_closureSeq_e0 f a b))
lemma
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
closure_eq_of_mem_e1
null
closure_prop (f : PartialSolution G) : ∀ x y, closure f x (closure f y (closure f x y)) = y := by intro x y rw [closure_eq_of_mem_e1 f (Encodable.encode (x, y) + 1) x y, closure_eq_of_mem_e1 f (Encodable.encode (x, y) + 1) y, closure_eq_of_mem_e1 f (Encodable.encode (x, y) + 1)] · exact PartialSolution.eq_of_mem_E0 _ _ (mem_closureSeq_e0 ..) · exact PartialSolution.mem_2_of_mem_E0 _ _ (mem_closureSeq_e0 ..) · exact PartialSolution.t_mem_of_mem_E0' _ _ (mem_closureSeq_e0 ..) · exact PartialSolution.E0_subset_E1 _ (mem_closureSeq_e0 ..)
theorem
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
closure_prop
null
initial : PartialSolution ℕ where E0 := {(0, 0), (1, 0), (0, 1), (0, 8), (8, 8), (8, 0)} E1 := {(0, 0), (1, 0), (0, 2), (1, 3), (0, 3), (1, 1), (0, 5), (1, 6), (0, 1), (0, 8), (8, 8), (1, 8), (0, 9), (8, 0), (0, 10), (8, 10), (10, 10), (2, 0)} f a b := if a = 0 then [1, 8, 3, 4, 100, 6, 100, 100, 0, 1, 8].getD b 0 else if a = 1 then [2, 5, 100, 0, 100, 100, 7, 100, 9].getD b 0 else if a = 2 then 11 else if a = 8 then if b = 0 then 10 else if b = 10 then 8 else 0 else if a = 10 then 8 else 0 E0_subset_E1 := by decide t_mem_of_mem_E0' := by decide mem_2_of_mem_E0 := by decide eq_of_mem_E0 := by decide undef_of_not_mem_E0' := by decide strange := by decide @[equational_result]
def
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
initial
null
Equation65_facts : ∃ (G : Type) (_ : Magma G), Facts G [65] [614, 817, 1426, 3862, 4065] := by use ℕ, ⟨closure initial⟩ simp only [Equation65, closure_prop, implies_true, not_forall, true_and] split_ands repeat { use 0 nth_rw 4 [closure_eq_of_mem_e1 _ 0] nth_rw 3 [closure_eq_of_mem_e1 _ 0] nth_rw 2 [closure_eq_of_mem_e1 _ 0] nth_rw 1 [closure_eq_of_mem_e1 _ 0] · decide · decide · decide · decide · decide }
theorem
equational_theories
[ "import equational_theories.FactsSyntax", "import equational_theories.EquationalResult", "import Mathlib.Algebra.Order.Ring.Nat", "import Mathlib.Logic.Denumerable", "import Mathlib.Tactic.Recall", "import equational_theories.Equations.Basic" ]
equational_theories/Asterix.lean
Equation65_facts
null
ofMatrix {n : Nat} [Inhabited (Fin n)] (table : Array (Array (Fin n))) (x y : Fin n) : Fin n := table[x.val]![y.val]! /-- A 3x3 helper magma, A21, which streamlines the full construction. -/
def
equational_theories
[ "import equational_theories.Equations.All", "import equational_theories.FactsSyntax", "import equational_theories.MemoFinOp", "import equational_theories.DecideBang", "import equational_theories.Homomorphisms", "import equational_theories.SmallMagmas", "import Mathlib.Tactic.Linarith", "import Mathlib.Tactic.NormNum" ]
equational_theories/CentralGroupoids.lean
ofMatrix
null
MagmaA21 : Magma (Fin 3) where op := memoFinOp (ofMatrix #[ #[0, 1, 2], #[0, 2, 1], #[0, 2, 1] ]) /-- We define Knuth's A2 here in terms of A21. -/
def
equational_theories
[ "import equational_theories.Equations.All", "import equational_theories.FactsSyntax", "import equational_theories.MemoFinOp", "import equational_theories.DecideBang", "import equational_theories.Homomorphisms", "import equational_theories.SmallMagmas", "import Mathlib.Tactic.Linarith", "import Mathlib.Tactic.NormNum" ]
equational_theories/CentralGroupoids.lean
MagmaA21
/-- A 3x3 helper magma, A21, which streamlines the full construction. -/
MagmaA2 : Magma (Fin 3 × Fin 3) where op (p1 p2 : Fin 3 × Fin 3) : Fin 3 × Fin 3 := match p1, p2 with | (a, b), (⟨0, _⟩, _) => (MagmaA21.op a b, ⟨0, by decide⟩) | (_, b), (c, ⟨0, _⟩) => (b, MagmaA21.op b c) | (_, b), (c, _) => (b, c) /-- A magma isomorphic to A2, given as an optable. -/
def
equational_theories
[ "import equational_theories.Equations.All", "import equational_theories.FactsSyntax", "import equational_theories.MemoFinOp", "import equational_theories.DecideBang", "import equational_theories.Homomorphisms", "import equational_theories.SmallMagmas", "import Mathlib.Tactic.Linarith", "import Mathlib.Tactic.NormNum" ]
equational_theories/CentralGroupoids.lean
MagmaA2
/-- We define Knuth's A2 here in terms of A21. -/
MagmaA2T : Magma (Fin 9) where op := memoFinOp (ofMatrix #[ #[0, 0, 0, 1, 1, 1, 2, 2, 2], #[3, 3, 3, 5, 4, 4, 4, 5, 5], #[6, 6, 6, 8, 7, 7, 7, 8, 8], #[0, 0, 0, 1, 1, 1, 2, 2, 2], #[6, 6, 6, 5, 4, 4, 4, 5, 5], #[3, 3, 3, 8, 7, 7, 7, 8, 8], #[0, 0, 0, 1, 1, 1, 2, 2, 2], #[6, 6, 6, 5, 4, 4, 4, 5, 5], #[3, 3, 3, 8, 7, 7, 7, 8, 8]]) /-- Fin 3 × Fin 3 is isomorphic to Fin 9 as a set. -/
def
equational_theories
[ "import equational_theories.Equations.All", "import equational_theories.FactsSyntax", "import equational_theories.MemoFinOp", "import equational_theories.DecideBang", "import equational_theories.Homomorphisms", "import equational_theories.SmallMagmas", "import Mathlib.Tactic.Linarith", "import Mathlib.Tactic.NormNum" ]
equational_theories/CentralGroupoids.lean
MagmaA2T
/-- A magma isomorphic to A2, given as an optable. -/
equiv_F3xF3_F9 : (Fin 3 × Fin 3) ≃ (Fin 9) where toFun := fun (p : Fin 3 × Fin 3) => let a := p.1.val let b := p.2.val have ha : a < 3 := p.1.isLt have hb : b < 3 := p.2.isLt have h2a : b + 3 * a < 9 := by linarith Fin.mk (b + 3 * a) h2a invFun := fun (n : Fin 9) => let a := n.val / 3 let b := n.val % 3 have ha : a < 3 := Nat.div_lt_of_lt_mul (Fin.is_lt n) have hb : b < 3 := Nat.mod_lt n.val (by norm_num) (Fin.mk a ha, Fin.mk b hb) left_inv := fun (n : Fin 3 × Fin 3) => by match n with | (⟨0, _⟩, ⟨0, _⟩) | (⟨0, _⟩, ⟨1, _⟩) | (⟨0, _⟩, ⟨2, _⟩) | (⟨1, _⟩, ⟨0, _⟩) | (⟨1, _⟩, ⟨1, _⟩) | (⟨1, _⟩, ⟨2, _⟩) | (⟨2, _⟩, ⟨0, _⟩) | (⟨2, _⟩, ⟨1, _⟩) | (⟨2, _⟩, ⟨2, _⟩) => simp_all only [Nat.reduceMul, Nat.reduceAdd, Nat.reduceDiv, Fin.reduceFinMk, Nat.reduceMod, Fin.isValue] right_inv := fun (n : Fin 9) => by match n with | ⟨0, _⟩ | ⟨1, _⟩ | ⟨2, _⟩ | ⟨3, _⟩ | ⟨4, _⟩ | ⟨5, _⟩ | ⟨6, _⟩ | ⟨7, _⟩ | ⟨8, _⟩ => simp_all only [Nat.reduceMod, Nat.reduceDiv, Nat.reduceMul, Nat.reduceAdd, Fin.reduceFinMk] local instance : Magma (Fin 3 × Fin 3) := MagmaA2 local instance : Magma (Fin 9) := MagmaA2T
def
equational_theories
[ "import equational_theories.Equations.All", "import equational_theories.FactsSyntax", "import equational_theories.MemoFinOp", "import equational_theories.DecideBang", "import equational_theories.Homomorphisms", "import equational_theories.SmallMagmas", "import Mathlib.Tactic.Linarith", "import Mathlib.Tactic.NormNum" ]
equational_theories/CentralGroupoids.lean
equiv_F3xF3_F9
/-- Fin 3 × Fin 3 is isomorphic to Fin 9 as a set. -/
equiv_MagmaA2_MagmaA2T : (Fin 3 × Fin 3) ≃◇ (Fin 9) where toEquiv := equiv_F3xF3_F9 map_op' := by intro x y match x with | (⟨n, _⟩, ⟨m, _⟩) => match y with | (⟨k, _⟩, ⟨l, _⟩) => match n, m, k, l with | 0, 0, 0, 0 | 0, 0, 0, 1 | 0, 0, 0, 2 | 0, 0, 1, 0 | 0, 0, 1, 1 | 0, 0, 1, 2 | 0, 0, 2, 0 | 0, 0, 2, 1 | 0, 0, 2, 2 | 0, 1, 0, 0 | 0, 1, 0, 1 | 0, 1, 0, 2 | 0, 1, 1, 0 | 0, 1, 1, 1 | 0, 1, 1, 2 | 0, 1, 2, 0 | 0, 1, 2, 1 | 0, 1, 2, 2 | 0, 2, 0, 0 | 0, 2, 0, 1 | 0, 2, 0, 2 | 0, 2, 1, 0 | 0, 2, 1, 1 | 0, 2, 1, 2 | 0, 2, 2, 0 | 0, 2, 2, 1 | 0, 2, 2, 2 | 1, 0, 0, 0 | 1, 0, 0, 1 | 1, 0, 0, 2 | 1, 0, 1, 0 | 1, 0, 1, 1 | 1, 0, 1, 2 | 1, 0, 2, 0 | 1, 0, 2, 1 | 1, 0, 2, 2 | 1, 1, 0, 0 | 1, 1, 0, 1 | 1, 1, 0, 2 | 1, 1, 1, 0 | 1, 1, 1, 1 | 1, 1, 1, 2 | 1, 1, 2, 0 | 1, 1, 2, 1 | 1, 1, 2, 2 | 1, 2, 0, 0 | 1, 2, 0, 1 | 1, 2, 0, 2 | 1, 2, 1, 0 | 1, 2, 1, 1 | 1, 2, 1, 2 | 1, 2, 2, 0 | 1, 2, 2, 1 | 1, 2, 2, 2 | 2, 0, 0, 0 | 2, 0, 0, 1 | 2, 0, 0, 2 | 2, 0, 1, 0 | 2, 0, 1, 1 | 2, 0, 1, 2 | 2, 0, 2, 0 | 2, 0, 2, 1 | 2, 0, 2, 2 | 2, 1, 0, 0 | 2, 1, 0, 1 | 2, 1, 0, 2 | 2, 1, 1, 0 | 2, 1, 1, 1 | 2, 1, 1, 2 | 2, 1, 2, 0 | 2, 1, 2, 1 | 2, 1, 2, 2 | 2, 2, 0, 0 | 2, 2, 0, 1 | 2, 2, 0, 2 | 2, 2, 1, 0 | 2, 2, 1, 1 | 2, 2, 1, 2 | 2, 2, 2, 0 | 2, 2, 2, 1 | 2, 2, 2, 2 => simp [equiv_F3xF3_F9] simp_all only [Nat.ofNat_pos, Nat.one_lt_ofNat, Fin.isValue] obtain ⟨_, _⟩ := x obtain ⟨_, _⟩ := y rfl @[equational_result]
def
equational_theories
[ "import equational_theories.Equations.All", "import equational_theories.FactsSyntax", "import equational_theories.MemoFinOp", "import equational_theories.DecideBang", "import equational_theories.Homomorphisms", "import equational_theories.SmallMagmas", "import Mathlib.Tactic.Linarith", "import Mathlib.Tactic.NormNum" ]
equational_theories/CentralGroupoids.lean
equiv_MagmaA2_MagmaA2T
null
MagmaA2T.Facts : ∃ (G : Type) (_ : Magma G), Facts G [168, 1480, 1483, 1484, 1485, 1486, 1487, 2052, 2089, 2126, 2162, 2163, 2164] [3461, 3462, 3463, 3521, 3522, 3523, 3532, 3533, 3534, 3535, 3864, 3880, 3883, 3915, 3921, 3952, 3958, 3989, 3997, 4001, 4268, 4282, 4314, 4315, 4339, 4357, 4587, 4606, 4615, 4645, 4666, 4689] := ⟨Fin 9, MagmaA2T, by decideFin!⟩
theorem
equational_theories
[ "import equational_theories.Equations.All", "import equational_theories.FactsSyntax", "import equational_theories.MemoFinOp", "import equational_theories.DecideBang", "import equational_theories.Homomorphisms", "import equational_theories.SmallMagmas", "import Mathlib.Tactic.Linarith", "import Mathlib.Tactic.NormNum" ]
equational_theories/CentralGroupoids.lean
MagmaA2T.Facts
null
GraphEdge where lhs : String rhs : String deriving DecidableEq, Hashable, Lean.ToJson, Lean.FromJson
structure
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
GraphEdge
null
Edge | implication : GraphEdge → Edge | nonimplication : GraphEdge → Edge deriving DecidableEq, Hashable
inductive
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Edge
null
Edge.isTrue : Edge → Bool | .implication _ => true | .nonimplication _ => false
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Edge.isTrue
null
Edge.get : Edge → GraphEdge | .nonimplication x | .implication x => x
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Edge.get
null
Edge.lhs : Edge → String := GraphEdge.lhs ∘ get
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Edge.lhs
null
Edge.rhs : Edge → String := GraphEdge.rhs ∘ get
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Edge.rhs
null
Outcome /-- the implication has an explicit proof -/ | explicit_proof_true /-- the implication can be derived from proven theorems -/ | implicit_proof_true /-- the implication is explicitly conjectured -/ | explicit_conjecture_true /-- the implication can be derived from theorems and conjectures -/ | implicit_conjecture_true /-- the status of the implication is unknown -/ | unknown /-- the implication can be disproved from theorems and conjectures -/ | implicit_conjecture_false /-- the implication can is explicitly conjectured to be false -/ | explicit_conjecture_false /-- the falsity of the implication can be derived from proven theorems -/ | implicit_proof_false /-- the implication has an explicit disproof -/ | explicit_proof_false deriving Repr, DecidableEq, Hashable, Lean.ToJson, Lean.FromJson
inductive
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Outcome
null
Outcome.implicit_theorem : Bool → Outcome | true => implicit_proof_true | false => implicit_proof_false
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Outcome.implicit_theorem
null
Outcome.explicit_theorem : Bool → Outcome | true => explicit_proof_true | false => explicit_proof_false
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Outcome.explicit_theorem
null
Outcome.implicit_conjecture : Bool → Outcome | true => implicit_conjecture_true | false => implicit_conjecture_false
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Outcome.implicit_conjecture
null
Outcome.explicit_conjecture : Bool → Outcome | true => explicit_conjecture_true | false => explicit_conjecture_false
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Outcome.explicit_conjecture
null
Outcome.isExplicit : Outcome → Bool | explicit_proof_true => true | implicit_proof_true => false | explicit_conjecture_true => true | implicit_conjecture_true => false | unknown => false | implicit_conjecture_false => false | explicit_conjecture_false => true | implicit_proof_false => false | explicit_proof_false => true
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Outcome.isExplicit
null
Outcome.isProven : Outcome → Bool | explicit_proof_true => true | implicit_proof_true => true | explicit_conjecture_true => false | implicit_conjecture_true => false | unknown => false | implicit_conjecture_false => false | explicit_conjecture_false => false | implicit_proof_false => true | explicit_proof_false => true
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Outcome.isProven
null
Outcome.isTrue : Outcome → Bool | explicit_proof_true => true | implicit_proof_true => true | explicit_conjecture_true => true | implicit_conjecture_true => true | unknown => false | implicit_conjecture_false => false | explicit_conjecture_false => false | implicit_proof_false => false | explicit_proof_false => false
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Outcome.isTrue
null
dfs1 (graph : Array (Array Nat)) (vertex : Nat) (vis : Array Bool) (order : Array Nat) : Array Bool × Array Nat := Id.run do let mut vis1 := vis.set! vertex true let mut ord := order for v in graph[vertex]! do unless vis1[v]! do (vis1, ord) := dfs1 graph v vis1 ord pure (vis1, ord.push vertex)
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
dfs1
null
dfs2 (graph : Array (Array Nat)) (vertex : Nat) (component : Array Nat) (component_id : Nat) : Array Nat := Id.run do let mut comp := component.set! vertex component_id for v in graph[vertex]! do if component[v]! == 0 then comp := dfs2 graph v comp component_id pure comp /-- This is a bitset (https://en.cppreference.com/w/cpp/utility/bitset). It represents an array of bits by directly packing them to UInt64, which makes some operations more efficient. This is also more space-efficient. -/
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
dfs2
null
Bitset := Array UInt64
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Bitset
/-- This is a bitset (https://en.cppreference.com/w/cpp/utility/bitset). It represents an array of bits by directly packing them to UInt64, which makes some operations more efficient. This is also more space-efficient. -/
Bitset.toArray : Bitset → Array UInt64 := id
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Bitset.toArray
/-- This is a bitset (https://en.cppreference.com/w/cpp/utility/bitset). It represents an array of bits by directly packing them to UInt64, which makes some operations more efficient. This is also more space-efficient. -/
Bitset.mk (n : Nat) : Bitset := Array.replicate ((n + 63) >>> 6) 0
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Bitset.mk
/-- This is a bitset (https://en.cppreference.com/w/cpp/utility/bitset). It represents an array of bits by directly packing them to UInt64, which makes some operations more efficient. This is also more space-efficient. -/
Bitset.set (b : Bitset) (n : Nat) : Bitset := b.modify (n >>> 6) (fun x ↦ x ||| (1 <<< ((UInt64.ofNat n) &&& 63)))
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Bitset.set
/-- This is a bitset (https://en.cppreference.com/w/cpp/utility/bitset). It represents an array of bits by directly packing them to UInt64, which makes some operations more efficient. This is also more space-efficient. -/
Bitset.get (b : Bitset) (n : Nat) : Bool := (b.toArray[n >>> 6]! >>> ((UInt64.ofNat n) &&& 63)) &&& 1 != 0
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Bitset.get
null
DenseNumbering (α : Type) [BEq α] [Hashable α] where in_order : Array α index : Std.HashMap α Nat
structure
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
DenseNumbering
null
DenseNumbering.size {α : Type} [BEq α] [Hashable α] (num : DenseNumbering α) : Nat := num.in_order.size
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
DenseNumbering.size
null
DenseNumbering.fromArray {α : Type} [BEq α] [Hashable α] (elts : Array α) : DenseNumbering α := let index := Std.HashMap.ofList (elts.mapIdx (fun i x => (x, i))).toList ⟨elts, index⟩
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
DenseNumbering.fromArray
null
DenseNumbering.map {α β : Type} [BEq α] [BEq β] [Hashable α] [Hashable β] (num : DenseNumbering α) (f : α → β) : DenseNumbering β := DenseNumbering.fromArray (num.in_order.map f)
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
DenseNumbering.map
null
ltEquationNames (a b : String) : Bool := assert! a.startsWith "Equation" assert! b.startsWith "Equation" let aNum := (a.toSubstring.drop 8).toNat?.get! let bNum := (b.toSubstring.drop 8).toNat?.get! aNum < bNum
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
ltEquationNames
null
equationSet (inp : Array EntryVariant) : Std.HashSet String := Id.run do let mut eqs : Std.HashSet String := {} for imp in inp do match imp with | .implication ⟨lhs, rhs, _⟩ => eqs := eqs.insert lhs eqs := eqs.insert rhs | .facts ⟨satisfied, refuted, _⟩ => for eq in satisfied ++ refuted do eqs := eqs.insert eq | .unconditional eq => eqs := eqs.insert eq pure eqs
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
equationSet
null
number_equations (inp : Array EntryVariant) : DenseNumbering String := -- number the equations for easier processing DenseNumbering.fromArray ((equationSet inp).toArray.qsort ltEquationNames) /-- This transforms the `Facts` in the input array to `Edge`s -/
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
number_equations
null
toEdges (inp : Array EntryVariant) : Array Edge := Id.run do let eqs := number_equations inp let mut edges : Array Edge := Array.mkEmpty inp.size let mut nonimplies : Array Bitset := Array.replicate eqs.size (Bitset.mk eqs.size) for imp in inp do match imp with | .implication ⟨lhs, rhs, _⟩ => edges := edges.push (.implication ⟨lhs, rhs⟩) | .facts ⟨satisfied, refuted, _⟩ => for f1 in satisfied do for f2 in refuted do nonimplies := nonimplies.modify eqs[f1]! (fun x ↦ x.set eqs[f2]!) | _ => continue for hi : i in [:eqs.size] do for hj : j in [:eqs.size] do if nonimplies[i]!.get j then edges := edges.push (.nonimplication ⟨eqs.in_order[i], eqs.in_order[j]⟩) return edges
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
toEdges
/-- This transforms the `Facts` in the input array to `Edge`s -/
Reachability where size : Nat reachable : Array Bitset components : Array (Array Nat)
structure
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
Reachability
null
closure_aux (inp : Array EntryVariant) (duals: Std.HashMap Nat Nat) (eqs : DenseNumbering String) : IO Reachability := do -- construct the implication/non-implication graph let n := eqs.size let mut graph_size := 2 * n let mut graph : Array (Array Nat) := Array.replicate graph_size #[] let mut revgraph : Array (Array Nat) := Array.replicate graph_size #[] for imp in inp do match imp with | .implication imp => graph := graph.modify (eqs[imp.rhs]!) (fun x => x.push eqs[imp.lhs]!) graph := graph.modify (eqs[imp.rhs]! + n) (fun x => x.push (eqs[imp.lhs]! + n)) revgraph := revgraph.modify (eqs[imp.lhs]!) (fun x => x.push eqs[imp.rhs]!) revgraph := revgraph.modify (eqs[imp.lhs]! + n) (fun x => x.push (eqs[imp.rhs]! + n)) | .facts ⟨satisfied, refuted, _⟩ => if satisfied.size * refuted.size < satisfied.size + refuted.size + 1 then for lhs in satisfied do for rhs in refuted do graph := graph.modify (eqs[lhs]!) (fun x => x.push (eqs[rhs]! + n)) revgraph := revgraph.modify (eqs[rhs]! + n) (fun x => x.push eqs[lhs]!) else let dummy := graph_size graph_size := graph_size + 2 graph := graph.push (refuted.map (eqs[·]! + n)) revgraph := revgraph.push (satisfied.map (eqs[·]!)) -- this is for the dual implications graph := graph.push #[] revgraph := revgraph.push #[] for f1 in satisfied do graph := graph.modify eqs[f1]! (fun x ↦ x.push dummy) for f1 in refuted do revgraph := revgraph.modify (eqs[f1]! + n) (fun x ↦ x.push dummy) | _ => pure () let duals := Array.ofFn λ (i: Fin graph_size) ↦ if i < n then duals.getD i i else if i < 2 * n then n + duals.getD (i - n) (i - n) else i ^^^ 1 for i in [0:graph_size], neighbors in graph do let i' := duals[i]! for j in neighbors do let j' := duals[j]! if i != i' ∨ j != j' then graph := graph.modify i' (fun x => x.push j') revgraph := revgraph.modify j' (fun x => x.push i') let mut vis : Array Bool := Array.replicate graph_size false let mut order : Array Nat := Array.mkEmpty graph_size -- compute strongly connected components and the condensation graph using Kosaraju's algorithm for i in [:graph_size] do unless vis[i]! do (vis, order) := dfs1 graph i vis order order := order.reverse let mut component : Array Nat := Array.replicate graph_size 0 let mut last_component : Nat := 0 for i in order do if component[i]! == 0 then do last_component := last_component + 1 component := dfs2 revgraph i component last_component let mut components : Array (Array Nat) := Array.replicate last_component #[] let mut comp_graph : Array (Std.HashSet Nat) := Array.replicate last_component {} for i in [:graph_size] do components := components.modify (component[i]!-1) (fun x ↦ x.push i) for j in graph[i]! do unless component[i]! == component[j]! do comp_graph := comp_graph.modify (component[i]!-1) (fun x ↦ x.insert (component[j]!-1)) -- Run bitset transitive closure on the condensation graph let mut reachable : Array Bitset := Array.replicate last_component (Bitset.mk last_component) for i_ in [:last_component] do let i := last_component - 1 - i_ reachable := reachable.modify i (fun x ↦ x.set i) for j in comp_graph[i]! do reachable := reachable.modify i (fun x ↦ x.mapIdx (fun idx val ↦ reachable[j]!.toArray[idx]! ||| val)) if components[i]![0]! < n && reachable[i]!.get (component[components[i]![0]! + n]!-1) then throw (IO.userError "Inconsistent conjectures!") pure ⟨n, reachable, components⟩
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
closure_aux
null
number_duals (duals: Std.HashMap String String) (eqs: DenseNumbering String) := Std.HashMap.ofList <| duals.toList.map (λ (i, j) ↦ (eqs[i]!, eqs[j]!)) /-- This computes the closure of the implications/non-implications represented by `inp`. -/
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
number_duals
null
closure (inp : Array EntryVariant) (duals: Std.HashMap String String) : IO (Array Edge) := do let eqs := number_equations inp let n := eqs.size let duals := number_duals duals eqs -- extract the implications let mut ans : Array Edge := Array.mkEmpty (n*n) for ⟨x, y, is_true⟩ in ← closure_aux inp duals eqs do unless x == y do if is_true then ans := ans.push (.implication ⟨eqs.in_order[x]!, eqs.in_order[y]!⟩) else ans := ans.push (.nonimplication ⟨eqs.in_order[x]!, eqs.in_order[y]!⟩) pure ans
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
closure
/-- This computes the closure of the implications/non-implications represented by `inp`. -/
list_outcomes (res : Array Entry) (duals: Std.HashMap String String): IO (Array String × Array (Array Outcome)) := do let rs := res.map (·.variant) let prs := res.filter (·.proven) |>.map (·.variant) let eqs := number_equations rs let duals := number_duals duals eqs let n := eqs.size let mut outcomes : Array (Array Outcome) := Array.replicate n (Array.replicate n .unknown) for edge in toEdges prs do outcomes := outcomes.modify eqs[edge.lhs]! (fun a ↦ a.set! eqs[edge.rhs]! (.explicit_theorem edge.isTrue)) for ⟨x, y, is_true⟩ in ← closure_aux prs duals eqs do outcomes := outcomes.modify x (fun a ↦ a.modify y fun y ↦ if y = .unknown then .implicit_theorem is_true else y) for edge in toEdges rs do outcomes := outcomes.modify eqs[edge.lhs]! (fun a ↦ a.modify eqs[edge.rhs]! fun y ↦ if y = .unknown then .explicit_conjecture edge.isTrue else y) for ⟨x, y, is_true⟩ in ← closure_aux rs duals eqs do outcomes := outcomes.modify x (fun a ↦ a.modify y fun y ↦ if y = .unknown then .implicit_conjecture is_true else y) return (eqs.in_order, outcomes)
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
list_outcomes
null
outcomes_mod_equiv (inp : Array EntryVariant) (duals: Std.HashMap String String) : IO (DenseNumbering (Array String) × Array (Array (Option Bool))) := do let eqs := number_equations inp let n := eqs.size let duals := number_duals duals eqs let reachable ← closure_aux inp duals eqs let comps := reachable.components.filter (·[0]! < n) |> DenseNumbering.fromArray let mut implies : Array (Array (Option Bool)) := Array.replicate comps.size (Array.replicate comps.size none) for i in reachable.components, i2 in reachable.reachable do if i[0]! >= reachable.size then continue for j in reachable.components, j2 in [:reachable.components.size] do if i2.get j2 then if j[0]! < n then implies := implies.modify comps[j]! (fun x ↦ x.set! comps[i]! true) else if j.back! < 2*n then implies := implies.modify comps[i]! (fun x ↦ x.set! comps[j.map (·-n)]! false) return (comps.map (fun ids => ids.map (eqs.in_order[·]!)), implies) section DualityRelation
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
outcomes_mod_equiv
null
DualityRelation where dualEquations : Std.HashMap String String
structure
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
DualityRelation
null
DualityRelation.ofFile (path : String) : IO DualityRelation := do let dualsJson := Json.parse (←IO.FS.readFile path) |>.toOption.get! let mut dualEquations : Std.HashMap String String := {} for pair in dualsJson.getArr?.toOption.get! do let a := s!"Equation{pair.getArr?.toOption.get![0]!.getNat?.toOption.get!}" let b := s!"Equation{pair.getArr?.toOption.get![1]!.getNat?.toOption.get!}" dualEquations := dualEquations.insert a b dualEquations := dualEquations.insert b a pure ⟨dualEquations⟩
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
DualityRelation.ofFile
null
DualityRelation.dual (rel : DualityRelation) (imp : GraphEdge) : Option GraphEdge := if isCoreEquationName imp.lhs && isCoreEquationName imp.rhs then some ⟨rel.dualEquations.getD imp.lhs imp.lhs, rel.dualEquations.getD imp.rhs imp.rhs⟩ else none
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
DualityRelation.dual
null
getStoredDualityRelations := DualityRelation.ofFile "data/duals.json"
def
equational_theories
[ "import equational_theories.EquationalResult" ]
equational_theories/Closure.lean
getStoredDualityRelations
null
derive.getAxioms {α} [DecidableEq α] {Γ : Ctx α} {E : MagmaLaw α} (h : Γ ⊢ E) : Finset (MagmaLaw α) := match h with | .Ax _ => {E} | .Ref => {} | .Sym h => derive.getAxioms h | .Trans h₁ h₂ => derive.getAxioms h₁ ∪ derive.getAxioms h₂ | .Subst _ h => derive.getAxioms h | .Cong h₁ h₂ => derive.getAxioms h₁ ∪ derive.getAxioms h₂
def
equational_theories
[ "import Mathlib.Data.Finset.Basic", "import equational_theories.Completeness" ]
equational_theories/Compactness.lean
derive.getAxioms
null
ToCtx {α} (S : Finset (MagmaLaw α)) : Ctx α := S
def
equational_theories
[ "import Mathlib.Data.Finset.Basic", "import equational_theories.Completeness" ]
equational_theories/Compactness.lean
ToCtx
null
Ctx.hasSubset {α} : HasSubset (Ctx α) := Set.instHasSubset
instance
equational_theories
[ "import Mathlib.Data.Finset.Basic", "import equational_theories.Completeness" ]
equational_theories/Compactness.lean
Ctx.hasSubset
null
derive.Weak {α} {Γ Δ : Ctx α} {E : MagmaLaw α} (inc : Γ ⊆ Δ) (h : Γ ⊢ E) : Δ ⊢ E := by cases h case Ax => refine derive.Ax (inc ?_); assumption case Ref => exact derive.Ref case Sym => apply derive.Sym ; apply derive.Weak _ <;> trivial case Trans => apply derive.Trans <;> try apply derive.Weak <;> assumption case Subst => apply derive.Subst ; apply derive.Weak <;> assumption case Cong => apply derive.Cong <;> apply derive.Weak <;> assumption
def
equational_theories
[ "import Mathlib.Data.Finset.Basic", "import equational_theories.Completeness" ]
equational_theories/Compactness.lean
derive.Weak
null
derive.getAxiomsEnough {α} [DecidableEq α] {Γ : Ctx α} {E : MagmaLaw α} (h : Γ ⊢ E) : ToCtx (derive.getAxioms h) ⊢ E := by cases h <;> simp [ToCtx, getAxioms] case Ax => constructor; rfl case Ref => exact derive.Ref case Sym _ _ h => exact derive.Sym (derive.getAxiomsEnough _) case Trans _ _ _ h₁ h₂ => apply derive.Trans · exact derive.Weak Set.subset_union_left (derive.getAxiomsEnough h₁) · exact derive.Weak Set.subset_union_right (derive.getAxiomsEnough h₂) case Subst => exact derive.Subst _ (derive.getAxiomsEnough _) case Cong _ _ _ h₁ h₂ => exact derive.Cong (derive.Weak Set.subset_union_left (derive.getAxiomsEnough h₁)) (derive.Weak Set.subset_union_right (derive.getAxiomsEnough h₂))
def
equational_theories
[ "import Mathlib.Data.Finset.Basic", "import equational_theories.Completeness" ]
equational_theories/Compactness.lean
derive.getAxiomsEnough
null
Compactness {α} [DecidableEq α] {Γ : Ctx α} {E : MagmaLaw α} (h : Γ ⊧ E) : ∃ (Δ : Finset (MagmaLaw α)), Nonempty <| ToCtx Δ ⊧ E := by have ⟨h''⟩ := Completeness h exact ⟨derive.getAxioms h'', ⟨Soundness (derive.getAxiomsEnough _)⟩⟩
def
equational_theories
[ "import Mathlib.Data.Finset.Basic", "import equational_theories.Completeness" ]
equational_theories/Compactness.lean
Compactness
null
End of preview. Expand in Data Studio

Lean4-EquationalTheories

Structured dataset from equational_theories — Terence Tao's magma equations project.

14,379 declarations extracted from Lean 4 source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string theorem, def, lemma, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
docstring string Documentation (if present)
Downloads last month
20

Collection including phanerozoic/Lean4-EquationalTheories