Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
28
3.53k
type
stringclasses
8 values
library
stringclasses
3 values
imports
listlengths
1
7
filename
stringlengths
33
87
symbolic_name
stringlengths
1
87
docstring
stringlengths
17
494
getCategoryStatsMarkdown : CoreM String := do let stats ← getCategoryStats let githubSearchBaseUrl := "https://github.com/search?type=code&q=repo%3Agoogle-deepmind%2Fformal-conjectures+" return s!"| Count | Category | | ----- | ----------------- | | {stats (Category.research ProblemStatus.open)} | [Research (open)]({githubSearchBaseUrl}%22category+research+open%22)| | {stats (Category.research ProblemStatus.solved)} | [Research (solved)]({githubSearchBaseUrl}%22category+research+solved%22)| | {stats (Category.graduate)} | [Graduate]({githubSearchBaseUrl}%22category+graduate%22)| | {stats (Category.undergraduate)} | [Undergraduate]({githubSearchBaseUrl}%22category+undergraduate%22)| | {stats (Category.highSchool)} | [High School]({githubSearchBaseUrl}%22category+high_school%22)| | {stats (Category.API)} | [API]({githubSearchBaseUrl}%22category+API%22)| | {stats (Category.test)} | [Tests]({githubSearchBaseUrl}%22category+tests%22)|" -- TODO(firsching): make it possible to search for subjects in doc-gen4, likely depends on -- https://github.com/google-deepmind/formal-conjectures/issues/5
def
docbuild
[ "import MD4Lean", "import Lean", "import Batteries.Data.String.Matcher", "import FormalConjectures.Util.Attributes", "import Mathlib.Data.String.Defs" ]
docbuild/scripts/overwrite_index.lean
getCategoryStatsMarkdown
null
getSubjectStatsMarkdown : CoreM String := do let tags ← getSubjectTags let mut counts : Std.HashMap AMS Nat := {} for tag in tags do for subject in tag.subjects do counts := counts.insert subject (counts.getD subject 0 + 1) let sortedCounts := counts.toArray.qsort (lt := fun (_, c1) (_, c2) => c2 < c1) let mut markdownTable := "| Count | AMS # | Subject |\n" ++ "| ----- | ----- | ------- |\n " for (subject, count) in sortedCounts do if count > 0 then let desc ← subject.getDesc let some num := subject.toNat? | throwError "subject not recognised" let numStr := (toString num).leftpad 2 '0'; markdownTable := markdownTable.append s!"| {count} | {numStr} |{desc} |\n" return markdownTable -- TODO(firsching): instead of re-inventing the wheel here use some html parsing library?
def
docbuild
[ "import MD4Lean", "import Lean", "import Batteries.Data.String.Matcher", "import FormalConjectures.Util.Attributes", "import Mathlib.Data.String.Defs" ]
docbuild/scripts/overwrite_index.lean
getSubjectStatsMarkdown
null
replaceTag (tag : String) (inputHtmlContent : String) (newContent : String) : IO String := do let openTag := s!"<{tag}>" let closeTag := s!"</{tag}>" -- Find the position right after "<tag>" let .some bodyOpenTagSubstring := inputHtmlContent.findSubstr? openTag | throw <| IO.userError s!"Opening {openTag} tag not found in inputHtmlContent." let contentStartIndex := bodyOpenTagSubstring.stopPos -- Find the position of "</tag>" let .some bodyCloseTagSubstring := inputHtmlContent.findSubstr? closeTag | throw <| IO.userError s!"Closing {closeTag} tag not found in inputHtmlContent." -- Ensure the tags are in the correct order if contentStartIndex > bodyCloseTagSubstring.startPos then throw <| IO.userError s!"{openTag} content appears invalid (start of content is after start of {closeTag} tag)." -- Extract the part of the HTML before the original body content (includes "<tag>") let htmlPrefix := inputHtmlContent.extract 0 contentStartIndex -- Extract the part of the HTML from "</tag>" to the end let htmlSuffix := inputHtmlContent.extract bodyCloseTagSubstring.startPos inputHtmlContent.endPos -- Construct the new full HTML content let finalHtml := htmlPrefix ++ newContent ++ htmlSuffix return finalHtml /-- Runs a `CoreM α` action in an environment where all FormalConjectures modules are imported. This is useful for accessing declarations and attributes defined in the project. -/
def
docbuild
[ "import MD4Lean", "import Lean", "import Batteries.Data.String.Matcher", "import FormalConjectures.Util.Attributes", "import Mathlib.Data.String.Defs" ]
docbuild/scripts/overwrite_index.lean
replaceTag
null
runWithImports {α : Type} (actionToRun : CoreM α) : IO α := do -- This assumes a run of `lake exe mk_all; mv FormalConjectures.lean FormalConjectures/All.lean` took place before. -- TODO(firsching): avoid this by instead using `Lake.Glob.forEachModuleIn` to generate a list of all modules instead. -- Then it would be easily possible to sort out the statements from the Util dir (in tests), -- which we probably don't want to count here. let moduleImportNames := #[`FormalConjectures.All] initSearchPath (← findSysroot) let imports : Array Import := moduleImportNames.map ({ module := · }) let currentCtx := { fileName := "", fileMap := default } Lean.enableInitializersExecution let env ← Lean.importModules imports {} (trustLevel := 1024) (loadExts := true) let (result, _newState) ← Core.CoreM.toIO actionToRun currentCtx { env := env } return result
def
docbuild
[ "import MD4Lean", "import Lean", "import Batteries.Data.String.Matcher", "import FormalConjectures.Util.Attributes", "import Mathlib.Data.String.Defs" ]
docbuild/scripts/overwrite_index.lean
runWithImports
/-- Runs a `CoreM α` action in an environment where all FormalConjectures modules are imported. This is useful for accessing declarations and attributes defined in the project. -/
main (args : List String) : IO Unit := do let .some (file : String) := args[0]? | IO.println "Usage: stats <file> overwrites the contents of the `main` tag of a html `file` with a welcome page including stats." let inputHtmlContent ← IO.FS.readFile file let .some (graphFile : String) := args[1]? | IO.println "Repository growth graph not supplied, generating docs without graph." let graphHtml ← IO.FS.readFile graphFile runWithImports do let categoryStats ← getCategoryStatsMarkdown let subjectStats ← getSubjectStatsMarkdown let markdownBody := s!"# Welcome to the *Formal Conjectures* Documentation! Check out the main [Formal Conjectures GitHub repository](https://github.com/google-deepmind/formal-conjectures) for more details. This page provides an overview of the problem categories and subject classifications used within the project. For a more detailed explanation of these categories and the AMS subject classifications, please refer to the [explanation of features in the project's README](https://github.com/google-deepmind/formal-conjectures?tab=readme-ov-file#some-features). --- ## Problem Category Statistics {categoryStats} (note the links above use GitHub search, and so require logging into GitHub) --- ## Subject Category Statistics {subjectStats} --- ## Repository growth " IO.println markdownBody let .some newBody := MD4Lean.renderHtml (parserFlags := MD4Lean.MD_FLAG_TABLES ) markdownBody | throwError "Parsing failed" let finalHtml ← replaceTag "main" inputHtmlContent (newBody ++ graphHtml) IO.FS.writeFile file finalHtml
def
docbuild
[ "import MD4Lean", "import Lean", "import Batteries.Data.String.Matcher", "import FormalConjectures.Util.Attributes", "import Mathlib.Data.String.Defs" ]
docbuild/scripts/overwrite_index.lean
main
null
IsSumDistinctSet (A : Finset ℕ) (N : ℕ) : Prop := A ⊆ Finset.Icc 1 N ∧ (fun (⟨S, _⟩ : A.powerset) => S.sum id).Injective /-- If $A\subseteq\{1, ..., N\}$ with $|A| = n$ is such that the subset sums $\sum_{a\in S}a$ are distinct for all $S\subseteq A$ then $$ N \gg 2 ^ n. $$ -/ @[category research open, AMS 5 11]
abbrev
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
IsSumDistinctSet
/-- A finite set of naturals $A$ is said to be a sum-distinct set for $N \in \mathbb{N}$ if $A\subseteq\{1, ..., N\}$ and the sums $\sum_{a\in S}a$ are distinct for all $S\subseteq A$ -/
erdos_1 : ∃ C > (0 : ℝ), ∀ (N : ℕ) (A : Finset ℕ) (_ : IsSumDistinctSet A N), N ≠ 0 → C * 2 ^ A.card < N := by sorry /-- The trivial lower bound is $N \gg 2^n / n$. -/ @[category undergraduate, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
erdos_1
/-- If $A\subseteq\{1, ..., N\}$ with $|A| = n$ is such that the subset sums $\sum_{a\in S}a$ are distinct for all $S\subseteq A$ then $$ N \gg 2 ^ n. $$ -/
erdos_1.variants.weaker : ∃ C > (0 : ℝ), ∀ (N : ℕ) (A : Finset ℕ) (_ : IsSumDistinctSet A N), N ≠ 0 → C * 2 ^ A.card / A.card < N := by sorry /-- Erdős and Moser [Er56] proved $$ N \geq (\tfrac{1}{4} - o(1)) \frac{2^n}{\sqrt{n}}. $$ [Er56] Erdős, P., _Problems and results in additive number theory_. Colloque sur la Th\'{E}orie des Nombres, Bruxelles, 1955 (1956), 127-137. -/ @[category research solved, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
erdos_1.variants.weaker
/-- The trivial lower bound is $N \gg 2^n / n$. -/
erdos_1.variants.lb : ∃ (o : ℕ → ℝ) (_ : o =o[atTop] (1 : ℕ → ℝ)), ∀ (N : ℕ) (A : Finset ℕ) (h : IsSumDistinctSet A N), (1 / 4 - o A.card) * 2 ^ A.card / (A.card : ℝ).sqrt ≤ N := by sorry /-- A number of improvements of the constant $\frac{1}{4}$ have been given, with the current record $\sqrt{2 / \pi}$ first provied in unpublished work of Elkies and Gleason. -/ @[category research solved, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
erdos_1.variants.lb
/-- Erdős and Moser [Er56] proved $$ N \geq (\tfrac{1}{4} - o(1)) \frac{2^n}{\sqrt{n}}. $$ [Er56] Erdős, P., _Problems and results in additive number theory_. Colloque sur la Th\'{E}orie des Nombres, Bruxelles, 1955 (1956), 127-137. -/
erdos_1.variants.lb_strong : ∃ (o : ℕ → ℝ) (_ : o =o[atTop] (1 : ℕ → ℝ)), ∀ (N : ℕ) (A : Finset ℕ) (h : IsSumDistinctSet A N), (√(2 / π) - o A.card) * 2 ^ A.card / (A.card : ℝ).sqrt ≤ N := by sorry /-- A finite set of real numbers is said to be sum-distinct if all the subset sums differ by at least $1$. -/
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
erdos_1.variants.lb_strong
/-- A number of improvements of the constant $\frac{1}{4}$ have been given, with the current record $\sqrt{2 / \pi}$ first provied in unpublished work of Elkies and Gleason. -/
IsSumDistinctRealSet (A : Finset ℝ) (N : ℕ) : Prop := A.toSet ⊆ Set.Ioc 0 N ∧ A.powerset.toSet.Pairwise fun S₁ S₂ => 1 ≤ dist (S₁.sum id) (S₂.sum id) /-- A generalisation of the problem to sets $A \subseteq (0, N]$ of real numbers, such that the subset sums all differ by at least $1$ is proposed in [Er73] and [ErGr80]. [Er73] Erdős, P., _Problems and results on combinatorial number theory_. A survey of combinatorial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971) (1973), 117-138. [ErGr80] Erdős, P. and Graham, R., _Old and new problems and results in combinatorial number theory_. Monographies de L'Enseignement Mathematique (1980). -/ @[category research open, AMS 5 11]
abbrev
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
IsSumDistinctRealSet
/-- A finite set of real numbers is said to be sum-distinct if all the subset sums differ by at least $1$. -/
erdos_1.variants.real : ∃ C > (0 : ℝ), ∀ (N : ℕ) (A : Finset ℝ) (_ : IsSumDistinctRealSet A N), N ≠ 0 → C * 2 ^ A.card < N := by sorry /-- The minimal value of $N$ such that there exists a sum-distinct set with three elements is $4$. https://oeis.org/A276661 -/ @[category undergraduate, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
erdos_1.variants.real
null
erdos_1.variants.least_N_3 : IsLeast { N | ∃ A, IsSumDistinctSet A N ∧ A.card = 3 } 4 := by refine ⟨⟨{1, 2, 4}, ?_⟩, ?_⟩ · simp refine ⟨by decide, ?_⟩ let P := Finset.powerset {1, 2, 4} have : Finset.univ.image (fun p : P ↦ ∑ x ∈ p, x) = {0, 1, 2, 4, 3, 5, 6, 7} := by refine Finset.ext_iff.mpr (fun n => ?_) simp [show P = {{}, {1}, {2}, {4}, {1, 2}, {1, 4}, {2, 4}, {1, 2, 4}} by decide] omega rw [Set.injective_iff_injOn_univ, ← Finset.coe_univ] have : (Finset.univ.image (fun p : P ↦ ∑ x ∈ p.1, x)).card = (Finset.univ (α := P)).card := by rw [this]; aesop exact Finset.injOn_of_card_image_eq this · simp [mem_lowerBounds] intro n S h h_inj hcard3 by_contra hn interval_cases n; aesop; aesop · have := Finset.card_le_card h aesop · absurd h_inj rw [(Finset.subset_iff_eq_of_card_le (Nat.le_of_eq (by rw [hcard3]; decide))).mp h] decide /-- The minimal value of $N$ such that there exists a sum-distinct set with five elements is $13$. https://oeis.org/A276661 -/ @[category research solved, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
erdos_1.variants.least_N_3
/-- The minimal value of $N$ such that there exists a sum-distinct set with three elements is $4$. https://oeis.org/A276661 -/
erdos_1.variants.least_N_5 : IsLeast { N | ∃ A, IsSumDistinctSet A N ∧ A.card = 5 } 13 := by sorry /-- The minimal value of $N$ such that there exists a sum-distinct set with nine elements is $161$. https://oeis.org/A276661 -/ @[category research solved, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
erdos_1.variants.least_N_5
/-- The minimal value of $N$ such that there exists a sum-distinct set with five elements is $13$. https://oeis.org/A276661 -/
erdos_1.variants.least_N_9 : IsLeast { N | ∃ A, IsSumDistinctSet A N ∧ A.card = 9 } 161 := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1.lean
erdos_1.variants.least_N_9
/-- The minimal value of $N$ such that there exists a sum-distinct set with nine elements is $161$. https://oeis.org/A276661 -/
sumPrimeAndTwoPows (k : ℕ) : Set ℕ := { p + (pows.map (2 ^ ·)).sum | (p : ℕ) (pows : Multiset ℕ) (_ : p.Prime) (_ : pows.card ≤ k)} /-- Is there some $k$ such that every integer is the sum of a prime and at most $k$ powers of $2$? -/ @[category research open, AMS 5 11]
abbrev
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/10.lean
sumPrimeAndTwoPows
/-- The set of natural numbers that can be written as a sum of a prime and at most $k$ powers of $2$. -/
erdos_10 : answer(sorry) ↔ ∃ k, sumPrimeAndTwoPows k = Set.univ \ {0, 1} := by sorry /-- Gallagher [Ga75] has shown that for any $ϵ > 0$ there exists $k(ϵ)$ such that the set of integers which are the sum of a prime and at most $k(ϵ)$ many powers of $2$ has lower density at least $1 - ϵ$. Ref: Gallagher, P. X., _Primes and powers of 2_. -/ @[category research solved, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/10.lean
erdos_10
/-- Is there some $k$ such that every integer is the sum of a prime and at most $k$ powers of $2$? -/
erdos_10.variants.gallagher (ε : ℝ) (hε : 0 < ε) : ∃ k, 1 - ε ≤ (sumPrimeAndTwoPows k).lowerDensity := by sorry /-- Granville and Soundararajan [GrSo98] have conjectured that at most $3$ powers of $2$ suffice for all odd integers, and hence at most $4$ powers of $2$ suffice for all even integers. Ref: Granville, A. and Soundararajan, K., _A Binary Additive Problem of Erdős and the Order of $2$ mod $p^2$_ -/ @[category research open, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/10.lean
erdos_10.variants.gallagher
/-- Gallagher [Ga75] has shown that for any $ϵ > 0$ there exists $k(ϵ)$ such that the set of integers which are the sum of a prime and at most $k(ϵ)$ many powers of $2$ has lower density at least $1 - ϵ$. Ref: Gallagher, P. X., _Primes and powers of 2_. -/
erdos_10.variants.granville_soundararajan_odd : {n : ℕ | Odd n ∧ 1 < n} ⊆ sumPrimeAndTwoPows 3 ∧ {n : ℕ | Even n ∧ n ≠ 0} ⊆ sumPrimeAndTwoPows 4 := by sorry /-- Bogdan Grechuk has observed that `1117175146` is not the sum of a prime and at most $3$ powers of $2$. -/ @[category research solved, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/10.lean
erdos_10.variants.granville_soundararajan_odd
/-- Granville and Soundararajan [GrSo98] have conjectured that at most $3$ powers of $2$ suffice for all odd integers, and hence at most $4$ powers of $2$ suffice for all even integers. Ref: Granville, A. and Soundararajan, K., _A Binary Additive Problem of Erdős and the Order of $2$ mod $p^2$_ -/
erdos_10.variants.grechuk_example : 1117175146 ∉ sumPrimeAndTwoPows 3 := by sorry /-- There are infinitely many even integers not the sum of a prime and $2$ powers of $2$ -/ @[category research solved, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/10.lean
erdos_10.variants.grechuk_example
/-- Bogdan Grechuk has observed that `1117175146` is not the sum of a prime and at most $3$ powers of $2$. -/
erdos_10.variants.two_pows : Set.Infinite <| {n : ℕ | Even n} \ sumPrimeAndTwoPows 2 := by sorry /-- Bogdan Grechuk has observed that $1117175146$ is not the sum of a prime and at most $3$ powers of $2$, and pointed out that parity considerations, coupled with the fact that there are many integers not the sum of a prime and $2$ powers of $2$ suggest that there exist infinitely many even integers which are not the sum of a prime and at most $3$ powers of $2$). -/ @[category research open, AMS 5 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/10.lean
erdos_10.variants.two_pows
/-- There are infinitely many even integers not the sum of a prime and $2$ powers of $2$ -/
erdos_10.variants.gretchuk : Set.Infinite <| {n : ℕ | Even n} \ sumPrimeAndTwoPows 3 := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/10.lean
erdos_10.variants.gretchuk
/-- Bogdan Grechuk has observed that $1117175146$ is not the sum of a prime and at most $3$ powers of $2$, and pointed out that parity considerations, coupled with the fact that there are many integers not the sum of a prime and $2$ powers of $2$ suggest that there exist infinitely many even integers which are not the sum of a prime and at most $3$ powers of $2$). -/
erdos_1003 : answer(sorry) ↔ Set.Infinite {n | φ n = φ (n + 1)} := by sorry /-- Erdős [Er85e] says that, presumably, for every $k \geq 1$ the equation $$\phi(n) = \phi(n+1) = \cdots = \phi (n+k)$$ has infinitely many solutions. [Er85e] Erdős, P., _Some problems and results in number theory_. Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984) (1985), 65-87. -/ @[category research open, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1003.lean
erdos_1003
/-- Are there infinitely many solutions to $\phi(n) = \phi(n+1)$, where $\phi$ is the Euler totient function? -/
erdos_1003.variants.Icc : answer(sorry) ↔ ∀ k ≥ 1, {n | ∀ i ∈ Set.Icc 1 k, φ n = φ (n + i)}.Infinite := by sorry /-- Erdős, Pomerance, and Sárközy [EPS87] proved that for all large $x$, the number of $n \leq x$ with $\phi(n) = \phi(n+1)$ is at most $$\frac{x}{\exp((\log x)^{1/3})}$$. [EPS87] Erd\H os, Paul and Pomerance, Carl and S\'ark\"ozy, Andr\'as, _On locally repeated values of certain arithmetic functions_. {II}. Proc. Amer. Math. Soc. (1987), 1--7. -/ @[category research solved, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1003.lean
erdos_1003.variants.Icc
/-- Erdős [Er85e] says that, presumably, for every $k \geq 1$ the equation $$\phi(n) = \phi(n+1) = \cdots = \phi (n+k)$$ has infinitely many solutions. [Er85e] Erdős, P., _Some problems and results in number theory_. Number theory and combinatorics. Japan 1984 (Tokyo, Okayama and Kyoto, 1984) (1985), 65-87. -/
erdos_1003.variants.eps87 : ∀ᶠ x in atTop, {(n : ℕ) | (n ≤ x) ∧ φ n = φ (n + 1)}.ncard ≤ x / Real.exp ((x.log) ^ ((1 : ℝ) / 3)) := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1003.lean
erdos_1003.variants.eps87
/-- Erdős, Pomerance, and Sárközy [EPS87] proved that for all large $x$, the number of $n \leq x$ with $\phi(n) = \phi(n+1)$ is at most $$\frac{x}{\exp((\log x)^{1/3})}$$. [EPS87] Erd\H os, Paul and Pomerance, Carl and S\'ark\"ozy, Andr\'as, _On locally repeated values of certain arithmetic functions_. {II}. Proc. Amer. Math. Soc. (1987), 1--7. -/
IsDistinctTotientRun (n K : ℕ) : Prop := (Set.Icc (n + 1) (n + K)).InjOn totient /-- For any fixed c > 0, if x is sufficiently large then there exists n ≤ x such that the values of φ(n+k) are all distinct for 1 ≤ k ≤ (log x)^c. This is an open problem. -/ @[category research open, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1004.lean
IsDistinctTotientRun
/-- `IsDistinctTotientRun n K` means that the values `φ(n+1), φ(n+2), ..., φ(n+K)` are all distinct. -/
erdos_1004 : answer(sorry) ↔ ∀ c > (0 : ℝ), ∀ᶠ x in atTop, ∃ n ≤ x, IsDistinctTotientRun n ⌊(Real.log (x : ℝ)) ^ c⌋₊ := by sorry /-- Erdős, Pomerance, and Sárközy [EPS87] proved that if φ(n+k) are all distinct for 1 ≤ k ≤ K then K ≤ n / exp(c (log n)^{1/3}) for some constant c > 0. Here we state the existence of such a constant c. -/ @[category research solved, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1004.lean
erdos_1004
/-- For any fixed c > 0, if x is sufficiently large then there exists n ≤ x such that the values of φ(n+k) are all distinct for 1 ≤ k ≤ (log x)^c. This is an open problem. -/
erdos_1004.EPS87_theorem : answer(True) ↔ ∃ (c : ℝ) (hc : c > 0), ∀ (n K : ℕ), n > 0 → IsDistinctTotientRun n K → (K : ℝ) ≤ (n : ℝ) / Real.exp (c * (Real.log n) ^ (1/3 : ℝ)) := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1004.lean
erdos_1004.EPS87_theorem
/-- Erdős, Pomerance, and Sárközy [EPS87] proved that if φ(n+k) are all distinct for 1 ≤ k ≤ K then K ≤ n / exp(c (log n)^{1/3}) for some constant c > 0. Here we state the existence of such a constant c. -/
erdos_1038.inf (n : ℕ) : answer(sorry) = ⨅ f : {f : Polynomial ℝ // f.Monic ∧ f ≠ 1 ∧ (f.roots.filter fun x => x ∈ Set.Icc (-1 : ℝ) 1).card = f.natDegree}, volume {x | |f.1.eval x| < 1} := by sorry /-- The infimum of `|{x ∈ ℝ : |f x| < 1}|` over all nonconstant monic polynomials `f` such that all of its roots are real and contained in `[-1,1]` is `< 1.835`. -/ @[category research solved, AMS 28]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports", "import Mathlib.Algebra.Polynomial.Degree.IsMonicOfDegree" ]
FormalConjectures/ErdosProblems/1038.lean
erdos_1038.inf
/-- What is the infimum of `|{x ∈ ℝ : |f x| < 1}|` over all nonconstant monic polynomials `f` such that all of its roots are real and contained in `[-1,1]`? -/
erdos_1038.inf_upperBound (n : ℕ) : ⨅ f : {f : Polynomial ℝ // f.Monic ∧ f ≠ 1 ∧ (f.roots.filter fun x => x ∈ Set.Icc (-1 : ℝ) 1).card = f.natDegree}, volume {x | |f.1.eval x| < 1} < 1.835 := by sorry /-- The infimum of `|{x ∈ ℝ : |f x| < 1}|` over all nonconstant monic polynomials `f` such that all of its roots are real and contained in `[-1,1]` is `≥ 2 ^ (4 / 3) - 1`. -/ @[category research solved, AMS 28]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports", "import Mathlib.Algebra.Polynomial.Degree.IsMonicOfDegree" ]
FormalConjectures/ErdosProblems/1038.lean
erdos_1038.inf_upperBound
/-- The infimum of `|{x ∈ ℝ : |f x| < 1}|` over all nonconstant monic polynomials `f` such that all of its roots are real and contained in `[-1,1]` is `< 1.835`. -/
erdos_1038.inf_lowerBound (n : ℕ) : 2 ^ (4 / 3 : ℝ) - 1 ≤ ⨅ f : {f : Polynomial ℝ // f.Monic ∧ f ≠ 1 ∧ (f.roots.filter fun x => x ∈ Set.Icc (-1 : ℝ) 1).card = f.natDegree}, volume {x | |f.1.eval x| < 1} := by sorry /-- The supremum of `|{x ∈ ℝ : |f x| < 1}|` over all monic polynomials `f` such that all of its roots are real and contained in `[-1,1]` is `2 * 2 ^ (1 / 2)`. This is proved in [Tao25]. -/ @[category research solved, AMS 28]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports", "import Mathlib.Algebra.Polynomial.Degree.IsMonicOfDegree" ]
FormalConjectures/ErdosProblems/1038.lean
erdos_1038.inf_lowerBound
/-- The infimum of `|{x ∈ ℝ : |f x| < 1}|` over all nonconstant monic polynomials `f` such that all of its roots are real and contained in `[-1,1]` is `≥ 2 ^ (4 / 3) - 1`. -/
erdos_1038.sup (n : ℕ) : 2 * 2 ^ (1 / 2 : ℝ) = ⨆ f : {f : Polynomial ℝ // f.Monic ∧ (f.roots.filter fun x => x ∈ Set.Icc (-1 : ℝ) 1).card = f.natDegree}, volume {x | |f.1.eval x| < 1} := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports", "import Mathlib.Algebra.Polynomial.Degree.IsMonicOfDegree" ]
FormalConjectures/ErdosProblems/1038.lean
erdos_1038.sup
/-- The supremum of `|{x ∈ ℝ : |f x| < 1}|` over all monic polynomials `f` such that all of its roots are real and contained in `[-1,1]` is `2 * 2 ^ (1 / 2)`. This is proved in [Tao25]. -/
length (s : Set ℂ) : ℝ≥0∞ := μH[1] s /-- **Erdős–Herzog–Piranian Component Lemma** (Metric Properties of Polynomials, 1958): If $f$ is a monic degree $n$ polynomial with all roots in the unit disk, then some connected component of $\{z \mid |f(z)| < 1\}$ contains at least two roots with multiplicity. See p. 139, above Problem 5: [EHP58] Erdős, P. and Herzog, F. and Piranian, G., _Metric properties of polynomials_. J. Analyse Math. (1958), 125-148. -/ @[category research solved, AMS 32]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1041.lean
length
/-- The length of a subset $s$ of $\mathbb{C}$ is defined to be its 1-dimensional Hausdorff measure $\mathcal{H}^1(s)$. -/
exists_connected_component_contains_two_roots : ∃ C, C ⊆ {z | ‖f.eval z‖ < 1} ∧ IsConnected C ∧ 2 ≤ (f.roots.filter (· ∈ C)).card := by sorry /-- Let $$ f(z) = \prod_{i=1}^{n} (z - z_i) \in \mathbb{C}[x] $$ with $|z_i| < 1$ for all $i$. Conjecture: Must there always exist a path of length less than 2 in $$ \{ z \in \mathbb{C} \mid |f(z)| < 1 \} $$ which connects two of the roots of $f$? -/ @[category research open, AMS 32]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1041.lean
exists_connected_component_contains_two_roots
/-- **Erdős–Herzog–Piranian Component Lemma** (Metric Properties of Polynomials, 1958): If $f$ is a monic degree $n$ polynomial with all roots in the unit disk, then some connected component of $\{z \mid |f(z)| < 1\}$ contains at least two roots with multiplicity. See p. 139, above Problem 5: [EHP58] Erdős, P. and Herzog, F. and Piranian, G., _Metric properties of polynomials_. J. Analyse Math. (1958), 125-148. -/
erdos_1041 : ∃ (z₁ z₂ : ℂ) (h : ({z₁, z₂} : Multiset ℂ) ≤ f.roots) (γ : Path z₁ z₂), Set.range γ ⊆ { z : ℂ | ‖f.eval z‖ < 1 } ∧ length (Set.range γ) < 2 := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1041.lean
erdos_1041
/-- Let $$ f(z) = \prod_{i=1}^{n} (z - z_i) \in \mathbb{C}[x] $$ with $|z_i| < 1$ for all $i$. Conjecture: Must there always exist a path of length less than 2 in $$ \{ z \in \mathbb{C} \mid |f(z)| < 1 \} $$ which connects two of the roots of $f$? -/
levelSet (f : Polynomial ℂ) : Set ℂ := {z : ℂ | ‖f.eval z‖ ≤ 1} /-- **Erdős Problem 1043**: Let $f\in \mathbb{C}[x]$ be a monic polynomial. Must there exist a straight line $\ell$ such that the projection of \[\{ z: \lvert f(z)\rvert\leq 1\}\] onto $\ell$ has measure at most $2$? Pommerenke [Po61] proved that the answer is no. [Po61] Pommerenke, Ch., _On metric properties of complex polynomials._ Michigan Math. J. (1961), 97-115. -/ @[category research solved, AMS 28 30]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1043.lean
levelSet
/-- The set $\{ z \in \mathbb{C} : \lvert f(z)\rvert\leq 1\}$ -/
erdos_1043 : answer(False) ↔ ∀ (f : ℂ[X]), f.Monic → f.degree ≥ 1 → ∃ (u : ℂ), ‖u‖ = 1 ∧ volume ((ℝ ∙ u).orthogonalProjection '' levelSet f) ≤ 2 := by sorry /-- On the other hand, Pommerenke also proved there always exists a line such that the projection has measure at most 3.3. -/ @[category research solved, AMS 28 30]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1043.lean
erdos_1043
/-- **Erdős Problem 1043**: Let $f\in \mathbb{C}[x]$ be a monic polynomial. Must there exist a straight line $\ell$ such that the projection of \[\{ z: \lvert f(z)\rvert\leq 1\}\] onto $\ell$ has measure at most $2$? Pommerenke [Po61] proved that the answer is no. [Po61] Pommerenke, Ch., _On metric properties of complex polynomials._ Michigan Math. J. (1961), 97-115. -/
erdos_1043.variants.weak : ∀ (f : ℂ[X]), f.Monic → f.degree ≥ 1 → ∃ (u : ℂ), ‖u‖ = 1 ∧ volume ((ℝ ∙ u).orthogonalProjection '' levelSet f) ≤ 3.3 := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1043.lean
erdos_1043.variants.weak
/-- On the other hand, Pommerenke also proved there always exists a line such that the projection has measure at most 3.3. -/
GrowthCondition (a : ℕ → ℤ) : Prop := Filter.liminf (fun n => ((a n : ℝ) ^ (1 / 2 ^ n : ℝ))) Filter.atTop > 1 /-- The series $\sum_{n=0}^\infty \frac{1}{a_n \cdot a_{n+1}}$. -/
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1051.lean
GrowthCondition
/-- A sequence of integers `a` satisfies the growth condition if $\liminf a_n^{\frac{1}{2^n}} > 1$. -/
ErdosSeries (a : ℕ → ℤ) : ℝ := ∑' n : ℕ, 1 / ((a n : ℝ) * (a (n + 1) : ℝ)) /-- Is it true that if $a_0 < a_1 < a_2 < \cdots$ is a strictly increasing sequence of integers with $\liminf a_n^{1/2^n} > 1$, then the series $\sum_{n=0}^\infty \frac{1}{a_n \cdot a_{n+1}}$ is irrational? -/ @[category research open, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1051.lean
ErdosSeries
/-- The series $\sum_{n=0}^\infty \frac{1}{a_n \cdot a_{n+1}}$. -/
erdos_1051 : answer(sorry) ↔ ∀ (a : ℕ → ℤ), StrictMono a → GrowthCondition a → Irrational (ErdosSeries a) := by sorry /-- Erdős [Er88c] notes that if the sequence grows rapidly to infinity (specifically, if $a_{n+1} \geq C \cdot a_n^2$ for some constant $C > 0$), then the series is irrational. [Er88c] Erdős, P., _On the irrationality of certain series: problems and results_. New advances in transcendence theory (Durham, 1986) (1988), 102-109. -/ @[category research solved, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1051.lean
erdos_1051
/-- Is it true that if $a_0 < a_1 < a_2 < \cdots$ is a strictly increasing sequence of integers with $\liminf a_n^{1/2^n} > 1$, then the series $\sum_{n=0}^\infty \frac{1}{a_n \cdot a_{n+1}}$ is irrational? -/
erdos_1051.rapid_growth (a : ℕ → ℤ) (h_mono : StrictMono a) (h_rapid : ∃ C > 0, ∀ n, (a (n + 1) : ℝ) ≥ C * (a n : ℝ) ^ 2) : Irrational (ErdosSeries a) := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1051.lean
erdos_1051.rapid_growth
/-- Erdős [Er88c] notes that if the sequence grows rapidly to infinity (specifically, if $a_{n+1} \geq C \cdot a_n^2$ for some constant $C > 0$), then the series is irrational. [Er88c] Erdős, P., _On the irrationality of certain series: problems and results_. New advances in transcendence theory (Durham, 1986) (1988), 102-109. -/
properUnitaryDivisors (n : ℕ) : Finset ℕ := {d ∈ Finset.Ico 1 n | d ∣ n ∧ d.Coprime (n / d)} /-- A number $n > 0$ is a unitary perfect number if it is the sum of its proper unitary divisors. -/
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1052.lean
properUnitaryDivisors
/-- A proper unitary divisor of $n$ is a divisor $d$ of $n$ such that $d$ is coprime to $n/d$, and $d < n$. -/
IsUnitaryPerfect (n : ℕ) : Prop := ∑ i ∈ properUnitaryDivisors n, i = n ∧ 0 < n /-- Are there only finitely many unitary perfect numbers? -/ @[category research open, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1052.lean
IsUnitaryPerfect
/-- A number $n > 0$ is a unitary perfect number if it is the sum of its proper unitary divisors. -/
erdos_1052 : answer(sorry) ↔ {n | IsUnitaryPerfect n}.Finite := by sorry /-- All unitary perfect numbers are even. -/ @[category research solved, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1052.lean
erdos_1052
/-- Are there only finitely many unitary perfect numbers? -/
even_of_isUnitaryPerfect (n : ℕ) (hn : IsUnitaryPerfect n) : Even n := by sorry @[category test, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1052.lean
even_of_isUnitaryPerfect
/-- All unitary perfect numbers are even. -/
isUnitaryPerfect_6 : IsUnitaryPerfect 6 := by norm_num [IsUnitaryPerfect, properUnitaryDivisors] decide +kernel @[category test, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1052.lean
isUnitaryPerfect_6
/-- All unitary perfect numbers are even. -/
isUnitaryPerfect_60 : IsUnitaryPerfect 60 := by norm_num [IsUnitaryPerfect, properUnitaryDivisors] decide +kernel @[category test, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1052.lean
isUnitaryPerfect_60
/-- All unitary perfect numbers are even. -/
isUnitaryPerfect_90 : IsUnitaryPerfect 90 := by norm_num [IsUnitaryPerfect, properUnitaryDivisors] decide +kernel @[category test, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1052.lean
isUnitaryPerfect_90
/-- All unitary perfect numbers are even. -/
isUnitaryPerfect_87360 : IsUnitaryPerfect 87360 := by norm_num [IsUnitaryPerfect, properUnitaryDivisors] decide +kernel @[category test, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1052.lean
isUnitaryPerfect_87360
null
isUnitaryPerfect_146361946186458562560000 : IsUnitaryPerfect 146361946186458562560000 := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1052.lean
isUnitaryPerfect_146361946186458562560000
null
f (n : ℕ) : ℕ := if h : ∃ᵉ (m) (k ≥ 1), n = ∑ i < k, Nat.nth (· ∈ m.divisors) i then Nat.find h else 0 /-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Is it true that $f(n)=o(n)$?-/ @[category research open, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1054.lean
f
/-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$.-/
erdos_1054.parts.i : answer(sorry) ↔ (fun n ↦ (f n : ℝ)) =o[atTop] (fun n ↦ (n : ℝ)) := by sorry /-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Is it true that $f(n)=o(n)$ for almost all $n$? -/ @[category research open, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1054.lean
erdos_1054.parts.i
/-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Is it true that $f(n)=o(n)$?-/
erdos_1054.parts.ii : answer(sorry) ↔ ∃ (A : Set ℕ), A.HasDensity 1 ∧ (fun (n : A) ↦ (f ↑n : ℝ)) =o[atTop] (fun n ↦ (n : ℝ)) := by sorry /-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Is it true that $\limsup f(n)/n=\infty$? -/ @[category research open, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1054.lean
erdos_1054.parts.ii
/-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Is it true that $f(n)=o(n)$ for almost all $n$? -/
erdos_1054.parts.iii : answer(sorry) ↔ ∃ (A : Set ℕ), A.HasDensity 1 ∧ atTop.limsup (fun n ↦ (f n : EReal) / n) = ⊤ := by sorry /-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Show that $f$ is undefined at $n=2$, i.e. we get the junk value $0$. -/ @[category high_school, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1054.lean
erdos_1054.parts.iii
/-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Is it true that $\limsup f(n)/n=\infty$? -/
f_undefined_at_2 : f 2 = 0 := by sorry /-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Show that $f$ is undefined at $n=5$, i.e. we get the junk value $0$. -/ @[category high_school, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1054.lean
f_undefined_at_2
/-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Show that $f$ is undefined at $n=2$, i.e. we get the junk value $0$. -/
f_undefined_at_3 : f 5 = 0 := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1054.lean
f_undefined_at_3
/-- Let $f(n)$ be the minimal integer $m$ such that $n$ is the sum of the $k$ smallest divisors of $m$ for some $k\geq 1$. Show that $f$ is undefined at $n=5$, i.e. we get the junk value $0$. -/
IsOfClass : ℕ+ → ℕ → Prop := fun r ↦ PNat.caseStrongInductionOn (p := fun (_ : ℕ+) ↦ ℕ → Prop) r (fun p ↦ (p + 1).primeFactors ⊆ {2, 3}) (fun n H p ↦ (∀ r ∈ (p + 1).primeFactors, ∃ (m : ℕ+) (hm : m ≤ n), H m hm r) ∧ (∃ r ∈ (p + 1).primeFactors, ∀ (m : ℕ+) (hm : m ≤ n), H m hm r → m = n)) /-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. Show that for each $r$ there exists a prime $p$ of class $r$. -/ @[category undergraduate, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1055.lean
IsOfClass
/-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor.-/
exists_p (r : ℕ+) : ∃ p, p.Prime ∧ IsOfClass r p := by sorry open Classical /-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. Let $p_r$ is the least prime in class $r$.-/
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1055.lean
exists_p
/-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. Show that for each $r$ there exists a prime $p$ of class $r$. -/
p (r : ℕ+) : ℕ := Nat.find (exists_p r) /-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. Are there infinitely many primes in each class?-/ @[category research open, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1055.lean
p
/-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. Let $p_r$ is the least prime in class $r$.-/
erdos_1055 (r) : {p | p.Prime ∧ IsOfClass r p}.Infinite := by sorry /-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. If $p_r$ is the least prime in class $r$, then how does $p_r^{1/r}$ behave? Erdos conjectured that this tends to infinity. -/ @[category research open, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1055.lean
erdos_1055
/-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. Are there infinitely many primes in each class?-/
erdos_1055.variants.erdos_limit : Filter.atTop.Tendsto (fun r ↦ (p r : ℝ) ^ (1 / r : ℝ)) Filter.atTop := by sorry /-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. If $p_r$ is the least prime in class $r$, then how does $p_r^{1/r}$ behave? Selfridge conjectured that this is bounded. -/ @[category research open, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1055.lean
erdos_1055.variants.erdos_limit
/-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. If $p_r$ is the least prime in class $r$, then how does $p_r^{1/r}$ behave? Erdos conjectured that this tends to infinity. -/
erdos_1055.variants.selfridge_limit : ∃ M, ∀ r, (p r : ℝ) ^ (1 / r : ℝ) ≤ M := by sorry --TODO(Paul-Lez): formalize the rest of the problems on the page.
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1055.lean
erdos_1055.variants.selfridge_limit
/-- A prime $p$ is in class $1$ if the only prime divisors of $p+1$ are $2$ or $3$. In general, a prime $p$ is in class $r$ if every prime factor of $p+1$ is in some class $\leq r-1$, with equality for at least one prime factor. If $p_r$ is the least prime in class $r$, then how does $p_r^{1/r}$ behave? Selfridge conjectured that this is bounded. -/
AllModProdEqualsOne (p : ℕ) {k : ℕ} (boundaries : Fin (k + 1) → ℕ) : Prop := ∀ i : Fin k, (∏ n ∈ Finset.Ico (boundaries i.castSucc) (boundaries (i.castSucc + 1)), n) ≡ 1 [MOD p] /-- Let $k ≥ 2$. Does there exist a prime $p$ and consecutive intervals $I_0,\dots,I_k$ such that $\prod\limits_{n{\in}I_i}n \equiv 1 \mod n$ for all $1 \le i \le k$? -/ @[category research open, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1056.lean
AllModProdEqualsOne
/-- The proposition that the modular product of a collection of consecutive interval equals $1$ modulo $p$, where intervals are defined by a function specifying the consecutive boundaries. -/
erdos_1056 : answer(sorry) ↔ ∀ k ≥ 2, ∃ (p : ℕ) (_ : p.Prime) (boundaries : Fin (k + 1) → ℕ) (_ : StrictMono boundaries), AllModProdEqualsOne p boundaries := by sorry /-- This is problem A15 in Guy's collection [Gu04], where he reports that in a letter in 1979 Erdős observed that $3 * 4 \equiv 5 * 6 * 7 \equiv 1 \mod 11$. -/ @[category undergraduate, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1056.lean
erdos_1056
/-- Let $k ≥ 2$. Does there exist a prime $p$ and consecutive intervals $I_0,\dots,I_k$ such that $\prod\limits_{n{\in}I_i}n \equiv 1 \mod n$ for all $1 \le i \le k$? -/
erdos_1056_k2 : AllModProdEqualsOne 11 ![3, 5, 8] := by unfold AllModProdEqualsOne decide /-- Makowski [Ma83] found, for $k=3$: $2 * 3 * 4 * 5 \equiv 6 * 7 * 8 * 9 * 10 * 11 \equiv 12 * 13 * 14 * 15 \equiv 1 \mod 17$. -/ @[category undergraduate, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1056.lean
erdos_1056_k2
/-- This is problem A15 in Guy's collection [Gu04], where he reports that in a letter in 1979 Erdős observed that $3 * 4 \equiv 5 * 6 * 7 \equiv 1 \mod 11$. -/
erdos_1056_k3 : AllModProdEqualsOne 17 ![2, 6, 12, 16] := by unfold AllModProdEqualsOne decide /-- Noll and Simmons asked, more generally, whether there are solutions to $q_1! \equiv \dots \equiv q_k! \mod p$ for arbitrarily large $k$ (with $q_1 < \dots < q_k$). -/ @[category research open, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1056.lean
erdos_1056_k3
/-- Makowski [Ma83] found, for $k=3$: $2 * 3 * 4 * 5 \equiv 6 * 7 * 8 * 9 * 10 * 11 \equiv 12 * 13 * 14 * 15 \equiv 1 \mod 17$. -/
noll_simmons : answer(sorry) ↔ ∀ᶠ k in Filter.atTop, ∃ (p : ℕ) (_ : p.Prime) (Q : Fin k → ℕ) (_ : StrictMono Q) (_ : ∀ i, Q i < p), ∀ i j : Fin k, (Q i)! ≡ (Q j)! [MOD p] := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1056.lean
noll_simmons
/-- Noll and Simmons asked, more generally, whether there are solutions to $q_1! \equiv \dots \equiv q_k! \mod p$ for arbitrarily large $k$ (with $q_1 < \dots < q_k$). -/
IsFactorial (d : ℕ) : Prop := d ∈ Set.range Nat.factorial
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
IsFactorial
null
factorialsLessThanN (n : ℕ) : Set ℕ := { d | d < n ∧ IsFactorial d }
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
factorialsLessThanN
null
AllFactorialSubtractionsComposite (n : ℕ) : Prop := ∀d ∈ factorialsLessThanN n, (n - d).Composite /-- Are there infinitely many primes $p$ such that $p - k!$ is composite for each $k$ such that $1 ≤ k! < p$? -/ @[category research open, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
AllFactorialSubtractionsComposite
null
erdos_1059 : answer(sorry) ↔ Set.Infinite {p | p.Prime ∧ AllFactorialSubtractionsComposite p} := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
erdos_1059
/-- Are there infinitely many primes $p$ such that $p - k!$ is composite for each $k$ such that $1 ≤ k! < p$? -/
DecidableIsFactorial (d : ℕ) : Prop := ((Finset.Icc 0 d).filter (λ k => Nat.factorial k = d)).Nonempty
abbrev
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
DecidableIsFactorial
/-- Are there infinitely many primes $p$ such that $p - k!$ is composite for each $k$ such that $1 ≤ k! < p$? -/
decidableFactorialsLessThanN (n : ℕ) : Finset ℕ := (Finset.range n).filter DecidableIsFactorial
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
decidableFactorialsLessThanN
/-- Are there infinitely many primes $p$ such that $p - k!$ is composite for each $k$ such that $1 ≤ k! < p$? -/
DecidableAllFactorialSubtractionsComposite (n : ℕ) : Prop := ∀ d ∈ decidableFactorialsLessThanN n, (n - d).Composite @[category test, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
DecidableAllFactorialSubtractionsComposite
/-- Are there infinitely many primes $p$ such that $p - k!$ is composite for each $k$ such that $1 ≤ k! < p$? -/
isFactorial_equivalent (d : ℕ) : IsFactorial d ↔ DecidableIsFactorial d := by unfold IsFactorial DecidableIsFactorial simp constructor · rintro ⟨k, hk⟩ use k rw [Finset.mem_filter] constructor · have hk : k <= d := by rw [← hk] apply Nat.self_le_factorial rw [Finset.mem_Icc] exact ⟨Nat.zero_le k, hk⟩ · exact hk · rintro ⟨k, hk⟩ use k rw [Finset.mem_filter] at hk exact hk.2 @[category test, AMS 11]
lemma
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
isFactorial_equivalent
null
factorialsLessThanN_equivalent (n : ℕ) : factorialsLessThanN n = ↑(decidableFactorialsLessThanN n) := by ext d unfold factorialsLessThanN decidableFactorialsLessThanN simp exact λ _ => isFactorial_equivalent d @[category test, AMS 11]
lemma
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
factorialsLessThanN_equivalent
null
allFactorialSubtractionsComposite_equivalent (d : ℕ) : DecidableAllFactorialSubtractionsComposite d ↔ AllFactorialSubtractionsComposite d := by unfold AllFactorialSubtractionsComposite DecidableAllFactorialSubtractionsComposite rw [factorialsLessThanN_equivalent d] simp @[category test, AMS 11]
lemma
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
allFactorialSubtractionsComposite_equivalent
null
allFactorialSubtractionsComposite_101 : AllFactorialSubtractionsComposite 101 := by have h : DecidableAllFactorialSubtractionsComposite 101 := by norm_num [DecidableAllFactorialSubtractionsComposite, decidableFactorialsLessThanN] decide +kernel exact (allFactorialSubtractionsComposite_equivalent 101).mp h @[category test, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
allFactorialSubtractionsComposite_101
null
allFactorialSubtractionsComposite_211 : AllFactorialSubtractionsComposite 211 := by have h : DecidableAllFactorialSubtractionsComposite 211 := by norm_num [DecidableAllFactorialSubtractionsComposite, decidableFactorialsLessThanN] decide +kernel exact (allFactorialSubtractionsComposite_equivalent 211).mp h @[category test, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
allFactorialSubtractionsComposite_211
null
notAllFactorialSubtractionsComposite_89 : ¬(AllFactorialSubtractionsComposite 89) := by have h : ¬(DecidableAllFactorialSubtractionsComposite 89) := by unfold DecidableAllFactorialSubtractionsComposite decidableFactorialsLessThanN intro h specialize h 6 have : Nat.Prime (89 - 6) := by norm_num contradiction simp [allFactorialSubtractionsComposite_equivalent] at h exact h @[category test, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
notAllFactorialSubtractionsComposite_89
null
testFactorialsLessThanN : factorialsLessThanN 100 = {1, 2, 6, 24} := by have h : decidableFactorialsLessThanN 100 = {1, 2, 6, 24} := by norm_num [decidableFactorialsLessThanN] decide +kernel rw [factorialsLessThanN_equivalent] simp [h]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1059.lean
testFactorialsLessThanN
null
erdos_1060.bound_one : ∃ h : ℕ → ℝ, h =o[atTop] (fun n ↦ 1 / log (log n)) ∧ ∀ᶠ n in atTop, #{k ≤ n | k * σ 1 k = n} ≤ (n : ℝ) ^ h n := by sorry @[category research open, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1060.lean
erdos_1060.bound_one
/-- The conjecture is about the function $f(n)$ which counts the number of solutions to $k\sigma(k)=n$, where $\sigma(k)$ is the sum of divisors of $k$. The first bound is that $f(n)$ grows slower than any power of $n^(\frac{1}{\log\log n})$. The second bound is that $f(n)$ is at most a power of $\log n$. -/
erdos_1060.bound_two : ∃ (C : ℝ), (fun n ↦ (#{k ≤ n | k * σ 1 k = n} : ℝ)) =O[atTop] (fun n ↦ log n ^ C) := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1060.lean
erdos_1060.bound_two
null
ForkFree (A : Set ℕ) : Prop := ∀ a ∈ A, ({b | b ∈ A \ {a} ∧ a ∣ b} : Set ℕ).Subsingleton open scoped Classical in /-- The extremal function from Erdős problem 1062: the largest size of a fork-free subset of `{1,...,n}`. -/
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports", "import Mathlib.Topology.Basic" ]
FormalConjectures/ErdosProblems/1062.lean
ForkFree
/-- A set `A` of positive integers is fork-free if no element divides two distinct other elements of `A`. -/
f (n : ℕ) : ℕ := Nat.findGreatest (fun k => ∃ A ⊆ Set.Icc 1 n, ForkFree A ∧ A.ncard = k) n /-- The interval `[⌊n/3⌋, n]` is fork-free, and therefore `f n` is at least `⌈2n / 3⌉`. -/ @[category research solved, AMS 11]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports", "import Mathlib.Topology.Basic" ]
FormalConjectures/ErdosProblems/1062.lean
f
/-- The extremal function from Erdős problem 1062: the largest size of a fork-free subset of `{1,...,n}`. -/
erdos_1062.lower_bound (n : ℕ) : ⌈(2 * n / 3 : ℝ)⌉₊ ≤ f n := by classical set b : ℕ := n / 3 with hb let A : Finset ℕ := .Icc (b + 1) n calc ⌈(2 * n / 3 : ℝ)⌉₊ ≤ n - b := by grw [Nat.ceil_le, Nat.cast_sub (by omega), le_sub_iff_add_le, hb, Nat.cast_div_le] -- FIXME: `ring` should have some basic inequality support. apply le_of_eq ring _ ≤ f n := Nat.le_findGreatest (by omega) ⟨A, by simp only [Finset.coe_Icc, A]; gcongr; omega, ?_, by simp [A, -Finset.coe_Icc]⟩ simp only [ForkFree, Finset.coe_Icc, Set.mem_Icc, Set.mem_diff, Set.mem_singleton_iff, and_assoc, and_imp, A] rintro a ha - refine Set.subsingleton_of_forall_eq (a * 2) ?_ simp only [Set.mem_setOf_eq, and_imp] rintro _ _ hk _ ⟨k, rfl⟩ match k with | 0 | 1 | 2 => simp_all | k + 3 => grw [← le_add_self] at hk; omega /-- Lebensold proved that for large `n`, the function `f n` lies between `0.6725 n` and `0.6736 n`. -/ @[category research solved, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports", "import Mathlib.Topology.Basic" ]
FormalConjectures/ErdosProblems/1062.lean
erdos_1062.lower_bound
/-- The interval `[⌊n/3⌋, n]` is fork-free, and therefore `f n` is at least `⌈2n / 3⌉`. -/
erdos_1062.lebensold_bounds : ∀ᶠ n in atTop, (0.6725 : ℝ) * n ≤ f n ∧ f n ≤ (0.6736 : ℝ) * n := by sorry /-- Erdős asked whether the limiting density `f n / n` exists and, if so, whether it is irrational. -/ @[category research open, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports", "import Mathlib.Topology.Basic" ]
FormalConjectures/ErdosProblems/1062.lean
erdos_1062.lebensold_bounds
/-- Lebensold proved that for large `n`, the function `f n` lies between `0.6725 n` and `0.6736 n`. -/
erdos_1062.limit_density : (∃ l, Tendsto (fun n => (f n : ℝ) / n) atTop (𝓝 l) ∧ Irrational l) ↔ answer(sorry) := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports", "import Mathlib.Topology.Basic" ]
FormalConjectures/ErdosProblems/1062.lean
erdos_1062.limit_density
/-- Erdős asked whether the limiting density `f n / n` exists and, if so, whether it is irrational. -/
erdos_1064 : {n | φ n > φ (n - φ n)}.HasDensity 1 := by sorry /-- Let $ϕ(n)$ be the Euler's totient function, there exist infinitely many $n$ such that $ϕ(n)< ϕ(n - ϕ(n))$ Reference: [GLW01] Grytczuk, A. and Luca, F. and W\'ojtowicz, M., A conjecture of {E}rdős concerning inequalities for the {E}uler totient function. -/ @[category research solved, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1064.lean
erdos_1064
/-- Let $ϕ(n)$ be the Euler's totient function, then the $n$ satisfies $ϕ(n)>ϕ(n - ϕ(n))$ have asymptotic density 1. Reference: [LuPo02] Luca, Florian and Pomerance, Carl, On some problems of {M}\polhk akowski-{S}chinzel and {E}rd\H os concerning the arithmetical functions {$\phi$} and {$\sigma$}. Colloq. Math. -/
erdos_1064.variants.k2 : {n | φ n < φ (n - φ n)}.Infinite := by sorry open Asymptotics Filter /-- For any function $f(n)=o(n)$, we have $\phi(n)>\phi(n-\phi(n))+f(n)$ for almost all $n$. Reference: [LuPo02] Luca, Florian and Pomerance, Carl, On some problems of {M}\polhk akowski-{S}chinzel and {E}rd\H os concerning the arithmetical functions {$\phi$} and {$\sigma$}. Colloq. Math. (2002), 111--130. -/ @[category research solved, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1064.lean
erdos_1064.variants.k2
/-- Let $ϕ(n)$ be the Euler's totient function, there exist infinitely many $n$ such that $ϕ(n)< ϕ(n - ϕ(n))$ Reference: [GLW01] Grytczuk, A. and Luca, F. and W\'ojtowicz, M., A conjecture of {E}rdős concerning inequalities for the {E}uler totient function. -/
erdos_1064.variants.general_function (f : ℕ → ℕ) (hf : (fun n ↦ (f n : ℝ)) =o[atTop] (fun n ↦ (n : ℝ))) : {n : ℕ | φ (n - φ n) + f n < φ n}.HasDensity 1 := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1064.lean
erdos_1064.variants.general_function
/-- For any function $f(n)=o(n)$, we have $\phi(n)>\phi(n-\phi(n))+f(n)$ for almost all $n$. Reference: [LuPo02] Luca, Florian and Pomerance, Carl, On some problems of {M}\polhk akowski-{S}chinzel and {E}rd\H os concerning the arithmetical functions {$\phi$} and {$\sigma$}. Colloq. Math. (2002), 111--130. -/
erdos_1065a : answer(sorry) ↔ Set.Infinite {p | ∃ q k, p.Prime ∧ q.Prime ∧ p = 2^k * q + 1} := by sorry /-- Are there infinitely many primes $p$ such that $p = 2^k 3^l q + 1$ for some prime $q$ and $k ≥ 0$, $l ≥ 0$? -/ @[category research open, AMS 11]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1065.lean
erdos_1065a
/-- Are there infinitely many primes $p$ such that $p = 2^k * q + 1$ for some prime $q$ and $k ≥ 0$? This is mentioned as B46 in [Unsolved Problems in Number Theory](https://doi.org/10.1007/978-0-387-26677-0) by *Richard K. Guy* -/
erdos_1065b : answer(sorry) ↔ Set.Infinite {p | ∃ q k l, p.Prime ∧ q.Prime ∧ p = 2^k * 3^l * q + 1} := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1065.lean
erdos_1065b
/-- Are there infinitely many primes $p$ such that $p = 2^k 3^l q + 1$ for some prime $q$ and $k ≥ 0$, $l ≥ 0$? -/
InternallyDisjoint {V : Type*} {G : SimpleGraph V} {u v x y : V} (p : G.Walk u v) (q : G.Walk x y) : Prop := Disjoint p.support.tail.dropLast q.support.tail.dropLast /-- We say a graph is infinitely connected if any two vertices are connected by infinitely many pairwise disjoint paths. -/
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1068.lean
InternallyDisjoint
/-- Two walks are internally disjoint if they share no vertices other than their endpoints. -/
InfinitelyConnected {V : Type*} (G : SimpleGraph V) : Prop := Pairwise fun u v ↦ ∃ P : Set (G.Walk u v), P.Infinite ∧ (∀ p ∈ P, p.IsPath) ∧ P.Pairwise InternallyDisjoint /-- Does every graph with chromatic number $\aleph_1$ contain a countable subgraph which is infinitely connected? -/ @[category research open, AMS 5]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1068.lean
InfinitelyConnected
/-- We say a graph is infinitely connected if any two vertices are connected by infinitely many pairwise disjoint paths. -/
erdos_1068 : answer(sorry) ↔ ∀ (V : Type) (G : SimpleGraph V), G.chromaticNumber = aleph 1 → ∃ s : Set V, s.Countable ∧ InfinitelyConnected (G.induce s) := by sorry
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/1068.lean
erdos_1068
/-- Does every graph with chromatic number $\aleph_1$ contain a countable subgraph which is infinitely connected? -/
cardSet (n : ℕ) := { N | ∀ (pts : Finset ℝ²), pts.card = N → NonTrilinear pts.toSet → HasConvexNGon n pts } /-- The function $f(n)$ specified in `erdos_107`. -/
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/107.lean
cardSet
/-- The set of $N$ such that any $N$ points in the plane, no three on a line, contain a convex $n$-gon. -/
f (n : ℕ) : ℕ := sInf (cardSet n) /-- Let $f(n)$ be minimal such that any $f(n)$ points in $ℝ^2$, no three on a line, contain $n$ points which form the vertices of a convex $n$-gon. Prove that $f(n) = 2^{n-2} + 1$. -/ @[category research open, AMS 52]
def
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/107.lean
f
/-- The function $f(n)$ specified in `erdos_107`. -/
erdos_107 : answer(sorry) ↔ ∀ n ≥ 3, f n = 2^(n - 2) + 1 := by sorry /-- For every $n ≥ 3$, there exists $N$ such that any $N$ points, no three on a line, contain a convex $n$-gon. -/ @[category research solved, AMS 52]
theorem
FormalConjectures
[ "import FormalConjectures.Util.ProblemImports" ]
FormalConjectures/ErdosProblems/107.lean
erdos_107
/-- Let $f(n)$ be minimal such that any $f(n)$ points in $ℝ^2$, no three on a line, contain $n$ points which form the vertices of a convex $n$-gon. Prove that $f(n) = 2^{n-2} + 1$. -/
End of preview. Expand in Data Studio

Lean4-FormalConjectures

Structured dataset from formal-conjectures — Google DeepMind formalized conjectures.

2,571 declarations extracted from Lean 4 source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string theorem, def, lemma, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
docstring string Documentation (if present)
Downloads last month
17

Collection including phanerozoic/Lean4-FormalConjectures