Dataset Viewer
Auto-converted to Parquet Duplicate
fact
stringlengths
6
39.6k
type
stringclasses
2 values
library
stringlengths
5
8
imports
listlengths
0
52
filename
stringlengths
9
12
symbolic_name
stringlengths
7
40
docstring
stringlengths
6
76
for T being Noetherian sup-Semilattice for I being Ideal of T holds ex_sup_of I, T & sup I in I
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th1
On semilattice structure of {M}izar types
for a1,a2 being set st a1 <> a2 for A being AdjectiveStr st the adjectives of A = {a1,a2} & (the non-op of A).a1 = a2 & (the non-op of A).a2 = a1 holds A is non void involutive without_fixpoints
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th4
On semilattice structure of {M}izar types
for A1,A2 being AdjectiveStr st the AdjectiveStr of A1 = the AdjectiveStr of A2 holds A1 is involutive implies A2 is involutive
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th5
On semilattice structure of {M}izar types
for A1,A2 being AdjectiveStr st the AdjectiveStr of A1 = the AdjectiveStr of A2 holds A1 is without_fixpoints implies A2 is without_fixpoints
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th6
On semilattice structure of {M}izar types
for T1,T2 being TA-structure st the TA-structure of T1 = the TA-structure of T2 holds T1 is consistent implies T2 is consistent
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th8
On semilattice structure of {M}izar types
for T1,T2 being non empty TA-structure st the TA-structure of T1 = the TA-structure of T2 holds T1 is adj-structured implies T2 is adj-structured
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th9
On semilattice structure of {M}izar types
for T being reflexive transitive antisymmetric with_suprema TA-structure st T is adj-structured for t1,t2 being type of T st t1 <= t2 holds adjs t2 c= adjs t1
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th10
On semilattice structure of {M}izar types
for T1,T2 being TA-structure st the TA-structure of T1 = the TA-structure of T2 for a1 being adjective of T1, a2 being adjective of T2 st a1 = a2 holds types a1 = types a2
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th11
On semilattice structure of {M}izar types
for T being TA-structure for t being type of T, a being adjective of T holds a in adjs t iff t in types a
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th13
On semilattice structure of {M}izar types
for T being non empty TA-structure for t being type of T, A being Subset of the adjectives of T holds A c= adjs t iff t in types A
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th14
On semilattice structure of {M}izar types
for T being non empty TA-structure holds types ({} the adjectives of T) = the carrier of T
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th16
On semilattice structure of {M}izar types
for T1,T2 being TA-structure st the TA-structure of T1 = the TA-structure of T2 holds T1 is adjs-typed implies T2 is adjs-typed
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th17
On semilattice structure of {M}izar types
for T being adj-structured reflexive transitive antisymmetric with_suprema TA-structure for a being adjective of T for t being type of T st a is_applicable_to t holds types a /\ downarrow t is Ideal of T
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th19
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema TA-structure for t being type of T for a being adjective of T st a is_applicable_to t holds a ast t <= t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th20
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema TA-structure for t being type of T for a being adjective of T st a is_applicable_to t holds a in adjs(a ast t)
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th21
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema TA-structure for t being type of T for a being adjective of T st a is_applicable_to t holds a ast t in types a
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th22
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema TA-structure for t being type of T for a being adjective of T for t9 being type of T st t9 <= t & a in adjs t9 holds a is_applicable_to t & t9 <= a ast t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th23
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema TA-structure for t being type of T for a being adjective of T st a in adjs t holds a is_applicable_to t & a ast t = t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th24
On semilattice structure of {M}izar types
for T being adj-structured reflexive transitive antisymmetric with_suprema TA-structure for A being Subset of the adjectives of T for t being type of T st A is_applicable_to t holds types A /\ downarrow t is Ideal of T
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th26
On semilattice structure of {M}izar types
for T being non empty reflexive transitive antisymmetric TA-structure for t being type of T holds ({} the adjectives of T) ast t = t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th27
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TA-structure for t being type of T, a be adjective of T holds apply(<*a*>, t) = <*t, a ast t *>
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th29
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TA-structure for t being type of T for a being adjective of T holds <*a*> ast t = a ast t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th31
On semilattice structure of {M}izar types
for p being non empty FinSequence, q being FinSequence for i being Nat st i < len q holds (p$^q).(len p+i) = q.(i+1)
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th33
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TA-structure for t being type of T for v1,v2 being FinSequence of the adjectives of T holds apply(v1^v2, t) = apply(v1, t) $^ apply(v2, v1 ast t)
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th34
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TA-structure for t being type of T for v1,v2 being FinSequence of the adjectives of T for i being Nat st i in dom v1 holds apply(v1^v2, t).i = apply(v1, t).i
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th35
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TA-structure for t being type of T for v1,v2 being FinSequence of the adjectives of T holds apply(v1^v2, t).(len v1+1) = v1 ast t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th36
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TA-structure for t being type of T for v1,v2 being FinSequence of the adjectives of T holds v2 ast (v1 ast t) = v1^v2 ast t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th37
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TA-structure for t being type of T for v1,v2 being FinSequence of the adjectives of T st v1^ v2 is_applicable_to t holds v1 is_applicable_to t & v2 is_applicable_to v1 ast t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th40
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TA-structure for t being type of T for v being FinSequence of the adjectives of T st v is_applicable_to t for i1,i2 being Nat st 1 <= i1 & i1 <= i2 & i2 <= len v+1 for t1,t2 being type of T st t1 = apply(v,t).i1 & t2 = apply(v,t).i2 holds t2 <= t1
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th41
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TA-structure for t being type of T for v being FinSequence of the adjectives of T st v is_applicable_to t for s being type of T st s in rng apply(v, t) holds v ast t <= s & s <= t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th42
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TA-structure for t being type of T for v being FinSequence of the adjectives of T st v is_applicable_to t holds v ast t <= t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th43
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TA-structure for t being type of T for v being FinSequence of the adjectives of T st v is_applicable_to t holds rng v c= adjs (v ast t)
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th44
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TA-structure for t being type of T for v being FinSequence of the adjectives of T st v is_applicable_to t for A being Subset of the adjectives of T st A = rng v holds A is_applicable_to t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th45
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TA-structure for t being type of T for v1, v2 being FinSequence of the adjectives of T st v1 is_applicable_to t & rng v2 c= rng v1 for s being type of T st s in rng apply(v2,t) holds v1 ast t <= s
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th46
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TA-structure for t being type of T for v1, v2 being FinSequence of the adjectives of T st v1^v2 is_applicable_to t holds v2^v1 is_applicable_to t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th47
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema TA-structure for t being type of T for A being Subset of the adjectives of T st A is_applicable_to t holds A ast t <= t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th49
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema TA-structure for t being type of T for A being Subset of the adjectives of T st A is_applicable_to t holds A c= adjs(A ast t)
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th50
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema TA-structure for t being type of T for A being Subset of the adjectives of T for t9 being type of T st t9 <= t & A c= adjs t9 holds A is_applicable_to t & t9 <= A ast t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th52
On semilattice structure of {M}izar types
for T being TA-structure, t being type of T for A,B being Subset of the adjectives of T st A is_applicable_to t & B c= A holds B is_applicable_to t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th54
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TA-structure for t being type of T, a being adjective of T for A,B being Subset of the adjectives of T st B = A \/ {a } & B is_applicable_to t holds a ast (A ast t) = B ast t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th55
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TA-structure for t being type of T for v being FinSequence of the adjectives of T st v is_applicable_to t for A being Subset of the adjectives of T st A = rng v holds v ast t = A ast t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th56
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TAS-structure for t being type of T, v being FinSequence of the adjectives of T st v is_properly_applicable_to t holds v is_applicable_to t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th57
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TAS-structure for t being type of T, v1,v2 being FinSequence of the adjectives of T st v1^v2 is_properly_applicable_to t holds v1 is_properly_applicable_to t & v2 is_properly_applicable_to v1 ast t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th60
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TAS-structure for t being type of T, v1,v2 being FinSequence of the adjectives of T st v1 is_properly_applicable_to t & v2 is_properly_applicable_to v1 ast t holds v1^v2 is_properly_applicable_to t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th61
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TAS-structure for t being type of T, A being Subset of the adjectives of T st A is_properly_applicable_to t holds A is finite
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th62
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TAS-structure for t being type of T holds {} the adjectives of T is_properly_applicable_to t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th63
On semilattice structure of {M}izar types
for T being non empty non void reflexive transitive TAS-structure for t being type of T, A being Subset of the adjectives of T st A is_properly_applicable_to t ex B being Subset of the adjectives of T st B c= A & B is_properly_applicable_to t & A ast t = B ast t & for C being Subset of the adjectives of T st C c= B & C is_properly_applicable_to t & A ast t = C ast t holds C = B
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th64
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TAS-structure for t being type of T, A being Subset of the adjectives of T st A is_properly_applicable_to t ex s being one-to-one FinSequence of the adjectives of T st rng s = A & s is_properly_applicable_to t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th65
On semilattice structure of {M}izar types
for T being adj-structured antisymmetric non void reflexive transitive with_suprema Noetherian TAS-structure holds T@--> c= the InternalRel of T
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th66
On semilattice structure of {M}izar types
for T being adj-structured antisymmetric non void reflexive transitive with_suprema Noetherian TAS-structure for t1,t2 being type of T st T@--> reduces t1,t2 holds t1 <= t2
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th67
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric non void with_suprema TAS-structure holds T@--> is irreflexive
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th68
On semilattice structure of {M}izar types
for T being adj-structured antisymmetric non void reflexive transitive with_suprema Noetherian TAS-structure holds T@--> is strongly-normalizing
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th69
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TAS-structure for t being type of T, A being finite Subset of the adjectives of T st for C being Subset of the adjectives of T st C c= A & C is_properly_applicable_to t & A ast t = C ast t holds C = A for s being one-to-one FinSequence of the adjectives of T st rng s = A & s is_properly_applicable_to t for i being Nat st 1 <= i & i <= len s holds [apply(s, t).(i+1), apply(s, t).i] in T@-->
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th70
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TAS-structure for t being type of T, A being finite Subset of the adjectives of T st for C being Subset of the adjectives of T st C c= A & C is_properly_applicable_to t & A ast t = C ast t holds C = A for s being one-to-one FinSequence of the adjectives of T st rng s = A & s is_properly_applicable_to t holds Rev apply(s, t) is RedSequence of T @-->
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th71
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TAS-structure for t being type of T, A being finite Subset of the adjectives of T st A is_properly_applicable_to t holds T@--> reduces A ast t, t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th72
On semilattice structure of {M}izar types
for X being non empty set for R being Relation of X for r being RedSequence of R st r.1 in X holds r is FinSequence of X
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th73
On semilattice structure of {M}izar types
for X being non empty set for R being Relation of X for x be Element of X, y being set st R reduces x,y holds y in X
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th74
On semilattice structure of {M}izar types
for X being non empty set for R being Relation of X st R is with_UN_property weakly-normalizing for x be Element of X holds nf(x, R) in X
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th75
On semilattice structure of {M}izar types
for T being Noetherian adj-structured reflexive transitive antisymmetric with_suprema non void TAS-structure for t1, t2 being type of T st T@--> reduces t1, t2 ex A being finite Subset of the adjectives of T st A is_properly_applicable_to t2 & t1 = A ast t2
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th76
On semilattice structure of {M}izar types
for T being adj-structured antisymmetric commutative non void reflexive transitive with_suprema Noetherian TAS-structure holds T@--> is with_Church-Rosser_property with_UN_property
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th77
On semilattice structure of {M}izar types
for T being adj-structured with_suprema antisymmetric commutative non empty non void reflexive transitive Noetherian TAS-structure for t being type of T holds T@--> reduces t, radix t
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th78
On semilattice structure of {M}izar types
for T being adj-structured with_suprema antisymmetric commutative non empty non void reflexive transitive Noetherian TAS-structure for t being type of T for X being set st X = {t9 where t9 is type of T: ex A being finite Subset of the adjectives of T st A is_properly_applicable_to t9 & A ast t9 = t} holds ex_sup_of X, T & radix t = "\/"(X, T)
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th80
On semilattice structure of {M}izar types
for T being adj-structured with_suprema antisymmetric commutative non empty non void reflexive transitive Noetherian TAS-structure for t1,t2 being type of T, a being adjective of T st a is_properly_applicable_to t1 & a ast t1 <= radix t2 holds t1 <= radix t2
theorem
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:Th81
On semilattice structure of {M}izar types
MinimalFiniteSet { P[set] } : ex A being finite set st P[A] & for B being set st B c= A & P[B] holds B = A provided A1: ex A being finite set st P[A]
scheme
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:sch:MinimalFiniteSet
On semilattice structure of {M}izar types
RedInd { X() -> non empty set, P[set,set], R() -> Relation of X() } : for x,y being Element of X() st R() reduces x,y holds P[x,y] provided A1: for x,y being Element of X() st [x,y] in R() holds P[x,y] and A2: for x being Element of X() holds P[x,x] and A3: for x,y,z being Element of X() st P[x,y] & P[y,z] holds P[x,z]
scheme
abcmiz_0
[ "vocabularies NUMBERS, ZFMISC_1, RELAT_2, REWRITE1, XBOOLE_0, ORDERS_2,", "PRELAMB, SUBSET_1, IDEAL_1, TARSKI, RELAT_1, STRUCT_0, ARYTM_3, XXREAL_0,", "WAYBEL_0, LATTICE3, LATTICES, EQREL_1, CARD_FIL, YELLOW_0, ORDINAL2,", "BINOP_1, FUNCT_1, OPOSET_1, CARD_1, FUNCOP_1, FINSUB_1, YELLOW_1,", "ARYTM_0, WELLORD2, FINSEQ_1, FUNCT_7, NAT_1, ORDINAL4, FINSET_1,", "FINSEQ_5, ARYTM_1, ABCMIZ_0, ABIAN", "notations TARSKI, XBOOLE_0, ZFMISC_1, RELAT_1, RELAT_2, SUBSET_1, ORDINAL1,", "FINSUB_1, CARD_1, FUNCT_1, RELSET_1, PARTFUN1, FUNCT_2, BINOP_1,", "FUNCOP_1, FINSET_1, FINSEQ_1, FUNCT_4, ALG_1, FINSEQ_5, NUMBERS,", "XCMPLX_0, NAT_1, DOMAIN_1, STRUCT_0, ORDERS_2, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, XXREAL_0", "constructors FINSUB_1, NAT_1, FINSEQ_5, REWRITE1, BORSUK_1, LATTICE3,", "WAYBEL_0, YELLOW_1, FUNCOP_1, XREAL_0", "registrations XBOOLE_0, SUBSET_1, RELAT_1, FUNCT_2, FINSET_1, FINSUB_1,", "XXREAL_0, XREAL_0, NAT_1, FINSEQ_1, FINSEQ_5, REWRITE1, STRUCT_0,", "LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, YELLOW_9, ORDINAL1,", "CARD_1, RELSET_1", "requirements BOOLE, SUBSET, NUMERALS, REAL, ARITHM", "definitions TARSKI, XBOOLE_0, RELAT_2, FUNCT_1, FINSEQ_1, LATTICE3, REWRITE1,", "YELLOW_0, WAYBEL_0, RELSET_1", "theorems TARSKI, XBOOLE_0, XBOOLE_1, SUBSET_1, FINSUB_1, NAT_1, FINSEQ_1,", "CARD_1, TREES_1, FINSEQ_5, RELAT_1, RELSET_1, FUNCT_1, FUNCT_2, FUNCT_4,", "FUNCOP_1, STRUCT_0, ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1,", "YELLOW_4, YELLOW_7, WAYBEL_6, WAYBEL_8, ZFMISC_1, FINSEQ_2, FINSEQ_3,", "HILBERT2, REWRITE1, ORDINAL1, XREAL_1, XXREAL_0, PRE_POLY", "schemes XBOOLE_0, NAT_1, FUNCT_1, FUNCT_2, RECDEF_1, RELSET_1, ORDERS_1" ]
abcmiz_0.miz
abcmiz_0:sch:RedInd
On semilattice structure of {M}izar types
for f being Function holds f.x c= Union f
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th1
Towards the construction of a model of Mizar concepts
for f being Function for x,y being set st f = [x,y] holds x = y
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th3
Towards the construction of a model of Mizar concepts
(id X).:Y c= Y
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th4
Towards the construction of a model of Mizar concepts
for S being non void Signature for X being non-empty ManySortedSet of the carrier of S for t being Term of S, X holds t is non pair
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th5
Towards the construction of a model of Mizar concepts
for x,y,z being set st x in {z}* & y in {z}* & card x = card y holds x = y
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th6
Towards the construction of a model of Mizar concepts
for S being non void Signature for X being non empty-yielding ManySortedSet of the carrier of S for t being Element of Free(S,X) holds (ex s being SortSymbol of S, v being set st t = root-tree [v,s] & v in X.s) or ex o being OperSymbol of S, p being FinSequence of Free(S,X) st t = [o,the carrier of S]-tree p & len p = len the_arity_of o & p is DTree-yielding & p is ArgumentSeq of Sym(o, X\/((the carrier of S)-->{0}))
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th7
Towards the construction of a model of Mizar concepts
varcl {} = {}
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th8
Towards the construction of a model of Mizar concepts
for A,B being set st A c= B holds varcl A c= varcl B
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th9
Towards the construction of a model of Mizar concepts
for A being set holds varcl union A = union {varcl a where a is Element of A: not contradiction}
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th10
Towards the construction of a model of Mizar concepts
varcl (X \/ Y) = (varcl X) \/ (varcl Y)
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th11
Towards the construction of a model of Mizar concepts
for A being non empty set st for a being Element of A holds varcl a = a holds varcl meet A = meet A
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th12
Towards the construction of a model of Mizar concepts
varcl ((varcl X) /\ (varcl Y)) = (varcl X) /\ (varcl Y)
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th13
Towards the construction of a model of Mizar concepts
for V being ManySortedSet of NAT st V.0 = {[{}, i] where i is Element of NAT: not contradiction} & for n being Nat holds V.(n+1) = {[varcl A, j] where A is Subset of V.n, j is Element of NAT: A is finite} for i,j being Element of NAT st i <= j holds V.i c= V.j
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th14
Towards the construction of a model of Mizar concepts
for V being ManySortedSet of NAT st V.0 = {[{}, i] where i is Element of NAT: not contradiction} & for n being Nat holds V.(n+1) = {[varcl A, j] where A is Subset of V.n, j is Element of NAT: A is finite} for A being finite Subset of Vars ex i being Element of NAT st A c= V.i
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th15
Towards the construction of a model of Mizar concepts
{[{}, i] where i is Element of NAT: not contradiction} c= Vars
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th16
Towards the construction of a model of Mizar concepts
for A being finite Subset of Vars, i being Nat holds [varcl A, i] in Vars
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th17
Towards the construction of a model of Mizar concepts
Vars = {[varcl A, j] where A is Subset of Vars, j is Element of NAT: A is finite}
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th18
Towards the construction of a model of Mizar concepts
varcl Vars = Vars proof consider V being ManySortedSet of NAT such that A1: Vars = Union V and A2: V.0 = {[{}, i] where i is Element of NAT: not contradiction} and A3: for n being Nat holds V.(n+1) = {[varcl A, j] where A is Subset of V.n, j is Element of NAT: A is finite} by Def2; defpred P[Nat] means varcl(V.$1) = V.$1; now let x,y; assume [x,y] in V.0; then ex i being Element of NAT st [x,y] = [{}, i] by A2; then x = {} by XTUPLE_0:1; hence x c= V.0 by XBOOLE_1:2; end; then A4: varcl (V.0) c= V.0 by Def1; V.0 c= varcl (V.0) by Def1; then A5: P[ 0] by A4,XBOOLE_0:def 10; A6: now let i; assume A7: P[i]; reconsider i9 = i as Element of NAT by ORDINAL1:def 12; A8: V.(i+1) = {[varcl A, j] where A is Subset of V.i, j is Element of NAT: A is finite} by A3; now let x,y; assume [x,y] in V.(i+1); then consider A being Subset of V.i, j being Element of NAT such that A9: [x,y] = [varcl A, j] and A is finite by A8; x = varcl A by A9,XTUPLE_0:1; then A10: x c= V.i by A7,Th9; V.i9 c= V.(i9+1) by A2,A3,Th14,NAT_1:11; hence x c= V.(i+1) by A10,XBOOLE_1:1; end; then A11: varcl (V.(i+1)) c= V.(i+1) by Def1; V.(i+1) c= varcl (V.(i+1)) by Def1; hence P[i+1] by A11,XBOOLE_0:def 10; end; A12: P[i] from NAT_1:sch 2(A5,A6); A13: varcl Vars = union {varcl a where a is Element of rng V: not contradiction} by A1,Th10; thus now let x; assume x in varcl Vars; then consider Y such that A14: x in Y and A15: Y in {varcl a where a is Element of rng V: not contradiction} by A13,TARSKI:def 4; consider a being Element of rng V such that A16: Y = varcl a by A15; consider i being set such that A17: i in dom V and A18: a = V.i by FUNCT_1:def 3; reconsider i as Element of NAT by A17; varcl (V.i) = a by A12,A18; hence x in Vars by A1,A14,A16,A17,A18,CARD_5:2; end; thus thesis by Def1; end;
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th19
Towards the construction of a model of Mizar concepts
for X st the_rank_of X is finite holds X is finite
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th20
Towards the construction of a model of Mizar concepts
the_rank_of varcl X = the_rank_of X
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th21
Towards the construction of a model of Mizar concepts
for X being finite Subset of Rank omega holds X in Rank omega
theorem
abcmiz_1
[ "vocabularies NUMBERS, NAT_1, SUBSET_1, FUNCT_1, TARSKI, CARD_3, RELAT_1,", "XBOOLE_0, STRUCT_0, CATALG_1, PBOOLE, MSATERM, FACIRC_1, MSUALG_1,", "ZFMISC_1, ZF_MODEL, FUNCOP_1, CARD_1, FINSEQ_1, TREES_3, TREES_4,", "MARGREL1, MSAFREE, CLASSES1, SETFAM_1, FINSET_1, QC_LANG3, ARYTM_3,", "XXREAL_0, ORDINAL1, MCART_1, FINSEQ_2, ORDINAL4, PARTFUN1, ABCMIZ_0,", "FUNCT_2, FUNCT_4, ZF_LANG1, CAT_3, TREES_2, MSUALG_2, MEMBER_1, AOFA_000,", "CARD_5, ORDERS_2, YELLOW_1, ARYTM_0, LATTICE3, EQREL_1, LATTICES,", "YELLOW_0, ORDINAL2, WAYBEL_0, ASYMPT_0, LANG1, TDGROUP, DTCONSTR,", "BINOP_1, MATRIX_7, FUNCT_7, ABCMIZ_1", "notations TARSKI, XBOOLE_0, ZFMISC_1,", "XTUPLE_0, SUBSET_1, DOMAIN_1, SETFAM_1, RELAT_1,", "FUNCT_1, RELSET_1, BINOP_1, PARTFUN1, FACIRC_1, ENUMSET1, FUNCT_2,", "PARTIT_2, FUNCT_4, FUNCOP_1, XXREAL_0, ORDINAL1, NAT_1, MCART_1,", "FINSET_1, CARD_1, NUMBERS, CARD_3, FINSEQ_1, FINSEQ_2, TREES_2, TREES_3,", "TREES_4, FUNCT_7, PBOOLE, MATRIX_7, XXREAL_2, STRUCT_0, LANG1, CLASSES1,", "ORDERS_2, LATTICE3, YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR,", "MSUALG_1, MSUALG_2, MSAFREE, EQUATION, MSATERM, CATALG_1, MSAFREE3,", "AOFA_000, PRE_POLY", "constructors DOMAIN_1, MATRIX_7, MSAFREE1, FUNCT_7, EQUATION, YELLOW_1,", "CATALG_1, LATTICE3, WAYBEL_0, FACIRC_1, CLASSES1, MSAFREE3, XXREAL_2,", "RELSET_1, PRE_POLY, PARTIT_2, XTUPLE_0", "registrations XBOOLE_0, SUBSET_1, XREAL_0, ORDINAL1, RELSET_1, FUNCT_1,", "FINSET_1, STRUCT_0, PBOOLE, MSUALG_1, MSUALG_2, FINSEQ_1, CARD_1,", "MSAFREE, FUNCOP_1, TREES_3, MSAFREE1, PARTFUN1, MSATERM, ORDERS_2,", "TREES_2, DTCONSTR, WAYBEL_0, YELLOW_1, LATTICE3, MEMBERED, RELAT_1,", "INDEX_1, INSTALG1, MSAFREE3, FACIRC_1, XXREAL_2, CLASSES1, FINSEQ_2,", "PARTIT_2, XTUPLE_0", "requirements BOOLE, SUBSET, NUMERALS, ARITHM, REAL", "definitions TARSKI, XBOOLE_0, RELAT_1, FUNCT_1, FACIRC_1, FINSEQ_1, FINSEQ_2,", "LANG1, LATTICE3, MSAFREE, MSAFREE3, CARD_3, PBOOLE, TREES_3, MSUALG_1,", "WAYBEL_0, XTUPLE_0", "theorems TARSKI, XBOOLE_0, XBOOLE_1, TREES_1, XXREAL_0, ZFMISC_1, FUNCT_1,", "FUNCT_2, FINSEQ_1, FINSEQ_2, SUBSET_1, ENUMSET1, FUNCT_4, PROB_2, LANG1,", "MATRIX_7, NAT_1, MCART_1, PBOOLE, FINSET_1, RELAT_1, RELSET_1, ORDINAL3,", "CARD_1, CARD_3, CARD_5, CLASSES1, ORDINAL1, SETFAM_1, MSUALG_2, TREES_4,", "FINSEQ_3, FUNCOP_1, MSAFREE, MSATERM, MSAFREE3, PARTFUN1, LATTICE3,", "YELLOW_0, WAYBEL_0, YELLOW_1, YELLOW_7, DTCONSTR, MSAFREE1, FUNCT_7,", "XXREAL_2, CARD_2, XTUPLE_0", "schemes XBOOLE_0, FUNCT_1, NAT_1, FRAENKEL, PBOOLE, MSATERM, DTCONSTR,", "CLASSES1, FUNCT_2" ]
abcmiz_1.miz
abcmiz_1:Th22
Towards the construction of a model of Mizar concepts
End of preview. Expand in Data Studio

Mizar

A structured dataset of theorems and schemes from the Mizar Mathematical Library (MML), one of the largest libraries of formalized mathematics.

Source

Statistics

Property Value
Total Entries 31,246
Theorems 30,606
Schemes 640
Articles 1,153
Docstring Coverage 100%

Schema

Column Type Description
fact string Theorem statement in Mizar syntax
type string "theorem" or "scheme"
library string Article name
imports list[string] Environ section (vocabularies, notations, etc.)
filename string Source .miz file
symbolic_name string Article:Label identifier
docstring string Article title

About Mizar

Mizar is known for:

  • Natural language-like proof style
  • Tarski-Grothendieck set theory foundation
  • Extensive library covering algebra, topology, analysis
  • Named results: Hahn-Banach, Jordan curve theorem, etc.

Mizar Syntax

  • for x holds P[x] - universal quantification
  • ex x st P[x] - existential quantification
  • x in X - set membership
  • X c= Y - subset relation
  • iff - biconditional

Creator

Charles Norton (phanerozoic)

Downloads last month
15