Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
7
18.7k
type
stringclasses
10 values
library
stringclasses
5 values
imports
listlengths
0
13
filename
stringclasses
441 values
symbolic_name
stringlengths
1
65
docstring
stringclasses
503 values
linkArgs := if System.Platform.isWindows then #[] else if System.Platform.isOSX then #["-L/opt/homebrew/opt/openblas/lib", "-L/usr/local/opt/openblas/lib", "-lblas"] else -- assuming linux #["-L/usr/lib/x86_64-linux-gnu/", "-lblas", "-lm"]
def
root
[ "import Lake" ]
lakefile.lean
linkArgs
null
inclArgs := if System.Platform.isWindows then #[] else if System.Platform.isOSX then #["-I/opt/homebrew/opt/openblas/include", "-I/usr/local/opt/openblas/include"] else -- assuming linux #[] package scilean { moreLinkArgs := linkArgs } -- -- require mathlib from git "https://github.com/leanprover-community/mathlib4" @ "v4.19.0" require leanblas from git "https://github.com/lecopivo/LeanBLAS" @ "v4.20.1" -- FFI - build all `*.c` files in `./C` directory and package them into `libscileanc.a/so` library target libscileanc pkg : FilePath := do let mut oFiles : Array (Job FilePath) := #[] for file in (← (pkg.dir / "C").readDir) do if file.path.extension == some "c" then let oFile := pkg.buildDir / "c" / (file.fileName.stripSuffix ".c" ++ ".o") let srcJob ← inputTextFile file.path let weakArgs := #["-I", (← getLeanIncludeDir).toString] oFiles := oFiles.push (← buildO oFile srcJob weakArgs #["-fPIC", "-O3", "-DNDEBUG"] "gcc" getLeanTrace) let name := nameToStaticLib "scileanc" buildStaticLib (pkg.sharedLibDir / name) oFiles @[default_target] lean_lib SciLean { roots := #[`SciLean] } -- Files that should be compiled, either to get fast tactic or to make FFI functions work in editor lean_lib SciLean.FFI where precompileModules := true moreLinkObjs := #[libscileanc] @[test_driver] lean_lib Test { globs := #[Glob.submodules `Test] } ---------------------------------------------------------------------------------------------------- lean_exe Doodle { root := `examples.Doodle } lean_exe WaveEquation { root := `examples.WaveEquation } lean_exe HelloWorld { root := `examples.HelloWorld } lean_exe HarmonicOscillator { root := `examples.HarmonicOscillator } lean_exe CircleOptimisation { root := `examples.CircleOptimisation } lean_exe Ballistic { root := `examples.Ballistic } lean_exe WalkOnSpheres { root := `examples.WalkOnSpheres } lean_exe BFGS { root := `Test.optimjl.bfgs } lean_exe LBFGS { root := `Test.optimjl.lbfgs } lean_exe GMM { root := `SciLean.Examples.GMM.Main } lean_exe BlasTest { root := `examples.BlasTest } lean_exe FloatTest { root := `examples.FloatTest } lean_exe ForLoopTest { buildType := .release moreLinkArgs := #["-O3", "-UNDEBUG"] root := `tests.sum_speed_test } lean_exe SurfaceMeshTests { root := `examples.SurfaceMeshTests } lean_exe FloatMatrixTest { root := `examples.FloatMatrixTest } lean_exe ProfileKMeans { root := `examples.Profile.KMeans } lean_exe ProfileKMeansDirection { root := `examples.Profile.KMeansDirection } lean_exe ProfileTensorOps { root := `examples.Profile.TensorOps } lean_exe ProfileGMM { root := `examples.Profile.GMM } lean_exe ProfileLSTM { root := `examples.Profile.LSTM } lean_exe MNISTClassifier where root := `examples.MNISTClassifier
def
root
[ "import Lake" ]
lakefile.lean
inclArgs
null
List.toArrayType (l : List α) {n : USize} (h : l.length = n.toNat) [PlainDataType α] : α^[n] := ⊞ i => l.get ⟨i.1.toNat,sorry_proof⟩ open Lean Meta Elab Term Qq macro_rules | `(⊞[ $x:term, $xs:term,* ]) => do let n := Syntax.mkNumLit (toString (xs.getElems.size + 1)) `(List.toArrayType [$x,$xs,*] (n:=$n) sorry_proof) -- let n := Syntax.mkNumLit (toString xs.getElems.size) -- `(term| ListN.toArrayType (arrayType #[$xs,*] $n (by rfl)) -- @[app_unexpander Array.toArrayType] -- def unexpandArrayToArrayType : Lean.PrettyPrinter.Unexpander -- | `($(_) #[$ys,*] $_*) => -- `(⊞[$ys,*]) -- | _ => throw ()
def
examples
[ "import SciLean", "import SciLean.Core.Functions.ArgMinMax", "import SciLean.Modules.SolversAndOptimizers.GradientDescent" ]
examples/Ballistic.lean
List.toArrayType
null
g := ⊞[0.0, -9.81]
def
examples
[ "import SciLean", "import SciLean.Core.Functions.ArgMinMax", "import SciLean.Modules.SolversAndOptimizers.GradientDescent" ]
examples/Ballistic.lean
g
null
ballisticMotion (x v : Float^[2]) := (v, g - (5.0 + ‖v‖₂) • v) #generate_revDeriv ballisticMotion x v prop_by unfold ballisticMotion; fprop trans_by unfold ballisticMotion; ftrans noncomputable approx aimToTarget (v₀ : Float^[2]) (optimizationRate : Float) := λ (T : Float) (target : Float^[2]) => let shoot := λ (v : Float^[2]) => odeSolve (t₀ := 0) (x₀ := ((0:Float^[2]),v)) (t := T) (f := λ (t : Float) (x,v) => ballisticMotion x v) |>.fst Function.invFun shoot target by -- reformulate inverse as minimization and apply gradient descent conv => enter [2,T,target,shoot] rw [invFun_as_min_norm2 (R:=Float) _ _ sorry_proof] rw [argminFun.approx.gradientDescent v₀ optimizationRate] approx_limit n := sorry_proof unfold scalarGradient set_option trace.Meta.Tactic.simp.discharge true in set_option trace.Meta.Tactic.ftrans.step true in set_option trace.Meta.Tactic.ftrans.theorems true in set_option trace.Meta.Tactic.simp.unify true in ftrans #exit approx_limit 1; intro gdSteps clean_up unsafe_ad; ignore_fun_prop -- run automatic differentiation, it gets blocked on `ℛ shoot` conv => enter [1] autodiff; autodiff; autodiff; autodiff; autodiff -- Precompute forward pass with midpoint method and 50 steps on the interval [0,T] and used linear interpolation conv => enter_let x conv => rw[odeSolve_fixed_dt_on_interval midpoint_step linearInterpolate1D T] approx_limit 50; intro forwardSteps; clean_up -- Use midpoint method with 50 steps on the backward pass conv => --enter_let Rxy₂ rw[odeSolve_fixed_dt midpoint_step] approx_limit 50; intro backwardSteps; clean_up /-- Generate `n` trajectory points in the interval [0,T] -/
def
examples
[ "import SciLean", "import SciLean.Core.Functions.ArgMinMax", "import SciLean.Modules.SolversAndOptimizers.GradientDescent" ]
examples/Ballistic.lean
ballisticMotion
null
shotTrajectoryPoints (n : ℕ) (T : ℝ) (v : ℝ×ℝ) : Array ((ℝ×ℝ)×(ℝ×ℝ)) := odeSolve_fixed_dt_array (λ (t : ℝ) (x,v) => ballisticMotion x v) midpoint_step n 0 (0,v) T /-- Do one step of optimization -/
def
examples
[ "import SciLean", "import SciLean.Core.Functions.ArgMinMax", "import SciLean.Modules.SolversAndOptimizers.GradientDescent" ]
examples/Ballistic.lean
shotTrajectoryPoints
/-- Generate `n` trajectory points in the interval [0,T] -/
aimStep (target : ℝ×ℝ) (v₀ : ℝ×ℝ) := aimToTarget v₀ (5.0:ℝ) (1:ℝ) target
def
examples
[ "import SciLean", "import SciLean.Core.Functions.ArgMinMax", "import SciLean.Modules.SolversAndOptimizers.GradientDescent" ]
examples/Ballistic.lean
aimStep
/-- Do one step of optimization -/
frame : Frame where xmin := -1 ymin := -1 xSize := 2 width := 400 height := 400
def
examples
[ "import ProofWidgets.Component.InteractiveSvg", "import ProofWidgets.Component.HtmlDisplay", "import examples.Ballistic" ]
examples/BallisticWidget.lean
frame
null
State where v : ℝ×ℝ deriving ToJson, FromJson local instance {frame : Frame} : CoeHead (Point frame) (ℝ×ℝ) where coe p := (⟨p.toAbsolute.1⟩, ⟨p.toAbsolute.2⟩) local instance {frame : Frame} : CoeTail (ℝ×ℝ) (Point frame) where coe x := .abs x.1.toFloat x.2.toFloat
structure
examples
[ "import ProofWidgets.Component.InteractiveSvg", "import ProofWidgets.Component.HtmlDisplay", "import examples.Ballistic" ]
examples/BallisticWidget.lean
State
null
isvg : InteractiveSvg State where init := { v := 0 } frame := frame update time Δt action mouseStart mouseEnd selected getData state := if let .some mouseEnd := mouseEnd then let target : ℝ×ℝ := mouseEnd let newVel := aimStep target state.v { v := newVel } else state render time mouseStart mouseEnd state := { elements := Id.run do let n : ℕ := 50 let Δt := (1:ℝ)/n let mut pts : Array (Point frame) := .mkEmpty (n+1) let trajectory := shotTrajectoryPoints 50 1 state.v pts := pts.append (trajectory.map fun xv => xv.1) let mut elems : Array (Element frame) := #[] if let .some target := mouseEnd then elems := elems.push <| Svg.circle target (.px 5) |>.setFill (0.9,0.1,0.1) elems := elems.push <| Svg.line (.abs 0 0) ((0.1:ℝ)•state.v) |>.setStroke (0.9,0.8,0.2) (.px 2) elems := elems.push <| Svg.polyline pts |>.setStroke (0.8,0.8,0.8) (.px 2) elems } open Server RequestM in @[server_rpc_method]
def
examples
[ "import ProofWidgets.Component.InteractiveSvg", "import ProofWidgets.Component.HtmlDisplay", "import examples.Ballistic" ]
examples/BallisticWidget.lean
isvg
null
updateSvg (params : UpdateParams State) : RequestM (RequestTask (UpdateResult State)) := isvg.serverRpcMethod params -- TODO: the tsx file is pretty broken @[widget_module]
def
examples
[ "import ProofWidgets.Component.InteractiveSvg", "import ProofWidgets.Component.HtmlDisplay", "import examples.Ballistic" ]
examples/BallisticWidget.lean
updateSvg
null
SvgWidget : Component (UpdateResult State) where javascript := include_str ".." / "lake-packages" / "proofwidgets" / "build" / "js" / "interactiveSvg.js"
def
examples
[ "import ProofWidgets.Component.InteractiveSvg", "import ProofWidgets.Component.HtmlDisplay", "import examples.Ballistic" ]
examples/BallisticWidget.lean
SvgWidget
null
init : UpdateResult State := { html := Html.ofTHtml <div>Init!!!</div>, state := { state := isvg.init time := 0 selected := none mousePos := none idToData := isvg.render 0 none none isvg.init |>.idToDataList} } #html <SvgWidget html={init.html} state={init.state}/>
def
examples
[ "import ProofWidgets.Component.InteractiveSvg", "import ProofWidgets.Component.HtmlDisplay", "import examples.Ballistic" ]
examples/BallisticWidget.lean
init
null
main : IO Unit := do IO.println "fix this test!" #exit let v := DenseVector.ofFn (Array:=FloatArray) (vstrg := .normal) (fun (i : Fin 3) => i.1.toFloat) IO.println s!"v := {v}" IO.println s!"0.1•v := {v.scal 0.1}" IO.println s!"v+v := {v.axpy 1 v}" IO.println s!"‖v‖₂² := {v.nrm2}"
def
examples
[ "import LeanBLAS" ]
examples/BlasTest.lean
main
null
A (x : ℝ^{2}) : ℝ^{2} := ⊞ i, if i = 0 then x[0] + x[1] else x[0] - x[1] -- We can turn on debugging logging with -- set_option trace.Meta.Tactic.fun_trans.rewrite true in function_properties A (x : ℝ^{2}) argument x IsLin, HasAdjoint, IsSmooth, HasAdjDiff, abbrev ∂ := λ dx => A dx by unfold A; fun_trans, def † := λ x' => ⊞ i, if i = 0 then x'[0] - x'[1] else x'[0] + x'[1] by sorry, abbrev ∂† by unfold adjointDifferential; fun_trans; fun_trans; simp -- Define the loss function.
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
A
/-- choose a particular A: (x, y) ↦ (x + y, x - y) -/
loss (x : ℝ^{2}) : ℝ := ⟪x, A x⟫ function_properties loss (x : ℝ^{2}) argument x IsSmooth, HasAdjDiff, abbrev ∂ := λ dx => (2 : ℝ) * ⟪dx, A x⟫ by { simp[loss]; fun_trans; -- 'trans' makes me think of 'transitive'. simp; funext dx; -- ⊢ ⟪dx, A x⟫ + ⟪x, A dx⟫ = 2 * ⟪dx, A x⟫ -- ⟪dx, A x⟫ + ⟪x, A dx⟫ -- = ⟪dx, A x⟫ + ⟪A† x, dx⟫ -- by definition of adjoint -- = ⟪dx, A x⟫ + ⟪dx, A† x⟫ -- by symmetry of inner product -- = ⟪dx, A x⟫ + ⟪dx, A x⟫ -- by A† = A -- = 2 * ⟪dx, A x⟫ -- by ring sorry }, abbrev ∂† by { unfold gradient; unfold loss; fun_trans; simp } /-- noncomputable version of gradient of loss -/
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
loss
null
gradLoss (x : ℝ^{2}) : ℝ^{2} := ∇ loss x /-- make gradLoss computable by transforming abstract gradient defn into computable definition. -/
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
gradLoss
/-- noncomputable version of gradient of loss -/
gradLoss' (x : ℝ^{2}) : ℝ^{2} := (∇ loss x) rewrite_by { unfold gradient; unfold loss; fun_trans } /-- Data at each training iteration -/
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
gradLoss'
/-- make gradLoss computable by transforming abstract gradient defn into computable definition. -/
TrainIter where iteration : Nat -- iteration count. point : ℝ^{2} -- current point on the circle.. loss_at_point : ℝ -- loss value at current point. gradAmbient : ℝ^{2} -- gradient at current point in ambient space. gradSubmanifold : ℝ^{2} -- gradient at current point on the tagent space.
structure
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
TrainIter
/-- Data at each training iteration -/
normalize (p : ℝ^{2}) : ℝ^{2} := p / ‖p‖ /-- Project 'v' along 'direction'. -/
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
normalize
/-- Normalize a vector. -/
project (v : ℝ^{2}) (direction: ℝ^{2}) : ℝ^{2} := ⟪v, direction⟫ • direction /-- Project point 'x' to lie on the circle. This is a retraction of (ℝ^2 - origin) onto the embedded S¹. -/
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
project
/-- Project 'v' along 'direction'. -/
circle_project (x : ℝ^{2}) := normalize x /-- project a vector to the tangent space at `p` by deleting the normal component -/
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
circle_project
/-- Project point 'x' to lie on the circle. This is a retraction of (ℝ^2 - origin) onto the embedded S¹. -/
projectToCircleTangentSpace (p : ℝ^{2}) (vec : ℝ^{2}) : ℝ^{2} := vec - project (direction := p) vec /-- Calculate gradient at current point -/
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
projectToCircleTangentSpace
/-- project a vector to the tangent space at `p` by deleting the normal component -/
TrainIter.calcAtPoint (i : Nat) (p : ℝ^{2}) : TrainIter where iteration := i point := p loss_at_point := loss p gradAmbient := gradLoss' p gradSubmanifold := projectToCircleTangentSpace (p := p) (gradLoss' p)
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
TrainIter.calcAtPoint
/-- Calculate gradient at current point -/
HyperParams where learningRate : ℝ := 0.01
structure
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
HyperParams
/-- Calculate gradient at current point -/
HyperParams.default : HyperParams := {}
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
HyperParams.default
/-- Calculate gradient at current point -/
TrainIter.nextPoint (hp : HyperParams) (step : TrainIter) : ℝ^{2} := circle_project <| step.point - hp.learningRate • step.gradSubmanifold /-- run the gradient descent algorithm -/
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
TrainIter.nextPoint
/-- Step to the next point by gradient descent -/
gradientDescend (init: ℝ^{2}) (nsteps : ℕ) (hp : HyperParams := HyperParams.default) : Array TrainIter := Id.run do let mut cur : ℝ^{2} := circle_project init let mut out := #[] for i in List.range nsteps do let step := TrainIter.calcAtPoint i cur out := out.push <| step cur := step.nextPoint hp return out
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
gradientDescend
/-- run the gradient descent algorithm -/
main : IO Unit := do let init : ℝ^{2} := ⊞ i, if i = 0 then 1 else 0 let losses := gradientDescend init 1000 for loss in losses do IO.println s!"{loss}"
def
examples
[ "import SciLean" ]
examples/CircleOptimisation.lean
main
/-- run the gradient descent algorithm -/
g : ℝ := 9.81 open SciLean variable (f : Fin n → ℝ × ℝ) #check λ [i] => f i
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
g
null
ParticleLagrangian {n} (ϕ : ℝ^{d} → ℝ) (m : ℝ^{n}) (x v : ℝ^{d}^{n}) : ℝ := ∑ i, (0.5:ℝ) * m[i] * ∥v[i]∥² - ∑ i, m[i] * ϕ x[i]
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
ParticleLagrangian
null
chainConstraint {n} (l : ℝ^{n}) (x : ℝ^{2}^{n+1}) : Prop := ∀ i : Fin n, ∥x[i.succ] - x[⟨i, sorry_proof⟩]∥ = l[i]
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
chainConstraint
null
chainConstraintFun {n} (l : ℝ^{n}) (x : ℝ^{2}^{n+1}) : ℝ^{n} := λ [i] => l[i]*l[i] - ∥x[i.succ] - x[⟨i, sorry_proof⟩]∥²
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
chainConstraintFun
null
chainConstraintLhs {n} (l : ℝ^{n}) (x : ℝ^{2}^{n+1}) := λ i : Fin n => ∥x[i.succ] - x[⟨i, sorry_proof⟩]∥
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
chainConstraintLhs
null
chainConstraintRhs {n} (l : ℝ^{n}) (x : ℝ^{2}^{n+1}) := λ i : Fin n => l[i]
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
chainConstraintRhs
null
endPoints {n n' : Nat} (l r : ℝ^{2}) (x : ℝ^{2}^{n+1}) (x' : ℝ^{2}^{n'+1}) : ℝ^{2} × ℝ^{2} × ℝ^{2} × ℝ^{2} := (-- top chain constraints x[0] - l, x[⟨n,sorry⟩] - r, -- bottow chain constraints x'[0] - x[⟨(n+1)/4, sorry⟩], x'[⟨n',sorry⟩] - x[⟨3*(n+1)/4, sorry⟩]) argument x isSmooth, diff, hasAdjDiff, adjDiff argument x' isSmooth, diff, hasAdjDiff, adjDiff #check ode_solve #check ReaderM NewtonSettings X Approx (X → Y → X × Y) (constrained_ode_solve f g) -- evolve and project, version 1 Approx ({x : X // g x = 0} → {x : X // g x = 0}) (λ x => let x' := ode_solve f Δt x.1 let μ := solve μ', g (x' + ∂† g x' μ') = 0 x' + ∂† g x' μ) => Approx (X → X) (constrained_ode_solve f g Δt) -- evolve and project, version 2 Approx (X → X) (λ x => let x' := ode_solve f Δt x let μ := solve μ', g (x + (x' - x) + ∂† g x μ') = 0 -- how can I Taylor this and use the fact that `g x = 0`? x' + ∂† g x' μ) => Approx (X → X) (constrained_ode_solve f g Δt) -- This is exact rewrite under some conditions on `f` and `g` -- The condition on `g` is probably `(g x ≠ 0) → let J := ∂ g x; IsInv (J ∘ J†)` this is saying that `J` is surjective map Approx ({x : X // g x = c} → {x : X // g x = c}) (λ x => let f' := λ x'' => let μ := solve μ', ∂ g x'' (∂† g x'' μ') = - ∂ g x'' (f x'') f x + ∂† g x μ let x' := ode_solve f' Δt x x') => Approx (X → X) (constrained_ode_solve f g Δt) -- but I want -- we can use (f : X → X) => λ x y => (f x, y) -- (f : X → Y → X × Y) => (λ x => (f x 0).1) Approx (X → Y → X × Y) (constrained_ode_solve f g Δt) (settings : IterLinSolverSettings) (A' : Approx (X → Y) (λ x => A x)) => Approx ((x₀ : X) → X) (A⁻¹ y) (x dx : X) → Approx ((x₀ : X) → X) ((∂† f x)⁻¹ dx) Approx (NewtonSettings → (x₀ : X) → X) (solve x, f x = 0) Approx (X → X) (solve x, f x = 0) -- evolve and reflect -- inspired by advection reflection sovler ApproxSolution (ℝ → X×Y → X×Y) (λ Δt x₀ μ₀ => let evolve := ode_solve f (Δt/2) let x' := evolve x let μ := 2 * solve μ', g (x' + ∂† g x' μ') = 0 let x'' := evolve (x' + ∂† g x' μ) (x'', μ)) -- let u' := ode_solve f t₀ u₀ 0 = ∇ u', L u' + ⟪μ, g u'⟫ let := u' + solve μ, g u' #exit
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
endPoints
null
L' (m : ℝ×ℝ) (x v : ℝ^{2}×ℝ^{2}) : ℝ := (m.1/2) * ∥v.1∥² + (m.2/2) * ∥v.2∥² - m.1 * g * x.1[1] - m.2 * g * x.2[1] argument x isSmooth, diff, hasAdjDiff, adjDiff argument v isSmooth, diff, hasAdjDiff, adjDiff
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
L'
null
parm (l : ℝ × ℝ) (θ : ℝ^{2}) : ℝ^{2}×ℝ^{2} := let d₁ : ℝ^{2} := ⟨Math.sin θ[0], Math.cos θ[0]⟩ let d₂ : ℝ^{2} := ⟨Math.sin θ[1], Math.cos θ[1]⟩ -- (l.1 * d₁, l.1 * d₁ + l.2 * d₂) (d₁, d₂) argument θ isSmooth
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
parm
null
parm' {n} (l : ℝ^{n}) (θ : ℝ^{n}) (x₀ : ℝ^{2}) : (ℝ^{2})^{n+1} := Id.run do let mut x : (ℝ^{2})^{n+1} := 0 let mut y := x₀ for h : i in [0:n] do let i : Fin n := ⟨i, h.2⟩ let next := i.succ let dir : ℝ^{2} := ⟨Math.cos (θ[i]), Math.sin (θ[i])⟩ y += l[i] * dir x[next] := y x -- This impelementation is paying for zero initialization
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
parm'
null
parm'' {n} (l : ℝ^{n}) (θ : ℝ^{n}) (x₀ : ℝ^{2}) : (ℝ^{2})^{n+1} := Id.run do let mut x : (ℝ^{2})^{n+1} := 0 let mut y := x₀ for h : i in [0:n] do let i : Fin n := ⟨i, h.2⟩ let next := i.succ let dir : ℝ^{2} := ⟨Math.cos (θ[i]), Math.sin (θ[i])⟩ y := y + l[i] * dir x[next] := y x -- There is no way the index access `θ[⟨n',sorry⟩]` and `l[⟨n', sorry⟩]` can be proven correct -- Can be fixed by changing the definition of `funRec`
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
parm''
null
parm''' {n} (l : ℝ^{n}) (θ : ℝ^{n}) (x₀ : ℝ^{2}) : (ℝ^{2})^{n+1} := funRec (n+1) 0 step (reserveElem (n+1) 0) where step : (n' : Nat) → ((ℝ^{2})^{n'}) → (ℝ^{2})^{n'+1} | 0, x => (λ [i] => x₀) | n'+1, x => let dir : ℝ^{2} := ⟨Math.cos (θ[⟨n',sorry_proof⟩]), Math.sin (θ[⟨n',sorry_proof⟩])⟩ let y := x[⟨n', by simp⟩] + l[⟨n', sorry_proof⟩] * dir pushElem 1 y x
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
parm'''
null
funRec.arg_x.diff_simp {α : Nat → Type} [Vec X] [∀ n, Vec (α n)] (f : (n : Nat) → α n → α (n + 1)) [∀ n, IsSmooth (f n)] (n m : Nat) : ∂ (λ x => funRec n m f x) = λ x dx => (funRec (α:=λ n' => α n' × α n') n m (λ n' (x',dx') => (f n' x', ∂ (f n') x' dx')) (x,dx)).2 := sorry_proof @[simp ↓]
theorem
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
funRec.arg_x.diff_simp
null
funRec.arg_f.diff_simp {α : Nat → Type} [Vec X] [∀ n, Vec (α n)] (f : X → (n : Nat) → α n → α (n + 1)) [∀ n, IsSmooth (λ x => f x n)] [∀ x n, IsSmooth (f x n)] (n : Nat) : ∂ (λ x => funRec n m (f x)) = λ x dx y => (∂ (funRec (α:=λ n' => X × α n') n m (λ n' xy' => (xy'.1, f xy'.1 n' xy'.2))) (x,y) (dx,0)).2 := sorry_proof set_option trace.Meta.Tactic.simp.discharge true in set_option trace.Meta.Tactic.simp.unify true in
theorem
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
funRec.arg_f.diff_simp
null
parm'''' {n} (l : ℝ^{n}) (θ : ℝ^{n}) (x₀ : ℝ) : ℝ^{n+1} := let step (n' : Nat) (x : ℝ^{n'}) : ℝ^{n'+1} := pushElem (Cont:=(ℝ^{·})) 1 (θ[⟨n',sorry⟩]) x funRec (n+1) 0 step 0 argument θ -- isSmooth := by simp[parm'''']; infer_instance, diff by simp[parm''''] enter [θ,x,a] simp only [funRec.arg_x.diff_simp (α:= λ n' => ℝ^{n} × ℝ^{n'})] simp -- (λ n' y => (y.1, pushElem 1 (y.1[⟨n',sorry⟩]) (y.snd))) (n+1) 0]
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
parm''''
null
parm'''' {n} (l : ℝ^{n}) (θ : ℝ^{n}) (x₀ : ℝ^{2}) : (ℝ^{2})^{n+1} := step 1 n (λ [i] => x₀) where step : (n m : Nat) → ((ℝ^{2})^{n+1-m}) → (ℝ^{2})^{n+1} | n, 0, x => x | n, m+1, x => pushElem 1 sorry (step n m x) -- | n'+1, x => -- let dir : ℝ^{2} := ⟨Math.cos (θ[⟨n',sorry_proof⟩]), Math.sin (θ[⟨n',sorry_proof⟩])⟩ -- let y := x[⟨n', by simp⟩] + l[⟨n', sorry_proof⟩] * dir -- pushElem 1 y x
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
parm''''
null
L (m l : ℝ×ℝ) (θ ω : ℝ^{2}) := (L' m (parm l θ) (ⅆ (t:=0), parm l (θ + (t:ℝ) * ω))) rewrite_by simp
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
L
null
solver (m l : ℝ×ℝ) (steps : Nat) : Impl (ode_solve (LagrangianSystem (L m l))) := by simp [L, pure_impl, PureImpl] conv in (L _ _) => simp [L, L', parm] pattern (differential _); rmlamlet; enter [θ, ω]; simp -- autodiff simp -- Lagrangian is in a nice form now conv => pattern (LagrangianSystem _); whnf admit
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
solver
null
solver_0 (m k l : ℝ) (steps : Nat) : Impl (λ x v : Q => (L m k l) x v) := by simp [LagrangianSystem, L, L', parm, gradient] conv => pattern (differential _); rmlamlet; enter [x, dx]; simp -- autodiff simp finish_impl
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
solver_0
null
solver_1 (m k l : ℝ) (steps : Nat) : Impl (λ x v : Q => ∇(swap (L m k l) v) x) := by conv in (L _ _ _) => enter [θ, ω] simp [L, L', parm] rmlamlet simp simp [gradient] conv => pattern (differential _); rmlamlet; enter [x, dx]; simp -- autodiff conv in (dual _) => pattern (dual _); rmlamlet; simp -- autodual . finish_impl
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
solver_1
null
solver_2 (m k l : ℝ) (steps : Nat) : Impl (λ x v : Q => ∇(∂ (L m k l) x v) v) := by conv in (L _ _ _) => enter [θ, ω] simp [L, L', parm] rmlamlet simp conv => pattern (differential _); enter [x, dx, y]; rmlamlet; simp -- autodiff (we need to introduce all arguments!) conv => -- autograd - part1 pattern (gradient _) enter [x] simp [gradient] pattern (differential _); enter [x, dx]; rmlamlet; simp -- autodiff conv => pattern (dual _); rmlamlet; simp -- autograd - part2 . finish_impl
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
solver_2
null
solver_3 (m k l : ℝ) (steps : Nat) : Impl (λ x v : Q => ∂(∇((L m k l) x)) v) := by conv in (L _ _ _) => simp [L, L', parm] { pattern (differential _); rmlamlet; enter [θ, ω]; simp } -- autodiff simp -- Lagrangian is in a nice form now conv => -- autograd - part1 pattern (gradient _) enter [x] simp [gradient] pattern (differential _); enter [x, dx]; rmlamlet; simp -- autodiff conv => pattern (dual _); rmlamlet; simp -- autograd - part2 conv => pattern (differential _); enter [x, dx]; rmlamlet; simp -- autodiff conv => enter [1,x,v] rmlamlet finish_impl
def
examples
[ "import SciLean.Core", "import SciLean.Mechanics", "import SciLean.Operators.ODE", "import SciLean.Solver.Solver", "import SciLean.Data.DataArray", "import SciLean.Core.Extra", "import SciLean.Functions.Trigonometric", "import SciLean.Data.FunRec" ]
examples/DoublePendulum.lean
solver_3
null
ε : ℝ := 0.001
def
examples
[ "import SciLean" ]
examples/DoublePendulum2d.lean
ε
null
pair_add {X Y} [Add X] [Add Y] (x x' : X) (y y' : Y) : (x, y) + (x', y') = (x + x', y + y') := by simp[HAdd.hAdd, Add.add] done @[simp]
theorem
examples
[ "import SciLean" ]
examples/DoublePendulum2d.lean
pair_add
null
inner_zero {X} [Hilbert X] (x : X) : ⟪0,x⟫ = 0 := sorry @[simp]
theorem
examples
[ "import SciLean" ]
examples/DoublePendulum2d.lean
inner_zero
null
zero_inner {X} [Hilbert X] (x : X) : ⟪x,0⟫ = 0 := sorry
theorem
examples
[ "import SciLean" ]
examples/DoublePendulum2d.lean
zero_inner
null
parm (l₁ l₂ : ℝ) (Ω : ℝ×ℝ) : (ℝ^(2:ℕ)) × (ℝ^(2:ℕ)) := let e : ℝ^(2:ℕ) := ⟨0,-1⟩ let Δx₁ := rotate2d Ω.1 (l₁ * e) let Δx₂ := rotate2d Ω.2 (l₂ * e) (Δx₁, Δx₁ + Δx₂) argument Ω isSmooth, diff, hasAdjDiff, adjDiff? set_option trace.Meta.Tactic.simp true function_properties parm.arg_Ω.diff (l₁ l₂ : ℝ) (Ω dΩ : ℝ×ℝ) : (ℝ^(2:ℕ)) × (ℝ^(2:ℕ)) -- argument Ω -- isSmooth, diff, hasAdjDiff, adjDiff argument dΩ -- -- isLin := by simp[diff]; infer_instance; done, -- isSmooth, -- diff --_simp := parm.arg_Ω.diff l₁ l₂ Ω ddΩ by simp[diff] done, -- hasAdjDiff, adjDiff -- := parm.arg_Ω.adjDiff l₁ l₂ Ω ddΩ' by simp[adjDiff,diff]; unfold hold; imp done
def
examples
[ "import SciLean" ]
examples/DoublePendulum2d.lean
parm
null
g : ℝ := 9.81 -- instance (priority := high) {X Y} [Vec X] [Vec Y] (f : X → Y) : IsSmooth f := sorry -- instance (priority := high) {X Y} [SemiHilbert X] [SemiHilbert Y] (f : X → Y) : HasAdjDiff f := sorry /-
def
examples
[ "import SciLean" ]
examples/DoublePendulum2d.lean
g
null
L (m₁ m₂ : ℝ) (l₁ l₂ : ℝ) (Ω ω : ℝ×ℝ) : ℝ := let e : ℝ^(2:ℕ) := ⟨0,-1⟩ let x := parm l₁ l₂ Ω let v := δ (λ t : ℝ => parm l₁ l₂ (Ω + t * ω)) 0 1 rewrite_by (simp) m₁/2 * ∥v.1∥² - m₁ * g * x.1.y + m₂/2 * ∥v.2∥² - m₂ * g * x.2.y argument Ω isSmooth, diff, hasAdjDiff, adjDiff argument ω isSmooth, diff, hasAdjDiff, adjDiff
def
examples
[ "import SciLean" ]
examples/DoublePendulum2d.lean
L
null
momentum (m₁ m₂ : ℝ) (l₁ l₂ : ℝ) (Ω ω : ℝ×ℝ) : ℝ×ℝ := (∂† (λ ω' => L m₁ m₂ l₁ l₂ Ω ω') ω 1) rewrite_by simp #print L.arg_Ω.diff
def
examples
[ "import SciLean" ]
examples/DoublePendulum2d.lean
momentum
null
velocity (m₁ m₂ : ℝ) (l₁ l₂ : ℝ) (Ω ω' : ℝ×ℝ) : ℝ×ℝ := ((λ ω => momentum m₁ m₂ l₁ l₂ Ω ω)⁻¹ ω') rewrite_by simp[momentum] simp[L.arg_ω.adjDiff] simp only [!?(∀ {X} [Hilbert X] (x y : X) (a : ℝ), ⟪a * x, y⟫ = a * ⟪x,y⟫)] simp only [!?(∀ (x y : ℝ^(2:ℕ)) (θ : ℝ), ⟪rotate2d θ x, rotate2d θ y⟫ = ⟪x,y⟫)] simp only [!?(∀ {X} [Hilbert X] (x y : X) (a : ℝ), ⟪a * x, a * y⟫ = a * a * ⟪x,y⟫)] simp only [!?(∀ {X} [Hilbert X] (x : X), ⟪x,x⟫ = ∥x∥²)] simp; unfold hold; simp -/
def
examples
[ "import SciLean" ]
examples/DoublePendulum2d.lean
velocity
null
Array.intro {n α} (f : Fin n → α) : Array α := Id.run do let mut a : Array α := Array.mkEmpty n for i in [0:n] do a := a.push (f ⟨i, sorry⟩) a
def
examples
[ "import Lean", "import SciLean.Functions.FFT" ]
examples/FFTWidget.lean
Array.intro
null
generateData := Id.run do let n := 6 let steps := 2^n let mut data : Array (Array (Vec2 Float)) := Array.mkEmpty steps for waveNumber in [0:2^n] do let wave : ℝ^{2^n, 2} := introElem λ (i,j) => let θ := 2 * Math.pi * waveNumber * (i.1.toReal / 2^n) if j = 0 then Math.cos θ else Math.sin θ let wave' := FFT wave data := data.push (Array.intro (λ i => ⟨i.1.toFloat, wave'[i,0].toFloat⟩)) data @[widget]
def
examples
[ "import Lean", "import SciLean.Functions.FFT" ]
examples/FFTWidget.lean
generateData
null
helloWidget : UserWidgetDefinition where name := "Hello" javascript := include_str "." / "plot.js" #widget helloWidget (Json.mkObj [ ("data", toJson generateData), ("useTimer", true), ("yDomain", toJson [0, 1]) ])
def
examples
[ "import Lean", "import SciLean.Functions.FFT" ]
examples/FFTWidget.lean
helloWidget
null
test1 : IO Unit := do let v : FloatVector (Fin 3) := VectorType.fromVec ![1,2,3] let v' : FloatVector' (.subvector (offset := 3) (inc := 2)) (Fin 3) := VectorType.fromVec ![1,2,3] let A : FloatMatrix' .RowMajor .normal (Fin 3) (Fin 3) := MatrixType.fromMatrix !![1,1,1; 0,-1,0; -1, 0, 42] IO.println v.data IO.println (10.0•v').data.data IO.println (v'+v').data.data IO.println (MatrixType.gemv 1 1 A v 0).data IO.println "" IO.println A.data IO.println "" IO.println (MatrixType.row A 0).data IO.println (MatrixType.col A 1).data IO.println (MatrixType.Square.diag A).data
def
examples
[ "import SciLean" ]
examples/FloatMatrixTest.lean
test1
null
main : IO Unit := do test1
def
examples
[ "import SciLean" ]
examples/FloatMatrixTest.lean
main
null
main : IO Unit := do IO.println (Float.tgamma 3.1415) IO.println (Float.lgamma 3.1415) IO.println (FloatArray.mk #[1.0,2.0,3.0,4.0,3.0]) IO.println (FloatArray.mk #[1.0,2.0,3.0,4.0,3.0] |>.toByteArray) IO.println (FloatArray.mk #[1.0,2.0,3.0,4.0,3.0] |>.toByteArray |>.toFloatArray sorry) IO.println (FloatArray.mk #[2.0,2.0,3.0,4.0,3.0] |>.toByteArray |>.toFloatArray sorry_proof) #exit IO.println (⊞ (j : Fin 3) => (VectorType.fromVec (X:=FloatVector _) (fun (i : Fin 3) => (10.0:Float)^(i.1+3) + i.1 + 10*j.1)))
def
examples
[ "import SciLean" ]
examples/FloatTest.lean
main
null
IndexType.sum_const {X} [AddCommGroup X] (x : X) : (∑ (i : I), x) = Size.size I • x := by sorry_proof
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
IndexType.sum_const
null
likelihood (x : R^[D]^[N]) (w : R^[K]) (μ : R^[D]^[K]) (σ : R^[D,D]^[K]) : R := ∏ i, ∑ k, w[k] * gaussianS (μ[k]) (σ[k]) (x[i]) namespace Param
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
likelihood
null
Q (q : R^[D]) (l : R^[((D-1)*D)/2]) : R^[D,D] := q.exp.diag + l.lowerTriangular D 1 def_rev_deriv Q in q l by unfold Q data_synth => lsimp def_rev_deriv' Q in q l by unfold Q data_synth => lsimp variable (q : R^[D]) (l : R^[((D-1)*D)/2]) -- properties of parametrization
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
Q
null
det_Q : (Q q l).det = exp q.sum := sorry_proof
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
det_Q
null
det_QTQ : ((Q q l)ᵀ * (Q q l)).det = exp (2 * q.sum) := by simp[DataArrayN.det_mul,det_Q,exp_pull]; ring_nf
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
det_QTQ
null
Q_invertible : (Q q l).Invertible := sorry_proof
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
Q_invertible
null
QTQ_invertible : ((Q q l)ᵀ * (Q q l)).Invertible := sorry_proof
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
QTQ_invertible
null
trace_QTQ : ((Q q l)ᵀ * Q q l).trace = ‖q.exp‖₂² + ‖l‖₂² := sorry_proof attribute [simp, simp_core] det_Q det_QTQ Q_invertible trace_QTQ
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
trace_QTQ
null
likelihood' (x : R^[D]^[N]) (α : R^[K]) (μ : R^[D]^[K]) (q : R^[D]^[K]) (l : R^[((D-1)*D)/2]^[K]) : R := likelihood x (α.softmax) μ (⊞ k => ((Q q[k] l[k])ᵀ * Q q[k] l[k])⁻¹) rewrite_by unfold likelihood simp (disch:=aesop) [gaussianS_ATA]
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
likelihood'
null
prior (m : R) (σ : R^[D,D]^[K]) := ∏ k, /- C(D,m) -/ (σ[k].det)^m * exp (-((σ[k])⁻¹).trace/2) open Lean Meta /-- Take expression full of multiplications and divitions and split it into lists of multiplication and division factors. For example: ``` e = x₁ * x₂ ==> [x₁,x₂] [] e = x₁ * x₂ / y₁ ==> [x₁,x₂] [y₁] e = x₁ / (y₁/x₂) ==> [x₁,x₂] [y₁] e = x₁ * x₂ / y₁ * (x₃ * x₄) / (y₂/x₅)` ==> [x₁,x₂,x₃,x₄,x₄] [y₁,y₂] ``` -/
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
prior
null
parse (e : Expr) : Option (List Expr × List Expr × Bool) := match e.getAppFnArgs with | (``HMul.hMul, #[_, _, _, _, e₁, e₂]) => do match parse e₁, parse e₂ with | .none, .none => return ([e₁,e₂], [], false) | .some (m₁,d₁,neg₁), .none => return (m₁ ++ [e₂], d₁, neg₁) | .none, .some (m₂,d₂,neg₂) => return ([e₁] ++ m₂, d₂, neg₂) | .some (m₁,d₁, neg₁), .some (m₂,d₂, neg₂) => return (m₁ ++ m₂, d₁ ++ d₂, neg₁ ^^ neg₂) | (``HDiv.hDiv, #[_, _, _, _, e₁, e₂]) => match parse e₁, parse e₂ with | none, none => return ([e₁], [e₂], false) | .some (m₁,d₁, neg₁), .none => return (m₁, d₁ ++ [e₂], neg₁) | .none, .some (m₂,d₂,neg₂) => return (e₁ :: d₂, m₂, neg₂) | .some (m₁,d₁,neg₁), .some (m₂,d₂,neg₂) => return (m₁ ++ d₂, d₁ ++ m₂, neg₁ ^^ neg₂) | (``Neg.neg, #[_, _, e]) => match parse e with | none => return ([e],[],true) | some (m,d,neg) => return (m,d,!neg) | (``Inv.inv, #[_, _, e]) => match parse e with | none => return ([],[e],true) | some (m,d,neg) => return (d,m,!neg) | _ => return ([e],[],false) open Qq Lean Meta Mathlib.Tactic in simproc_decl mul_pull_from_sum (sum _) := fun e => do let f := e.appArg! Lean.Meta.lambdaBoundedTelescope f 1 fun is b => do let i := is[0]! let .some (m,d,neg) := parse b | return .continue let (m₁,m₂) := m.toArray.split (fun e => ¬(e.containsFVar i.fvarId!)) let (d₁,d₂) := d.toArray.split (fun e => ¬(e.containsFVar i.fvarId!)) -- skip if all factors depend on the index unless m₁.size ≠ 0 ∨ d₁.size ≠ 0 do return .continue let X ← inferType b let one ← mkAppOptM ``OfNat.ofNat #[X, Expr.lit (.natVal 1), none] let merge := fun (m d : Array Expr) => do match m.size, d.size with | 0, 0 => pure one | _, 0 => mkAppFoldlM ``HMul.hMul m | 0, _ => mkAppM ``Inv.inv #[← mkAppFoldlM ``HMul.hMul d] | _, _ => mkAppM ``HDiv.hDiv #[← mkAppFoldlM ``HMul.hMul m, ← mkAppFoldlM ``HMul.hMul d] let mut e₁ ← merge m₁ d₁ if neg then e₁ ← mkAppM ``Neg.neg #[e₁] let e₂ ← merge m₂ d₂ let mut e' ← mkLambdaFVars #[i] e₂ e' ← mkAppM ``sum #[e'] e' ← mkAppM ``HMul.hMul #[e₁,e'] -- if nothing changes there is no need to pulute the proof with sorry if e.eqv e' then return .continue else let proof ← mkSorry (← mkEq e e') false -- IO.println s!"running simproc on {← ppExpr e}" -- IO.println s!"simplified to {← ppExpr e'}" -- TODO: here we should have `visit` but it gets into infinite loop :( return .done { expr := e', proof? := some proof } attribute [-simp_core] SciLean.ArrayType.sum_ofFn attribute [rsimp] SciLean.ArrayType.sum_ofFn @[simp_core]
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
parse
/-- Take expression full of multiplications and divitions and split it into lists of multiplication and division factors. For example: ``` e = x₁ * x₂ ==> [x₁,x₂] [] e = x₁ * x₂ / y₁ ==> [x₁,x₂] [y₁] e = x₁ / (y₁/x₂) ==> [x₁,x₂] [y₁] e = x₁ * x₂ / y₁ * (x₃ * x₄) / (y₂/x₅)` ==> [x₁,x₂,x₃,x₄,x₄] [y₁,y₂] ``` -/
neg_add_rev' {G : Type*} [SubtractionCommMonoid G] (a b : G) : -(a + b) = -a + -b := by simp[add_comm] @[rsimp]
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
neg_add_rev'
null
sum_normalize (x : R^[I]) : ∑ i, x[i] = x.sum := rfl -- TODO: this theorem replaces (∑ i, ‖x[i]‖₂²) with (∑ i, ‖x[i]‖₂²) instead of ‖x‖₂² -- there must be some issue with transparency omit [PlainDataType R] in @[rsimp]
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
sum_normalize
null
norm_normalize {X} [PlainDataType X] [NormedAddCommGroup X] [AdjointSpace R X] (x : X^[I]) : (∑ i, ‖x[i]‖₂²) = ‖x‖₂² := rfl -- theorem sum_over_prod {R} [AddCommMonoid R] {I J : Type*} [IndexType I] [IndexType J] -- {f : I → J → R} : ∑ i j, f i j = ∑ (i : I×J), f i.1 i.2 := sorry @[rsimp]
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
norm_normalize
null
isum_sum (x : R^[I]^[J]) : ∑ i, x[i].sum = x.uncurry.sum := by simp[DataArrayN.uncurry_def,DataArrayN.sum,Function.HasUncurry.uncurry] rw[sum_sum_eq_sum_prod] @[rsimp]
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
isum_sum
null
isum_norm_exp (x : R^[I]^[J]) : ∑ j, ‖x[j].exp‖₂² = ‖x.uncurry.exp‖₂² := by simp[DataArrayN.uncurry_def,DataArrayN.sum,Function.HasUncurry.uncurry, DataArrayN.norm2_def,DataArrayN.exp] rw[sum_sum_eq_sum_prod] @[rsimp]
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
isum_norm_exp
null
isum_norm (x : R^[I]^[J]) : (∑ j, ‖x[j]‖₂²) = ‖x.uncurry‖₂² := by simp[DataArrayN.uncurry_def,DataArrayN.sum,Function.HasUncurry.uncurry, DataArrayN.norm2_def] rw[sum_sum_eq_sum_prod] open Param Scalar in
theorem
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
isum_norm
null
loss (m : R) (x : R^[D]^[N]) (α : R^[K]) (μ : R^[D]^[K]) (q : R^[D]^[K]) (l : R^[((D-1)*D)/2]^[K]) : R := (let S := ⊞ k => ((Q q[k] l[k])ᵀ * Q q[k] l[k])⁻¹ (- log (likelihood x (α.softmax) μ S * prior m S))) rewrite_by unfold likelihood simp (disch:=aesop) [gaussianS_ATA] simp (disch:=aesop) [simp_core, likelihood, prior, DataArrayN.softmax_def] simp only [simp_core, mul_pull_from_sum, refinedRewritePost, sum_push, gaussian, log_push,exp_pull] ring_nf set_option pp.deepTerms.threshold 10000 set_option profiler true def_rev_deriv loss in α μ q l by unfold loss data_synth => skip open Optimjl
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
loss
null
f {D N : Nat} (K : Nat) (m : Float) (x : Float^[D]^[N]) := { f := fun (α,μ,q,l) => loss (K:=K) m x α μ q l hf := by simp apply HasRevFDeriv_from_HasRevFDerivUpdate data_synth => skip f' := _ : ObjectiveFunction _ _} #check Nat set_option profiler true
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
f
null
main : IO Unit := do let K := 2 let m := 0.0 let xs := ⊞[⊞[1.01,5.0], ⊞[1.03,5.1],⊞[1.1,4.8], ⊞[-1.03,5.0], ⊞[-0.9,4.7],⊞[-1.1,5.1]] let r ← optimize (f K m xs) {show_trace:=true : LBFGS Float K} (0,⊞[⊞[1,0],⊞[-1,2]],0,0) r.print #check Nat #eval! main #exit open Lean Parser Term in syntax "argmin" funBinder* ", " term : term open Lean Elab Parser Term in elab_rules : term | `(argmin $xs:funBinder* , $b:term) => do let f ← elabTerm (← `(fun $xs* => $b)) none let f ← mkUncurryFun' xs.size f let x ← mkAppM ``Function.argmin #[f] return x #check Function.argmin
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
main
null
hoh {D N K} (m : R) (x : R^[D]^[N]) := (argmin (α : R^[K]) μ q l, loss m x α μ q l) rewrite_by skip #check solveFun #print hoh #exit variable (x : R → R^[n]) (x' xi') (hx : HasRevFDerivUpdate R x x') (hxi : ∀ i, HasRevFDerivUpdate R (fun w => (x w)[i]) xi') (i : Fin n) def_rev_deriv loss in x by unfold loss lsimp data_synth => skip set_option trace.Meta.Tactic.data_synth true in #check (HasRevFDerivUpdate R (fun w => (x w)[i] * (x w)[i]) _) rewrite_by data_synth
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
hoh
null
foo (x y : R^[n]) := ‖⊞ i => x[i] + y[i]‖₂² def_rev_deriv foo in x y by unfold foo data_synth => lsimp
def
examples
[ "import SciLean", "import SciLean.Tactic.DataSynth.DefRevDeriv", "import SciLean.Data.DataArray.Operations.GaussianS" ]
examples/GaussianMixtureModel'.lean
foo
null
asdf (e : Expr) : Bool := Id.run do match e with | .lam _ t b _ => if t.isAppOfArity' ``Prod 2 then return true else return asdf b | .mdata _ e => asdf e | _ => return false open Lean Meta in dsimproc_decl prodFunSimproc (_) := fun e => do -- unless asdf e do return .continue unless e.isLambda do return .continue lambdaTelescope e fun xs b => do -- check if lambda has been already processed if let .letE _ _ (.mdata d _) _ _ := b then if .some true = d.get? `prodFunSimproc then return .continue let e' ← xs.foldrM (init:=b) fun x b => do let a ← splitStructureElem x let xs := a.1 let mk := a.2 if xs.size = 1 then mkLambdaFVars #[x] b else let xname ← x.fvarId!.getUserName -- mark values with mdata to preven infinite loop let data := MData.empty.set `prodFunSimproc true let xs ← xs.mapM (fun x => do pure (Expr.mdata data x)) withLetDecls (xs.mapIdx (fun i _ => xname.appendAfter (toString i))) xs fun vars => do let x' := mk.beta vars let b' := b.replaceFVar x x' -- let r ← Simp.simp b' let vars := #[x] ++ vars mkLambdaFVars vars b' return .continue e' #check (fun (x : ℝ×ℝ×ℝ) => x.1 + x.2.1 + x.2.2) rewrite_by simp -zeta only [prodFunSimproc] #check (fun (i : ℕ) => i) rewrite_by lsimp [↓prodFunSimproc] #check (fun (i : ℕ×ℕ) => i.1 + i.2) rewrite_by lsimp [prodFunSimproc] #check (fun (j : ℕ×ℕ) (i : ℕ×ℕ) => i.1 + i.2 + j.1) rewrite_by lsimp [↓prodFunSimproc] #check (fun (j : ℕ) (i : ℕ×ℕ) => i.1 + i.2) rewrite_by lsimp [prodFunSimproc] #check (fun (i : ℕ×ℕ) (j : ℕ) => i.1 + i.2) rewrite_by lsimp [prodFunSimproc] #check (fun (x : ℕ×ℕ) (y : ℕ×ℕ) => x.1 + y.1) rewrite_by lsimp [prodFunSimproc] #check (fun (i : ℕ) (x : ℕ×ℕ) (y : ℕ×ℕ) => x.1 + y.1) rewrite_by lsimp [prodFunSimproc] section Missing variable {R : Type} [RCLike R] {X : Type} [NormedAddCommGroup X] [NormedSpace R X] {Y : Type} [NormedAddCommGroup Y] [NormedSpace R Y] @[fun_prop]
def
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
asdf
null
ite.arg_te.Differentiable_rule {c : Prop} [h : Decidable c] (t e : X → Y) (ht : Differentiable R t) (he : Differentiable R e) : Differentiable R (fun x => ite c (t x) (e x)) := by split_ifs <;> assumption @[fun_prop]
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
ite.arg_te.Differentiable_rule
null
dite.arg_te.Differentiable_rule {c : Prop} [h : Decidable c] (t : c → X → Y) (e : ¬c → X → Y) (ht : ∀ h, Differentiable R (t h)) (he : ∀ h, Differentiable R (e h)) : Differentiable R (fun x => dite c (t · x) (e · x)) := by split_ifs <;> aesop @[simp, simp_core]
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
dite.arg_te.Differentiable_rule
null
oneHot_unit [Zero α] (i : Unit) (x : α) : oneHot i x = x := rfl
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
oneHot_unit
null
inner_QQT (x y : R^[I]) (Q : R^[I,J]) : ⟪x, Q*Qᵀ*y⟫ = ⟪Qᵀ*x,Qᵀ*y⟫ := by sorry @[scoped simp, scoped simp_core]
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
inner_QQT
null
inner_QQT' (x y : R^[I]) (Q : R^[I,J]) : ⟪x, Q*(Qᵀ*y)⟫ = ⟪Qᵀ*x,Qᵀ*y⟫ := sorry @[scoped simp, scoped simp_core]
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
inner_QQT'
null
inner_QTQ (x y : R^[J]) (Q : R^[I,J]) : ⟪x, Qᵀ*Q*y⟫ = ⟪Q*x,Q*y⟫ := sorry @[scoped simp, scoped simp_core]
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
inner_QTQ
null
inner_QTQ' (x y : R^[J]) (Q : R^[I,J]) : ⟪x, Qᵀ*(Q*y)⟫ = ⟪Q*x,Q*y⟫ := sorry @[scoped simp, scoped simp_core]
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
inner_QTQ'
null
gaussian_normalization_invQQT {d : ℕ} (Q : R^[d,d]) : (((2 * π) • (Q*Qᵀ)⁻¹).det) ^ (-(1:R) / 2) = (2 * π)^(-(d:R)/2) * Q.det := sorry @[scoped simp, scoped simp_core]
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
gaussian_normalization_invQQT
null
gaussian_normalization_invQTQ {d : ℕ} (Q : R^[d,d]) : (((2 * π) • (Qᵀ*Q)⁻¹).det) ^ (-(1:R) / 2) = (2 * π)^(-(d:R)/2) * Q.det := sorry
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
gaussian_normalization_invQTQ
null
log_sum_exp (x : I → R) : log (∑ i, exp (x i)) = (⊞ i => x i).logsumexp := sorry
theorem
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
log_sum_exp
null
likelihood (x : R^[D]^[N]) (w : R^[K]) (μ : R^[D]^[K]) (σ : R^[D,D]^[K]) : R := ∏ i, ∑ k, w[k] * (((2*π) • σ[k]).det)^(-(1:R)/2) * exp (-(1:R)/2 * ⟪x[i] - μ[k], (σ[k]⁻¹ * (x[i] - μ[k]) : R^[D])⟫) namespace Param
def
examples
[ "import SciLean", "import SciLean.Data.DataArray.Operations.Simps", "import SciLean.Lean.Meta.Basic", "import SciLean.Tactic.StructureDecomposition" ]
examples/GaussianMixtureModel.lean
likelihood
null
End of preview. Expand in Data Studio

Lean4-SciLean

Structured dataset from SciLean — Scientific computing.

4,454 declarations extracted from Lean 4 source files.

Applications

  • Training language models on formal proofs
  • Fine-tuning theorem provers
  • Retrieval-augmented generation for proof assistants
  • Learning proof embeddings and representations

Source

Schema

Column Type Description
fact string Declaration body
type string theorem, def, lemma, etc.
library string Source module
imports list Required imports
filename string Source file path
symbolic_name string Identifier
docstring string Documentation (if present)
Downloads last month
17

Collection including phanerozoic/Lean4-SciLean