blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3a06f72917a56df21ff9ced2894b48ee088ab583
|
f8bb2d5287f73944d0ae4a8ddb85a18b420ce288
|
/Scilab/riccati.sce
|
e9b901cd43ed522adadbd7bdb664bea6965a6867
|
[] |
no_license
|
nishizumi-lab/sample
|
1a2eb3baf0139e9db99b0c515ac618eb2ed65ad2
|
fcdf07eb6d5c9ad9c6f5ea539046c334afffe8d2
|
refs/heads/master
| 2023-08-22T15:52:04.998574
| 2023-08-20T04:09:08
| 2023-08-20T04:09:08
| 248,222,555
| 8
| 20
| null | 2023-02-02T09:03:50
| 2020-03-18T12:14:34
|
C
|
UTF-8
|
Scilab
| false
| false
| 204
|
sce
|
riccati.sce
|
clear,clc
global A B D S xi Xt Xbox Tbox i h hit
A = [-1 -1;-0 -2];
B = [0;1];
D = [1 0;0.4 1];
R = 1;
Q = [0.79552 -0.0077911;-0.0077911 1.2702];
E = D*inv(R)*D';
P = ricc(A,E,Q,'cont')
S = inv(R)*B'*P
|
a4dc448ca96a597faf9fa95137823a790b810122
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3871/CH5/EX5.34/Ex5_34.sce
|
31c29cd5f4601cef4f56b41b1adc466fef0a7c47
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 958
|
sce
|
Ex5_34.sce
|
//===========================================================================
//chapter 5 example 34
clc;
clear all;
//variable declaration
e0 =8.854*10^-12;
d =0.05;
er = 1;
a = 0.25;
V1 = 12000; //voltage in V
V2 = 32000; //voltage in V
//calculations
//x-x0 = (1/2)*((V^2)/k)*(dc/dx)
//C =(2*e0*er*A)/d
//dC =(2*e0*er*a*x)/d
// y = dC/dx = (2*e0*er*a)/d
y = (2*e0*er*a)/d;
X1 = 0.25/4;
// A =x1+x01 = (1/2)*((V1^2)/k)*(dc/dx)
X2 = 0.25/2;
//B = x2+x01 = (1/2)*((V2^2)/k)*(dc/dx)
//C = B/A =(V2/V1)^2
C = (V2/V1)^2;
x01 = (X2-(C*X1))/(1-C);
k = ((1/2)*((V1^2))*(y))/(X1-x01);
X3 = (3/4)*0.25;
V = sqrt(((X3-x01)*2*k)/y); //voltage in V
//result
mprintf("voltage required to pull the plate three quarte way in = %3.3f KV",(V*10^-3));
|
76157d9ee02a862510b1632f213164aa0dbc6cf8
|
7b7be9b58f50415293def4aa99ef5795e6394954
|
/sim/cmd/test/connector.tst
|
9f3cc3d7d0af0a31f70d4cb9560b455c5309f0ac
|
[] |
no_license
|
sabualkaz/sim42
|
80d1174e4bc6ae14122f70c65e259a9a2472ad47
|
27b5afe75723c4e5414904710fa6425d5f27e13c
|
refs/heads/master
| 2022-07-30T06:23:20.119353
| 2020-05-23T16:30:01
| 2020-05-23T16:30:01
| 265,842,394
| 0
| 0
| null | 2020-05-21T12:26:00
| 2020-05-21T12:26:00
| null |
UTF-8
|
Scilab
| false
| false
| 1,465
|
tst
|
connector.tst
|
# Cross connecter thermo test
units SI
$thermo = VirtualMaterials.Peng-Robinson
/ -> $thermo
thermo + PROPANE ISOBUTANE n-BUTANE n-PENTANE WATER
# lets have some streams for this test
coldInlet = Stream.Stream_Material()
hotInlet = Stream.Stream_Material()
cd hotInlet.In
T = 200
P = 150
Fraction = .01 .02 .01 0 1
MoleFlow = 500
cd /
cd /coldInlet.In
Fraction
Fraction = .75 15 .08 .02 0
VapFrac = 0
P = 300
T =
MoleFlow = 1000
cd /
coldOutlet = Stream.Stream_Material()
exch = Heater.HeatExchanger()
exch
cd exch
DeltaPC = 10
DeltaPH = 50
DeltaTHO = 5 K
cd /
# hot side will use steam property package
$thermo1 = VirtualMaterials.Steam95
exch.HotSide -> $thermo1
exch.HotSide.thermo1 + water
# create hot outlet and assign the hot inlet thermo
hotOutlet = Stream.Stream_Material()
hotOutlet -> $thermo1
# create CrossConnector
xc = CrossConnector.CrossConnector()
hotInlet.Out -> xc.In
xc.In
xc.Out
#connect things
coldInlet.Out -> exch.InC
exch.OutC -> coldOutlet.In
xc.Out -> exch.InH
exch.OutH.T
exch.OutH -> hotOutlet.In
# results
coldInlet
coldInlet.Out
coldOutlet.Out
hotInlet.Out
hotOutlet.Out
exch.ColdSide.InQ
# one more stream and connector
hotOut2 = Stream.Stream_Material()
xc2 = CrossConnector.CrossConnector()
xc2.Out -> hotOut2.In
hotOut2.In
copy /
paste /
cd /RootClone
coldInlet
coldInlet.Out
coldOutlet.Out
hotInlet.Out
hotOutlet.Out
exch.ColdSide.InQ
|
06b2d6d581c54271b37983805be1673c4491778c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2219/CH9/EX9.9/Ex9_9.sce
|
3fe39385e609b232af4ef1545c2430e8b769e22e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 615
|
sce
|
Ex9_9.sce
|
// Chapter 9 example 9
//------------------------------------------------------------------------------
clc;
clear;
// Given Data
fc1 = 495; // freq in Mhz
fc2 = 505; // freq in Mhz
// Calculations
fo = (fc1 + fc2)/2; // Center of spectrum in Mhz
BW = fc2 - fc1; // Bandwidth in Mhz
PW = 1/BW; // compressed pulse width in us
// Output
mprintf('Center of spectrum = %d Mhz\n Matched Bandwidth = %d Mhz\n Compressed Pulse width = %3.1fus',fo,BW,PW);
//------------------------------------------------------------------------------
|
662e24b384fb0f9e8cffff4df1a35db372ea9868
|
b829a470efb851fdd8700559c2092711adaa42e0
|
/Data/OVI-CV-03-Facenet/CV-Groups/cv-group-114528472701/OVI-Test/cv-group-114528472701-run-00.tst
|
3fe4cf510919d007657a378ec86cc6111b962cd5
|
[] |
no_license
|
achbogga/FaceRecognition
|
6f9d50bd1f32f2eb7f23c7ae56f9e7b225d32325
|
165ebc7658228d2cceaee4619e129e248665c49a
|
refs/heads/master
| 2021-07-04T21:47:57.252016
| 2017-08-01T18:53:12
| 2017-08-01T18:53:12
| 96,568,452
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 504
|
tst
|
cv-group-114528472701-run-00.tst
|
Huiping\Huiping_010.jpg
Huiping\Huiping_017.jpg
Don\Don_014.jpg
Don\Don_008.jpg
Shirley\Shirley_012.jpg
Shirley\Shirley_009.jpg
Kiran\Kiran_005.jpg
Kiran\Kiran_013.jpg
Allison\Allison_011.jpg
Allison\Allison_002.jpg
Amit\Amit_011.jpg
Amit\Amit_001.jpg
Gang\Gang_002.jpg
Gang\Gang_015.jpg
Ethan\Ethan_002.jpg
Ethan\Ethan_004.jpg
Rob\Rob_009.jpg
Rob\Rob_004.jpg
Nara\Nara_007.jpg
Nara\Nara_008.jpg
Weihong\Weihong_007.jpg
Weihong\Weihong_011.jpg
Dave\Dave_008.jpg
Dave\Dave_006.jpg
|
fb93ebf010b2b774136a8fef2326d5f9b35fb43d
|
1a50fe78c1413f8559b28861ace1767322e787bd
|
/tests/unit_tests/slr_convert_arglist.tst
|
12e270009d644451e72e9d4ee6b2e8e632b8997f
|
[] |
no_license
|
pivui/slr
|
105b6b4035974bd4e4b17283c98fa287627f5618
|
d10c2f46ee7563d0bd05bfea74408ba30aaf856b
|
refs/heads/master
| 2019-07-11T14:06:45.762247
| 2018-02-27T16:29:08
| 2018-02-27T16:29:08
| 91,713,612
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 487
|
tst
|
slr_convert_arglist.tst
|
// Author : Pierre Vuillemin (2017)
// <-- NO CHECK REF -->
mode(-1);
attr_list = list('attr1',1,'attr2','value2')
s = slr_convert_arglist(attr_list)
assert_checktrue(typeof(s) == 'st')
assert_checkequal(s.attr1, attr_list(2))
assert_checkequal(s.attr2, attr_list(4))
//
mlist_type = 'myType'
m = slr_convert_arglist(attr_list, mlist_type)
assert_checktrue(typeof(m) == mlist_type)
assert_checkequal(m.attr1, attr_list(2))
assert_checkequal(m.attr2, attr_list(4))
|
cf49b194fffbf9bf137c416f6410ca9992263a82
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2141/CH10/EX10.1/Ex10_2.sce
|
54177b94ce550d8063a0cef5c4a34fec604afd9e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 183
|
sce
|
Ex10_2.sce
|
clc
//initialisation of variables
P=81.5
P2=0.0019 //lbf/in^2
T1=360//F
T2=420//F
//CALCULATIONS
p=P2/P//lbf/in^2
//RESULTS
printf('The presure of water =% f lbf/in^2',p)
|
325c68c0928fbf39dd533118d2c6f5db2020f99c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/147/CH13/EX13.7/Example13_7.sce
|
873fdbbd68e15fee091d55cfa3fcf1d0ca65a35b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 231
|
sce
|
Example13_7.sce
|
close();
clear;
clc;
//from solved example 13.6
V = 120; //V
Pc = 75; //W
Rc = V^2/Pc;
I = 1.5; //A
pf = 0.417;
Im = sqrt(I^2 - (I*pf)^2); //A
Ic = V/Rc; //A
Xm = V/Im; //ohm
mprintf("Rc = %d ohm\nXm = %d ohm",Rc,Xm);
|
44f76ca4bf0870cbc35e49341883ec780d664e47
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2459/CH3/EX3.1/Ex3_1.sce
|
222e66c720268680403768dafbc27eec5834cee3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 270
|
sce
|
Ex3_1.sce
|
//chapter3
//example3.1
//page41
Ib1=10 // mA
Eb1=100 // V
Ib2=20 // mA
// Ib is proportional to Eb^(3/2)
// so we can say Ib1/Ib2 = Eb1^1.5/Eb2^1.5
//thus we can write
log_Eb2=(2/3)*log(Eb1^1.5*Ib2/Ib1)
Eb2=exp(log_Eb2)
printf("required plate voltage = %.3f V",Eb2)
|
d2d19872887e7766f246eb9f965f9628c3b252c8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1238/CH2/EX2.37/37.sce
|
66111c9efbaa0c6e499bcb5037b151aa2c8cbb03
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 297
|
sce
|
37.sce
|
//finding SOP//
//example 37//
clc
//clears the command window//
clear
//clears//
disp('given f=AC')
disp('f=AC(B+B'')(D+D'')')
disp('f=ACBD+ACBD''+ACB''D+ACB''D''');//required sum of minterms//
disp('f=1111+1110+1011+1010')
disp('required SOP form:')
disp('f=summation(10,11,14,15)')
|
11d5250868ce66617d8b33234296c8f06063297a
|
17f37b79643b9c6acd181c55c43a3ab4c889433e
|
/loader.sce
|
ec573a31259cffd2d05bf3edc63b7d56727be6ef
|
[] |
no_license
|
aashay201297/OpenFOAM-simulations
|
5208b766ab1e715178e42c73d028cc43d17ec4c9
|
273f60ef66e6f5b0c99a53ac52de406be0e876a2
|
refs/heads/master
| 2021-01-23T06:34:17.044650
| 2017-06-04T19:02:27
| 2017-06-04T19:02:27
| 86,373,858
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 730
|
sce
|
loader.sce
|
// ----------------------------------------------------------------------------
// This file was automatically generated by SWIG (http://www.swig.org).
// Version 4.0.0
//
// Do not make changes to this file unless you know what you are doing--modify
// the SWIG interface file instead.
// ----------------------------------------------------------------------------- */
libinc_path = get_absolute_file_path('loader.sce');
[bOK, ilib] = c_link('libinc');
if bOK then
ulink(ilib);
end
list_functions = [..
'inc_Init'; ..
'SWIG_this'; ..
'SWIG_ptr'; ..
'inc'; ..
];
addinter(fullfile(libinc_path, 'libinc' + getdynlibext()), 'libinc', list_functions);
clear libinc_path;
clear bOK;
clear ilib;
clear list_functions;
|
db5bf93c5a5790fe2836130dbdfd85f5b361c2ff
|
35071fb08cee13f4a9e79c396f7c8c028f69db0e
|
/Tests/Verif/OK/while_w_bool.tst
|
7063ffe071c418f4b1fc8eb98af450910909e9f7
|
[] |
no_license
|
V1nc3ntL/Compilation
|
2cd9d4fa728055cebd44659cba517e49298142bc
|
e2008449ddb509021f6ddcfd0a92226807bec9ab
|
refs/heads/master
| 2023-06-01T09:42:01.069684
| 2021-06-02T19:15:13
| 2021-06-02T19:15:13
| 357,205,127
| 0
| 0
| null | 2021-05-31T12:13:32
| 2021-04-12T13:30:46
|
C
|
UTF-8
|
Scilab
| false
| false
| 215
|
tst
|
while_w_bool.tst
|
int start = 0;
int end = 100;
bool next = true;
void main()
{
sum = start;
while(next){
sum = sum + i;
if(sum > end){
next = false;
}
}
print("sum: ",sum,"\n");
}
|
eae72de6c0ac2da5619df13f83c4116b2fa2da5a
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/MA09.prev.tst
|
70d3002145aa1b713f848566ca4951ef0e6cd235
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 277
|
tst
|
MA09.prev.tst
|
[[2,2,1,0],[1,1,1,1],[1,2,2,0],[2,3,2,0]]
[[2,2,1,0],[1,2,2,0],[1,1,1,1],[2,3,2,0]]
[[2,3,2,0],[1,2,2,0],[1,1,1,1],[2,2,1,0]]
[[-2,-3,-2,0],[-1,-2,-2,0],[1,1,1,1],[2,2,1,0]]
[[-2,-3,-2,0],[-1,-2,-2,0],[-1,-1,-1,-1],[-2,-2,-1,0]]
[[2,3,2,0],[1,2,2,0],[1,1,1,1],[2,2,1,0]]
|
5f800c67bf02975cf78f308f0934aa4fbd49af36
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/part.man.tst
|
67df07f043b34ba0aff03d61039606d354110af8
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 51
|
tst
|
part.man.tst
|
clear;lines(0);
c=part(['a','abc','abcd'],[1,1,2])
|
17ce7f7b0ba3dc27a78f6e64a8727688d19889c6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1472/CH5/EX5.1/5_1.sce
|
5169d42b944cdc620c7c2da060006d86da6db3d7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 199
|
sce
|
5_1.sce
|
clc
//initialization of varaibles
V1=10 //cu ft
P1=15 //psia
V2=5 //cu ft
H=34.7 //Btu
//calculations
W=P1*(V2-V1)*144
dE=-H-W/778
//results
printf("Internal energy change = %.1f Btu",dE)
|
dd45dddcfefd9c94970090ff2e2c33a7bc5b06f8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2123/CH5/EX5.18/Exa_5_18.sce
|
00d28591c0798a2478c489499301d02bdbe6e955
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 448
|
sce
|
Exa_5_18.sce
|
//Example No. 5.18
clc;
clear;
close;
format('v',6);
//Given Data :
V=400;//V
f=50;//Hz
I=50;//A
Ra=0.1;//ohm
K=0.3;//V/rpm
Ia=5;//A
alfa=30;//degree
Vavg=3*sqrt(3)*V*sqrt(2)/sqrt(3)/2/%pi*(1+cosd(alfa));//V
Eb=Vavg-Ia*Ra;//V
N=Eb/K;//rpm
disp(N,"No load speed in rpm : ");
Speed=1600;//rpm
Eb=Speed*K;//V
Vin=Eb+I*Ra;//V
alfa=acosd(Vin/3/sqrt(3)/V/sqrt(2)*sqrt(3)*2*%pi-1);//degree
disp(alfa,"Fringe angle in degree : ");
|
e33f3282ceab88069bc5475d0aa08db86d860858
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2300/CH19/EX19.29.1/Ex19_1.sce
|
94334c3f1ec6dc5af07cf6925e1d202accc0534d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 625
|
sce
|
Ex19_1.sce
|
//scilab 5.4.1
//Windows 7 operating system
//chapter 19 VLSI Technology and Circuits
clc
clear
ID=50*10^-6//ID=drain current in amperes
k=25*10^-6//k=ue/D in A/V^2
VDS=0.25//VDS=drain-to-source voltage
VGS=5//VGS=gate-to-source voltage
VTH=1.5//VTH=threshold voltage
w=ID/(k*(VGS-VTH)*VDS)//w=W/L
format("v",5)
disp(w,"W/L=")
P=VDS*ID//P=power dissipated by the transistor
disp("micro Watt",P*10^6,"The dissipated power is=")
VDD=5//VDD=drain supply voltage of given NMOS transistor
R=(VDD-VDS)/ID//R=load resistor to be connected in series with the drain
disp("kilo ohm",R/1000,"The load resistance is=")
|
86fd9954a099afb3400ccf8794fb4b891e9951f4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2939/CH4/EX4.10/Ex4_10.sce
|
3ba12a698f2c4358c6092b7d5789d7bbc6c0f142
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 277
|
sce
|
Ex4_10.sce
|
// Ex4_10
clc;
// Given
E=2.5;// in MeV
// Solution:
k=0.693/(5.27*3.16*10^7);// decay constant
A=k*0.1*6.022*10^23;// atoms/s
A1=3.6*10^3*A;// atoms /hr
E1=A1*E*1.6*10^-13*10^-3;//Energy in KJ/hr
printf("The total energy dissipate per hour is = %f KJ",E1)
|
2d073ffc3cf32a86e32ce86555879a8bf12df86b
|
6577008921680ddcc005d6cd1fbfc6e580f04740
|
/Code/newtonGregoryForward.sci
|
03cfbeef12180395376a3d28b68f2303213c20cf
|
[] |
no_license
|
bagasadif/Program-Scilab
|
a9539ddf00a5c75ca844d93e9b35309427a28722
|
94d09657ae48d130184c23c34af9a0f4a1a2ab18
|
refs/heads/master
| 2023-02-19T19:24:24.042558
| 2021-01-24T22:27:39
| 2021-01-24T22:27:39
| 332,569,383
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,157
|
sci
|
newtonGregoryForward.sci
|
/*
Author : Bagas Adi Firdaus
Deskripsi : Program Metode Newton-Gregory Forward
*/
clear;
clc;
printf('\nProgram Metode Newton-Gregory Forward\n');
x=0.45;
X = [0.1 0.3 0.5 0.7 0.9 1.1];
Y = [0.003 0.067 0.148 0.248 0.370 0.518];
printf('Diketahui Data Berikut:\n');
//Menampilkan data
for i=1:6
printf('n = %d\t x = %.6f\t f(x) = %.6f\n',i, X(i),Y(i));
end
x=input('Masukkan nilai x yang akan dicari f(x)nya = ');
//Fungsi pencari faktorial
function faktorial=faktorial(p)
fak=1;
for k=2 : p
fak=fak*k;
end
faktorial=fak;
endfunction
//Menyimpan Y[k] pada kolom 1 matriks TS (tabel selisih)
for k=1:6
TS(k,1)=Y(k);
end
//Membentuk tabel selisih
for k=2:6
for i=1:7-k
TS(i,k)=TS(i+1,k-1)-TS(i,k-1);
end
end
//Jarak antar titik
h=X(2)-X(1);
//Menghitung p(x)
//Orde yang digunakan adalah orde terbesar (orde 5)
s=(x - X(1))/h;
jumlah=TS(1,1);
for i=2:6
suku=TS(1,i);
for k=0:i-2
suku=suku*(s-k);
end
suku=suku/faktorial(i-1);
jumlah=jumlah+suku;
end
hasil=jumlah;
printf('Orde yang digunakan adalah orde terbesar yaitu orde 5\nJadi nilai f(%.2f) adalah : %.6f', x, hasil);
|
c8493747097323530ecece272001b614a89b3c81
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1652/CH7/EX7.5/7_5.sce
|
193387bdae2b7bf8d32bbe81fa6b1086500428ac
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 311
|
sce
|
7_5.sce
|
clc
//Initialization of variables
n1=2
n2=10
n3=3
P=720 //mm of Hg
//calculations
n=n1+n2+n3
x1=n1/n
P1=x1*P
x2=n2/n
P2=x2*P
x3=n3/n
P3=x3*P
//results
printf("\n Partial pressure of N2 = %d mm",P1)
printf("\n Partial pressure of O2 = %d mm",P2)
printf("\n Partial pressure of CO2 = %d mm",P3)
|
3e9cd482a4eee8a77ed71a66d6b627d8b1850260
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3/macros/percent/%rnp.sci
|
aab708daf9751d2e9cc00748649e95d775c3a106
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 119
|
sci
|
%rnp.sci
|
function [r]=%rnp(l1,l2)
//%rnp(l1,l2) <=> l1<>l2
r=degree(l1(3))==0
if r then r=l1(2)./coeff(l1(3))==l2,end
r=~r
|
4f0ae00b473a50a1ed57a75ee9d8e344db8f3325
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3793/CH11/EX11.5/exp_11_5.sce
|
eeda6a7fcbe68b42780333ff6cca6b57c0e9bf8b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 430
|
sce
|
exp_11_5.sce
|
clear;
clc;
Xtf=.2+.2+(.3*.6/0.9);
pi=0.9;
po=pi;
del1=asin(Xtf*pi/(1.2*1));
Pm=1.2*1/Xtf;
//fault condition
Xtf1=(.4*.3+.3*.3+.3*.4)/.3;
Pm1=1.2*1/Xtf1;
//post fault condition
Xtf2=.2+.2+.3;
Pm2=1.2*1/Xtf2;
delm=(%pi-(asin(pi/Pm2)));
delc=acos((pi*(delm-del1)+Pm2*cos(delm)-Pm1*cos(del1))/(Pm2-Pm1));
mprintf("rotor angle is %.3f radian \n",del1);
mprintf("Critical clearing angle is %.3f radian",delc);
|
993555f6a1c5ce3697ed1088692658924d074e32
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1964/CH1/EX1.30/ex1_30.sce
|
945246269b854d94578d66b6a8207c6feba5cc8a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 920
|
sce
|
ex1_30.sce
|
//Chapter-1, Example 1.30, Page 43
//=============================================================================
clc;
clear;
//INPUT DATA
P=70;//total power dissipated in circuit in watts
V1=6;//since applied voltage E is 6V,as per the characteristics of parallel circuit P.D across R1 is
V2=6;//V1=V2,in volts
R1=12;//resistance1 in parallel combination in ohms
R2=6;//resistance2 in parallel combination in ohms
R3=6.25//resistance3 in series with parallel combination in ohms
I1=V1/R1;// current through the resistance R1 in Amps
I2=V2/R2;//current through the resistance R2 in Amps
r=0.25;//internal resistance in ohm
//CALCULATIONS
I=I1+I2;//total current through parallel combination
E=(I*r)+(I*R3)+V2;//emf of battery in Volts
//OUTPUT
mprintf("Thus the value of emf of battery in Volts is %2.2f volts ",E);
//=================================END OF PROGRAM==============================
|
2b274c612124743a82e9c8e2e5be7a4cf556b46a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1985/CH6/EX6.3/Chapter6_Example3.sce
|
a4ef72ac8fa181dcddbec7c027d56757c2186341
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 487
|
sce
|
Chapter6_Example3.sce
|
clc
clear
//Input data
C=[1.5145,1.5170,1.5230]//Refractive index of the crown glass for C,D and F line respectively
F=[1.6444,1.6520,1.6637]//Refractive index of the flint glass for C,D and F line respectively
//Calculations
w1=(C(3)-C(1))/(C(2)-1)//Dispersive power of the first lens
w2=(F(3)-F(1))/(F(2)-1)//Dispersive power of the second lens
//Output
printf('The dispersive power for crown glass is %3.4f \n The dispersive power for the flint glass is %3.5f',w1,w2)
|
5898c7efd1bcb988b89a6babb9442ee92fc1b424
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3863/CH3/EX3.13/Ex3_13.sce
|
6582284133e8b8de32091abeda9c7faf53ba8da9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 605
|
sce
|
Ex3_13.sce
|
clear
//
//Given
//Variable declaration
sigma1=120 //Major tensile stress in N/sq.mm
sigma2=-90 //Minor compressive stress in N/sq.mm
sigma_gp=150 //Greatest principal stress in N/sq.mm
//Calculation
//case(a):Magnitude of the shearing stresses on the two planes
tau=(sqrt(((sigma_gp-((sigma1+sigma2)/2))**2)-(((sigma1-sigma2)/2)**2)))
//case(b):Maximum shear stress at the point
sigmat_max=int((sqrt((sigma1-sigma2)**2+(4*tau**2)))/2)
//Result
printf("\n Shear stress on the two planes = %0.3f N/mm^2",tau)
printf("\n Maximum shear stress at the point = %0.3f N/mm^2",sigmat_max)
|
3918e35bbfc85a3f5c0369c8aaa507f467118cb4
|
1485852dd59aafc286600126cf832a32e10f117f
|
/tests/textureFlattening/test7.sce
|
67df206232c145b977ad96ac01273f2c50ceb676
|
[] |
no_license
|
rg77/Scilab-Image-Processing-And-Computer-Vision-Toolbox
|
dec9fbbce32cfd1eab3c45ccb29c89aaa1384758
|
8adb116da3a9c29a32e5e0727105aff571e5b374
|
refs/heads/master
| 2020-12-02T16:14:45.282650
| 2017-07-07T10:12:04
| 2017-07-07T10:12:04
| 96,524,257
| 0
| 0
| null | 2017-07-07T09:43:50
| 2017-07-07T09:43:50
| null |
UTF-8
|
Scilab
| false
| false
| 187
|
sce
|
test7.sce
|
src = imread("../images/image_0197.jpg");
[rows cols] = size(src)
mask = zeros(rows,cols);
mask(1:rows,1:(cols/2)) = 255;
output = textureFlattening(src,mask,12,180, 5 );
imshow(output);
|
406ba632c4a8dad3d0869837a1aed50417e10507
|
85fe3541d4988b676b5ab7c8ed719a26fe38e3c8
|
/Examples/orbit.sce
|
fba17fe1eacabae9095c2c39ad417fade943a2fa
|
[
"Unlicense"
] |
permissive
|
UnknowableCoder/SimCampEl
|
c115105b2b5837b3a1eb012d1acb89015eade17f
|
9bd83c6316e16a161d19393ad79a4e3bdcb30679
|
refs/heads/main
| 2023-03-13T23:07:25.000479
| 2021-03-12T13:38:35
| 2021-03-12T13:38:35
| 347,071,759
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 167
|
sce
|
orbit.sce
|
2
0 0 0 0 0 0 0 0 0 1e-08 1e-08 0.5 Central
1 0 0 0 9.48027 0 0 0 0 1e-14 -1e-14 0.1 Satélite
-20 -20 -20 20 20 20
0
0
0
0
0
0
299792448 4 0
|
c0efa2d2617c3ead48958865f61dc34e4bd07f52
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2780/CH2/EX2.8/Ex2_8.sce
|
5845b08a8da1b31c97ff949794f25b95cf4545d5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 374
|
sce
|
Ex2_8.sce
|
clc
//to calculate fringe width
mu=1.5 //refractive index (unitless)
alpha=%pi/180 //refracting angle in radian
Y1=20*10^-2 //distance between the source and the biprism in m
Y2=80*10^-2 //distance in m
D=Y1+Y2 // distance in m
lambda=6900*10^-10 //wavelength in m
twod=2*(mu-1)*alpha*Y1
omega=D*lambda/twod
disp("the fringe width is omega="+string(omega)+"m")
|
7cabe73ed5965825d512ea286e07facbd5a04d8f
|
12db6bcaa71bfd88ae6be3534ee0186e48a71d6e
|
/testCases/commentsTestCase.tst
|
21160584c3d8e5d591a3ccb570c332144afedf2a
|
[
"MIT"
] |
permissive
|
Besler/ENEL453-Assembler
|
d5422a3ed104da74827e40eb0661781390620a93
|
af73557255817a7c1fa4c9fd6ceeb54e2ee35fc7
|
refs/heads/master
| 2021-06-03T13:27:28.526258
| 2016-05-25T04:55:46
| 2016-05-25T04:55:46
| 17,685,919
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 729
|
tst
|
commentsTestCase.tst
|
load 0 Reg0 # Comment
load 255 Reg0 # Comment
load 0 Reg1# Comment
load 255 Reg1
move Reg0 # This is a comment at the end of the line
move Reg1# Comment
# This is me commenting out a section of code
# load 0 Reg0# Comment
add Reg0# Comment
add Reg1# Comment
sub Reg0# Comment
sub Reg1# Comment
sr# Comment
sl# Comment
and Reg0# Comment
and Reg1# Comment
or Reg0# Comment
or Reg1# Comment
#Insert block comment
#
#
#
#
#
#
#
#
#
#
#
#
#
#
inv# Comment
j 0# Comment
j 22# Comment
jaz 0# Comment
jaz 22# Comment
jal 0# Comment
jal 22# Comment
jr# Comment
wri Reg0# Comment
wri Reg1# Comment
wri P1# Comment
wri P2# Comment
wri Tx# Comment
# Comment
str Reg0# Comment
str Reg1# Comment
|
992f50fc046c649fdc0ef1358db1c6948a1880fb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3733/CH22/EX22.17/Ex22_17.sce
|
f72fd0dcb9bda129cd72636b4ac278b547655bcf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,368
|
sce
|
Ex22_17.sce
|
// Example 22_17
clc;funcprot(0);
//Given data
P=500;// Plant capacity in kW
T_1=300;// °C
p_4=30;// bar
p_5=7;// bar
p_6=0.04;// bar
dT=5;// The rise in cooling water temperature in °C
C_pw=4.2;// kJ/kg.°C
// Calculation
// From h-s chart:
h_4=3000;// kJ/kg
h_5=2700;// kJ/kg
h_6=1970;// kJ/kg
// From steam tables
h_f1=121.4;// kJ/kg(at 0.04 bar)
h_f2=697;// kJ/kg(at 7 bar)
function[X]=mass(y)
X(1)=((y(1)*h_5)+((1-y(1))*h_f1))-(1*h_f2);
endfunction
y=[0.1];
z=fsolve(y,mass);
m=z(1);// kg
W=(1*(h_4-h_5))+((1-m)*(h_5-h_6));// kJ/kg
Q_s=h_4-h_f2;// Heat supplied in kJ/kg
n_s=(W/Q_s)*100;// Efficiency in %
m_s=(P/W)*3600;//Steam generated per second in kg/hr
m_w=((h_6-h_f1)*(m_s/3600)*(1-m))/(C_pw*dT);// kg/sec
// If there ie no feed water,then
W_1=h_4-h_6;// kJ/kg
Q_s=h_4-h_f1;// kJ/kg
n=(W_1/Q_s)*100;// Efficiency in %
m_s1=(P/W_1)*3600;//Steam generated per second in kg/hr
m_w1=((m_s/3600)*(h_6-h_f1))/(C_pw*dT);// The amount of cooling water in kg/sec
printf('\n(a)The rankine efficiency=%0.1f percentage \n Steam generation rate of boiler=%0.1f kg/hr \n The amount of cooling water=%0.2f kg/sec \n(b)The rankine efficiency=%0.1f percentage \n Steam generation rate of boiler=%0.1f kg/hr \n The amount of cooling water=%0.2f kg/sec',n_s,m_s,m_w,n,m_s1,m_w1);
// The answer vary due to round off error
|
3546af2e580ed6db3511effa0d05e4cf46c85cc7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/569/CH9/EX9.16/9_16.sci
|
38588cdbe6a440c8094ac77a41ec0707747efe98
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 503
|
sci
|
9_16.sci
|
// calculate the open circuit voltage
clc;
P=200*10^3;
R=70*10^-3;
v=0.25;
t=1*10^-3;
r=60*10^-3;
E=200*10^9;
Sr=[3*P*R^2*v/(8*t^2)]*{(1/v+1)-(3/v+1)*(r/R)^2};
St=[3*P*R^2*v/(8*t^2)]*{(1/v+1)-(1/v+3)*(r/R)^2};
Sta2=(Sr-v*St)/E;
Sta3=(Sr-v*St)/E;
r0=10*10^-3;
Sr1=[3*P*R^2*v/(8*t^2)]*{(1/v+1)-(3/v+1)*(r0/R)^2};
St1=[3*P*R^2*v/(8*t^2)]*{(1/v+1)-(1/v+3)*(r0/R)^2};
Sta1=(Sr1-v*St1)/E;
Sta4=(Sr1-v*St1)/E;
Gf=1.8;
ei=12;
eo=(Sta1+Sta4-Sta2-Sta3)*Gf*ei/4;
disp(eo,'output voltage (V)')
|
0b5354fcc7893ed42a2404de5ef45f3495d2f352
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/551/CH14/EX14.26/26.sce
|
3222524de108fba323161952d275f0b0d3859942
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 436
|
sce
|
26.sce
|
clc
h2=1597; //kJ/kg
h3=1790; //kJ/kg
h4=513; //kJ/kg
h1=h4;
t3=58; //0C
x1=0.13;
tc=27; //0C
capacity=10.5; //tonnes
disp("(i) Condition of the vapour at the outlet of the compressor =")
t=t3-tc;
disp(t)
disp("°C")
disp("(ii) Condition of vapour at entrance to evaporator =")
disp(x1)
disp("COP =")
COP=(h2-h1)/(h3-h2);
disp(COP)
disp("(iv) Power required =")
P=capacity*14000/COP/3600;
disp(P)
disp("kW")
|
b5c1c82b2d6ce39ec2a3ed68b3525f85443f7e05
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1319/CH5/EX5.20/5_20.sce
|
85b233b0490b9533911750ad9bf9d0e97a41458c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 564
|
sce
|
5_20.sce
|
//To determine the max regulation and the pf at which it occurs
clc;
clear;
Vr=2.5;
Vx=5;
printf('The expression for voltage requlation is y= %g cos(phi) + %g sin(phi) \n',Vr,Vx )
printf('Differenciating w.r.t phi and equating it to zero, we get the power factor angle \n')
printf('We get tan(phi)=> Vr/Vx => 5/2.5 => 2 \n \n')
phi=atand(Vx/Vr); // power factor angle
y= Vr*cosd(phi)+Vx*sind(phi); // Max Volatge regulation
printf('The maximum regulation is %g percent \n and the power factor at which it occurs is %g degrees \n',y,phi)
|
7c72f58d35cae6accbda80b114cb306cfe027505
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3814/CH7/EX7.6/Ex7_6.sce
|
af44e2738e1ef7d7a21b21b069c03e5fe844993c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 537
|
sce
|
Ex7_6.sce
|
// design of bersia power station
// ex 7.6 pgno.178
clc
p=24.7e6// power watt
h=26.5 //m
N=187.5 // rev/min
Q=104 //m3/s
w=(2*N*%pi)/60
g=9.8
mprintf('\n w= %f rad/s',w)
wt=(w*sqrt(p/10^3))/(g*h)^(5/4)
mprintf('\n wt =%f',wt)
Ns=(N*sqrt(p/10^3))/(h^(5/4)) // speed
mprintf('\n Ns =%f',Ns)
n0=p/(9800*Q*h) // overall efficiency
mprintf('\n Overall efficiency n0= %f percentage',n0*100)
mprintf('\n Based on specific speed values obtained kaplan turbine is selected with an overall efficiency of %f percentage',n0*100)
|
fb190b3b9affae9ded272a3661c32f1bbdbe5bbd
|
3cbee2296fd6b54f80587eead83813d4c878e06a
|
/sci2blif/rasp_design_added_blocks/CurrentstarvedInverter.sce
|
ed4cb1fabcd01abf72049ccf5ecc668deb0083cf
|
[] |
no_license
|
nikhil-soraba/rasp30
|
872afa4ad0820b8ca3ea4f232c4168193acbd854
|
936c6438de595f9ac30d5619a887419c5bae2b0f
|
refs/heads/master
| 2021-01-12T15:19:09.899590
| 2016-10-31T03:23:48
| 2016-10-31T03:23:48
| 71,756,442
| 0
| 0
| null | 2016-10-24T05:58:57
| 2016-10-24T05:58:56
| null |
UTF-8
|
Scilab
| false
| false
| 127
|
sce
|
CurrentstarvedInverter.sce
|
style.fontSize=14;
style.displayedLabel="CurrentstarvedInverter"
pal5=xcosPalAddBlock(pal5,"CurrentstarvedInverter",[],style);
|
4a02fc368768ddc848f6c38d11b85b78aa1c3f3f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1418/CH25/EX25.7/EX25_7.sce
|
43a4a05d2810ebc428e14274f723cceab1b1aa54
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,363
|
sce
|
EX25_7.sce
|
//EXAMPLE 25.7
//COUPLED COILS
clc;
funcprot(0);
//Variable Initialisation
x=poly(0,"x");
L11=1+(1/x);
L22=0.5+(1/x);
L12=1/x;
L21=1/x;
ic1=20;.........//First coil is excited by constant current in Amperes
ic2=-10;.........//Second coil is excited by constant current in Amperes
x1=0.5;........//Displacement in Centi Meter
x2=1;...........//Displacement in Centi Meter
Wfd=((1/2)*L11*ic1^2)+(L12*ic1*ic2)+((1/2)*L22*ic2^2);........//Function of mechanical work done
F1=(-1)*derivat(Wfd);..........//Function for energy stored
disp(F1,"Energy stored :");
deff('y=f(x)','y=50/(x^2)');
dWmech=intg(0.5,1,f);.................//Mechanical work if x ranges from 0.5 to 1.0cm in Joules
disp(dWmech,"(a).Mechanical work if x ranges from 0.5 to 1.0cm in Joules:");
y1=(L11*ic1)+(L12*ic2);........//Leakage flux for coil 1;
disp(y1,"(b).Function for leakage flux for coil 1");
y1x1=20+10/(x1);....//at x1
y1x2=20+10/(x2);....//at x2
dwelec1=ic1*(y1x2-y1x1);........//Energy supplid by coil 1 in Joules
disp(dwelec1,"Energy supplid by coil 1 in Joules:");
y2=(L12*ic1)+(L22*ic2);.......//Leakage flux for coil 2;
disp(y2,"Leakage flux for coil 2");
y2x1=-5+10/(x1);....//at x1
y2x2=-5+10/(x2);....//at x2
dwelec2=ic2*(y2x2-y2x1);........//Energy supplid by coil 1 in Joules
disp(dwelec2,"Energy supplid by coil 2 in Joules:");
|
ebd3e21b18b47a9eda4cec12476ec5c327a4a70e
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.5_15.tst
|
0a2e327470dfd081bb1e9b001d7f10eb5bd45531
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 34,613
|
tst
|
bow.5_15.tst
|
5 4:0.5 6:0.4 7:0.5 8:0.1 12:0.2857142857142857 20:0.3333333333333333 21:0.2857142857142857 23:1.0 26:0.02857142857142857 38:0.5 48:1.0 49:0.015503875968992248 51:1.0 55:0.4 64:0.5 68:1.0 71:2.0 100:0.25 133:1.5 137:0.09090909090909091 176:1.0 183:1.0 190:0.2 236:0.3333333333333333 366:0.5 383:1.0 407:1.0 483:2.0 611:1.0 647:1.0 879:1.0 982:1.0 1087:1.0 1113:2.0 1228:1.0 1233:1.0 1606:1.0 2257:1.0 3131:1.0 3259:1.0 5210:1.0 6003:2.0 7789:1.0
5 4:2.0 7:0.5 11:0.3333333333333333 12:0.14285714285714285 20:0.6666666666666666 21:0.14285714285714285 38:1.0 48:1.0 49:0.015503875968992248 51:0.5 64:0.16666666666666666 67:0.3333333333333333 68:1.0 87:0.5 95:1.0 127:1.0 134:0.6666666666666666 135:1.0 158:0.25 288:0.5 355:1.0 383:1.0 442:1.0 541:1.0 550:0.5 571:1.0 641:1.0 1138:1.0 1345:1.0 1493:1.0 2357:1.0 3259:1.0 3974:1.0 7296:1.0 7370:1.0
5 4:1.0 6:0.2 12:0.14285714285714285 20:0.3333333333333333 21:0.42857142857142855 23:1.0 26:0.02857142857142857 38:0.5 42:1.0 44:1.0 54:1.0 55:0.1 74:1.0 127:1.0 170:1.0 288:0.5 435:1.0 1354:1.0
5 4:0.5 7:0.5 9:0.3333333333333333 21:0.2857142857142857 23:4.0 42:1.0 49:0.015503875968992248 51:0.5 54:1.0 55:0.3 68:1.0 71:1.0 87:0.5 137:0.09090909090909091 241:1.0 269:0.3333333333333333 333:1.0 397:1.0 490:1.0 638:1.0 762:2.0 1285:1.0 2075:1.0 2224:1.0 3013:1.0 3259:1.0
5 4:0.5 6:0.4 12:0.42857142857142855 21:0.14285714285714285 23:2.0 49:0.007751937984496124 51:0.5 55:0.2 62:0.2 71:2.0 80:1.0 93:0.09090909090909091 121:0.02564102564102564 122:1.0 126:0.3333333333333333 136:1.0 147:1.0 247:1.0 331:0.5 424:1.0 667:1.0 925:1.0 1249:1.0 1340:1.0 1361:1.0 2760:1.0 2967:1.0 4058:1.0 4826:1.0 5183:1.0 7514:1.0
5 12:0.14285714285714285 15:0.14285714285714285 17:0.2 19:0.1 20:1.3333333333333333 21:0.14285714285714285 23:3.0 45:1.0 46:1.0 48:1.0 49:0.007751937984496124 51:0.5 64:0.16666666666666666 71:3.0 75:0.5 88:1.0 112:1.0 121:0.02564102564102564 126:0.6666666666666666 148:0.3333333333333333 178:1.0 250:1.0 261:1.0 303:1.0 331:0.5 534:0.3333333333333333 650:1.0 781:1.0 1529:1.0 2399:1.0 2798:1.0 2811:1.0 3031:1.0 3137:1.0 3186:1.0 3241:1.0
5 4:3.0 5:0.14285714285714285 7:0.5 9:0.6666666666666666 12:0.14285714285714285 14:1.0 15:0.14285714285714285 20:0.3333333333333333 21:0.14285714285714285 23:4.0 24:0.3333333333333333 49:0.007751937984496124 51:0.5 54:1.0 55:0.2 71:1.0 79:0.5 98:0.5714285714285714 121:0.02564102564102564 127:1.0 137:0.09090909090909091 175:1.0 176:1.0 185:1.0 188:1.0 197:1.0 236:1.0 251:1.0 278:1.0 284:0.5 288:0.5 503:1.0 519:1.0 537:1.0 548:1.5 550:0.5 664:0.5 746:1.0 814:0.5 3272:1.0
5 4:2.0 6:0.8 7:1.0 8:0.1 12:0.14285714285714285 15:0.14285714285714285 19:0.1 20:0.3333333333333333 23:1.0 38:0.5 48:1.0 49:0.007751937984496124 51:0.5 63:1.0 93:0.09090909090909091 112:3.0 121:0.02564102564102564 126:0.3333333333333333 175:1.0 196:1.0 278:1.0 281:0.25 289:0.09090909090909091 292:0.125 296:1.0 354:1.0 379:1.0 383:1.0 386:1.0 397:1.0 449:0.5 548:0.5 564:1.0 651:1.0 938:1.0 1245:1.0 1622:1.0 1703:1.0 2013:1.0 2380:1.0 2995:1.0 4403:1.0
5 4:2.5 6:0.2 7:0.5 19:0.1 20:0.3333333333333333 21:0.14285714285714285 48:1.0 98:0.14285714285714285 100:0.5 121:0.02564102564102564 289:0.09090909090909091 303:1.0 315:1.0 316:0.5 483:1.0 745:1.0 857:1.0 1026:1.0 1060:1.0
5 4:1.0 5:0.14285714285714285 7:0.5 11:0.3333333333333333 12:0.14285714285714285 20:0.3333333333333333 21:0.14285714285714285 23:1.0 42:1.0 48:2.0 49:0.007751937984496124 51:0.5 55:0.1 62:0.2 63:1.0 64:0.16666666666666666 71:1.0 87:0.5 98:0.2857142857142857 100:0.25 112:1.0 113:1.0 158:0.25 175:1.0 176:1.0 182:0.5 218:2.0 269:0.6666666666666666 293:0.5 442:1.0 626:1.0 641:1.0 657:1.0 862:1.0 1060:1.0 1721:1.0 2143:1.0 2311:1.0
5 4:1.5 5:0.14285714285714285 6:0.2 8:0.1 23:5.0 48:2.0 49:0.007751937984496124 51:0.5 55:0.3 62:0.2 78:1.0 80:1.0 88:2.0 98:0.42857142857142855 101:1.0 121:0.02564102564102564 134:0.3333333333333333 141:0.14285714285714285 158:0.25 175:1.0 182:1.0 187:1.0 188:2.0 240:0.3333333333333333 280:1.0 315:1.0 331:0.5 695:0.5 762:1.0 1060:1.0 1161:1.0 1170:1.0 3176:1.0 7087:3.0
5 4:0.5 5:0.14285714285714285 7:1.5 8:0.1 9:0.3333333333333333 12:0.14285714285714285 21:0.2857142857142857 23:3.0 26:0.02857142857142857 38:0.5 49:0.007751937984496124 51:0.5 55:0.1 84:1.0 95:1.0 98:0.2857142857142857 102:1.0 197:1.0 211:1.0 298:0.5 534:0.3333333333333333 550:0.5 561:1.0 1118:1.0 1251:1.0 1490:1.0
5 6:0.2 7:1.0 12:0.2857142857142857 18:0.3333333333333333 21:0.14285714285714285 23:4.0 26:0.02857142857142857 44:2.0 48:1.0 49:0.007751937984496124 51:0.5 62:0.6 64:0.3333333333333333 71:1.0 112:3.0 121:0.07692307692307693 127:1.0 134:0.3333333333333333 136:1.0 173:0.5 198:0.5 205:1.0 331:0.5 339:1.0 386:1.0 397:1.0 424:1.0 457:1.0 550:0.5 559:1.0 862:1.0 1166:1.0 2211:1.0
5 4:2.0 7:0.5 8:0.1 21:0.14285714285714285 23:1.0 41:1.0 62:0.2 73:0.3333333333333333 96:0.16666666666666666 127:1.0 141:0.14285714285714285 181:1.0 274:1.0 513:1.0 621:1.0 1317:1.0 1634:1.0 2416:1.0 2632:1.0 4377:1.0 7687:1.0
5 4:1.5 5:0.14285714285714285 8:0.2 9:0.3333333333333333 12:0.2857142857142857 20:0.3333333333333333 21:0.14285714285714285 23:2.0 26:0.02857142857142857 38:0.5 40:0.5 46:1.0 48:2.0 54:1.0 55:0.2 62:0.4 64:0.16666666666666666 70:0.5 101:1.0 110:1.0 121:0.02564102564102564 127:1.0 136:1.0 176:1.0 178:1.0 182:1.0 198:0.5 209:0.5 265:1.0 366:0.5 424:1.0 494:1.0 982:1.0 995:1.0 1030:0.5 1117:1.0 1340:1.0 1488:1.0 2099:1.0 2319:1.0 3161:1.0 3165:1.0 3330:1.0
5 4:1.5 7:0.5 23:1.0 100:0.25 115:0.1 116:0.2 121:0.02564102564102564 255:0.5 390:0.5
5 4:1.5 17:0.2 20:0.3333333333333333 21:0.2857142857142857 26:0.02857142857142857 40:0.5 42:1.0 43:0.3333333333333333 55:0.2 73:0.3333333333333333 152:0.5 201:0.5 1481:1.0 2211:1.0
5 4:1.0 5:0.14285714285714285 6:0.2 7:0.5 8:0.1 9:0.3333333333333333 12:0.2857142857142857 15:0.14285714285714285 21:0.14285714285714285 23:4.0 24:0.3333333333333333 26:0.02857142857142857 42:1.0 48:1.0 88:1.0 142:0.5 183:1.0 188:1.0 194:1.0 251:1.0 331:0.5 476:1.0 1227:1.0 1234:1.0 1580:1.0 2635:1.0 7383:1.0
5 4:0.5 5:0.14285714285714285 7:0.5 23:1.0 38:0.5 98:0.14285714285714285 115:0.1 116:0.2 397:1.0 513:1.0 519:1.0 1634:1.0 2017:0.5 2553:1.0
5 4:1.5 7:0.5 11:0.3333333333333333 15:0.14285714285714285 20:0.3333333333333333 21:0.2857142857142857 24:0.3333333333333333 26:0.05714285714285714 49:0.007751937984496124 51:0.5 54:1.0 55:0.1 87:0.5 98:0.14285714285714285 121:0.02564102564102564 141:0.14285714285714285 176:1.0 250:1.0 251:2.0 331:0.5 418:1.0 483:1.0 647:1.0 803:1.0 871:1.0 925:1.0 2812:1.0 2989:1.0
5 4:1.5 17:0.2 20:0.6666666666666666 23:4.0 48:1.0 49:0.015503875968992248 51:1.0 55:0.3 75:0.5 134:0.6666666666666666 149:0.3333333333333333 156:1.0 158:0.25 379:2.0 490:1.0 669:0.5 1079:1.0 1128:1.0 1496:1.0 1669:1.0 2080:1.0 2082:1.0 2085:1.0 2158:1.0 2684:1.0 2972:1.0 2982:1.0 3005:1.0 3212:1.0 3213:1.0 3428:1.0 5374:1.0 6265:1.0
5 4:1.0 7:0.5 8:0.1 12:0.14285714285714285 20:0.3333333333333333 21:0.14285714285714285 23:2.0 38:1.0 48:2.0 49:0.015503875968992248 51:0.5 55:0.4 58:0.25 64:0.3333333333333333 93:0.09090909090909091 112:2.0 137:0.18181818181818182 197:1.0 265:1.0 292:0.125 383:1.0 387:1.0 729:1.0 821:1.0 854:1.0 910:1.0 1031:1.0 1270:1.0 1455:1.0 1833:1.0 1896:1.0 2766:1.0 2871:2.0 5270:1.0 5931:1.0
5 4:1.0 6:0.4 7:0.5 12:0.2857142857142857 17:0.2 20:0.6666666666666666 21:0.14285714285714285 23:2.0 46:1.0 48:2.0 49:0.015503875968992248 51:1.0 54:1.0 55:0.1 62:0.2 64:0.3333333333333333 71:1.0 97:0.3333333333333333 98:0.14285714285714285 112:1.0 117:0.5 121:0.02564102564102564 122:1.0 134:0.3333333333333333 205:1.0 246:1.0 331:1.0 379:1.0 401:1.0 413:1.0 424:1.0 502:1.0 506:1.0 715:1.0 823:1.0 1000:0.5 1323:1.0 1415:3.0 1562:1.0 2420:1.0 2553:1.0 2692:1.0 3248:1.0 4302:1.0 5931:1.0 6453:1.0
5 4:1.5 6:0.4 7:0.5 12:0.5714285714285714 20:0.6666666666666666 23:2.0 24:0.3333333333333333 42:1.0 48:1.0 49:0.015503875968992248 51:0.5 55:0.2 64:0.3333333333333333 68:1.0 71:2.0 76:1.0 97:0.3333333333333333 112:1.0 134:0.3333333333333333 153:1.0 289:0.09090909090909091 292:0.125 300:1.0 320:1.0 356:1.0 366:0.5 401:1.0 534:0.3333333333333333 571:1.0 621:1.0 1061:1.0 1421:1.0 1562:1.0 1623:1.0 1928:1.0 2222:2.0
5 4:2.5 6:0.2 11:0.3333333333333333 12:0.42857142857142855 15:0.14285714285714285 17:0.4 20:0.3333333333333333 23:2.0 48:1.0 49:0.015503875968992248 51:1.0 57:1.0 71:1.0 85:1.0 93:0.09090909090909091 98:0.14285714285714285 100:0.25 121:0.02564102564102564 179:1.0 194:1.0 437:1.0 442:1.0 541:1.0 543:1.0 559:1.0 561:1.0 701:1.0 875:1.0 992:1.0 1582:1.0 2024:1.0 2106:1.0
5 4:1.0 7:0.5 8:0.7 11:0.3333333333333333 12:0.7142857142857143 20:0.3333333333333333 23:3.0 38:0.5 48:1.0 49:0.015503875968992248 51:1.5 54:1.0 55:0.2 64:0.3333333333333333 71:1.0 73:0.3333333333333333 88:1.0 112:1.0 115:0.1 116:0.2 129:0.5 141:0.14285714285714285 154:0.3333333333333333 158:0.25 176:1.0 219:1.0 231:1.0 289:0.09090909090909091 353:1.0 386:1.0 439:1.0 453:1.0 641:1.0 682:1.0 1063:1.0 1270:1.0 1562:1.0 1708:1.0 3122:1.0 3695:1.0 6246:1.0
5 4:1.5 7:0.5 12:0.14285714285714285 19:0.1 24:0.3333333333333333 49:0.015503875968992248 51:1.0 55:0.2 66:1.0 71:2.0 110:1.0 131:1.0 134:0.3333333333333333 158:0.25 175:1.0 176:1.0 215:1.0 385:1.0 401:1.0 442:3.0 616:1.0 937:1.0 1667:1.0 2695:1.0 3047:1.0 4769:1.0 4916:1.0 5278:1.0
5 4:1.0 6:0.2 8:0.1 20:0.3333333333333333 21:0.14285714285714285 23:3.0 24:0.3333333333333333 26:0.02857142857142857 38:1.0 42:1.0 43:0.3333333333333333 48:1.0 49:0.007751937984496124 51:0.5 55:0.2 62:0.2 83:1.0 104:0.25 134:0.3333333333333333 137:0.09090909090909091 175:1.0 179:2.0 180:1.0 197:1.0 203:0.3333333333333333 250:1.0 255:0.5 279:0.5 314:1.0 550:0.5 616:1.0 1046:1.0 1081:1.0 1153:1.0 3047:1.0 3076:1.0
5 4:1.5 11:0.3333333333333333 12:0.14285714285714285 15:0.2857142857142857 19:0.1 20:1.0 21:0.2857142857142857 23:1.0 24:0.3333333333333333 26:0.02857142857142857 49:0.007751937984496124 51:0.5 55:0.1 58:0.5 74:1.0 75:0.5 96:0.16666666666666666 101:1.0 121:0.02564102564102564 126:0.3333333333333333 194:1.0 198:0.5 202:0.25 236:0.3333333333333333 269:0.3333333333333333 401:1.0 490:1.0 774:1.0 1184:1.0 1253:1.0 1375:1.0 1902:1.0 2216:1.0 2462:1.0 2981:1.0 6780:1.0
5 4:2.0 7:0.5 12:0.2857142857142857 18:0.3333333333333333 20:1.0 21:0.14285714285714285 23:1.0 24:0.3333333333333333 26:0.02857142857142857 48:2.0 49:0.015503875968992248 51:1.0 55:0.3 58:0.25 64:0.16666666666666666 141:0.2857142857142857 154:0.6666666666666666 175:1.0 180:1.0 181:1.0 197:1.0 251:1.0 281:0.25 347:1.0 359:1.0 401:1.0 451:1.0 483:1.0 519:1.0 1539:1.0 1580:1.0 3132:1.0
5 7:1.0 20:0.3333333333333333 21:0.14285714285714285 23:1.0 26:0.02857142857142857 40:0.5 47:1.0 48:1.0 49:0.007751937984496124 51:0.5 55:0.2 62:0.2 71:1.0 73:0.3333333333333333 136:1.0 141:0.14285714285714285 154:0.3333333333333333 199:1.0 281:0.25 366:0.5 479:1.0 517:1.0 550:0.5 956:1.0 1149:1.0 1782:1.0 2453:1.0 2989:1.0
5 4:1.0 7:1.0 8:0.2 11:0.3333333333333333 12:0.14285714285714285 19:0.1 20:1.0 23:3.0 24:0.3333333333333333 25:1.0 48:1.0 49:0.007751937984496124 51:0.5 54:1.0 55:0.3 98:0.14285714285714285 121:0.05128205128205128 139:1.0 141:0.14285714285714285 158:0.25 162:1.0 198:0.5 201:0.5 280:1.0 333:1.0 451:1.0 1037:0.5 1093:1.0 1269:1.0 2307:1.0 2553:1.0 2743:1.0
5 4:1.0 21:0.14285714285714285 23:1.0 26:0.02857142857142857 48:1.0 98:0.14285714285714285 176:1.0 331:1.0 529:1.0 543:1.0 669:1.0 2063:1.0 2380:1.0
5 4:1.0 11:0.3333333333333333 15:0.14285714285714285 20:1.0 21:0.14285714285714285 23:2.0 24:0.3333333333333333 26:0.02857142857142857 44:1.0 48:1.0 49:0.007751937984496124 51:0.5 55:0.1 78:1.0 80:1.0 93:0.09090909090909091 98:0.14285714285714285 126:0.3333333333333333 127:1.0 135:1.0 137:0.09090909090909091 158:0.25 179:1.0 198:0.5 218:1.0 449:0.5 537:3.0 550:0.5 679:0.3333333333333333 746:1.0 908:0.3333333333333333 952:1.0 1251:1.0 1391:1.0 1636:1.0 2418:1.0
5 4:1.0 7:0.5 8:0.3 11:0.6666666666666666 12:0.42857142857142855 20:0.3333333333333333 23:5.0 24:0.6666666666666666 48:2.0 49:0.015503875968992248 51:1.0 62:0.2 64:0.3333333333333333 71:1.0 98:0.2857142857142857 122:1.0 129:0.5 133:0.5 181:1.0 199:1.0 218:1.0 279:0.5 312:1.0 315:1.0 331:0.5 354:1.0 385:1.0 410:1.0 439:1.0 483:1.0 493:1.0 611:1.0 623:1.0 629:1.0 657:1.0 695:0.5 814:0.5 1136:1.0 1309:1.0 1351:1.0 1525:1.0 1652:1.0 1782:1.0 1834:1.0 2029:1.0 2431:1.0
5 4:1.5 5:0.14285714285714285 8:0.1 12:0.14285714285714285 18:0.3333333333333333 19:0.1 20:0.3333333333333333 21:0.42857142857142855 23:1.0 26:0.02857142857142857 48:1.0 49:0.007751937984496124 51:1.0 55:0.1 68:1.0 71:2.0 93:0.09090909090909091 121:0.02564102564102564 134:0.3333333333333333 147:1.0 181:1.0 198:0.5 279:1.0 307:1.0 316:0.5 446:0.5 493:1.0 682:1.0 740:0.5 2106:1.0
5 4:2.0 5:0.14285714285714285 6:0.2 7:0.5 8:0.1 12:0.2857142857142857 15:0.14285714285714285 20:0.3333333333333333 21:0.14285714285714285 23:2.0 24:0.6666666666666666 26:0.02857142857142857 48:1.0 49:0.007751937984496124 51:0.5 58:0.25 64:0.16666666666666666 71:1.0 83:1.0 88:1.0 101:1.0 121:0.02564102564102564 126:0.3333333333333333 158:0.25 179:1.0 197:1.0 308:1.0 460:1.0 550:0.5 612:1.0 849:1.0 864:1.0 1187:1.0 1188:1.0 1525:1.0 1631:1.0 2012:1.0 2080:1.0 2447:1.0 2749:1.0 6399:1.0 6555:1.0
5 4:1.5 6:0.2 12:0.2857142857142857 17:0.2 19:0.2 20:0.3333333333333333 48:1.0 49:0.007751937984496124 51:0.5 67:0.3333333333333333 96:0.16666666666666666 112:1.0 149:0.3333333333333333 158:0.25 194:1.0 248:1.0 315:1.0 534:0.3333333333333333 548:0.5 1166:1.0 1187:1.0 1202:1.0 1568:1.0 1824:1.0 1918:1.0 1968:1.0 3111:1.0 4403:1.0
5 4:0.5 6:0.2 7:1.0 20:0.3333333333333333 21:0.2857142857142857 23:4.0 26:0.02857142857142857 38:0.5 45:1.0 49:0.007751937984496124 51:0.5 64:0.16666666666666666 71:1.0 77:1.0 78:1.0 79:0.5 80:1.0 98:0.2857142857142857 117:0.5 135:1.0 176:1.0 199:1.0 203:0.6666666666666666 241:1.0 285:1.0 331:0.5 397:1.0 476:1.0 519:1.0 524:0.5 530:1.0 550:0.5 1246:1.0 1985:0.5 2128:1.0
5 4:2.0 9:0.3333333333333333 12:0.14285714285714285 20:0.3333333333333333 21:0.14285714285714285 23:2.0 24:0.3333333333333333 42:1.0 48:2.0 49:0.007751937984496124 51:0.5 71:1.0 80:1.0 120:0.2 125:0.3333333333333333 182:0.5 203:0.3333333333333333 241:1.0 249:1.0 265:1.0 333:1.0 431:1.0 483:1.0 493:1.0 524:0.5 621:1.0 675:1.0 740:0.5 1143:1.0 1554:1.0
5 4:2.5 7:0.5 8:0.1 9:0.3333333333333333 15:0.14285714285714285 23:2.0 55:0.3 62:0.2 64:0.16666666666666666 73:0.3333333333333333 117:0.5 121:0.02564102564102564 127:1.0 131:1.0 134:0.3333333333333333 218:1.0 236:0.3333333333333333 331:0.5 446:0.5 878:0.5 1144:1.0 1212:1.0 1595:1.0 1603:2.0 1828:1.0 1969:1.0
5 4:0.5 12:0.14285714285714285 17:0.2 21:0.2857142857142857 23:2.0 26:0.02857142857142857 62:0.4 88:1.0 121:0.02564102564102564 127:1.0 203:0.3333333333333333 307:1.0 446:0.5 449:0.5 543:1.0 2063:1.0
5 4:1.5 6:0.2 7:1.0 9:0.3333333333333333 19:0.1 20:0.6666666666666666 21:0.14285714285714285 23:2.0 44:1.0 46:1.0 48:1.0 55:0.1 98:0.14285714285714285 117:0.5 121:0.05128205128205128 126:0.3333333333333333 141:0.14285714285714285 356:1.0 503:1.0 550:0.5 682:1.0 814:0.5 929:1.0 989:1.0 1499:1.0 1500:1.0 2592:1.0
5 4:1.0 5:0.14285714285714285 12:0.14285714285714285 17:0.4 19:0.1 20:0.6666666666666666 21:0.14285714285714285 23:2.0 93:0.09090909090909091 98:0.14285714285714285 100:0.25 147:1.0 183:1.0 201:0.5 218:1.0 285:1.0 424:1.0 487:0.3333333333333333 499:0.5 1464:1.0
5 4:2.5 6:0.4 8:0.1 12:0.14285714285714285 15:0.14285714285714285 17:0.2 21:0.14285714285714285 22:1.0 23:1.0 24:0.3333333333333333 46:1.0 48:1.0 49:0.007751937984496124 51:0.5 55:0.1 64:0.16666666666666666 71:1.0 93:0.09090909090909091 117:0.5 137:0.18181818181818182 210:1.0 255:0.5 315:1.0 316:0.5 488:1.0 592:1.0 640:1.0 830:1.0 871:1.0 1011:1.0 1046:1.0 3156:1.0 4402:1.0 6182:1.0
5 4:1.5 8:0.1 12:0.42857142857142855 20:1.3333333333333333 21:0.42857142857142855 23:3.0 24:0.3333333333333333 44:1.0 48:2.0 49:0.007751937984496124 51:0.5 55:0.2 62:0.2 64:0.3333333333333333 71:1.0 98:0.14285714285714285 100:0.25 121:0.02564102564102564 134:0.3333333333333333 141:0.2857142857142857 153:1.0 162:1.0 183:1.0 190:0.2 210:1.0 285:1.0 427:1.0 457:1.0 479:1.0 483:1.0 534:0.3333333333333333 537:1.0 641:1.0 664:0.5 740:0.5 890:1.0 1084:1.0 1179:1.0 1375:1.0 1525:1.0 1790:1.0 2157:1.0 2207:1.0 2577:1.0
5 4:1.0 5:0.14285714285714285 11:0.3333333333333333 12:0.14285714285714285 20:1.0 21:0.14285714285714285 26:0.02857142857142857 38:1.0 49:0.007751937984496124 51:0.5 55:0.1 75:0.5 101:1.0 112:1.0 147:1.0 158:0.25 366:0.5 367:1.0 601:0.5 1369:1.0 1579:1.0 1708:1.0 1790:1.0 1827:1.0 1831:1.0
5 4:1.5 5:0.14285714285714285 8:0.2 12:0.14285714285714285 20:0.3333333333333333 21:0.14285714285714285 23:1.0 24:0.3333333333333333 49:0.007751937984496124 55:0.1 67:0.3333333333333333 68:1.0 73:0.3333333333333333 84:1.0 112:1.0 121:0.02564102564102564 126:0.3333333333333333 203:0.3333333333333333 250:1.0 519:1.0 765:1.0 811:1.0 1071:1.0 1344:1.0 1890:0.5 2967:1.0 6182:1.0
5 4:0.5 6:0.2 7:0.5 11:0.3333333333333333 20:0.3333333333333333 21:0.42857142857142855 23:2.0 26:0.02857142857142857 44:1.0 48:1.0 49:0.007751937984496124 51:0.5 74:1.0 99:1.0 112:2.0 121:0.10256410256410256 133:0.5 142:0.5 185:1.0 241:1.0 279:0.5 281:0.25 331:1.5 401:1.0 405:1.0 424:1.0 471:1.0 530:1.0 534:0.3333333333333333 664:0.25 892:1.0 1049:1.0 1144:1.0 1375:1.0 1415:1.0 1595:1.0 1992:1.0 2257:1.0 2470:1.0 5341:1.0 5641:1.0
5 4:0.5 8:0.1 11:0.3333333333333333 15:0.14285714285714285 20:0.3333333333333333 23:2.0 49:0.007751937984496124 51:0.5 71:2.0 73:0.3333333333333333 75:0.5 117:0.5 136:1.0 141:0.14285714285714285 176:1.0 185:1.0 190:0.2 196:1.0 255:0.5 274:1.0 281:0.25 401:1.0 477:1.0 548:0.5 549:1.0 1066:1.0 1149:1.0 1278:1.0 1686:1.0 2231:1.0 3241:1.0 3242:1.0 3416:1.0 4533:1.0
5 4:1.5 19:0.1 21:0.14285714285714285 23:2.0 26:0.02857142857142857 55:0.1 92:1.0 98:0.14285714285714285 100:0.25 121:0.02564102564102564 122:1.0 123:1.0 205:1.0 236:0.3333333333333333 289:0.18181818181818182 872:2.0 908:0.3333333333333333
5 4:0.5 17:0.2 19:0.1 20:0.6666666666666666 21:0.14285714285714285 23:3.0 47:1.0 88:1.0 92:1.0 117:0.5 121:0.05128205128205128 126:0.3333333333333333 148:0.5 331:1.0
5 4:0.5 19:0.1 20:0.6666666666666666 21:0.14285714285714285 23:1.0 34:1.0 35:1.0 42:1.0 55:0.1 134:0.3333333333333333 148:0.3333333333333333 210:1.0 417:1.0 907:0.5 2525:1.0 2690:1.0
5 4:1.0 19:0.2 20:0.3333333333333333 21:0.42857142857142855 23:1.0 26:0.02857142857142857 42:1.0 115:0.1 116:0.2
5 4:1.5 5:0.14285714285714285 9:0.3333333333333333 12:0.14285714285714285 19:0.1 21:0.14285714285714285 26:0.02857142857142857 43:0.3333333333333333 62:0.2 84:1.0 258:1.0 529:1.0
5 4:0.5 19:0.1 20:0.3333333333333333 21:0.42857142857142855 23:2.0 26:0.05714285714285714 121:0.02564102564102564 124:0.5 133:0.5 134:0.3333333333333333 135:1.0 136:1.0 1122:0.5 1718:1.0
5 4:1.0 5:0.14285714285714285 15:0.14285714285714285 21:0.14285714285714285 23:4.0 26:0.02857142857142857 33:1.0 38:0.5 121:0.05128205128205128 126:0.3333333333333333 134:0.3333333333333333 144:1.0 149:0.3333333333333333 314:2.0 462:1.0 1074:1.0
5 4:1.5 21:0.14285714285714285 23:1.0 26:0.02857142857142857 48:1.0 62:0.2 63:1.0 137:0.09090909090909091 148:0.3333333333333333 331:0.5 451:1.0 464:1.0 541:1.0 563:1.0 1122:0.5 1128:1.0 1415:1.0
5 4:1.5 5:0.14285714285714285 14:1.0 21:0.2857142857142857 23:1.0 26:0.02857142857142857 40:0.5 67:0.3333333333333333 68:1.0 73:0.3333333333333333 126:0.3333333333333333 154:0.3333333333333333 202:0.5 246:1.0 278:1.0 507:1.0 1603:1.0 5829:1.0
5 4:1.0 5:0.14285714285714285 15:0.14285714285714285 20:0.3333333333333333 23:1.0 54:1.0 96:0.16666666666666666 126:0.3333333333333333 127:1.0 149:0.3333333333333333 214:1.0 289:0.09090909090909091 355:1.0 424:1.0 513:1.0 1455:1.0 2040:1.0
5 4:1.0 21:0.14285714285714285 23:1.0 26:0.02857142857142857 38:0.5 70:0.5 194:1.0 289:0.09090909090909091 298:0.5 424:1.0 1144:1.0 6428:1.0
5 4:1.5 17:0.2 24:0.3333333333333333 63:1.0 98:0.2857142857142857 144:1.0 188:1.0 249:1.0 289:0.18181818181818182 307:1.0 446:0.5 513:1.0 1313:1.0 1363:1.0 1364:1.0 1487:1.0 2748:1.0
5 4:1.0 6:0.2 7:1.5 9:0.3333333333333333 12:0.14285714285714285 21:0.14285714285714285 23:1.0 48:1.0 49:0.007751937984496124 51:0.5 62:0.2 71:1.0 93:0.09090909090909091 121:0.02564102564102564 133:0.5 134:0.3333333333333333 136:1.0 175:1.0 176:1.0 202:0.25 316:0.5 390:0.5 655:1.0 1405:1.0
5 4:1.0 9:0.3333333333333333 11:0.3333333333333333 19:0.2 20:0.3333333333333333 21:0.14285714285714285 23:3.0 38:0.5 49:0.007751937984496124 51:0.5 55:0.1 64:0.3333333333333333 80:1.0 98:0.14285714285714285 115:0.1 116:0.2 137:0.09090909090909091 200:1.0 201:0.5 288:0.5 292:0.125 320:1.0 386:1.0 413:1.0 424:1.0 468:1.0 476:1.0 612:1.0 621:1.0 1194:1.0 1197:1.0 2106:1.0 3049:1.0 3051:1.0
5 4:1.5 11:0.3333333333333333 15:0.14285714285714285 20:0.3333333333333333 21:0.14285714285714285 23:2.0 24:0.3333333333333333 40:0.5 42:1.0 49:0.007751937984496124 51:0.5 55:0.1 62:0.2 71:1.0 88:1.0 93:0.09090909090909091 125:0.3333333333333333 156:1.0 197:1.0 202:0.25 231:1.0 281:0.25 350:1.0 451:1.0 513:1.0 908:0.3333333333333333 952:1.0 1408:1.0 2040:1.0 2081:1.0 2935:1.0
5 4:1.0 6:0.2 7:0.5 17:0.2 20:0.3333333333333333 21:0.14285714285714285 26:0.02857142857142857 49:0.007751937984496124 54:1.0 71:1.0 84:1.0 93:0.09090909090909091 99:1.0 121:0.02564102564102564 136:1.0 137:0.09090909090909091 202:0.25 231:1.0 287:1.0 390:0.5 1270:1.0 2191:1.0
5 4:1.0 6:0.4 8:0.1 15:0.14285714285714285 21:0.14285714285714285 23:1.0 45:1.0 47:1.0 48:2.0 49:0.007751937984496124 51:0.5 55:0.2 64:0.16666666666666666 74:1.0 88:1.0 96:0.16666666666666666 98:0.14285714285714285 134:0.3333333333333333 175:1.0 188:1.0 212:1.0 284:0.5 460:1.0 548:0.5 549:1.0 662:1.0 952:1.0 1351:1.0 1448:1.0 2484:1.0 2691:1.0 2898:1.0 3176:1.0
5 4:1.0 8:0.2 15:0.14285714285714285 17:0.2 19:0.1 20:0.3333333333333333 21:0.5714285714285714 23:3.0 26:0.02857142857142857 38:1.0 49:0.007751937984496124 51:0.5 55:0.1 68:1.0 88:1.0 98:0.14285714285714285 165:1.0 176:1.0 188:1.0 194:1.0 202:0.25 241:1.0 255:0.5 296:1.0 308:1.0 331:0.5 370:1.0 390:0.5 437:1.0 536:1.0 566:1.0 652:1.0 877:1.0 991:1.0 1346:1.0 1509:1.0 1793:1.0 1863:1.0 2714:1.0 2967:1.0 4960:1.0 6428:1.0 7195:1.0
5 4:2.5 6:0.2 7:0.5 8:0.1 15:0.14285714285714285 20:1.3333333333333333 23:2.0 48:1.0 49:0.015503875968992248 51:1.0 55:0.2 97:0.3333333333333333 100:0.25 115:0.1 121:0.02564102564102564 134:0.3333333333333333 137:0.09090909090909091 141:0.14285714285714285 153:2.0 154:0.3333333333333333 158:0.25 175:1.0 176:1.0 180:1.0 200:1.0 210:1.0 264:1.0 284:0.5 333:1.0 366:0.5 424:1.0 641:1.0 652:1.0 653:0.5 682:1.0 814:0.5 890:1.0 903:1.0 1087:1.0 1278:1.0 1341:1.0 1389:0.5 1536:1.0 1620:1.0 2238:1.0 2692:1.0 3122:1.0 4890:1.0 6930:1.0 6954:1.0
5 4:1.0 6:0.2 7:0.5 12:0.14285714285714285 20:0.3333333333333333 21:0.14285714285714285 23:3.0 26:0.02857142857142857 38:0.5 49:0.015503875968992248 51:1.0 55:0.2 80:1.0 88:1.0 98:0.14285714285714285 100:0.25 101:1.0 112:1.0 121:0.05128205128205128 122:1.0 132:1.0 139:1.0 149:0.3333333333333333 176:1.0 192:1.0 195:1.0 231:2.0 331:1.0 333:1.0 366:1.0 483:1.0 566:1.0 697:1.0 890:1.0 1060:1.0 1536:1.0 1577:1.0 2041:1.0 3517:1.0 5478:1.0
5 4:0.5 6:0.2 7:0.5 12:0.5714285714285714 23:5.0 24:0.3333333333333333 48:5.0 49:0.023255813953488372 51:1.0 55:0.3 71:2.0 88:1.0 98:0.14285714285714285 114:1.0 134:0.3333333333333333 137:0.18181818181818182 158:0.25 159:1.0 236:0.3333333333333333 251:1.0 269:0.3333333333333333 331:0.5 383:1.0 537:2.0 596:1.0 641:1.0 662:1.0 675:1.0 679:0.3333333333333333 800:1.0 1189:1.0 1569:1.0 1575:1.0 1576:1.0 1603:1.0 2963:1.0 3074:1.0 3105:2.0 3212:1.0 4517:1.0 6336:1.0
5 4:1.5 6:0.2 8:0.1 11:0.3333333333333333 12:0.2857142857142857 15:0.42857142857142855 20:0.6666666666666666 21:0.14285714285714285 22:1.0 23:4.0 24:1.0 48:2.0 49:0.015503875968992248 51:1.0 55:0.2 68:1.0 71:1.0 88:2.0 98:0.2857142857142857 112:1.0 129:0.5 141:0.14285714285714285 158:0.25 180:1.0 198:0.5 201:0.5 203:0.6666666666666666 250:1.0 265:1.0 281:0.25 283:1.0 289:0.09090909090909091 292:0.125 331:1.0 397:1.0 424:1.0 499:0.5 506:1.0 814:0.5 1016:1.0 1048:1.0 1130:1.0 1149:1.0 2160:1.0 2816:1.0 3087:1.0 3289:1.0 6850:1.0 7388:1.0 7453:1.0
5 4:0.5 6:0.2 7:0.5 8:0.1 11:0.3333333333333333 12:0.5714285714285714 15:0.14285714285714285 19:0.1 20:0.6666666666666666 21:0.14285714285714285 23:5.0 24:0.3333333333333333 49:0.015503875968992248 51:1.0 55:0.3 64:0.16666666666666666 68:1.0 71:1.0 78:1.0 88:1.0 95:1.0 121:0.05128205128205128 125:0.3333333333333333 136:1.0 137:0.18181818181818182 141:0.14285714285714285 212:1.0 236:0.3333333333333333 248:1.0 331:0.5 343:1.0 471:1.0 646:1.0 652:1.0 703:1.0 1136:1.0 1417:1.0 1489:1.0 1820:1.0 2074:1.0 2158:1.0 2475:1.0 2869:1.0 3042:1.0 3045:1.0 3212:1.0 3416:1.0
5 4:1.5 6:0.2 11:0.3333333333333333 12:0.42857142857142855 15:0.14285714285714285 17:0.2 18:0.3333333333333333 20:0.3333333333333333 23:5.0 24:0.3333333333333333 46:1.0 48:1.0 49:0.023255813953488372 51:1.5 55:0.1 71:3.0 87:0.5 95:1.0 98:0.14285714285714285 100:0.25 112:1.0 121:0.07692307692307693 122:1.0 124:0.5 126:0.3333333333333333 180:1.0 181:1.0 185:1.0 197:1.0 231:1.0 236:0.3333333333333333 248:1.0 269:0.3333333333333333 276:1.0 296:1.0 298:0.5 300:1.0 310:1.0 315:1.0 366:0.5 383:1.0 408:1.0 580:1.0 641:1.0 664:0.25 669:0.5 929:1.0 1285:1.0 1966:1.0 1970:1.0 2231:1.0 2380:1.0
5 4:1.0 6:0.2 7:0.5 12:0.42857142857142855 15:0.14285714285714285 19:0.1 20:1.0 21:0.2857142857142857 23:3.0 24:0.3333333333333333 26:0.02857142857142857 38:0.5 48:2.0 49:0.023255813953488372 51:1.5 55:0.1 62:0.2 64:0.3333333333333333 71:1.0 88:1.0 118:1.0 121:0.02564102564102564 134:0.3333333333333333 158:0.25 176:1.0 188:1.0 203:0.3333333333333333 241:1.0 300:1.0 310:1.0 383:1.0 435:1.0 466:1.0 468:1.0 476:1.0 519:1.0 529:1.0 550:0.5 561:1.0 621:1.0 669:0.5 745:1.0 819:1.0 991:1.0 1244:1.0 2380:1.0 3161:1.0 3427:1.0 6174:1.0 6399:1.0
5 4:1.5 7:0.5 12:0.2857142857142857 19:0.1 20:0.6666666666666666 21:0.2857142857142857 23:5.0 24:0.6666666666666666 26:0.02857142857142857 46:1.0 48:1.0 49:0.023255813953488372 51:1.5 55:0.3 58:0.25 62:0.2 64:0.3333333333333333 71:2.0 98:0.2857142857142857 110:1.0 112:2.0 121:0.07692307692307693 136:1.0 137:0.09090909090909091 158:0.25 179:1.0 199:1.0 228:1.0 276:1.0 281:0.25 300:1.0 314:1.0 323:1.0 611:1.0 664:0.25 862:1.0 929:1.0 1005:1.0 1087:1.0 1232:1.0 1269:1.0 1607:1.0 1966:1.0 2054:1.0 2214:1.0 2257:1.0 2281:1.0 2403:1.0 2462:1.0 2841:1.0 2932:1.0 3037:1.0 3038:1.0 3043:1.0 3214:1.0 3517:1.0
5 4:1.0 8:0.1 12:0.8571428571428571 17:0.2 23:4.0 38:0.5 48:1.0 49:0.023255813953488372 51:1.5 55:0.3 62:0.2 64:0.6666666666666666 71:2.0 114:1.0 115:0.1 129:0.5 133:0.5 158:0.25 194:1.0 231:1.0 280:1.0 414:0.5 537:1.0 550:0.5 601:0.5 652:1.0 958:1.0 1037:0.5 1053:1.0 1429:1.0 1509:1.0 1554:1.0 1940:1.0 2449:1.0 2892:1.0 2893:1.0 3063:1.0 3064:1.0 3428:1.0
5 4:0.5 6:0.2 8:0.3 12:0.7142857142857143 17:0.2 20:0.6666666666666666 21:0.14285714285714285 23:6.0 48:1.0 49:0.023255813953488372 51:1.5 55:0.1 62:0.2 67:0.3333333333333333 71:2.0 98:0.14285714285714285 112:1.0 118:1.0 129:0.5 133:0.5 154:0.3333333333333333 158:0.25 198:0.5 223:1.0 241:1.0 331:0.5 385:1.0 393:1.0 429:1.0 434:1.0 435:2.0 534:0.3333333333333333 956:1.0 982:1.0 1081:1.0 1461:1.0 1539:1.0 2400:1.0 2488:1.0 2695:1.0 2878:1.0 5374:1.0
5 4:1.0 6:0.2 7:1.0 8:0.1 11:0.3333333333333333 12:0.14285714285714285 20:0.3333333333333333 21:0.2857142857142857 23:5.0 48:1.0 49:0.023255813953488372 51:1.5 55:0.1 71:2.0 88:1.0 98:0.2857142857142857 158:0.25 178:1.0 198:0.5 199:1.0 203:0.3333333333333333 250:1.0 295:1.0 312:1.0 664:0.25 728:1.0 871:1.0 877:1.0 1000:0.5 1067:1.0 1254:1.0 1949:1.0 2009:1.0 2211:1.0 3058:1.0 3060:1.0 3428:1.0 3887:1.0 4914:1.0 5277:2.0 7370:1.0
5 4:2.5 6:0.4 8:0.1 9:0.3333333333333333 11:0.3333333333333333 12:0.42857142857142855 15:0.14285714285714285 19:0.1 21:0.14285714285714285 23:6.0 24:0.3333333333333333 38:1.0 42:1.0 46:1.0 48:3.0 49:0.023255813953488372 51:1.5 55:0.2 61:0.5 62:0.4 63:1.0 85:1.0 96:0.16666666666666666 100:0.25 121:0.02564102564102564 122:1.0 147:1.0 188:1.0 197:1.0 203:0.3333333333333333 248:2.0 249:1.0 273:1.0 300:1.0 314:1.0 331:0.5 332:1.0 333:1.0 383:1.0 406:1.0 435:1.0 449:0.5 484:1.0 534:0.3333333333333333 757:1.0 791:1.0 952:1.0 1427:1.0 2553:1.0 2592:1.0 2899:1.0 3078:1.0
5 4:1.0 6:0.2 9:0.3333333333333333 17:0.2 19:0.1 23:2.0 38:0.5 46:1.0 49:0.015503875968992248 51:1.0 55:0.1 64:0.16666666666666666 112:1.0 125:0.3333333333333333 137:0.09090909090909091 148:0.6666666666666666 149:0.3333333333333333 154:0.6666666666666666 182:0.5 183:1.0 188:2.0 199:1.0 260:0.5 289:0.09090909090909091 860:2.0 861:3.0 862:1.0 1187:1.0 1370:1.0 2355:1.0 6555:1.0 6900:1.0
5 7:0.5 11:0.3333333333333333 12:0.14285714285714285 18:0.3333333333333333 20:0.3333333333333333 23:5.0 48:1.0 49:0.015503875968992248 51:1.0 55:0.1 71:2.0 75:0.5 96:0.16666666666666666 98:0.14285714285714285 127:1.0 154:0.6666666666666666 158:0.25 196:1.0 203:0.3333333333333333 317:1.0 341:1.0 616:1.0 652:1.0 653:0.5 828:0.5 859:2.0 860:1.0 864:1.0 875:1.0 1116:1.0 1335:1.0 1522:1.0 1582:1.0 3132:1.0 6265:1.0
5 4:1.0 8:0.1 12:0.42857142857142855 23:3.0 49:0.023255813953488372 51:1.5 55:0.1 85:1.0 95:1.0 127:1.0 154:0.6666666666666666 173:0.5 231:1.0 236:0.3333333333333333 289:0.09090909090909091 317:1.0 333:1.0 341:1.0 354:1.0 366:0.5 435:1.0 439:1.0 507:1.0 828:1.0 858:1.0 859:1.5 860:1.0 861:1.0 862:1.0 1405:1.0 1649:1.0 1701:1.0 2161:1.0 2839:1.0
5 4:2.5 6:0.2 8:0.1 12:0.42857142857142855 20:0.3333333333333333 23:2.0 29:1.0 38:1.0 48:1.0 49:0.015503875968992248 51:1.0 55:0.4 64:0.16666666666666666 71:1.0 127:1.0 137:0.09090909090909091 139:1.0 154:0.3333333333333333 188:1.0 194:1.0 204:1.0 212:1.0 231:1.0 251:1.0 266:1.0 300:1.0 317:1.0 341:1.0 361:1.0 366:1.0 432:1.0 435:1.0 476:1.0 521:1.0 616:1.0 652:1.0 715:1.0 729:1.0 828:1.0 859:2.0 860:2.0 861:1.0 864:1.0 1075:1.0 1160:1.0 1251:1.0 1335:1.0 2049:1.0 2090:1.0 2921:1.0 3250:1.0 6428:1.0
5 4:1.0 8:0.2 11:0.3333333333333333 15:0.14285714285714285 19:0.1 21:0.2857142857142857 23:3.0 26:0.02857142857142857 49:0.023255813953488372 50:1.0 51:1.5 57:1.0 62:0.2 64:0.3333333333333333 71:1.0 112:2.0 121:0.02564102564102564 126:0.3333333333333333 137:0.09090909090909091 141:0.14285714285714285 165:1.0 166:1.0 179:1.0 185:1.0 196:1.0 201:0.5 204:1.0 211:1.0 231:2.0 251:2.0 253:1.0 269:0.3333333333333333 292:0.25 296:1.0 315:1.0 317:1.0 331:0.5 333:1.0 385:1.0 424:1.0 452:1.0 477:1.0 479:1.0 550:0.5 920:1.0 1209:1.0 1573:1.0 2211:1.0
5 4:2.5 7:1.0 12:0.2857142857142857 17:0.2 19:0.2 20:0.3333333333333333 21:0.2857142857142857 23:1.0 24:0.3333333333333333 42:1.0 49:0.015503875968992248 51:1.0 55:0.2 62:0.2 98:0.14285714285714285 112:1.0 114:1.0 126:0.3333333333333333 158:0.5 196:1.0 317:1.0 361:1.0 390:0.5 457:1.0 558:1.0 594:1.0 708:1.0 1370:1.0 1860:1.0 2330:1.0 2357:1.0
5 4:1.5 8:0.1 12:0.14285714285714285 19:0.2 20:0.6666666666666666 23:2.0 24:0.3333333333333333 49:0.015503875968992248 51:1.0 55:0.2 100:0.25 133:0.5 185:1.0 198:0.5 210:1.0 231:1.0 251:1.0 281:0.25 317:1.0 361:1.0 390:0.5 488:2.0 936:0.5 1149:1.0 1344:1.0 1539:1.0 1799:1.0 2077:1.0 2134:0.5 3157:1.0 5377:1.0 7459:1.0
5 4:1.5 6:0.2 8:0.2 12:0.14285714285714285 17:0.2 19:0.2 20:1.0 21:0.2857142857142857 23:1.0 48:1.0 49:0.007751937984496124 51:0.5 55:0.1 64:0.16666666666666666 80:1.0 92:1.0 158:0.25 165:1.0 312:1.0 317:1.0 331:0.5 534:0.3333333333333333 562:1.0 641:1.0 682:1.0 2585:1.0 2695:1.0 2724:1.0 2898:1.0
5 4:2.5 49:0.007751937984496124 51:0.5 55:0.1 68:1.0 96:0.16666666666666666 121:0.02564102564102564 136:1.0 251:1.0 317:1.0 361:1.0 390:0.5 401:1.0 601:0.5 871:1.0 1476:1.0 2296:1.0
5 4:1.0 5:0.14285714285714285 12:0.14285714285714285 17:0.2 19:0.1 20:0.6666666666666666 21:0.42857142857142855 23:1.0 26:0.02857142857142857 48:1.0 49:0.007751937984496124 51:0.5 113:1.0 114:1.0 116:0.2 165:1.0 317:1.0 743:1.0
5 4:1.5 8:0.1 12:0.14285714285714285 18:0.3333333333333333 19:0.2 21:0.14285714285714285 23:2.0 24:0.3333333333333333 26:0.02857142857142857 38:0.5 48:2.0 49:0.007751937984496124 51:0.5 55:0.1 64:0.16666666666666666 71:1.0 121:0.02564102564102564 165:1.0 201:0.5 236:0.3333333333333333 244:1.0 248:1.0 255:0.5 296:1.0 317:1.0 333:1.0 353:1.0 361:1.0 362:0.5 365:1.0 483:1.0 746:1.0 804:1.0 830:1.0 1546:1.0 1752:1.0 3078:1.0 3645:1.0 4058:1.0 4149:1.0 7293:1.0
5 4:0.5 6:0.2 8:0.1 12:0.2857142857142857 19:0.1 20:0.3333333333333333 23:3.0 25:1.0 38:0.5 48:2.0 49:0.007751937984496124 51:0.5 68:1.0 88:1.0 97:0.3333333333333333 98:0.14285714285714285 121:0.02564102564102564 126:0.3333333333333333 136:1.0 154:0.3333333333333333 193:1.0 236:0.3333333333333333 281:0.25 289:0.09090909090909091 317:1.0 361:1.0 363:1.0 364:1.0 365:1.0 418:1.0 424:1.0 534:0.3333333333333333 1149:1.0 1199:1.0 1202:1.0 2213:1.0 3645:1.0
5 4:1.5 8:0.1 23:2.0 38:0.5 42:1.0 55:0.1 76:1.0 78:1.0 87:0.5 115:0.1 116:0.2 148:0.5 181:1.0 185:1.0 449:0.5 952:1.0 2384:1.0 7746:1.0
5 4:1.0 7:0.5 11:0.3333333333333333 15:0.2857142857142857 22:1.0 23:1.0 73:0.3333333333333333 114:1.0 120:0.2 141:0.14285714285714285 148:0.5 173:0.5 203:0.3333333333333333 908:0.3333333333333333 1370:1.0 2176:1.0
5 4:1.5 19:0.1 20:0.3333333333333333 21:0.42857142857142855 23:1.0 26:0.02857142857142857 58:0.25 64:0.16666666666666666 98:0.14285714285714285 234:1.0 424:1.0 446:0.5 462:1.0 715:1.0 1269:1.0 2288:1.0 2304:1.0
5 4:1.0 5:0.14285714285714285 21:0.2857142857142857 23:1.0 26:0.05714285714285714 189:1.0 390:0.5 2233:1.0
5 4:1.0 5:0.14285714285714285 12:0.14285714285714285 17:0.2 19:0.1 20:0.6666666666666666 21:0.2857142857142857 23:1.0 55:0.1 64:0.16666666666666666 68:1.0 71:1.0 80:1.0 98:0.14285714285714285 176:1.0 288:0.5 354:1.0 366:0.5 488:1.0 740:0.5 1364:1.0 1458:1.0 1617:1.0 1720:1.0 2695:1.0
5 4:0.5 5:0.14285714285714285 11:0.3333333333333333 20:0.6666666666666666 23:3.0 48:2.0 49:0.007751937984496124 50:1.0 51:0.5 55:0.2 64:0.16666666666666666 71:1.0 76:1.0 88:2.0 102:1.0 110:1.0 121:0.02564102564102564 129:0.5 236:0.3333333333333333 244:1.0 253:1.0 315:1.0 316:0.5 428:1.0 521:1.0 550:0.5 746:1.0 1742:1.0 2222:2.0 2339:1.0 2766:1.0 6246:1.0
5 4:0.5 12:0.2857142857142857 20:0.6666666666666666 21:0.2857142857142857 23:2.0 26:0.02857142857142857 38:0.5 42:1.0 49:0.007751937984496124 50:1.0 51:0.5 55:0.3 93:0.09090909090909091 98:0.2857142857142857 113:1.0 236:0.3333333333333333 285:1.0 292:0.125 365:1.0 452:1.0 1065:0.5 2339:1.0 4615:1.0
5 17:0.2 20:0.3333333333333333 21:0.14285714285714285 23:2.0 24:0.3333333333333333 25:1.0 42:1.0 55:0.1 64:0.3333333333333333 80:1.0 88:1.0 121:0.02564102564102564 126:0.3333333333333333 134:0.3333333333333333 156:1.0 280:1.0 459:1.0 553:1.0 1525:1.0
|
1c251c4d27a2fc876932b1a9eb4b0f0fccca1de9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/770/CH6/EX6.8/6_8.sce
|
a168dfa36fbd014b98a9aa5b6f9411e55a3bef90
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,330
|
sce
|
6_8.sce
|
clear;
clc;
//Example - 6.8
//Page number - 225
printf("Example - 6.8 and Page number - 225\n\n");
//Given
T_1 = 298.15;//[K] - Standard temperature
T_2 = 973.15;//[K] - Reaction temperature
//At 298.15 K
delta_H_CH4_for_298 = -17.889*10^(3);//[cal/mol] - Enthalpy of formation of CH4 at 298.15 K
delta_H_C_for_298 = 0.00;//[cal/mol] - Enthalpy of formation of C (s, graphite) at 298.15 K
delta_H_H2_for_298 = 0.00;//[cal/mol] - Enthalpy of formation of H2 at 298.15 K
delta_G_CH4_for_298 = -12.140*10^(3);//[cal/mol] - Gibbs free energy change for formation of H2 at 298.15 K
delta_G_C_for_298 = 0.00;//[cal/mol] - Gibbs free energy change for formation of C (s, graphite) at 298.15 K
delta_G_H2_for_298 = 0.00;//[cal/mol] - Gibbs free energy change for formation of H2 at 298.15 K
///Standaerd heat capacity data in cal/mol-K are given below, T is in K
//Cp_0_CH4 = 4.75 + 1.2*10^(-2)*T + 0.303*10^(-5)*T^(2) - 2.63*10^(-9)*T^(3)
//Cp_0_C = 3.519 + 1.532*10^(-3)*T - 1.723*10^(5)*T^(-2)
//Cp_0_H2 = 6.952 - 0.04576*10^(-2)*T + 0.09563*10^(-5)*T^(2) - 0.2079*10^(-9)*T^(3)
//Therefore standard heat capacity of reaction is given by,
//Cp_0_rkn = 2*Cp_0_H2 + Cp_0_C - Cp_0_CH4
//On simplification,we get the relation
//Cp_0_rkn = 12.673 - 0.0113832*T - 1.1174*10^(-6)*T^(2) + 2.2142*10^(-9)*T^(3) - 1.723*10^(5)*T^(-2)
delta_H_rkn_298 = -delta_H_CH4_for_298;//[cal] - Enthalpy of reaction at 298.15 K
delta_G_rkn_298 = -delta_G_CH4_for_298;//[cal] - Gibbs free energy of the reaction at 298.15 K
delta_H_rkn_973 = delta_H_rkn_298 + integrate('12.673-0.0113832*T-1.1174*10^(-6)*T^(2)+2.2142*10^(-9)*T^(3)-1.723*10^(5)*T^(-2)','T',T_1,T_2);//[cal]
printf(" Standard enthalpy change of reaction at 973.15 K is %f cal\n\n",delta_H_rkn_973);
//Now determining the standard entropy change of reaction at 298.15 K
delta_S_rkn_298 = (delta_H_rkn_298 - delta_G_rkn_298)/298.15;//[cal/K]
delta_S_rkn_973 = delta_S_rkn_298 + integrate('(12.673-0.0113832*T-1.1174*10^(-6)*T^(2)+2.2142*10^(-9)*T^(3)-1.723*10^(5)*T^(-2))/T','T',T_1,T_2);//[cal/K]
//Therefore,the standard Gibbs free energy change of the reaction is given by,
delta_G_rkn_973 = delta_H_rkn_973 - 973.15*delta_S_rkn_973;//[cal]
printf(" Standard Gibbs free energy change of reaction at 973 K is %f cal\n",delta_G_rkn_973);
|
118320ccc887f56058de3ace2e5e8527cea0c765
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1757/CH5/EX5.29/EX5_29.sce
|
7ce3346b3e01c2c7a6275f20969e46e8328adae1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 261
|
sce
|
EX5_29.sce
|
//Example5.29 // To find Slew rate of an op-amp
clc;
clear;
close;
Iq = 15 ; // uA // bias current
Cm = 30 ; // pF // internal frequency compensated capacitor
Slewrate = (Iq/Cm);
disp('the Slew rate of an op-amp is = '+string(Slewrate)+' V/u sec');
|
93d02d669019afb280d6de17e7fe2cb36a33d14f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/55/CH16/EX16.17/16ex17.sci
|
d51fd16274835ef3d07ae083ceccab7a2f8d4a53
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 562
|
sci
|
16ex17.sci
|
disp('The recurrence relation t[n]=4(t[n-1]-t[n-2])')
x=poly(0,'x');
disp(g=x^2-4*x+4,'characterstic polynomial equation for the above recurrence relation')
j=[];
j=roots(g);
disp(j,'roots of the characterstic equation j1,j2')
disp('the general solution is t[n]=n*2^n)
disp('initial condition at n=0 and n=1 respectively are:')
t0=1;
t1=1;
//putting the values of t0 and t1 we get the equations to solve
D=[1 0;2 2]
K=[1 1]'
c=linsolve(D,K)
D=[1 0;2 2]
K=[1 1]'
c=[];
c=D\K;
c1=c(1)
c2=c(2)
disp('thus the solution is t{n}=2*n-n*2^(n-1)')
|
001036b432a6f0a389d405eac7017a93aade67d1
|
80f6640a2c71231b0785c80664e4e4a94a25f3e8
|
/vcast/manager_diner/environment/MANAGER_DATABASE/MANAGER_DATABASE.tst
|
4b952fe935135a4ed381ae0ac6b3617a6016fe89
|
[] |
no_license
|
jasonmasters/vcdemo
|
53baeff69b371f0862fbc7e56b674ad7e73fdda7
|
37a18159f1428ffd6e7e42ee7c5e1999cf2d4a89
|
refs/heads/master
| 2020-04-08T08:53:10.807613
| 2018-11-26T16:20:28
| 2018-11-26T16:20:28
| 159,197,801
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,860
|
tst
|
MANAGER_DATABASE.tst
|
-- VectorCAST 18.sp3 (10/18/18)
-- Test Case Script
--
-- Environment : MANAGER_DATABASE
-- Unit(s) Under Test: database manager
--
-- Script Features
TEST.SCRIPT_FEATURE:C_DIRECT_ARRAY_INDEXING
TEST.SCRIPT_FEATURE:CPP_CLASS_OBJECT_REVISION
TEST.SCRIPT_FEATURE:MULTIPLE_UUT_SUPPORT
TEST.SCRIPT_FEATURE:MIXED_CASE_NAMES
TEST.SCRIPT_FEATURE:STATIC_HEADER_FUNCS_IN_UUTS
--
-- Unit: manager
-- Subprogram: Clear_Table
-- Test Case: Clear_Table.001
TEST.UNIT:manager
TEST.SUBPROGRAM:Clear_Table
TEST.NEW
TEST.NAME:Clear_Table.001
TEST.EXPECTED:manager.Clear_Table.return:0
TEST.END
-- Subprogram: Get_Check_Total
-- Test Case: Get_Check_Total.001
TEST.UNIT:manager
TEST.SUBPROGRAM:Get_Check_Total
TEST.NEW
TEST.NAME:Get_Check_Total.001
TEST.COMPOUND_ONLY
TEST.VALUE:manager.Get_Check_Total.Table:1
TEST.EXPECTED:manager.Get_Check_Total.return:24
TEST.END
-- Subprogram: Place_Order
-- Test Case: chicken
TEST.UNIT:manager
TEST.SUBPROGRAM:Place_Order
TEST.NEW
TEST.NAME:chicken
TEST.COMPOUND_ONLY
TEST.VALUE:manager.Place_Order.Table:1
TEST.VALUE:manager.Place_Order.Seat:1
TEST.VALUE:manager.Place_Order.Order.Entree:CHICKEN
TEST.EXPECTED_USER_CODE:<<testcase>>
TEST.END_EXPECTED_USER_CODE:
TEST.END
-- Test Case: steak
TEST.UNIT:manager
TEST.SUBPROGRAM:Place_Order
TEST.NEW
TEST.NAME:steak
TEST.COMPOUND_ONLY
TEST.VALUE:manager.Place_Order.Table:1
TEST.VALUE:manager.Place_Order.Seat:2
TEST.VALUE:manager.Place_Order.Order.Entree:STEAK
TEST.END
-- COMPOUND TESTS
TEST.SUBPROGRAM:<<COMPOUND>>
TEST.NEW
TEST.NAME:Test_Order
TEST.REQUIREMENT_KEY:FR17
TEST.REQUIREMENT_KEY:FR22
TEST.SLOT: "1", "manager", "Place_Order", "1", "chicken"
TEST.SLOT: "2", "manager", "Place_Order", "1", "steak"
TEST.SLOT: "3", "manager", "Get_Check_Total", "1", "Get_Check_Total.001"
TEST.END
--
|
279216229ac82ffc6ebffe58c21cdda16a22bbdb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/479/CH10/EX10.5/Example_10_5.sce
|
3bc48b05aea230d83f02310ef2ab0234874cbad3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 525
|
sce
|
Example_10_5.sce
|
//Chemical Engineering Thermodynamics
//Chapter 10
//Compressor
//Example 10.5
clear;
clc;
//Given
P1 = 1;//Initial pressure in Kgf/sq cm
P4 = 200;//Final pressure in Kgf/sq cm
n = 4;//no of stages
//To find out the presure between stages
r = (P4/P1)^(1/n);//Compression ratio
P2 = r*P1;
mprintf('The pressure after 1st stage is %f Kgf/sq cm',P2);
P3 = r*P2;
mprintf('\n The pressure after 2nd stage is %f Kgf/sq cm',P3);
P4 = r*P3;
mprintf('\n The pressure after 3rd stage is %f Kgf/sq cm',P4);
//end
|
ff84e9695f90cfc74c39ff6c2a2b2e876b58f7de
|
a77a50f3f25853ec6a7b5b8548a13b7a4b4b3980
|
/rsc/sceneries/woods.sce
|
a8e9f67944202eb126aae2cac8b4823058fe0286
|
[] |
no_license
|
nidoro/PointlessWars
|
f051b41cb71df783141e5953d2c03d9cf305150a
|
2e8a9c073026ebb07454922cc3caec41d8c68f29
|
refs/heads/master
| 2021-03-27T13:12:04.182891
| 2016-11-08T15:23:16
| 2016-11-08T15:23:16
| 71,281,107
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,110
|
sce
|
woods.sce
|
%Background
background-woods.png
%Music
forest-loop.ogg
% OBJECT-NAME X-RELATIVE Y-RELATIVE X-SCALE Y-SCALE H-FLIP V-FLIP
woods-static-objects-01 0.4997 0.1730 1.0000 1.0000 0 0
water-01 0.0129 0.1039 1.0000 1.0000 0 0
water-01 0.0376 0.1057 1.0000 1.0000 0 0
water-01 0.0641 0.1039 1.0000 1.0000 0 0
water-01 0.0888 0.1057 1.0000 1.0000 0 0
water-01 0.1144 0.1039 1.0000 1.0000 0 0
water-01 0.1401 0.1039 1.0000 1.0000 0 0
water-01 0.1639 0.1039 1.0000 1.0000 0 0
water-01 0.1895 0.1039 1.0000 1.0000 0 0
water-01 0.2151 0.1039 1.0000 1.0000 0 0
water-01 0.2389 0.1021 1.0000 1.0000 0 0
water-01 0.2636 0.1039 1.0000 1.0000 0 0
water-01 0.2910 0.1074 1.0000 1.0000 0 0
water-01 0.3158 0.1074 1.0000 1.0000 0 0
water-01 0.3395 0.1057 1.0000 1.0000 0 0
water-01 0.3633 0.1057 1.0000 1.0000 0 0
water-01 0.3935 0.1057 1.0000 1.0000 0 0
water-01 0.4201 0.1074 1.0000 1.0000 0 0
water-01 0.4448 0.1057 1.0000 1.0000 0 0
water-01 0.4750 0.1057 1.0000 1.0000 0 0
water-01 0.5043 0.1057 1.0000 1.0000 0 0
water-01 0.5299 0.1074 1.0000 1.0000 0 0
water-01 0.5573 0.1057 1.0000 1.0000 0 0
water-01 0.5839 0.1074 1.0000 1.0000 0 0
water-01 0.6058 0.1074 1.0000 1.0000 0 0
water-01 0.6324 0.1039 1.0000 1.0000 0 0
water-01 0.6571 0.1039 1.0000 1.0000 0 0
water-01 0.6836 0.1092 1.0000 1.0000 0 0
water-01 0.7092 0.1074 1.0000 1.0000 0 0
water-01 0.7349 0.1057 1.0000 1.0000 0 0
water-01 0.7596 0.1092 1.0000 1.0000 0 0
water-01 0.7742 0.1092 1.0000 1.0000 0 0
water-01 0.7962 0.1057 1.0000 1.0000 0 0
water-01 0.8200 0.1039 1.0000 1.0000 0 0
water-01 0.8438 0.1074 1.0000 1.0000 0 0
water-01 0.8511 0.1039 1.0000 1.0000 0 0
water-01 0.8767 0.1057 1.0000 1.0000 0 0
water-01 0.9005 0.1021 1.0000 1.0000 0 0
water-01 0.9270 0.1039 1.0000 1.0000 0 0
water-01 0.9517 0.1057 1.0000 1.0000 0 0
water-01 0.9737 0.1057 1.0000 1.0000 0 0
water-01 0.9911 0.1057 1.0000 1.0000 0 0
flag-red-01 0.8857 0.1132 1.0000 1.0000 0 0
flag-red-01 0.8906 0.1392 1.0000 1.0000 0 0
fisherman 0.1309 0.1479 1.0000 1.0000 0 0
cow 0.8184 0.9535 1.0000 1.0000 0 0
flag-blue-01 0.1445 0.1323 1.0000 1.0000 0 0
fisherman 0.8223 0.1514 1.0000 1.0000 0 0
cow 0.3203 0.1826 1.0000 1.0000 0 0
cow 0.1846 0.9708 1.0000 1.0000 0 0
cow 0.6943 0.1618 1.0000 1.0000 0 0
flag-waving-blue -0.0173 0.6411 1.0000 1.0000 0 0
flag-waving-blue 0.0635 0.3094 1.0000 1.0000 0 0
flag-waving-blue 0.1382 0.9443 1.0000 1.0000 0 0
flag-waving-blue 0.0595 0.9230 1.0000 1.0000 0 0
flag-waving-red 0.9755 0.3202 1.0000 1.0000 0 0
flag-waving-red 0.8886 0.9461 1.0000 1.0000 0 0
flag-waving-red 0.9627 1.0046 1.0000 1.0000 0 0
|
58bcd44530184590e810f4587272d523387f02da
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.3/Unix-Windows/scilab-2.3/macros/percent/%lsssr.sci
|
2edb564a5e823ea12a9e4a30f271b0c02880a4b8
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 139
|
sci
|
%lsssr.sci
|
function [s]=%lsssr(s1,s2)
//s=%lsssr(s1,s2) <=> s=s1-s2
// s1 : state-space
// s2 : transfer matrix
//!
[s1,s2]=sysconv(s1,s2)
s=s1-s2
|
9279f4c984b377db691952c1f6cf3fff52667f2b
|
cb795495d7cb7e053c51236279bdfedf3e4b7a37
|
/Scilab/Activation Functions & Logic Gates/LeakyReLU.sce
|
81d1cb898118205b106a103c800e07e75387f293
|
[
"MIT"
] |
permissive
|
memr5/Machine-Learning-Portfolio
|
7b21443912deb8381518fcf0c12b4fd15ecbb9a6
|
31a9430aa957949c3f9e05e696f25f7200e21263
|
refs/heads/master
| 2021-07-17T15:48:05.964583
| 2020-04-23T12:35:58
| 2020-04-23T12:35:58
| 201,817,591
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 84
|
sce
|
LeakyReLU.sce
|
x = 0:10;
ReLU = x
figure(1)
plot(x,ReLU)
a = 0.1
x = -10:0
ReLU = a*x
plot(x,ReLU)
|
67f58131445598975807a22366f51c049afa307a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2078/CH4/EX4.8/Example4_8.sce
|
0678e22048fb52d1a8aa358d12573ef4cd139322
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 210
|
sce
|
Example4_8.sce
|
//Exa 4.8
clc;
clear;
close;
//Given data :
r=(20/2)/10;//cm
d1=4*100;//cm
d2=5*100;//cm
d3=6*100;//cm
rdash=0.7788*r;//cm
L=0.2*log((d1*d2*d3)^(1/3)/rdash);//mH
disp(L,"Inductance per phase(mH)");
|
11cc07037a392c68cf27832c32a7bb62d57b881c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/339/CH6/EX6.3/ex6_3.sce
|
46f8069735e5db046568fc667bd09646dbd8e931
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,042
|
sce
|
ex6_3.sce
|
//define problem parameters
ni=1.5e10*1e6; //intrinsic carrier concentration in Si [m^(-3)]
Na=1e15*1e6; //acceptor doping concentration [m^(-3)]
Nd=5e15*1e6; //donor concentration [m^(-3)]
A=1e-4*1e-4; //cross sectional area [m^2]
eps_r=11.9; //cross sectional area [m^2]
//define physical constants (SI units)
q=1.60218e-19; //electron charge
k=1.38066e-23; //Boltzmann's constant
eps0=8.85e-12; //permittivity of free space
eps=eps_r*eps0;
T=300; //temperatuure
//compute diffusion barrier voltage
Vdiff=k*T/q*log(Na*Nd/ni^2)
//junction capacitance at zero applied voltage
C0=A*sqrt(q*eps/(1/Na+1/Nd)/2/Vdiff)
//extents of the space charge region
dn=sqrt(2*eps*Vdiff/q*Na/Nd/(Na+Nd));
dp=sqrt(2*eps*Vdiff/q*Nd/Na/(Na+Nd));
//define range for applied voltage
VA=-5:0.1:Vdiff;
//compute junction capacitance
C=C0*(1-VA/Vdiff).^(-1/2);
plot(VA,C/1e-12);
title('Junction capacitance of abrupt Si pn-contact');
xlabel('Applied junction voltage V_A, Volts');
ylabel('Junction capacitance C, pF');
|
ad7022fcf85a5f9fd153ac71125910aa5d39c224
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/62/CH7/EX7.30/ex_7_30.sce
|
9a37de1c11138b62bd682f62433dbce2f400e4ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 566
|
sce
|
ex_7_30.sce
|
clc;
A=[0 1;-1/8 3/4];
B=[0;1];
C=[-1/8 3/4];
D=[1];
Hz=ss2tf(syslin('d',A,B,C,D));
disp(Hz,"H(z)=");
z = %z;
syms n z1; //To f i n d out I n v e r s e z t r a n s f o rm z must
//be l i n e a r z = z1
X =z ^2 /((z -(1/2) )*(z -(1/4) ))
X1 = denom (X);
zp = roots (X1);
X1 = z1 ^2 /(( z1 -(1/4) )*(z1 -(1/2) ))
F1 = X1 *( z1 ^(n -1) )*(z1 -zp (1) );
F2 = X1 *( z1 ^(n -1) )*(z1 -zp (2) );
h1 = limit (F1 ,z1 ,zp (1) );
disp (h1 , ' h1 [ n]= ' )
h2 = limit (F2 ,z1 ,zp (2) );
disp (h2 , ' h2 [ n]= ' )
h = h1+h2;
disp ('for n>=0',h, ' h [ n]= ' )
|
d3992695c7f701485d99964bf601fbbaf515e75c
|
b6331f746711a90c474257b38f40252325964812
|
/f_g_lineaires.sce
|
d0e7a4d9f320497c07d9026fbdf62817d741187e
|
[] |
no_license
|
LindaChamakh/projet_actuariat
|
abc90abd5bb71c1e088ed14de4afcc705526f602
|
0f21fadfc7553c78856f13fe976df5c72f9d7232
|
refs/heads/master
| 2021-01-23T02:05:04.873203
| 2017-04-09T21:13:20
| 2017-04-09T21:13:20
| 85,961,359
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,100
|
sce
|
f_g_lineaires.sce
|
function [z]=zeta(k,t)
z=(1-exp(-k*t))/k
endfunction
function [m, v, dm, dv]=Z_esp_var(x_0, x_inf, k, sigma, t)
m=(x_0-x_inf)*zeta(k,t)+x_inf*t
v=sigma**2*(t-zeta(k,t))/k**2 -sigma**2*zeta(k,t)**2/(2*k)
dm = (x_0-x_inf)*exp(-k*t)+x_inf
dv = sigma**2*(1-exp(-k*t))/k**2 - sigma**2*zeta(k,t)*exp(-k*t)/(2*k)
endfunction
function [theta1, theta2]=thetas(x_0, x_inf, k, sigma, t, eta)
[m, v, dm, dv]=Z_esp_var(x_0, x_inf, k, sigma, t)
theta1 = exp((1+eta)*m + (1+eta)**2 *v/2)
theta2 = -eta*(dm+(1+eta)*dv/2)*theta1
endfunction
//discretisation: calcul de phi(t,T)
function [phi_t_T] = discrete_phi_t_T(t, T, N_pas, x_0, x_inf, k, sigma, eta, mu_i)
phi_t_T = 0
delta_t = int((T-t)/N_pas)
t_i = t
for i=0:(T-t)
[theta1, theta2]=thetas(x_0, x_inf, k, sigma, t_i - t, eta)
phi_t_T = phi_t_T + delta_t* exp(-mu_i*(t-t_i))*(mu_i*theta1+theta2)
t_i = t_i + delta_t
end
[theta1, theta2]=thetas(x_0, x_inf, k, sigma, T - t, eta)
phi_t_T = phi_t_T + exp(-mu_i*(T-t))*theta1
endfunction
//Input:
//Taux d'interet risque neutre par calibration
k_r = 0.2080239;
r_inf = 0.0402051;
r_0 = 0.005;
sigma_r = 0.0018370;
//Processus x_t
k_x = 0.3;
x_inf = -0.01;
x_0 = 0.02;
sigma_x = 0.008;
//Log return of the asser
mu_a = 0.04;
sigma_a = 0.06;
//Correlation
rho_xr = 0.;
rho_as = 0.95;
rho_ar = 0.25;
//Parametres taux de rachat
alpha = -0.05;
beta_ = -0.01;
gamma_ = 0.01;
delta = 0.03;
mu_min = -0.05;
mu_max = 0.3;
//Rachat structurel
mu_i = 0.05;
eta = 2;
//Taux minimum garanti
TMG = 0.015;
//Maturité
T = 10 ;
//Nb de pas de temps
N = 15;
function [f]=f(x,r)
f = x+r
endfunction
function [g]=g(x)
g = mu_i - eta*x
endfunction
M=10000;//taille échantillon Monte Carlo
A_0 = 101479200;//ACTIF: obligations, actions, immobilier à t=0
E_0 = 57238200;//PASSIF: dettes vis-à-vis des actionnaires
//L0 = ;//PASSIF: dettes vis-à-vis des assurés //INUTILE
P = 36000000;
//Deux gaussiennes indépendantes
Gr = rand(M,1,"normal");
Gx = rand(M,1,"normal");
Ga = rand(M,1,"normal");
//Modélisation des dynamiques r_1 et x_1
r_1 = r_0*exp(-k_r) + r_inf*(1-exp(-k_r)) + sigma_r*sqrt((1-exp(-2*k_r))/(2*k_r))*Gr;
x_1 = x_0*exp(-k_x) + x_inf*(1-exp(-k_x)) + sigma_x*sqrt((1-exp(-2*k_x))/(2*k_x))*((rho_as/sqrt(1-rho_ar*rho_ar))*Ga + sqrt((1-rho_ar**2- rho_as**2)/(1-rho_ar*rho_ar))*Gx);
R_1 = mu_a + rho_ar*sigma_a*Gr + sqrt(1-rho_ar**2)*sigma_a*Ga;
A_1 = A_0*(1 + R_1);
PM_1 = P*exp(f(x_0,r_0) - g(x_0))
t = 1
BE_1 = PM_1*discrete_phi_t_T(t, T, N, x_0, x_inf, k_x, sigma_x, eta, mu_i)
test = discrete_phi_t_T(t, T, N, x_0, x_inf, k_x, sigma_x, eta, mu_i)
BE = BE_1*ones(M,1)
//Calcul de E_1
F_1 = P*g(x_0)
E_1 = A_1 - BE - F_1;
//Calcul de L
L = exp(-r_0).*E_1;
//Statistique d'ordre de L (trier L)
L = gsort(L,'g','i');
mprintf("VaR = %f \n",L(ceil(M*0.005)));
//Calcul de SCR_0
SCR_0 = E_0 - L(ceil(M*0.005));
mprintf("SCR_0 = %f \n",SCR_0);
Nb_simul = linspace(1,M,M)'
plot(Nb_simul, E_0-L)
//hold on
plot(M*0.005, SCR_0, 'r*')
xlabel('N',"fontsize",6)
ylabel('$ E_0 - e^{-r_0}E_1 $',"fontsize",6)
|
217d0b577e5b278b881ae8e030cf6b9eabfc1d6f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3411/CH14/EX6.1.u2/Ex6_1_u2.sce
|
42c08fa8bdfedff02b804b79c078664a989df079
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 286
|
sce
|
Ex6_1_u2.sce
|
//Example 6_1_u2
clc();
clear;
//To calculate the di-electric constant
eo=8.85*10^-12 //units in F/meter
alphae=36*10^-40 //units in meter^3
n=5*10^28 //units in meter^-3
er=((30*eo)+(2*n*alphae))/((30*eo)-(n*alphae))
printf("The di-electric constant is er=%.2f",er)
|
fb7a2b4ce2697de6883f28c7ac5252449218bb47
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1511/CH1/EX1.13/ex1_13.sce
|
21e17438599bf8eb5b3f510725d0db95981f90dc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 351
|
sce
|
ex1_13.sce
|
// Example 1.13 page no-34
clear
clc
l=1.27 //cm
D=19.4 //cm
s=0.475 //cm
Va=400 //volts
Se=l*D*10^-2/(2*s*Va)
Se=ceil(Se*10^5)
printf("\nS_E=%.2f mm/v",Se/100)
v=30 //volt
e=1.6*10^-19 //C
m=9.1*10^-31 //kg
x=sqrt(m/e)
B=(x*0.65*30*sqrt(2*Va))/(l*D)
printf("\nB=%.2f*10^-5 wb/m^2",B*10^5)//answer not matches with given answer
|
9f93f06d32646ddb1bcb12da4f6c43a66990bc00
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1646/CH8/EX8.4/Ch08Ex4.sce
|
5ec83cf3510a6c8b8dcf0fb01eb4ec2b2887ff30
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 515
|
sce
|
Ch08Ex4.sce
|
// Scilab Code Ex8.4: Page-430 (2011)
clc;clear;
n = 1e+006;....// Frequency of Ultrasonic waves, Hz
C = 2.5e-014;....// Capcitance of capacitor, F
// Frequency of elecric oscillations is given by n = 1/(2*%pi)*sqrt(1/(L*C)), solving for L
L = 1/(4*%pi^2*n^2*C); // The inductance of an inductor to produce ultrasonic waves, henry
printf("\nThe inductance of an inductor to produce ultrasonic waves = %d henry", L);
// Result
// The inductance of an inductor to produce ultrasonic waves = 1 henry
|
bbc6941f33bbcd292bd0ab53b9cc25e1d80aed84
|
e0f8f5b90758e1d2d3d75342630b61dd6a34acce
|
/bissecao.sci
|
17e2950d29f282a5f024e6260fb188b1c34fcd56
|
[
"MIT"
] |
permissive
|
gilvandrocesardemedeiros/ComputacaoNumerica
|
6dbf5ab06d34b3a29456508c994fbc3c1ceb47c8
|
13045eaaa847a5fc01707c66f530b21c096e4ff4
|
refs/heads/master
| 2020-04-04T17:17:19.928386
| 2019-07-14T19:03:49
| 2019-07-14T19:03:49
| 156,114,630
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 427
|
sci
|
bissecao.sci
|
function [result] = f(x)
result = 3*sin(x-1) + 5*x - 7.8
endfunction
function [raiz,it] = bissecao(a,b,e,N)
it = 0
erro = 100
raiz = a
while(erro > e & it < N)
raiz_anterior = raiz
raiz = (a+b)/2
if(f(raiz) * f(a) < 0) then
b = raiz
else
a = raiz
end
erro = abs((raiz-raiz_anterior)/raiz)
it = it + 1
end
endfunction
|
6adc0b1428ac2fc25edc73952041e86725836529
|
efb1ee644844234a35bf020ed16ad519b072c8b2
|
/fminunc_and_fminbnd_fmincon/symphony-master/example.sce
|
f5e6f0dea28d4f0cbe90377337d0d0e3835d837c
|
[] |
no_license
|
Gurupradeep/Compiler-Project
|
3d5607042c36edda2c9a1d9b801a890566519968
|
6c7991acfda03988abb38c8fead7621bf00f3909
|
refs/heads/master
| 2021-01-11T21:39:56.928831
| 2017-01-22T06:45:20
| 2017-01-22T06:45:20
| 78,831,538
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,041
|
sce
|
example.sce
|
//fminunc
function y=fun(x)
y=100*(x(2)-x(1)^2)^2 + (1-x(1))^2
endfunction
function y=grad(x)
//y=[3*x(1)^2,3*x(2)^2];
y= [-400*x(1)*x(2) + 400*x(1)^3 + 2*x(1)-2, 200*(x(2)-x(1)^2)];
endfunction
function y=hess(x)
//y=[6*x(1),0;0,6*x(2)]
y= [1200*x(1)^2- 400*x(2) + 2, -400*x(1);-400*x(1), 200 ];
endfunction
//FAILURE CASES
//Fails sometimes if starting point is a stationary point i.e. f'=0. (works for x1^2+x2^2 and (0,0) but fails for (x1-1)^2+(x2-1)^2 and (1,1))
//Fails when it converges to point of inflecion. So if function has a point of inflection nearby when compared to the local minimum the function may fail to find the optimal value.
pt=[1,1.1];
options=list("MaxIter", [1500], "CpuTime", [500], "Gradient", "OFF", "Hessian", "OFF");
[x,f,e,s,g,h]=fminunc(fun,pt,options)
//fminbnd
function y=fun1(x)
y=(x-1)^3
endfunction
//FAILURE CASES
//Fails if point of inflection is x=0 and is included in the bounded interval
options1=list("MaxIter",[15000000],"CpuTime", [10000])
[x1,f1,e1,s1]=fminbnd(fun1,-10,12,options1)
|
4f7160a5db0aee663c4aae559f045a7b5523105b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/257/CH9/EX9.31/example_9_31.sce
|
5deb38b5e6f2720b721f10cc038b85a7a6b15052
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 68
|
sce
|
example_9_31.sce
|
s=%s
sys=syslin('c',((k)*(s+2)*(s+3))/((s+1)*(s)))
clf
evans(sys)
|
f5629ea41515ce945bc0915f4c3c9e16a36dadc8
|
dc628e7d8425aa0bb1460d2583f04c9969b4ec9c
|
/dlog-server/src/test/iocaste.tst
|
3b8c8209f900a4e12bb77c50cbbc71fe30b2a0fc
|
[] |
no_license
|
logicmoo/DLog
|
bc2c43523ccbc3747c381f2eb0e25960cfc8d6e1
|
855774c38c1eea119405fde0057cfdb1032006f0
|
refs/heads/master
| 2021-05-28T14:03:35.596790
| 2015-01-12T22:49:56
| 2015-01-12T22:49:56
| 27,461,790
| 1
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,458
|
tst
|
iocaste.tst
|
concept('Good').
concept('Patricide').
role(hasChild).
equiv(and([some(arole(hasChild), and([aconcept('Patricide'), some(arole(hasChild), not(aconcept('Patricide')))]))]), aconcept('Good')).
cassertion(not(aconcept('Patricide')), i12).
cassertion(aconcept('Patricide'), i2).
rassertion(arole(hasChild), i11, i12).
rassertion(arole(hasChild), i10, i11).
rassertion(arole(hasChild), i9, i10).
rassertion(arole(hasChild), i8, i9).
rassertion(arole(hasChild), i7, i8).
rassertion(arole(hasChild), i6, i7).
rassertion(arole(hasChild), i5, i6).
rassertion(arole(hasChild), i4, i5).
rassertion(arole(hasChild), i3, i4).
rassertion(arole(hasChild), i2, i3).
rassertion(arole(hasChild), i1, i11).
rassertion(arole(hasChild), i1, i10).
rassertion(arole(hasChild), i1, i9).
rassertion(arole(hasChild), i1, i8).
rassertion(arole(hasChild), i1, i7).
rassertion(arole(hasChild), i1, i6).
rassertion(arole(hasChild), i1, i5).
rassertion(arole(hasChild), i1, i4).
rassertion(arole(hasChild), i1, i3).
rassertion(arole(hasChild), i1, i2).
query(instances(aconcept('Good')), [i1]).
query(instance(i1, aconcept('Good'))). %default answer: true
query(instance(i2, aconcept('Good')), false).
query(roleFillers(i1, arole(hasChild)), [i2, i3, i4, i5, i6, i7, i8, i9, i10, i11]).
query(relatedIndividuals(arole(hasChild)), [i1-i2, i1-i3, i1-i4, i1-i5, i1-i6, i1-i7, i1-i8, i1-i9, i1-i10, i1-i11,
i2-i3, i3-i4, i4-i5, i5-i6, i6-i7, i7-i8, i8-i9, i9-i10, i10-i11, i11-i12]).
|
caccb5260c985992a882468f3ee52c0361d8d874
|
520d91294d0a82e781c43ae549ea90539d0f8fe9
|
/Scripts/insert mascota adoptar.tst
|
2768f13d3157106731b68bfbefe60a2f76c149e6
|
[] |
no_license
|
diegoazh/PetsFinder
|
12127cf15676ddee1fdbf999ec94a9dd1f717cf1
|
9eaaa09885c6b1f59fd02381ec30af7ed2da4df0
|
refs/heads/master
| 2020-04-04T17:47:52.076978
| 2014-12-10T01:56:01
| 2014-12-10T01:56:01
| null | 0
| 0
| null | null | null | null |
ISO-8859-2
|
Scilab
| false
| false
| 3,209
|
tst
|
insert mascota adoptar.tst
|
PL/SQL Developer Test script 3.0
53
begin
-- Call the procedure
insertions.set_mascota_adoptar(nombre_m => 'Sparky',
raza_m => 'Husky Siberiano',
tamano1 => 'Grande',
imagen_m => 'husk.jpg',
chip_ident => 'HS4875',
color_m => 'Gris',
estado_m => 'Adoptar',
pais1 => 'Costa Rica',
provincia1 => 'Cartago',
canton1 => 'La Unión',
distrito1 => 'Tres Rios',
detalle_direc => '500 metros norte del parque',
recompensa1 => '10000',
descripcion => 'Muy bueno para cuidar propiedades',
fecha => '13/11/2014',
username => 'emmanuelrs');
insertions.set_mascota_adoptar(nombre_m => 'Colin',
raza_m => 'Rottweiler',
tamano1 => 'Grande',
imagen_m => 'rot.jpg',
chip_ident => 'rt0101',
color_m => 'Negro',
estado_m => 'Adoptar',
pais1 => 'Costa Rica',
provincia1 => 'San José',
canton1 => 'Moravia',
distrito1 => 'San Vicente',
detalle_direc => 'contiguo a la panaderia San Marcos',
recompensa1 => '5000',
descripcion => 'Muy jugueton, no es bravo',
fecha => '1/11/2014',
username => 'Dani');
insertions.set_mascota_adoptar(nombre_m => 'Dino',
raza_m => 'Schnauzer',
tamano1 => 'Mediana',
imagen_m => 'schna.jpg',
chip_ident => 'SH4875',
color_m => 'Gris',
estado_m => 'Adoptar',
pais1 => 'Costa Rica',
provincia1 => 'Heredia',
canton1 => 'Belén',
distrito1 => 'Asunción',
detalle_direc => '200 metros este del parque',
recompensa1 => '0',
descripcion => 'muy jugueton',
fecha => '28/09/2014',
username => 'Dani');
end;
16
nombre_m
0
-5
raza_m
0
-5
tamano1
0
-5
imagen_m
0
-5
chip_ident
0
-5
color_m
0
-5
estado_m
0
-5
pais1
0
-5
provincia1
0
-5
canton1
0
-5
distrito1
0
-5
detalle_direc
0
-5
recompensa1
0
-5
descripcion
0
-5
fecha
0
-5
username
0
-5
0
|
2d6f7652678df0e6b22467ae528ae43e73a8abbb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/761/CH12/EX12.1/12_1.sce
|
383deb6e8776abf63f9dd0e0800b60773b46cbca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 416
|
sce
|
12_1.sce
|
clc;
// page no 407
// prob no 12_1
//A radio channel with BW=10KHz and SNR=15 dB
B=10*10^3;
snr=15;
//converting dB in power ratio
SNR=10^(snr/10);
//a)Determination of theoretical max data rate
C1=B*log2(1+SNR);
disp('kb/s',C1/1000,'a)The theoretical max data rate is');
//b)Determination of data rate with 4 states i.e M=4
M=4;
C2=2*B*log2(M);
disp('kb/s',C2/1000,'b)The data rate for 4 states is');
|
cef6cd5bba4733306b0b80cf73efcd7400edd56b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1979/CH3/EX3.1/Ex3_1.sce
|
2754d90c8a707d35648ddf781eedc8c96ba2b305
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 520
|
sce
|
Ex3_1.sce
|
//chapter-3 page 47 example 3.1
//=============================================================================
clc;
clear;
Z0=100;//Characteristic Impedance in ohms
S=5;//Voltage Standing Wave Ratio(VSWR)
//CALCULATION
Zm=Z0*S;//Termainating impedance at a max of the voltage standing wave
Zl=Zm;//Loading Impedance
//OUTPUT
mprintf('Terminating impedance at a maximum of the voltage standing wave is Zl= %3.0f ohms',Zl);
//====================END OF PROGRAM========================================
|
820884a94125e224706008cf88e1aec2cd48aec0
|
ebd6f68d47e192da7f81c528312358cfe8052c8d
|
/swig/Examples/test-suite/scilab/null_pointer_runme.sci
|
dab59acf85275f3e21dfe5961a216917bae4e4fd
|
[
"LicenseRef-scancode-swig",
"GPL-3.0-or-later",
"LicenseRef-scancode-unknown-license-reference",
"GPL-3.0-only",
"Apache-2.0"
] |
permissive
|
inishchith/DeepSpeech
|
965ad34d69eb4d150ddf996d30d02a1b29c97d25
|
dcb7c716bc794d7690d96ed40179ed1996968a41
|
refs/heads/master
| 2021-01-16T16:16:05.282278
| 2020-05-19T08:00:33
| 2020-05-19T08:00:33
| 243,180,319
| 1
| 0
|
Apache-2.0
| 2020-02-26T05:54:51
| 2020-02-26T05:54:50
| null |
UTF-8
|
Scilab
| false
| false
| 153
|
sci
|
null_pointer_runme.sci
|
exec("swigtest.start", -1);
p = getnull();
checkequal(SWIG_this(p), 0, "SWIG_this(p)");
checkequal(funk(p), %T, "funk(p)");
exec("swigtest.quit", -1);
|
2ee29babf211f13eedaf6932055cd7d93f07a878
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2159/CH7/EX7.4/74.sce
|
5ddc02b8aedf0715dee3d8f7cc9f6ef36b58f73c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 201
|
sce
|
74.sce
|
// problem 7.4
b=3.5
i=1/1000
d=1.5
C=60
y=60
x=1.5/tand(y)
w=b+x*2
A=(w+b)*0.5*d
P=b+2*((x*x+d*d)^0.5)
m=A/P
Q=A*C*((m*i)^0.5)
disp(Q*1000,"discharge carried by the canal in litres/sec")
|
00be0b33aa68eac0a4f6eb113dd2fc773f815cd9
|
e86653ab56eded6714574f9f8f34013272027113
|
/3885/CH3/EX3.7/Ex3_7.sci
|
b38a983502bf8414ebc075a55c46ddfda56a6b4f
|
[] |
no_license
|
FOSSEE/Xcos_TBC_Uploads
|
3637554f9dca20d0c5ec2c5d00d30942edafe09a
|
37e81552cb6d9066617ba91b13c91098e5ab6758
|
refs/heads/master
| 2023-03-30T10:45:38.033053
| 2021-03-15T05:40:35
| 2021-03-17T09:45:20
| 346,244,418
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 793
|
sci
|
Ex3_7.sci
|
//control systems by Nagoor Kani A
//Edition 3
//Year of publication 2015
//Scilab version 6.0.0
//operating systems windows 10
// Example 3.7
clc;
clear;
s=%s
p=poly([1 0.4 0 ],'s','coeff')
q=poly([0 0.6 1],'s','coeff')
g=p./q
disp(g,'the given transfer function is')
c=g/(1+g)
disp(c,'the closed loop transfer function is')
u=c/s
disp(u,'the in put is unit step signal')
//standard form od second order system is w^2/s^2+2*zeta*w*s+w^2
//compaing h with the standard form
w=1//natural frequency of oscillation
disp(w,'natural frequency of oscillation in rad/sec')
zeta=1/(2*w)
disp(zeta,'the damping ratio is')
mp=exp((-zeta*%pi)/sqrt(1-(zeta)^2))*100//percentage peak overshoot
disp(mp,'percentage peak overshoot in percentage')
tp=%pi/(w*sqrt(1-(zeta)^2))
disp(tp,'peak time in seconds')
|
d97b18a1b3e6b198b23f102ed25434394b47ad2c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/389/CH9/EX9.2/Example9_2.sce
|
15e47c390dce3ee4aab05bdeeb99a5776ec34dde
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,138
|
sce
|
Example9_2.sce
|
clear;
clc;
// Illustration 9.2
// Page: 354
printf('Illustration 9.2 - Page: 354\n\n');
// solution
//****Data****//
// a:water b:ethylaniline
Pt = 760; // [mm Hg]
ma1 = 50;// [g]
mb1 = 50;// [g]
//*******//
// Data = [Temp Pa(mm Hg) Pb(mm Hg)]
Data = [38.5 51.1 1;64.4 199.7 5;80.6 363.9 10;96.0 657.6 20;99.15 737.2 22.8;113.2 1225 40];
Ma = 18.02;// [kg/kmol]
Mb = 121.1;// [kg/kmol]
for i = 1:6
p = Data(i,2)+Data(i,3);
if p = = Pt
pa = Data(5,2);// [mm Hg]
pb = Data(i,3);// [mm Hg]
T = Data(i,1);// [OC]
end
end
ya_star = pa/Pt;
yb_star = pb/Pt;
ya1 = ma1/Ma;// [g mol water]
yb1 = mb1/Mb;// [g mol ethylalinine]
Y = ya1*(yb_star/ya_star);// [g mol ethylalinine]
printf("The original mixture contained %f g mol water and %f g mol ethylalinine\n",ya1,yb1);
printf("The mixture will continue to boil at %f OC, where the equilibrium vapour of the indicated composition,until all the water evaporated together with %f g mol ethylalinine\n",T,Y);
printf("The temparature will then rise to 204 OC, and the equilibrium vapour will be of pure ethylalinine");
|
a3cf47f206350c174d97f8d064bf579da7bccd92
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/191/CH4/EX4.8/Example4_8.sce
|
ac5bef847ca27f96e2a55f2e78c3a0cd7ebb4119
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,324
|
sce
|
Example4_8.sce
|
//Gerschgorin's first theorem
clc;
clear;
close();
//find the eigen values lying [0,4] with an error of 0.25
//taking p at mid point of the interval
C=[2,-1,0;-1,2,-1;0,-1,1];
p=2;
f(1)=1;
f(2)=C(1,1)-p;
count = 0;
if f(1)*f(2)>0 then
count = 1;
end
for r=3:4
br=C(r-2,r-1);
f(r)=-br^2*f(r-2)+(C(r-1,r-1)-p)*f(r-1);
if f(r)*f(r-1)>0 then
count = count+1;
// elseif f(r-1)==0 && f(r-1)* ?????? check for sign when f(r)=zero
end
end
disp(f,'Sturm sequences')
disp(count,'Number of eigen values strickly greater than 2 : ')
p=1;
f(1)=1;
f(2)=C(1,1)-p;
count1 = 0;
if f(1)*f(2)>0 then
count1 = 1;
end
for r=3:4
br=C(r-2,r-1);
f(r)=-br^2*f(r-2)+(C(r-1,r-1)-p)*f(r-1);
if f(r)*f(r-1)>0 then
count1 = count1+1;
end
end
disp(f,'Sturm sequences')
disp(count1,'Number of eigen values strickly greater than 1 : ')
p=1.5;
f(1)=1;
f(2)=C(1,1)-p;
count2 = 0;
if f(1)*f(2)>0 then
count2 = 1;
end
for r=3:4
br=C(r-2,r-1);
f(r)=-br^2*f(r-2)+(C(r-1,r-1)-p)*f(r-1);
if f(r)*f(r-1)>0 then
count2 = count2+1;
end
end
disp(f,'Sturm sequences')
disp(count2,'Number of eigen values strickly greater than 1.5 : ')
disp(p+0.25,'Eigen value lying between [1.5,2] ie with an error of 0.25 is : ')
|
d87d0b668c32d2151a3d192f600ea6f7df735c17
|
494b677053e1199325a80808377463794e1003e5
|
/experiments/adaboost/adaboost/results/Ignore-MV.AdaBoost.NC-C.vehicle/result2s0.tst
|
94a0ce5465453850d28a0c916327843c30680bab
|
[] |
no_license
|
kylecblyth/IIS-Project
|
92fb0770addced8022817470f974bf5191bfe05d
|
abf66fd98d9b6c7c3a0fbc254ef4026641338489
|
refs/heads/master
| 2020-06-12T19:41:02.430510
| 2016-12-07T10:35:31
| 2016-12-07T10:35:31
| 75,764,815
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,894
|
tst
|
result2s0.tst
|
@relation vehicle
@attribute COMPACTNESS integer[73,119]
@attribute CIRCULARITY integer[33,59]
@attribute DISTANCECIRCULARITY integer[40,112]
@attribute RADIUSRATIO integer[104,333]
@attribute PRAXISASPECTRATIO integer[47,138]
@attribute MAXLENGTHASPECTRATIO integer[2,55]
@attribute SCATTERRATIO integer[112,265]
@attribute ELONGATEDNESS integer[26,61]
@attribute PRAXISRECTANGULAR integer[17,29]
@attribute LENGTHRECTANGULAR integer[118,188]
@attribute MAJORVARIANCE integer[130,320]
@attribute MINORVARIANCE integer[184,1018]
@attribute GYRATIONRADIUS integer[109,268]
@attribute MAJORSKEWNESS integer[59,135]
@attribute MINORSKEWNESS integer[0,22]
@attribute MINORKURTOSIS integer[0,41]
@attribute MAJORKURTOSIS integer[176,206]
@attribute HOLLOWSRATIO integer[181,211]
@attribute class{van,saab,bus,opel}
@inputs COMPACTNESS,CIRCULARITY,DISTANCECIRCULARITY,RADIUSRATIO,PRAXISASPECTRATIO,MAXLENGTHASPECTRATIO,SCATTERRATIO,ELONGATEDNESS,PRAXISRECTANGULAR,LENGTHRECTANGULAR,MAJORVARIANCE,MINORVARIANCE,GYRATIONRADIUS,MAJORSKEWNESS,MINORSKEWNESS,MINORKURTOSIS,MAJORKURTOSIS,HOLLOWSRATIO
@outputs class
@data
van van
bus saab
saab van
opel saab
saab saab
bus saab
opel saab
van van
van van
bus saab
opel saab
van van
van van
bus saab
van van
bus saab
opel saab
van van
saab saab
opel saab
bus saab
van van
opel saab
bus saab
bus saab
opel van
saab saab
van van
van van
van van
saab saab
saab saab
saab saab
bus saab
bus saab
opel saab
opel saab
opel van
van van
bus saab
bus van
bus saab
van van
bus saab
saab saab
van van
bus saab
bus saab
saab saab
saab saab
van van
opel saab
opel saab
saab saab
van van
saab saab
opel saab
opel van
opel saab
van van
opel saab
saab saab
saab saab
bus saab
bus saab
saab saab
opel saab
saab saab
saab saab
bus saab
saab saab
opel saab
saab saab
bus saab
saab saab
van van
opel saab
saab saab
bus saab
van saab
opel saab
bus saab
opel saab
saab saab
van van
|
a7f8eef5e8df8b824b29287f7c34fb023d7cf32f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2084/CH14/EX14.3/14_3.sce
|
2951c5a7451f26920236aa6c715847f2cbc73dfc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 586
|
sce
|
14_3.sce
|
//developed in windows XP operating system 32bit
//platform Scilab 5.4.1
clc;clear;
//example 14.3
//calculation of the elastic potential energy stored in the stretched steel wire
//given data
l=2//length(in m) of the steel wire
A=4*10^-6//cross sectional area(in m^2) of the steel wire
dl=2*10^-3//increase in the length(in m)
Y=2*10^11//Young modulus(in N/m^2)
//calculation
St=dl/l//strain in the wire
Ss=Y*St//stress in the wire
V=A*l//volume of the steel wire
U=Ss*St*V/2
printf('the elastic potential energy stored in the stretched steel wire is %3.1f J',U)
|
3618ce9e434d815f778a76e32e44a6007a3c398b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1049/CH12/EX12.18/ch12_18.sce
|
e3e8657398eb27c22954afb0a76ca9810eff3373
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 333
|
sce
|
ch12_18.sce
|
clear;
clc;
w_m=0; printf("lower limit of speed control=%.0f rpm",w_m);
I_a=25;
r_a=.2;
V_s=220;
K_m=0.08;
a=(K_m*w_m+I_a*r_a)/V_s; printf("\nlower limit of duty cycle=%.3f",a);
a=1; printf("\nupper limit of duty cycle=%.0f",a);
w_m=(a*V_s-I_a*r_a)/K_m; printf("\nupper limit of speed control=%.1f rpm",w_m);
|
6e84f263a98a6727a50cc1e5e80c5669d00beca5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/401/CH12/EX12.19/Example12_19.sce
|
1c585a2f081804af0c0a71882adee3b753950d3e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 968
|
sce
|
Example12_19.sce
|
//Example 12.19
//Program to estimate the maximum system length for satisfactory
//performance
clear;
clc ;
close ;
//Given data
SNR_dB=17; //dB - REQUIRED SNR
L=100*10^3; //metre - INTERVAL SPACING
K=4; //FOR AMPLIFIER
h= 6.626*10^(-34); //J/K - PLANK's CONSTANT
c=2.998*10^8; //m/s - VELOCITY OF LIGHT IN VACCUM
B=1.2*10^(9); //bit/s - TRANSMISSION RATE
Pi_dBm=0; //dBm - INPUT POWER
Lambda=1.55*10^(-6); //metre - OPERATING WAVELENGTH
alpha_fc=0.22; //dB/km - FIBER CABLE ATTENUATION
alpha_j=0.03; //dB/km - SPLICE LOSS
//Calculation of SNR and Pi
SNR=10^(SNR_dB/10);
Pi=10^(Pi_dBm/10)*10^(-3);
//Maximum system length
Lto=(Pi*Lambda*10^(-(alpha_fc+alpha_j)*L/10/10^3)/(K*h*c*B))/SNR*L;
//Displaying the Result in Command Window
printf("\n\n\t Maximum system length for satisfactory performance is %1.0f X 10^4 km.",Lto/10^7);
|
2f35d7a71785c97a6e7eaaeb2024dc9375b4182b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/10/CH2/EX8/cha2_8.sce
|
c9e62670b8e1bf7617d521945aa0f11994e00389
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 368
|
sce
|
cha2_8.sce
|
Pri=1330;Sec=230;Zl=0.12+%i*0.25;Phase=3;V=230;
Z=0.8+%i*5;Power=27;
Zz=0.003+%i*0.015;Pf=0.9
A=(Pri/Sec)^2*(Zl)
Req=4.01;
Xeqh=8.36;
a=(sqrt(Phase)*Pri)/V
Reql=0.8;
Xeql=5;
Rr=0.003;
Xx=0.015;
R=(Reql+Req)*(1/10^2)+Rr
X=(Xeql+Xeqh)*(1/10^2)+Xx
Vl=V/sqrt(Phase)
Il=(Power*10^3)/(Phase*133)
Angle=-acos(%pi*Pf/180)
|
9f0567f2be83367e647dff43b60a652c0228e9af
|
717ddeb7e700373742c617a95e25a2376565112c
|
/72/CH11/EX11.4.1/11_4_1.sce
|
23abdf5d85ca76315ce53582e54af47f0a7dbcfa
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 649
|
sce
|
11_4_1.sce
|
//CAPTION:Characteristic_Impedance_of_a_Shielded_Strip_Line
//chapter_no.-11, page_no.-508
//Example_no.11-4-1
clc;
//(a)Calculate_the_K_factor
er=2.56//relative_dielectric_constant
w=25;//strip_width
t=14;//strip_thickness
d=70;//shield_depth
K=1/(1-(t/d));
disp(K,'the_K_factor is =');
//(b)Calculate_the_fringe_capacitance
Cf=((8.854*er)*((2*K*log(K+1))-((K-1)*log((K^2)-1))))/%pi;
disp(Cf,'the_fringe_capacitance(in pF/m)is =');
//(c) Calculate_the_characteristic_impedance_of_the_line
Z0=94.15/((((w/d)*K)+(Cf/(8.854*er)))*(sqrt(er)));
disp(Z0,'the_characteristic_impedance_of_the_line(in ohms)is =');
|
92148f061f12379ececfaf79bdc0b618c36dff21
|
3b742855dce5a8af730e0cbc0fa60a17c93592a7
|
/interpolationBaseCanonique.sci
|
be7fbfc6bb36c9f570083fc3306c686306793743
|
[] |
no_license
|
AlexisZankowitch/scilab
|
287c90ba944622f50c6fd445044441618153d04b
|
2a6dfafe03743e26fd78308265813134025cf224
|
refs/heads/master
| 2021-05-30T04:37:00.736119
| 2015-12-06T13:39:59
| 2015-12-06T13:39:59
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 333
|
sci
|
interpolationBaseCanonique.sci
|
function a = lagBaseCanonique(f,n)
h = 1/n;
X = [0:h:1]';
A = [];
for i=0:n
A=[A X.^i]
end
y = f(X);
a = A\y
x = [0:0.01:1];
plot2d(x,f(x));
p=0;
for i=0:n
p=p + a(i+1)*x.^i
end
plot2d(x,p,5);
endfunction
function y=f(x)
y = sin(10*x.*cos(x));
endfunction
|
65650c5691f4a4b707c684b8b6a45bf28db66f5a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1793/CH11/EX11.6/11Q6.sce
|
d87a33c5f1790c0b6605af940f0c6ad140154a29
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 244
|
sce
|
11Q6.sce
|
clc
T=8.5
eo=0.8
Cc=0.28
To=2650
T1=970
C1=0.02
t2=5
t1=1.5
H=8.5*12
epr=Cc*log10((To+T1)/To)
ep=eo-epr
C2=C1/(1+ep)
Sc=epr*H/(1+eo)
Ss=C2*H*log10(t2/t1)
TS=Sc+Ss
printf('Total consolidation settlement of the clay = %f in',TS)
|
3a1da13129906df36328c9de48049a7c67832bb8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/683/CH17/EX17.1/SCB_1.sce
|
bc06e0382854ab68611483ba134426f89b0b226e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 447
|
sce
|
SCB_1.sce
|
// sum 17-1
clc;
clear;
Ta=22;
u=7/10^9;
nj=20;
r=25;
l=2*r;
Ao=30000;
Uo=15.3/10^3;
c=0.025;
//specific weight of the material is rho
rho=8.46*(10^-6);
Cp=179.8;
Tf=Ta+(16*%pi^3*u*nj^2*l*r^3/(Uo*Ao*c));
// avg mean film temperature is Tav
Tav=(Tf-Ta)/2;
x= l*c*rho*%pi*r*nj*Cp*10^3;
y=Ao*Tav*Uo;
delT=y/x;
// printing data in scilab o/p window
printf("Tav is %0.2f degC ",Tav);
printf("\n delT is %0.1f degC ",delT);
|
fcda05abe70a6ebf67ce91e80dc7277829ff5bf6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3204/CH21/EX21.1/Ex21_1.sce
|
787a98152a0917d6f798d237ddc552955d407174
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 880
|
sce
|
Ex21_1.sce
|
// Initilization of variables
N=1800 // r.p.m // Speed of the shaft
t=5 // seconds // time taken to attain the rated speed // case (a)
T=90 // seconds // time taken by the unit to come to rest // case (b)
// Calculations
omega=(2*%pi*N)/(60)
// (a)
// we take alpha_1,theta_1 & n_1 for case (a)
alpha_1=omega/t // rad/s^2 //
theta_1=(omega^2)/(2*alpha_1) // radian
// Let n_1 be the number of revolutions turned,
n_1=theta_1*(1/(2*%pi))
// (b)
// similarly we take alpha_1,theta_1 & n_1 for case (b)
alpha_2=(omega/T) // rad/s^2 // However here alpha_2 is -ve
theta_2=(omega^2)/(2*alpha_2) // radians
// Let n_2 be the number of revolutions turned,
n_2=theta_2*(1/(2*%pi))
// Results
clc
printf('(a) The no of revolutions the unit turns to attain the rated speed is %f \n',n_1)
printf('(b) The no of revolutions the unit turns to come to rest is %f \n',n_2)
|
3fd804e4ce5c92d6cd32c0f1b2b3f7af3a586c99
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1208/CH1/EX1.8/Exa8.sce
|
eb3fd914fffca5fdc82702159c9a636795df1611
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 397
|
sce
|
Exa8.sce
|
//Exa8
clc;
clear;
close;
//given data :
R1=5000;//in Rs
R2=10000;//in Rs
R3=15000;//in Rs
R4=10000;//in Rs
R5=8000;//in Rs
r=10;//in % per annum
i=r/100;
n=5;//in years
//formula Vn=R1*(1+i)^(n-1)+R2*(1+i)^(n-2)+.............+Rn-1*(1+i)+Rn
V5=R1*(1+i)^(n-1)+R2*(1+i)^(n-2)+R3*(1+i)^(n-3)+R4*(1+i)^(n-4)+R5;
disp(V5,"The future value of this series of payments(in Rs) will be : ")
|
d69f21ea4d5f141a561bed2317d9cc56dd240aab
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2672/CH1/EX1.7/Ex1_7.sce
|
9c50ad6e8beb310a7ad6459fd94686be6234bb23
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 313
|
sce
|
Ex1_7.sce
|
//Example 1_7
clc;
clear;
close;
format('v',5);
//given data :
//11*I2+8*I3=4 from loop GDAG
//8*I2+11*I3=6 from loop HDAH
A=[11 8;8 11];//coefiicient matrix
B=[4;6];//coefiicient matrix
X=A^-1*B;//Matrix multiplication
I2=X(1);//A
I3=X(2);//A
I8=I2+I3;//A
disp(I8,"Current in 8 ohm resistor(A)");
|
82fe8eabcf4bf5bef5befa08866598d1cda3b44e
|
b6b875fb04ec6df2c0fb0d28f36962fa9aebb2bf
|
/TD4/Scripts/Service 1/serveur1_repart.sce
|
2ec294a10d7c6a29944b04fa1af197ce32bbb8f3
|
[] |
no_license
|
MFrizzy/Modelisation
|
51794b2edf421f9d2206cb73972d8d8d7b1e9759
|
0ca819afbcbe00f58f3bbaa8fc97164ae2c1d3cb
|
refs/heads/master
| 2021-08-29T12:02:20.042037
| 2017-12-13T22:39:21
| 2017-12-13T22:39:21
| 106,943,303
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 466
|
sce
|
serveur1_repart.sce
|
clf;
clear;
clc;
load('C:\Users\tangu\OneDrive\Documents\GitHub\Modelisation\TD4\NetworkData.sod')
// Extraction des temps de service
index_bool = ( data(:, 3) == 1 )
tabS1 = data(index_bool, :)
t_s1 = tabS1(1:$,4);
tab = tabul(t_s1,'i')
tab(:,2) = tab(:,2)/length(t_s1)
F = cumsum(tab(:,2))
plot2d2(tab(:,1),F)
legend("Fonction de répartitions des temps de service")
// Définition des paramètres d'affichages
a=gca();
a.x_location = "origin";
a.grid=[5,5];
|
d7618c0a6eda79f5053deaafa325f59ed2fe90ce
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3044/CH3/EX3.17/Ex3_17.sce
|
397de7d6d6291994a3b8be2ff1ed5c3d5f57412e
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 122
|
sce
|
Ex3_17.sce
|
//Variable declaration
p = 0.5 // Probability of getting head in one flip
//Results
printf ( "Probability: %.2f",p*p)
|
06476b667057940ba56743f91e716ec9c9874eed
|
0144accf3a09b469d5844412feef5d77e7f7f115
|
/Heatmap_01.sci
|
79e2ea56026a90b7507fa2ee2cd6490b1d6f21b9
|
[] |
no_license
|
maxxonair/Scripts
|
b7830a619813cd7be1b5ef4a567c8de45ea86b66
|
974c7831e4b12fa65e73385f3ca01e99e4e6734d
|
refs/heads/master
| 2020-04-18T12:40:08.492254
| 2019-01-25T11:59:48
| 2019-01-25T11:59:48
| 167,540,487
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,379
|
sci
|
Heatmap_01.sci
|
clear
//------------------------------------------------------------------------------
Descender_PMF = 0.79;
Descender_deltaV=2143;
TUG_deltaV=864;
g=9.81;
mw_ascender= 9939;
for k=320:0.5:420
Descender_ISP(k-319)=k;
end
ISP_Tug=440;
//------------------------------------------------------------------------------
PMFstart=80;
for i=1:100
TUG_PMF(i)=(i/10+PMFstart)/100;
for j=1:1:length(Descender_ISP)
E_Descender=exp(Descender_deltaV/(Descender_ISP(j)*g));
mw_descender(i,j)=mw_ascender*(1-E_Descender)/(E_Descender*(1-Descender_PMF)-1);
E_Tug=exp(TUG_deltaV/(ISP_Tug*g));
mw_stage(i,j)=(mw_descender(i,j)+mw_ascender)*(1-E_Tug)/(E_Tug*(1-TUG_PMF(i))-1);
mNRHO(i,j)=mw_descender(i,j)+mw_ascender+mw_stage(i,j);
end
end
//------------------------------------------------------------------------------
//
//------------------------------------------------------------------------------
f = gcf();
Sgrayplot(TUG_PMF*100,Descender_ISP,mNRHO);
//grayplot(TUG_PMF*100,Descender_ISP,mNRHO);
//f.color_map = rainbowcolormap(64);
f.color_map=jetcolormap(64);
colorbar(20000,35000);
xlabel("TUG PMF [%]");
ylabel("Descender ISP [s]");
//------------------------------------------------------------------------------
|
9d7ada82724122cc118b45670f54492f2a5f73d5
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Materials_Science_R._S._Khurmi_And_R._S._Sedha_2153.zip/Materials_Science_R._S._Khurmi_And_R._S._Sedha_2153/CH3/EX3.10/ex_3_10.sce
|
64ff8df8978b8254f665cf09d977b750007cc0b3
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 206
|
sce
|
ex_3_10.sce
|
errcatch(-1,"stop");mode(2);//Example 3.10 : largest diameter
;
;
//given data :
format('v',6)
a=3.61; // edge length in angstrum
r=(a*sqrt(2))/4;
d=2*r;
disp(d,"largest diameter,d(angstrom) = ")
exit();
|
06994e776931e8005b1febd0c15637841c2c0bea
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1286/CH15/EX15.5/15_5.sce
|
d57ac864bc87a8936910967cec472377a7d95e8b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 252
|
sce
|
15_5.sce
|
clc
//initialisation
n=400
a1=300
b1=100
a2=200
b2=200
r=2
//CALCULATIONS
p1=factorial(n)/(factorial(a1)*factorial(b1)*r^n)
p2=factorial(n)/(factorial(a2)*factorial(b2)*r^n)
w=p1/p2
//results
printf(' \n ratio of probabilities= % 1e ',w)
|
b1ed9e5016317313620c1e48131a8bde4e1dbbfa
|
de14a6897d4397228a52bacb8905b8807370ef4b
|
/chaleur2.sce
|
81601aa2345b04c9ac85be9b8ca1bad92363b97f
|
[] |
no_license
|
JustineMarlow/MT94-RapportLaTeX
|
20b670965a47ce85beecc15865d14ec9cc4d305b
|
3dfaa665b5691621410f8eafdf76ecaf081b92d1
|
refs/heads/master
| 2021-09-06T17:54:58.174773
| 2018-02-09T09:57:52
| 2018-02-09T09:57:52
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 541
|
sce
|
chaleur2.sce
|
function out=a(n)
if (n==0) out=2*lambda/%pi;
else out=-2/(n*%pi)*sin(n*(%pi-lambda));
end
endfunction
N=100;
t=linspace(0.01,1,N);
lambda=%pi/2;
theta=linspace(0,2*%pi,N);
p=20;
somme=zeros(N,length(x));
for i=1:N
somme(i,:)=a(0)/2;
for n=1:p
somme(i,:)=somme(i,:)+a(n)*cos(n*theta)*exp(-n^2*t(i));
end
end
clf;
set(gcf(),"color_map",jetcolormap(128))
surf(theta,t,somme);
set(gce(),"color_flag",3)
xlabel theta; ylabel t; zlabel u;
title("Courbe de la chaleur en fonction de theta et de t",'fontsize',4);
|
0b0df4e28dfd5dd0920452327bfc9a1b754c73b2
|
f7e335e2af57c686554eb057f28ddd8d21aab1e4
|
/tests/fuzz/c-wsp/0020.tst
|
12aeb5671a90bf468db7ca26af4d63c91268f171
|
[
"MIT"
] |
permissive
|
scravy/abnf
|
76515bd820b3b9d8e2dbc2cec2a2f845720a6022
|
cc4228f403b436cc4e34ff4d6a7def83922174be
|
refs/heads/master
| 2023-01-09T14:30:50.095268
| 2020-06-07T16:18:09
| 2020-06-07T16:18:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6
|
tst
|
0020.tst
|
;wt
|
2c000f37551d249a99f72208ed7f89fde64009dd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1373/CH10/EX10.24/Chapter10_Example24.sce
|
89be186044e2975caf571a7845dc2cbd4794b86b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 651
|
sce
|
Chapter10_Example24.sce
|
//Chapter-10, Example 10.24, Page 448
//=============================================================================
clc
clear
//INPUT DATA
Q=79;//Reduction in net radiation from the surfaces
e1=0.05;//Emissivity of the screen
e2=0.8;//Emissivity of the surface
//CALCULATIONS
n=(((Q*((2/e2)-1))-((2/e2)+1))/((2/e1)-1));//Number of screens to be placed between the two surfaces to achieve the reduction in heat exchange
//OUTPUT
mprintf('Number of screens to be placed between the two surfaces to achieve the reduction in heat exchange is%3.0f',n)
//=================================END OF PROGRAM==============================
|
7d8a75ca5ae070999f647e08ea9ade0b58dcb572
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2609/CH6/EX6.17/Ex6_17.sce
|
b30826e461f36ccd69e565c273b3a2ccff1f65ed
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 335
|
sce
|
Ex6_17.sce
|
//Ex 6.17
clc;
clear;
close;
format('v',4);
//Data given
Ls=3;//H
Cs=0.05;//pF
Rs=2;//kohm
Cm=10;//pF
fS=1/2/%pi/sqrt(Ls*Cs*10^-12)/1000;//kHz
disp(fS,"Series resonant frequency(kHz)");
CT=Cm*Cs/(Cm+Cs);//pF////Equivalent capacitance
fP=1/2/%pi/sqrt(Ls*CT*10^-12)/1000;//kHz
disp(fP,"Parallel resonant frequency(kHz)");
|
5c2ef93741f0d04ecbdb1000d669233a67962152
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1523/CH2/EX2.10/2_10.sce
|
493ef73ccecbb92c51f3fc97ce8512104e85570e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 499
|
sce
|
2_10.sce
|
//Network Theorem 1
//page no-2.19
//example 2.10
disp("Applying KVL to mesh 1");
disp("7*I1-I2=10");....//equation 1
disp("Applying KVL to mesh 2");
disp("-I1+6*I2-3*I3=0");....//equation 2
disp("Applying KVL to mesh 3");
disp("-3*I2+13*I3=-20");....//equation 3
disp("Solving the three equations");
A=[7 -1 0;-1 6 -3;0 -3 13];//solving the equations in matrix form
B=[10 0 -20]'
X=inv(A)*B;
disp(X);
disp("I1=1.34 A");
disp("I1=-0.62 A");
disp("I3=-1.68 A");
disp("I2ohm=1.34 A");
|
39d86e4bf005c1c24233e64f0cbd58a1d1c72ecc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2606/CH11/EX11.7/ex11_7.sce
|
0441fe7f8c47ef7956a03ead2cd6a6e7e8130196
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 489
|
sce
|
ex11_7.sce
|
//Page Number: 11.15
//Example 11.7
clc;
//(a)Channel Matrix
//Given
Py1byx1=0.9;
Py2byx1=0.1;
Py1byx2=0.2;
Py2byx2=0.8;
PYbyX=[Py1byx1 Py2byx1;Py1byx2 Py2byx2];
disp(PYbyX,'Channel Matrix,P(Y/X):');
//(b)Py1 and Py2
//Given
Px1=0.5;
Px2=Px1;
//As P(Y)=P(X)*P(Y/X)
PX=[Px1 Px2];
PY=PX*PYbyX;
disp(PY,'P(y1) P(y2):');
//(c)Joint Probabilities P(x1,y2) and P(x2,y1)
//Diagonalizing PX
PXd=diag(PX);
PXY=PXd*PYbyX;
disp(PXY(2,1),PXY(1,2),'P(x1,y2) P(x2,y1)');
|
01cddd7339c89aa98bca87c48c2413ce5800df40
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2870/CH11/EX11.5/Ex11_5.sce
|
04421a22c11e28681d9a1c9b39f5eee7cee92316
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 697
|
sce
|
Ex11_5.sce
|
clc;clear;
//Example 11.5
//given data
m=0.1;
T1=0+460;
T3=80+460;//converting into R from F
//from Table A–17E
// at T1
h1=109.90;
Pr1=.7913;
//pressure ratio at compressor is 4
Pr2=4*Pr1;
//at Pr2
h2=163.5;
T2=683;
//at T3
h3=129.06;
Pr3=1.3860;
//pressure ratio at compressor is 4
Pr4=Pr3/4;
//at Pr4
h4=86.7;
T4=363;
//calculations
qL=h1-h4;
Wout=h3-h4;
Win=h2-h1;
COPR=qL/(Win-Wout);
Qrefrig=m*qL;
disp((T4-460),'the minimum temperatures in the cycle in F');
disp((T2-460),'the maximum temperatures in the cycle in F');
disp(COPR,'the coefficient of performance');
disp(Qrefrig,'the rate of refrigeration for a mass flow rate of 0.1 lbm/s. in Btu/s')
|
8c753ce1e7994a024cca8023560effcd13049ad5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1808/CH7/EX7.4/Chapter7_Exampl4.sce
|
1f363a0de5a5714751b102522dc83dd2aa1f66d9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 635
|
sce
|
Chapter7_Exampl4.sce
|
clc
clear
//INPUT DATA
p=760;//pressure in mm of Hg
t=30;//dry bulb temperature in Degree c
p2=0.04246*10^5;//pressure in N/m^2
cp=1.005;//specific pressure
hfg=2500;//Specific enthalpy in kJ/kgw.v.
cpv=1.88;//specific pressure
//CALCULATIONS
ps=(p2/133.5);//pressure in mm of Hg
ws=(0.62*(ps/(p-ps)));//Specific humidity in kg w.v./kg d.a
h=(cp*t)+ws*(hfg+(cpv*t));//Enthalpy of air per kg of dry air in kJ/kg d.a
//OUTPUT
printf('(a)Accorrding to steam tables The vapour pressure is %3.2f mm Hg \n (b)Specific humidity %3.4f kg w.v./kg d.a \n (c)Enthalpy of air per kg of dry air is %3.2f kJ/kg d.a ',ps,ws,h)
|
5802ec10876a334980a8295a0a6901203ea5605a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2084/CH20/EX20.2/20_2.sce
|
25835a3330c67b7d4d68eae100627450da1bdc67
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 691
|
sce
|
20_2.sce
|
//developed in windows XP operating system 32bit
//platform Scilab 5.4.1
clc;clear;
//example 20.2
//calculation of the dispersive power of the material of the lens
//given data
fr=90//focal length(in cm) for the red light
fv=86.4//focal length(in cm) for the violet light
//calculation
//(1/f) = (mu-1) * ((1/R1) - (1/R2))
//muv - 1 =K/fv.....and.....mur - 1 = K/fr
//let m = muv - mur and K = 1
m=((1/fv)-(1/fr))
//muy - 1 = ((muv + mur)/2) - 1 = (K/2)*((1/fv) - (1/fr))
//let n = muy -1 and K = 1
n=(1/2)*((1/fv)+(1/fr))
//w = (muv-mur)/(mu-1).........definition of the dispersive power
w=m/n
printf('the dispersive power of the material of the lens is %3.3f',w)
|
e6499d749f66bbe26e05ddd974c53448316edc63
|
dba43ae0c5d0c50780be579f98977a9836292852
|
/03/Register32/Register.tst
|
b280db9d5addd71bd0488439e66b60f54139212d
|
[
"MIT"
] |
permissive
|
AbstractXan/ComputerSystemDesignLab
|
c49458dfcbd2e7ee769cb6044868a33601e42968
|
2851da683e4e894be66463dcc29a9fa6ba0538b6
|
refs/heads/master
| 2020-07-06T22:44:45.031534
| 2019-11-20T04:42:52
| 2019-11-20T04:42:52
| 203,161,348
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,366
|
tst
|
Register.tst
|
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/03/a/Register.tst
load Register32.hdl,
output-file Register32.out,
output-list time%S1.4.1 in1%D1.6.1 in2%D1.6.1 load%B2.1.2 out1%D1.6.1 out2%D1.6.1;
set in1 0,
set in2 0,
set load 0,
tick,
output;
tock,
output;
set in1 0,
set in2 0,
set load 1,
tick,
output;
tock,
output;
set in1 -32123,
set in2 -32123,
set load 0,
tick,
output;
tock,
output;
set in1 11111,
set in2 11111,
set load 0,
tick,
output;
tock,
output;
set in1 -32123,
set in2 -32123,
set load 1,
tick,
output;
tock,
output;
set in1 -32123,
set in2 -32123,
set load 1,
tick,
output;
tock,
output;
set in1 -32123,
set in2 -32123,
set load 0,
tick,
output;
tock,
output;
set in1 12345,
set in2 12345,
set load 1,
tick,
output;
tock,
output;
set in1 0,
set in2 0,
set load 0,
tick,
output;
tock,
output;
set in1 0,
set in2 0,
set load 1,
tick,
output;
tock,
output;
set in1 %B0000000000000001,
set in2 %B0000000000000001,
set load 0,
tick,
output;
tock,
output;
set load 1,
tick,
output;
tock,
output;
set in1 %B0000000000000010,
set in2 %B0000000000000010,
set load 0,
tick,
output;
tock,
output;
|
ba0bca596b6286e72f33f373d5f4029a3e9c6982
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/226/CH11/EX11.5/example5_sce.sce
|
b9c7b37484ea4e81999d8a887178df7d5a65e42d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 303
|
sce
|
example5_sce.sce
|
//chapter 11
//example 11.5
//page 456
printf("\n")
printf("given")
Yfs=3000*10^-6;rd=50*10^3;Rs=3.3*10^3;Rd=4.7*10^3;Rl=50*10^3;rs=600;
Zs=1/Yfs
Zi=((1/Yfs)*Rs)/((1/Yfs)+Rs)
Zd=rd
Zo=(Rd*rd)/(Rd+rd)
Av=Yfs*((Rd*Rl)/(Rd+Rl))
disp("overall volateg gain")
Av=(Yfs*((Rd*Rl)/(Rd+Rl))*Zi)/(rs+Zi)
|
6c3f44da5958c23b3f277aa4b59780b6e2225e71
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set6/s_Electric_Machines_D._P._Kothari_And_I._J._Nagrath_503.zip/Electric_Machines_D._P._Kothari_And_I._J._Nagrath_503/CH7/EX7.1/ch7_1.sci
|
6aa71ec7ed495201f548e0f9210ff6d3e3cdc4b3
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 213
|
sci
|
ch7_1.sci
|
errcatch(-1,"stop");mode(2);// to calculate no of parrallel path
;
S=12; //no of commutator segments
P=4;
Y_cs=S/P; //slots
Y_b=2*Y_cs+1;
y_f=Y_b-2;
disp(y_f,'no of parralel path');
exit();
|
cd74fb603835097ffd9afa56834a5a7d864858a8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/215/CH16/EX16.5/ex16_5.sce
|
b3b172db1df000f4fd9665fe1630f7098a772dd5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 324
|
sce
|
ex16_5.sce
|
clc
//Example 16.5
disp('Given')
disp('R=5 ohm L=100mH w=100 rad/s')
Rs=5; Ls=100*10^-3 ;w=100;
//Let Xs be the capacitive and inductive reactance
Xs=w*Ls
Q=Xs/Rs
//As Q is greater than 5 we can approximate as
Rp=Q^2*Rs
Lp=Ls
printf("The parallel equivalent is \n");
printf("Rp= %d ohm \t Lp=%d mH",Rp,Lp*10^3);
|
e61efd3a6b54235ddc85d75ce580418db17c6511
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3169/CH3/EX3.8/Ex3_8.sce
|
bfaee874df7e0a343f62521d70cb3e4bdd127ce5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 553
|
sce
|
Ex3_8.sce
|
//developed in windows XP operating system
//platform Scilab 5.4.1
clc;clear;
//example 3.8
//calculation of the load voltage and the load current
//given data
Vs=10//source voltage(in V)
Rl=10//value of resistance(in ohm)
Vd=0.7//voltage drop(in V) across diode
Rb=0.23//value of diode resistance(in ohm)
//calculation
Rt=Rl+Rb//total resistance
Vt=Vs-Vd//total voltage across Rt
//from the equation of ohm's law.....I=V/R
Il=Vt/Rt
Vl=Il*Rl
printf('the load voltage is %3.2f V',Vl)
printf('\nthe load current is %3.3f A',Il)
|
ef7eb2a82f72703a57e74f4ee2f83f653f7addc5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2240/CH32/EX31.2/EX31_2.sce
|
b8d872f272086bbf5ec58a4baf7d530a84835180
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,845
|
sce
|
EX31_2.sce
|
// Grob's Basic Electronics 11e
// Chapter No. 31
// Example No. 31_2
clc; clear;
// Claculate the following AC quantities Av, Vout, Pl, Pcc and percent efficiency. Also calculate the endpoints of ac loadline
// Given data
Icq = 7.91*10^-3; // Collector Currect(Q-point)=7.91 mAmps
Rl = 1.5*10^3; // Load Resistor=1.5 kOhms
Rc = 1*10^3; // Collector Resistor=1 kOhms
Vin = 25*10^-3; // Input Voltage=25 mVolts(p-p)
R1 = 18*10^3; // Resistor 1=18 kOhms
R2 = 2.7*10^3; // Resistor 2=2.7 kOhms
Vcc = 20; // Supply Voltage(Collector)=20 Volts
Vceq = 10.19; // Voltage Colector-Emitter(Q-point)=10.19 Volts
rc = (25*10^-3)/Icq;
rl = (Rc*Rl)/(Rc+Rl)
Av = rl/rc;
disp (Av,'The Voltage Gain Av is')
disp ('Appox 190')
Vout = Av*Vin;
disp (Vout,'The Output Voltage in Volts')
disp ('Appox 4.75 Volts')
Pl = (Vout*Vout)/(8*Rl);
disp (Pl,'The Load Power in Watts')
disp ('i.e Appox 1.88 mWatts')
Ivd = Vcc/(R1+R2);
// Ic = Icq
Icc = Ivd+Icq;
Pcc = Vcc*Icc;
disp (Pcc,'The Dc Input Power in Watts')
disp ('i.e Appox 177.4 mWatts')
efficiency = ((Pl/Pcc)*100);
disp (efficiency,'The Efficiency in % is')
disp ('Appox 1%')
// Endpoints of AC load line
icsat = Icq+(Vceq/rl);
disp (icsat,'The Y-axis Value of AC Load-line is ic(sat) in Amps')
disp ('i.e 24.89 mAmps')
vceoff = Vceq+Icq*rl;
disp (vceoff,'The X-axis value of AC Load-line is vce(off) in Volts')
// For AC load line
Vce1=[vceoff Vceq 0]
Ic1=[0 Icq icsat]
//To plot AC load line
printf("Q(%f,%f)\n",Vceq,Icq)
plot2d(Vce1, Ic1)
plot(Vceq,Icq,".r")
plot(0,Icq,".r")
plot(Vceq,0,".r")
plot(0,icsat,".b")
plot(vceoff,0,".b")
xlabel("Vce in volt")
ylabel("Ic in Ampere")
xtitle("AC Load-line for Common-Emitter Class A Amplifier Circuit")
|
7cfa1f7d3d98bf1f9aecf4b7799a2a818fa67230
|
717ddeb7e700373742c617a95e25a2376565112c
|
/278/CH15/EX15.9/ex_15_9.sce
|
a424975db572ad00ed0b147959eedb72529b3fdc
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 1,551
|
sce
|
ex_15_9.sce
|
//find thickness of vessel,dia of screw,xsec of beam at A,dia of pins at C and D,dia at E and f...G and H.....xsec at E and F
clc
//soltuion
//given
//ref fig 15.24
p=0.2//N/mm^2
d=600//mm
ftc=17.5//N/mm^2
fts=52.5//N/mm^2
fcs=52.5//N/mm^2
ts=42//n/mm^2
//let t be thickness of vessel
//t=(p*d)/(2*ftc)//mm
printf("the thickness of vessel si,%f mm\n",(p*d)/(2*ftc))
printf("the thickness can not be less then 6mm,therfore we take 6 as thickness\n")
t=6//mm
//let dc be core dia
W=p*(%pi*d^2)/4//N
//let dc be core dia
//W=(%pi/4)*dc^2*fts=41.24*dc^2
dc=(W/41.24)^(0.5)//mm
printf("we shall use standard size of screw M48 with core dia 41.5mm and outer dia 48mm\n")
//let t1 be thickness and b1 be width
//b1=2*t1
Rc=W/2//N
Rd=W/2//N
l=750//mm
M=W*l/4//N-mm
//Z=(1/6)*t1*b1^2
//Z=0.66*t1^3
//fts=M/Z
t1=(M/(52.5*0.66))^(1/3)
b1=2*t1//mm
printf("thickness and width of beamA is,%f mm\n,%f mm\n",t1,b1)
//let d1 be dia of pi at C and D
//Rc=2*(%pi/4)*d1^2*ts
d1=sqrt(Rc/66)//mm
printf("the dia of pin at C and D is,%f mm\n",d1)
printf("since load at E and F IS SAME AS THAT OF C AND D,therefr dia of pins at E and F is 21 mm\n ")
//let d2 be dia at G and H
Rg=W/2//N
//Rg=(%pi/4)*d2^2*fts
d2=(Rg/41)^(0.5)//mm
printf("the dia at G and H is,%f mm\n",d2)
//let t2 be support thickness and b2 be width of support
x=375-(300+t)
M2=Rc*x//N-mm
//b2=2t2
//Z=(1/6)*t2*b2^2=0.66t2^3
//ftc=M/Z
t2=[M2/(0.66*17.5)]^(1/3)//mm
b2=2*t2
printf("the thickness and wdth of support at E and F is,%fmm\n,%f mm\n",t2,b2)
|
acdb0dc580b8212b75c8529c7a9cb53f467762e2
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set7/s_Electronic_Measurements_And_Instrumentation_P._Sharma_876.zip/Electronic_Measurements_And_Instrumentation_P._Sharma_876/CH2/EX2.11/Ex2_11.sce
|
18b3941beead49f279cdd4091938f81516d37b09
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 660
|
sce
|
Ex2_11.sce
|
errcatch(-1,"stop");mode(2);//caption:Find unknown resistance,percent error and error in ohm
//Ex2.11
P=100//resistance of arm of wheatstone bridge(in ohm)
ep=0.5//error in P(in %)
Q=50//resistance of arm of wheatstone bridge(in ohm)
eq=0.5//error in Q(in %)
S=75.5//resistance of arm of wheatstone bridge(in ohm)
es=0.5//error in S(in %)
X=(P*S)/Q
disp(X,'unknown resistance(in ohm)=')
xo1=ep+es-eq
disp(xo1,'percent error when Q is taken positive(in %)=')
ex1=(xo1*X)/100
disp(ex1,'error in ohm(in ohm)=')
xo2=ep+es+eq
disp(xo2,'percent error when Q is taken negative(in %)=')
ex2=(xo2*X)/100
disp(ex2,'error in ohm(in ohm)=')
exit();
|
dd0254842ba06b3c3445f4a47735a4c9d8973634
|
62e6605ab494919b6833bf1a1b158bcb6f9b79df
|
/typecheck.sci
|
4a145d5283a74709de31d77c8622b2f955177119
|
[] |
no_license
|
mani1250/system-identification
|
c597c26d10bb5dd62b1b4db650b3945afc336e37
|
5db0536c792dfaa4a8f01561315263503ff34d3d
|
refs/heads/master
| 2021-01-12T06:56:00.703593
| 2017-03-07T12:18:15
| 2017-03-07T12:18:15
| 76,865,655
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 333
|
sci
|
typecheck.sci
|
function out = typecheck(A,B,C,D,F1)
if(A==1)
if(C==1 | F1==1)
out = "oe"
else
out = "bj"
end
elseif(D==1 & F1==1)
if(C==1)'
out = "arx"
else
out = "armax"
end
else
out = "idpoly"
end
endfunction
|
301107f00f22bc9d143486fcfe17af7884669bb8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3415/CH11/EX11.5/EX11_5.sce
|
c97455c76e39fd8ebbb560153c4a0781374e0701
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,156
|
sce
|
EX11_5.sce
|
//fiber optic communications by joseph c. palais
//example 11.5
//OS=Windows XP sp3
//Scilab version 5.4.1
clc
clear all
//given
RL=100//load in ohm
T=300//temperature in kelvin
lambda=0.82*10^-6//wavelength in um
e=1.6e-19//charge of electron in colums
k=1.38e-23//boltzman constant
h=6.63e-34//plancks constant
deltaf=1e6//link bandwidth in Hz
Error_rate=10^-4//desired error rate
eta=1//quantum efficiency
c=3*10^8//speed of light in m/s
snr=17.5//Signal to noise ratio from plot correspnding to error rate of 10^-4 in dB
SNR=10^(snr/10)//signal to noise ratio in normal scale
tau=10^-6//bit interval in Sec
//to find
f=c/lambda//optic frequency in Hz
P=(h*f/(eta*e) )*sqrt((4*k*T*deltaf)/RL)*sqrt(SNR)//Optic power incident in Watts
mprintf("Optic power incident=%fnW",P*10^9)//multiplication by 10^9 is to convert the unit from W to nW
i=eta*e*P/(h*f)//current in Amperes
mprintf("\nCurrent=%fnA",i*10^9)//multiplication by 10^9 is to convert the unit from A to nA
np=P/(h*f)*tau// No. of photons per bit
mprintf("\nNo. of Photons per bit=%fx10^5 photons/bit",np/10^5)//multiplication by 10^5 is to convert the unit x10^5
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.