blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2bbdb60507b28884aa1432c20c6b0e393633c2da
|
50cfa0a2b1fa336eb088e2ce19b243bfc456941e
|
/sample.tst
|
5a094e9ac25896216363954199cea4c1439d0df6
|
[] |
no_license
|
Zyphicx/zparser-langtest
|
5fe6f12dce9bce7927a67c7897e6511cb495972f
|
cc1115614b7d4dd0463718afb47a1d44533243b5
|
refs/heads/master
| 2021-01-19T12:55:08.785670
| 2017-08-19T20:05:22
| 2017-08-19T20:05:22
| 100,817,275
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 17
|
tst
|
sample.tst
|
variable = 5 + 3
|
7d6d6ded0a3a3f2203e8e102744166b95be40c52
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2399/CH4/EX4.6.2/Example_4_6_2.sce
|
da2951af861076f9b780172f93fd9264534d1ee1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 797
|
sce
|
Example_4_6_2.sce
|
// Example 4.6.2
clc;
clear;
beta_c=7d-11; //isothermal compressibility
n=1.46; //refractive index
P=0.29; //photoelastic constat
k=1.38d-23; //Boltzmnn constant
T=1400; //temperature
L=1000; //length
lamda=0.7d-6; //wavelength
gamma_r = 8*(3.14^3)*(P^2)*(n^8)*beta_c*k*T/(3*(lamda^4)); //computing coefficient
attenuation=%e^(-gamma_r*L); //computing attenuation
gamma_r=gamma_r*1000;
printf("\nRaleigh Scattering corfficient is %.3f * 10^-3 per meter\n",gamma_r);
printf("\nNOTE - in quetion they have asked for attenuation but in solution they have not calcualted\n");
printf("\nAttenuation due to Rayleigh scattering is %.3f",attenuation);
//answer for Raleigh Scattering corfficient in the book is given as 0.804d-3, deviation of 0.003d-3
|
0fc62069c725d5eab86beb75ffc5d00e2d62c643
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3850/CH28/EX28.1/Ex28_1.sce
|
4d41967c2357218acf41b3f5eaae11eb30cd8100
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 471
|
sce
|
Ex28_1.sce
|
//To Calculate the Amount of Heat flowing per second through the cube.
//Example 28.1
clear;
clc;
x=0.1;//Edge Length of the Copper Cube in cm
A=x^2;//Area of cross section in cm^2
K=385;//Thermal Conductivity of Copper in W/m-deg Celsius
T1=100;//Temperature of the first face
T2=0;//Temperature at the second face
Rf=K*A*(T1-T2)/x;//Amount of Heat flowing per second (del(Q)/del(t))
printf("The amount of heat flowing per sec=%d W",Rf);
|
6920cf3ab79066b29642dac0e2bd74c662bb6d15
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/269/CH7/EX7.13/example13.sce
|
69f7e948e0a86d3e232855d79214967ec1259d5c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 174
|
sce
|
example13.sce
|
Syms t,s
//by network equations
disp('by network equations i(s)=1/(s+1)^2+1')
[A]=pfss((1*s^0+0)/((s+1)^2+1))
b=ilt(A(1),s,t)
disp('The inverse laplace is')
disp(b)
|
d5cf01e5c15aedb9516a2a97664d0e9504cf878c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3504/CH2/EX2.14/Ex2_14.sce
|
139a0f270b0f1ba23913377e79b5358f25be94a6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 218
|
sce
|
Ex2_14.sce
|
//To determine the current through load resistor R of the given circuit.
clc;
Z=[1+%i*1-%i*1+2 -2;-2 2+1]
D=det(Z)
Z_2=[3 1+%i*1;-2 0]
D_2=det(Z_2)
I_2=D_2/D
disp(I_2,'Current through load resistor R(Polar form)')
|
94ea20352294a539f0b427ee18fb056d6c766d96
|
657c160da7b0e23c1ae058baa77e6f0421752a66
|
/Test/Previous/handbook.tst
|
13cd6c327fb08b19a88aa020e06a21189b333053
|
[] |
no_license
|
hermetique/lsl
|
e8385820db92e4f077380933eb86160283f5231c
|
a1d154ec428722a9193fe03502c04eb21ced40e1
|
refs/heads/master
| 2021-10-10T01:42:52.349919
| 2019-01-05T23:02:33
| 2019-01-05T23:02:33
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 17,605
|
tst
|
handbook.tst
|
**************************************
Testing ../Code/lsl -i ../LSL/lslinit.lsi
**************************************
************* Test input from ../LSL/AC.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/AC.lsl *********
************* Test input from ../LSL/Abelian.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Abelian.lsl *********
************* Test input from ../LSL/AbelianGroup.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/AbelianGroup.lsl *********
************* Test input from ../LSL/AbelianMonoid.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/AbelianMonoid.lsl *********
************* Test input from ../LSL/AbelianSemigroup.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/AbelianSemigroup.lsl *********
************* Test input from ../LSL/Addition.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Addition.lsl *********
************* Test input from ../LSL/Antisymmetric.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Antisymmetric.lsl *********
************* Test input from ../LSL/ArithOps.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ArithOps.lsl *********
************* Test input from ../LSL/Array1.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Array1.lsl *********
************* Test input from ../LSL/Array2.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Array2.lsl *********
************* Test input from ../LSL/ArraySlice2.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ArraySlice2.lsl *********
************* Test input from ../LSL/Associative.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Associative.lsl *********
************* Test input from ../LSL/Asymmetric.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Asymmetric.lsl *********
************* Test input from ../LSL/Bag.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Bag.lsl *********
************* Test input from ../LSL/BagBasics.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/BagBasics.lsl *********
************* Test input from ../LSL/BinaryTree.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/BinaryTree.lsl *********
************* Test input from ../LSL/Boolean.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Boolean.lsl *********
************* Test input from ../LSL/ChoiceBag.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ChoiceBag.lsl *********
************* Test input from ../LSL/ChoiceSet.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ChoiceSet.lsl *********
************* Test input from ../LSL/CoerceContainer.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/CoerceContainer.lsl *********
************* Test input from ../LSL/Commutative.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Commutative.lsl *********
************* Test input from ../LSL/ComposeMaps.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ComposeMaps.lsl *********
************* Test input from ../LSL/Conditional.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Conditional.lsl *********
************* Test input from ../LSL/Container.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Container.lsl *********
************* Test input from ../LSL/DecimalLiterals.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/DecimalLiterals.lsl *********
************* Test input from ../LSL/Deque.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Deque.lsl *********
************* Test input from ../LSL/DerivedOrders.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/DerivedOrders.lsl *********
************* Test input from ../LSL/Distributive.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Distributive.lsl *********
************* Test input from ../LSL/ElementTest.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ElementTest.lsl *********
************* Test input from ../LSL/Enumerable.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Enumerable.lsl *********
************* Test input from ../LSL/Enumeration.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Enumeration.lsl *********
************* Test input from ../LSL/Equality.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Equality.lsl *********
************* Test input from ../LSL/Equivalence.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Equivalence.lsl *********
************* Test input from ../LSL/Exponentiation.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Exponentiation.lsl *********
************* Test input from ../LSL/FPAssumptions.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/FPAssumptions.lsl *********
************* Test input from ../LSL/Field.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Field.lsl *********
************* Test input from ../LSL/FiniteMap.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/FiniteMap.lsl *********
************* Test input from ../LSL/FloatingPoint.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/FloatingPoint.lsl *********
************* Test input from ../LSL/Functional.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Functional.lsl *********
************* Test input from ../LSL/Graph.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Graph.lsl *********
************* Test input from ../LSL/GreatestLowerBound.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/GreatestLowerBound.lsl *********
************* Test input from ../LSL/Group.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Group.lsl *********
************* Test input from ../LSL/Idempotent.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Idempotent.lsl *********
************* Test input from ../LSL/Identity.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Identity.lsl *********
************* Test input from ../LSL/IndexOp.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/IndexOp.lsl *********
************* Test input from ../LSL/Infinite.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Infinite.lsl *********
************* Test input from ../LSL/InsertGenerated.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/InsertGenerated.lsl *********
************* Test input from ../LSL/IntCycle.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/IntCycle.lsl *********
************* Test input from ../LSL/Integer.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Integer.lsl *********
************* Test input from ../LSL/IntegerAndNatural.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/IntegerAndNatural.lsl *********
************* Test input from ../LSL/IntegerAndPositive.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/IntegerAndPositive.lsl *********
************* Test input from ../LSL/IntegerPredicates.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/IntegerPredicates.lsl *********
************* Test input from ../LSL/Inverse.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Inverse.lsl *********
************* Test input from ../LSL/Involutive.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Involutive.lsl *********
************* Test input from ../LSL/Irreflexive.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Irreflexive.lsl *********
************* Test input from ../LSL/IsPO.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/IsPO.lsl *********
************* Test input from ../LSL/IsTO.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/IsTO.lsl *********
************* Test input from ../LSL/JoinOp.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/JoinOp.lsl *********
************* Test input from ../LSL/Lattice.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Lattice.lsl *********
************* Test input from ../LSL/LeftDistributive.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/LeftDistributive.lsl *********
************* Test input from ../LSL/LeftIdentity.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/LeftIdentity.lsl *********
************* Test input from ../LSL/LeftInverse.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/LeftInverse.lsl *********
************* Test input from ../LSL/LexicographicOrder.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/LexicographicOrder.lsl *********
************* Test input from ../LSL/List.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/List.lsl *********
************* Test input from ../LSL/ListStructure.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ListStructure.lsl *********
************* Test input from ../LSL/ListStructureOps.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ListStructureOps.lsl *********
************* Test input from ../LSL/MemberOp.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/MemberOp.lsl *********
************* Test input from ../LSL/MinMax.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/MinMax.lsl *********
************* Test input from ../LSL/Monoid.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Monoid.lsl *********
************* Test input from ../LSL/Multiplication.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Multiplication.lsl *********
************* Test input from ../LSL/Natural.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Natural.lsl *********
************* Test input from ../LSL/NaturalOrder.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/NaturalOrder.lsl *********
************* Test input from ../LSL/OneToOne.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/OneToOne.lsl *********
************* Test input from ../LSL/PairwiseExtension.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/PairwiseExtension.lsl *********
************* Test input from ../LSL/PartialOrder.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/PartialOrder.lsl *********
************* Test input from ../LSL/Permutation.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Permutation.lsl *********
************* Test input from ../LSL/PointwiseImage.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/PointwiseImage.lsl *********
************* Test input from ../LSL/Positive.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Positive.lsl *********
************* Test input from ../LSL/PreOrder.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/PreOrder.lsl *********
************* Test input from ../LSL/PriorityQueue.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/PriorityQueue.lsl *********
************* Test input from ../LSL/Queue.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Queue.lsl *********
************* Test input from ../LSL/Rational.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Rational.lsl *********
************* Test input from ../LSL/ReduceContainer.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ReduceContainer.lsl *********
************* Test input from ../LSL/Reflexive.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Reflexive.lsl *********
************* Test input from ../LSL/Relation.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Relation.lsl *********
************* Test input from ../LSL/RelationBasics.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/RelationBasics.lsl *********
************* Test input from ../LSL/RelationOps.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/RelationOps.lsl *********
************* Test input from ../LSL/RelationPredicates.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/RelationPredicates.lsl *********
************* Test input from ../LSL/ReverseOp.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/ReverseOp.lsl *********
************* Test input from ../LSL/RightDistributive.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/RightDistributive.lsl *********
************* Test input from ../LSL/RightIdentity.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/RightIdentity.lsl *********
************* Test input from ../LSL/RightInverse.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/RightInverse.lsl *********
************* Test input from ../LSL/Ring.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Ring.lsl *********
************* Test input from ../LSL/RingWithUnit.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/RingWithUnit.lsl *********
************* Test input from ../LSL/Semigroup.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Semigroup.lsl *********
************* Test input from ../LSL/Semilattice.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Semilattice.lsl *********
************* Test input from ../LSL/Sequence.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Sequence.lsl *********
************* Test input from ../LSL/Set.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Set.lsl *********
************* Test input from ../LSL/SetBasics.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/SetBasics.lsl *********
************* Test input from ../LSL/SetToRelation.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/SetToRelation.lsl *********
************* Test input from ../LSL/SignedInt.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/SignedInt.lsl *********
************* Test input from ../LSL/Stack.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Stack.lsl *********
************* Test input from ../LSL/StackBasics.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/StackBasics.lsl *********
************* Test input from ../LSL/StrictPartialOrder.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/StrictPartialOrder.lsl *********
************* Test input from ../LSL/StrictTotalOrder.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/StrictTotalOrder.lsl *********
************* Test input from ../LSL/String.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/String.lsl *********
************* Test input from ../LSL/Symmetric.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Symmetric.lsl *********
************* Test input from ../LSL/TotalOrder.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/TotalOrder.lsl *********
************* Test input from ../LSL/TotalPreOrder.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/TotalPreOrder.lsl *********
************* Test input from ../LSL/Transitive.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/Transitive.lsl *********
************* Test input from ../LSL/UnsignedInt.lsl ***********
Finished checking LSL traits
************* End of input from ../LSL/UnsignedInt.lsl *********
|
a8279ef1dfa867b5a59313ebc7ff4708738e0551
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1646/CH9/EX9.9/Ch09Ex9.sce
|
c3d800feb88a1b57d4e04dc4a0c18c9bed7559e3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 498
|
sce
|
Ch09Ex9.sce
|
// Scilab Code Ex9.9: Page-467 (2011)
clc;clear;
mu1 = 1.45;....// Index of refraction of core
NA = 0.16;....// Numerical aperture of step index fibre
a = 3e-006;....// Radius of the core, m
lambda = 0.9e-006;....// Operating wavelength of optical fibre, m
v = 2*%pi*a*NA/lambda; // The normalized frequency or v-number of optical fibre
printf("\nThe normalized frequency of the optical fibre = %5.2f", v);
// Result
// The normalized frequency of the optical fibre = 3.35
|
1a766ded37228c717ef7b0652f633827fcf57136
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3640/CH4/EX4.6/Ex4_6.sce
|
cd33e933f2b67a213b5b40a0bec0b4fd1b24ff8a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 587
|
sce
|
Ex4_6.sce
|
clc
V1m(1)=1 //reference voltage in volts
V1m(2)=0.9//reduced voltage in volts
ratio=(V1m(1)/V1m(2))^2 //ratio of s2/s1
mprintf("s2/s1=%f\n",ratio)//ans may vary due to roundoff error
mprintf("I2(2)/I2(1)=s2*V1m(2)/s1*V1m(1)=%f\n",(V1m(2)/V1m(1))*ratio)//ans may vary due to roundoff error
mprintf("(copperloss)2/(copperloss)1=(I2(2)/I2(1))^2=%f\n",(V1m(1)/V1m(2))^2)//ans may vary due to roundoff error
s=0.03 //at 60Hz slip
ns=1800 //synchronous speed in rev/min
mprintf("Speed at 90 percent voltage=%frev/min\n",ns*(1-(ratio*s)))//ans may vary due to roundoff error
|
e6d7df2aa55e03ea1e585073d386bab4dc00685d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/534/CH10/EX10.2/10_2_Horizontal_cylinder.sce
|
97bf09ef6dee9e57c1e8aeef1730d6c767d61487
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,482
|
sce
|
10_2_Horizontal_cylinder.sce
|
clear;
clc;
printf('FUNDAMENTALS OF HEAT AND MASS TRANSFER \n Incropera / Dewitt / Bergman / Lavine \n EXAMPLE 10.2 Page 635 \n'); //Example 10.2
// Power Dissipation per unith length for the cylinder, qs
//Operating Conditions
Ts = 255+273 ;//[K] Surface Temperature
Tsat = 100+273 ;//[K] Saturated Temperature
D = 6*10^-3 ;//[m] Diameter of pan
e = 1 ;// eimssivity
stfncnstt=5.67*10^(-8) ;// [W/m^2.K^4] - Stefan Boltzmann Constant
g = 9.81 ;//[m^2/s] gravitaional constant
//Table A.6 Saturated water Liquid Properties T = 373 K
rhol = 957.9 ;//[kg/m^3] Density
hfg = 2257*10^3 ;//[J/kg] Specific Heat
//Table A.4 Water Vapor Properties T = 450 K
rhov = .4902 ;//[kg/m^3] Density
cpv = 1.98*10^3 ;//[J/kg.K] Specific Heat
kv = 0.0299 ;//[W/m.K] Conductivity
uv = 15.25*10^-6 ;//[N.s/m^2] Viscosity
Te = Ts-Tsat;
hconv = .62*[kv^3*rhov*(rhol-rhov)*g*(hfg+.8*cpv*Te)/(uv*D*Te)]^.25;
hrad = e*stfncnstt*(Ts^4-Tsat^4)/(Ts-Tsat);
//From eqn 10.9 h^(4/3) = hconv^(4/3) + hrad*h^(1/3)
//Newton Raphson
h=250; //Initial Assumption
while(1>0)
f = h^(4/3) - [hconv^(4/3) + hrad*h^(1/3)];
fd = (4/3)*h^(1/3) - [(1/3)*hrad*h^(-2/3)];
hn=h-f/fd;
if((hn^(4/3) - [hconv^(4/3) + hrad*hn^(1/3)])<=.01)
break;
end;
h=hn;
end
q = h*%pi*D*Te;
printf("\n Power Dissipation per unith length for the cylinder, qs= %i W/m",q);
//END
|
6fa2643afc5788220bd958eaa279b56913cc6140
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1709/CH12/EX12.6/12_6.sce
|
e9a328de7e8d5174f9dbf91db387df03feef5755
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 396
|
sce
|
12_6.sce
|
clc
//Initialization of variables
P1=14.7 //psia
P4=100 //psia
T1=530 //R
T3=T1
g=1.4
m=10 //lbm
cp=0.24
//calculations
P2=sqrt(P1*P4)
T2=T1*(P2/P1)^((g-1)/g)
T4=T2
W=2*cp*(T2-T1)
Wt=W*m
hp=Wt*60/2545
Q=m*cp*(T2-T3)
T4=T1*(P4/P1)^((g-1)/g)
W2=m*cp*(T4-T1)
//results
printf("Work required in case 1 = %d Btu/min",Wt+1)
printf("\n Work required in case 2 = %d Btu/min",W2+1)
|
47dabe05f327ec22bd308a597d41fc58ed64f948
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/737/CH2/EX2.3/Example2_03.sce
|
71f04770ed39efc94f82abbf9d901b8025b3dad0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,001
|
sce
|
Example2_03.sce
|
//Example 2.3 page 24
//Given an analog signal
//x(t) = 5 cos (2 pi 2000t)+ 1 cos( 2pi 5000t), for t>=0
//which is sampled at a rate of 8,000 Hz,
//a. Sketch the spectrum of the sampled signal up to 20 kHz.
//b. Sketch the recovered analog signal spectrum if an ideal lowpass filter with
//a cutoff frequency of 4 kHz is used to recover the original signal
//(y(n)= x(n) this case).
clc,clear,close;
c1 = [0.5 2.5 2.5 0.5];
//sampling theorem is violated
f1 = [-3 -2 2 3];//kHz
//after sampling
c2 = repmat(c1,1,5);
f2 = [f1-16 f1-8 f1 f1+8 f1+16];
ax=gda();
ax.thickness = 2;
ax.y_location = "origin";
ax.x_location = "origin";
subplot(2,1,1)
plot2d3(f2,c2)
xtitle('Spectrum of the sampled signal in Example 2.3(a)','f(kHz)','X(f)');
//Since Sampling theorem is not satisfied, we can not recover the original spectrum using reconstruction low pass filter.
subplot(2,1,2)
plot2d3(f1,c1)
xtitle('Spectrum of the recovered signal in Example 2.3(b)','f(kHz)','X(f)');
|
526a95921016e9a96c42884ff65ed09849278f1f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/623/CH18/EX4.1.8/U4_C1_8.sce
|
b6f4d1c66cda91a1fcf942dc4ff47b2e1e6a1d52
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 447
|
sce
|
U4_C1_8.sce
|
//variable initialization
R=1.097*10^7; //Rydberg constant (m-1)
ratio=1836; //ratio of maas of tritium and hydrogen
//calculation
lembda=(36*2*10^10)/(5*R*3*ratio); //separation of the first line of the Balmer series (Å)
printf("\nΔλ = %.1f Å",lembda);
|
2cc0a7985dc36e8bd70087937de442eb92c69578
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1793/CH7/EX7.5/7q5.sce
|
21d909224b13e96a423b731dedf28e6d5d261f5f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 225
|
sce
|
7q5.sce
|
clc
//initialisation of variables
L= 50 //m
k= 0.08e-2//m/sec
h= 4 //m
H1= 3 //m
H= 8 //m
a= 0.139 //radians
//calculations
i= h*cos(a)/L
A= H1*cos(a)
q= k*i*A
//results
printf ('flow rate = % 2f m^3/sec/m ',q)
|
ef09b5a7ba2da27da98d8ca1d874df68beff8e8b
|
f4d3c7f7e8954cdeb6eb0c7b54a056242b07da22
|
/BCPST Vaisseau/Vaisseau 2.0/Vaisseau2.2/newgame.sci
|
827dd3c5ddde3ce35c969fd38c83dd2e9471ef48
|
[] |
no_license
|
ThibaultLatrille/Slides-Sciencework
|
bfdf959dbbe4a94e621a3a9a71ccbcd06c5fc338
|
84b53f3901cbdb10fab930e832dc75431a7dce05
|
refs/heads/master
| 2020-04-27T07:53:52.313720
| 2019-03-06T16:17:57
| 2019-03-06T16:17:57
| 174,151,758
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,367
|
sci
|
newgame.sci
|
//A faire :
//Ecrire un background.
//Definition des variables et de l'environnement ( ie tracage du triangle )
function [time]=newgame(pseudo,couleur)
f2=figure()
a=[0,0];b=[60,60];
plot2d(a,b,axesflag=0), plot2d(b,a,axesflag=0)
xset("color",1);
xfpoly([0,0,56,56],[0,56,56,0],1)
//zone de manoeuvre : [2,2,54,54],[2,54,54,2]
explosion=3;
rep=[0,0,0];
Mat(1,:)=[3.5,4,4.5]; // 1ere ligne : abscisses
Mat(2,:)=[3,5,3]; // 2eme ligne : ordonnees
G=[4;3.66];
xset("color",couleur);
xfpoly(Mat(1,:),Mat(2,:));
fuel=100;
c=0.5;
jauge(fuel)
xpoly([60,57,57,60],[17,17,5,5],"lines",1)
PLANETE=[20,20,0,0,2;30,50,0,0,5;50,10,0,0,5;30,30,0,0,2];
VG=[0,0];
timer()
//-----------------------------------------------
while rep(3)<>-1000 do //triangle BAC, M est le milieu de BC (A en haut)
tic()
rep=xgetmouse();
temps=0;
if Mat(1,3)<2|Mat(1,3)>54|Mat(2,3)<2|Mat(2,3)>54|Mat(1,1)<2|Mat(1,1)>54|Mat(2,1)<2|Mat(2,1)>54 then messagebox("You''re dead Jack... RIP"), rep(3)=-1000;
end
boom=calculdistance(G,PLANETE);
if boom<explosion then messagebox(["La perturbation gravitationnelle provoquee par la planete vous a fait perdre le controle de votre vaisseau..." " Vous vous ecrasez sur cette terre hostile, peuplee par d''etranges creatures... Au revoir, Jack !"]), rep(3)=-1000;
end
if rep(3)==122|rep(3)==115 then // code ascii : "z"->122 , "s"->115
temps=toc();
M=[(Mat(1,1)+Mat(1,3))/2;(Mat(2,1)+Mat(2,3))/2]; // M est le milieu de BC (A en haut)
if rep(3)==115 then k=-2;
else k=2;
end
[Mat,M,G]=avancer(Mat,M,G,k,couleur);
fuel=fuel-c;
jauge(fuel)
end
//Rotation
if rep(3)==100|rep(3)==113 then
temps=toc();
if rep(3)==100 then
theta=-0.3;
else theta=0.3;
end // code ascii: "d"->100 , "q"=113
Mat=rotation(Mat,couleur);
jauge(fuel)
end
xpause(5)
if fuel<=0 then messagebox(["Vous n''avez plus de carburant, Jack... Vous avez echoue!"," Vous et votre vaisseau allez d�river jusqu''� la fin des temps dans le froid et la solitude de l''univers..."]), rep(3)=-1000;
end
if temps<>0 then
colorier(PLANETE,Mat,0,1,couleur);
for i=1:floor(temps)+1 do
[PLANETE,Mat,G,VG]=deplacement(PLANETE,Mat,G,VG);
end
colorier(PLANETE,Mat,1,0,couleur)
end
end
time=timer()
endfunction
//xpause(10000000)
//messagebox("Vous avez tenu "+string(time)+" secondes")
|
d93608ca83d2d29cc0b7777b261fc38829e1e550
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/980/CH6/EX6.4/6_4.sce
|
75f180a12694765e8c6e1488cf5b8e8ecb6913b1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 527
|
sce
|
6_4.sce
|
clc;
clear;
format('e',11)
D=10.5*10^3; //density of silver.
m=107.9*10^-3; //atomic mass of silver.
e=-1.602*10^-19; //charge of electron.
Na=6.022*10^23; //Avogadro's no.
N1=Na/m; //N1=no. of atoms per kg.
N2=N1*D; //N2=no. of atoms per cube meter.
rho_m=N2*e; //rho_m=mobile charge density.
disp(rho_m,"mobile charge density(in C/m^3)=")
|
e61d94984b6271ac71af7046bf0a267b4a1a70a1
|
42da785fe7fc2d2f8e60f53e1b48b79cc2bad49e
|
/src/flight_control/PID/scilab/quickplot.sce
|
5c9704a66b4a0c40139fb508676569dbe592a3ed
|
[] |
no_license
|
Jian117/Quadcopter-Michelle
|
3f28d475c11c2454efad715c3e5a2579dc3b0ef1
|
a4fb166e82c47ee4cae3d9cc56b289b28e4bd519
|
refs/heads/master
| 2021-01-10T16:36:27.475293
| 2015-10-28T23:57:35
| 2015-10-28T23:57:35
| 45,148,844
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,163
|
sce
|
quickplot.sce
|
// Plot response of a PID controller and plant
xdel(winsid()); // close all graphics windows which might be open
exec('stepperf.sce');
t = 0:(0.1*dt):tmax;
Kp = input("KP: ");
Ki = input("Ki: ");
Kd = input("Kd: ");
// Set up the closed loop system
pctl = pp*(Kd*s^2 + Kp*s + Ki)/(s*(s+pp));
ctl = syslin('c',pctl);
// H=1 feedback
sys = ctl*plant /. H; // H is feedback
y = csim(ones(t), t, sys);
scf(8);
plot(t,y)
title("Step response");
[ts1, po1, ss, cu, y] = costPID(plant, Kp, Ki, Kd);
printf("Settling Time: %5.2f Overshoot: %4.1f percent SSE: %6.3f Ctl Effort: %5.2f\n", ts1, (po1-1)*100.0, ss , cu);
scf(9);
loopgain = ctl*plant;
printf("Gain Margin: %5.1f dB, Phase Margin: %5.1f deg\n", g_margin(loopgain), p_margin(loopgain));
show_margins(loopgain); // gain and phase margins of loop gain.
printf("Factored Controller: ")
rlist=roots(s^2+Kp/Kd*s+Ki/Kd)';
a=rlist(1); b=rlist(2);
if (abs(imag(a)) > 10^(-5) ) then {
printf("%12.9f x (s+%6.4f+j%6.4f)(s+%6.4f+j%6.4f)", Kd, -real(a), -imag(a), -real(b), -imag(b)) ; };
else
{ printf("%12.9f x (s+%6.4f)(s+%6.4f)", Kd, -a, -b); }
|
e7d2b06346461f64b2a5568170a412f9fd2b3c8c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3863/CH24/EX24.10/Ex24_10.sce
|
494d7c28eb491441a5f7235c0120565a0287997a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 661
|
sce
|
Ex24_10.sce
|
clear
//
//
//Given
//Variable declaration
P=9*1000 //Axial pull in N
F=4.5*1000 //Shear force in N
sigmat_star=225 //Elastic limit in tension in N/sq.mm
Sf=3 //Factor of safety
mu=0.3 //Poisson's ratio
sigma3=0 //third principle stress
//Calculation
sigmat=sigmat_star/Sf
sigma=(P/(%pi/4))
tau=(F/(%pi/4))
sigma1=((tau)+int((sqrt((sigma/2)**2+tau**2))))
sigma2=((tau)-int((sqrt((sigma/2)**2+tau**2))))
d=(((((sigma1-sigma2)**2+(sigma2-sigma3)**2+(sigma3-sigma1)**2)/(2*(sigmat**2)))**(1/4)))
//Result
printf("\n Diameter of the bolt = %0.3f mm",d)
|
07eebfaccac39289f3933c4e3cdb9fd89c1b2e59
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH12/EX12.6/example12_6.sce
|
7fb9220344063ff24063fa44df86d4a92fcd01bf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 428
|
sce
|
example12_6.sce
|
clc
// Given that
t = 3.8 // half-life for radon in days
r = 60 // percentage fraction of sample which decayed
// Sample Problem 6 on page no. 12.33
printf("\n # PROBLEM 6 # \n")
printf("Standard formula used \n")
printf(" lambda = 0.693 / t_1/2 (Decay constant) \n N =N_0*e^(-lambda*t) \n")
lambda = 0.693 / t
T = (1 / lambda) * (log(100 / (100 - r)))
printf("\n Time taken for 60 percent decay of sample is %f days.",T)
|
88341de0547f9e5ed73e73619ae8d55601c17485
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3041/CH1/EX1.36/Ex1_36.sce
|
8fe2c3357c4c8b475ad0c48a78c420a7c361a268
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 722
|
sce
|
Ex1_36.sce
|
//Variable declarations
v=12 //output voltage(V)
vm=20. //peak voltage(V)
v1=8 //output voltage(V) for negative half cycle
vm1=20. //peak voltage(V) for negative half cycle
//Calculations
t1=(asin(v/vm))/10**4 //for positive half cycle when D1 conducts
t2=(0.1*%pi)-t1/1e-3
t3=(asin(v1/vm1))/10**4 //for negative half cycle when D2 conducts
t4=(0.1*(%pi))+t3/1e-3
t5=(0.2*(%pi))-t3/1e-3
//Results
printf ("t1 is %.3f ms",t1/1e-3)
printf ("t2 is %.2f ms",t2)
printf ("t3 is %.3f ms",t3/1e-3)
printf ("t4 is %.3f ms",t4)
printf ("t5 is %.3f ms",t5)
printf ("vo is -5.33+6.66*sin(10**4*.15)")
|
5066920b93007119eedf32067d602cf45aa0e5cc
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1322/CH6/EX6.8/53ex2.sce
|
fe043a319cdf823b3a846fd666191e9c6a867072
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 246
|
sce
|
53ex2.sce
|
clear;
clc;
close;
x=poly(0,'x');
//let x be distance in kilometers
time_1st_journey=x/64
time_2nd_journey=x/80
total_time=9;
for x=1:500
if((x/64 + x/80) == 9)
mprintf("the value of x is %iKm \n",x)
end
end
|
5f837d0ba5605e62ce4dbd23f0da3db37afb9bd4
|
9b3a82b71b55170a9d272048e2f4dc6858ff106c
|
/blackman_window.sce
|
298230bf15f7a83edaff9e991bc9b6ff811166c5
|
[] |
no_license
|
omrastogi/Digital-Signal-Processing
|
afcee58a1decbd9949e0bfcda47b62bbf19c935f
|
68b4f85ec5b9dbf7840a0857ee388f9d660bbb2e
|
refs/heads/main
| 2023-01-03T13:54:45.554127
| 2020-11-02T05:40:13
| 2020-11-02T05:40:13
| 309,267,769
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 398
|
sce
|
blackman_window.sce
|
clc;
clear;
N = 64;
a0 = 0.42;
a1 = 0.5;
a2 = 0.08;
n = 1:N;
w = a0 - a1 * cos((2*%pi*n)/(N-1)) + a2 * cos((4*%pi*n)/(N-1));
subplot(2,1,1);
title ('Time domain of Blackman Window Output');
xlabel ('samples');
ylabel ('Amplitude');
plot (n,w);
W = fft(w);
W = 20* log(abs(W))
subplot(2,1,2);
title ('Frequency domain of Blackman Window Output');
xlabel ('samples');
ylabel ('Amplitude');
plot (W);
|
d4c6f90322b1a2a3b52597e104ba64f770b5f190
|
6eb42df0d9f452fee0d084e0b0058e4e4ac242ef
|
/Updated_Exercises_March_2015/Exercise 16/BathDisplay.sce
|
92323f1b4c3ebb32c9e76b4d4fd164912347d7f1
|
[] |
no_license
|
huangqingze/ocean_modelling_for_beginners
|
b21c1b398efe91e4a3aa1fa5a1d732e2eb4ec16e
|
3e73a511480c73f4e38b41c17b2defebb53133ed
|
refs/heads/main
| 2023-07-03T12:00:01.326399
| 2021-08-14T21:16:12
| 2021-08-14T21:16:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 319
|
sce
|
BathDisplay.sce
|
// This script produces a graph of the bathymetry created with "BathCreator.f95".
clf; scf(0); a=gcf(); a.figure_size= [1000,350];
h1=read("topo.dat",-1,153); // read input data
x = (0:150)'; y = (0:50)'; // location vectors
hzero = max(h1,0.0);
plot3d(x,y,-0.2*hzero(2:52,2:152)',-60,85,' ',flag=[7,2,3]);
|
c60ccda0e31c497ca9e7126fb6891460818fb3d7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2192/CH1/EX1.4/1_4.sce
|
db202c8b79ca1d4cc62e38e120e94916bfe4da7c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 253
|
sce
|
1_4.sce
|
//Example 1.4
clc,clear
demand_charges = 1*25 + 4*20 + 15*16 ;
energy_charges = 100*0.40 + 200*0.30 + 1700*0.25 ;
monthly_bill = demand_charges + energy_charges ;
printf('Total monthly bill for 2000 units consumption = %d Rs',monthly_bill)
|
c3d23eb36425051f722d04f2f9d3020533e37c15
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/620/CH27/EX27.3/example27_3.sce
|
f1265db732ebd3e62550fbac24a86d5f76bc8ad0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 114
|
sce
|
example27_3.sce
|
f=1000;
l=30*10^(-3);
c=1/(4*%pi^2*f^2*l);
disp("the value of capacitance (in μF) required is"); disp(c*10^6);
|
107463cb680c0b297c4dff4b482c94b795b3bab1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1319/CH6/EX6.11/6_11.sce
|
2d8ae3b83869e596413807963556c59af0dbe83f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,011
|
sce
|
6_11.sce
|
//Swinburne test on a dc shunt motor
clc;
clear;
V=500;
I=5;
Rf=250;
Ra=0.5;
P=V*I;
If=V/Rf;
Ia=I-If;
Pfc=(If^2)*Rf;// Field Copper Loss
Pac=(Ia^2)*Ra; // Armature Copper Loss
Pil=P-Pfc-Pac;// Iron loss
// Generator
Vg=500;
Ig=100;
Pog=Vg*Ig; // Power Output
Iag=Ig+If; //Armature current
Pgac=(Iag^2)*Ra; // Armature Copper loss
slg=0.01*Pog;//stray loss
Pgtl=Pgac+Pfc+slg+Pil; // Total losses
effg=Pog*100/(Pog+Pgtl);
// Motor
Vm=500;
Im=100;
Pim=Vm*Im; // Power input to the motor
Iam=Ig-If; // Armature current
Pmac=(Iam^2)*Ra; // Armature Copper Loss
Pom=Pim-Pmac-Pil-Pfc;// Ouput of the motor
slm=0.01*Pom;// Stray loss
Pmtl=Pmac+Pil+Pfc+slm; // Total loss of the motor
effm=(Pom-slm)*100/(Pim);
printf('i) The Efficiency of the machine as a generator delivering 100A at 500V = %g percent \n',effg)
printf('ii) The Efficiency of the machine as a motor having a line current 100A at 500V = %g percent \n',effm)
|
acf0f3555913032bd5de8c3611f2d793d666c259
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH1/EX1.14/Ex1_14.sce
|
0ee8d94a0e9c787c65faab9f01b115cb150d1f87
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 508
|
sce
|
Ex1_14.sce
|
clear
//Given
e=1.6*10**-19
m=9*10**9
G=6.67*10**-11
me=9.11*10**-31
mp=1.67*10**-27
r=10**-10
//Calculation
F0=(m*e**2)/(G*me*mp)
F1=(m*e**2)/(G*mp*mp)
F2=m*e**2/r**2
A1=F2/me
A2=F2/mp
//Result
printf("\n (a)(i)strength of an electrons and protons %0.1f *10**39 ",F0*10**-39)
printf("\n (ii)Strength of two protons %0.1f *10**36 ",F1*10**-36)
printf("\n (b) Acceleration of electron is %0.1f *10**22 m/s**2",A1*10**-22)
printf("\n Acceleration of proton is %0.1f *10**19 m/s*2",A2*10**-19)
|
d5a08bdef562c230cc087f67d679030be072f532
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3784/CH2/EX2.3/Ex2_3.sce
|
614de9609a70c1c78d4a7cd8cf81e958aa72aed5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 633
|
sce
|
Ex2_3.sce
|
clc
//variable initialisation
Va=220 //supply voltage in volts
N1=1500 //speed in rpm
I=50 // current in ampere
Ra=0.5 //armature resistance in ohm
Vl=440 //line voltage in volts
f=50 //frequency in Hz
N2=1200 //speed in rpm
//solution
Vm=(Va*%pi)/(3*sqrt(3))
Vph=(Vl*(sqrt(2)))/(sqrt(3))
Xmer_ratio=Vph/Vm
Eb1=Va-(Ra*I)
Eb2=(N2/N1)*Eb1
Va=Eb2+Ra*I
a=acosd((Va*%pi)/(3*sqrt(3)*Vm))
N3=800
Eb3=(-N3/N1)*Eb1
Va1=Eb3+(2*I*Ra)
a1=acosd((Va1*%pi)/(3*sqrt(3)*Vm))
printf('\n\n Transformer Turns Ratio=%0.1f\n\n',Xmer_ratio)
printf('\n\n The Firing Angle=%0.1f\n\n',a)
printf('\n\n The Firing Angle=%0.1f\n\n',a1)
|
110c41005a77b455e1d43d18794e63145f4b4b96
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3753/CH1/EX1.11/Ex1_11.sce
|
261f99c2f559bd3ca7b5c157e719e7ceccc2c90c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 267
|
sce
|
Ex1_11.sce
|
//Example number 1.11, Page number 1.38
clc;clear;close
//Variable declaration
lamda=5.5*10**-7 // in m
d=2.54 // in m
x=1.22// unitless
//Calculation
dtheta=(x*lamda)/d // radian
//Result
printf("Smallest angular separation of two stars = %0.3e radian",dtheta)
|
c3eea55f5532163d338f81051be2c411565d65e9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3137/CH16/EX16.55/Ex16_55.sce
|
2133707c755d4fed27f3a9b04a681d47b94ecf30
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 321
|
sce
|
Ex16_55.sce
|
//Initilization of variables
m=8 //kg
n=90 //rpm
g=9.8 //m/s^2
//Calculations
Fg=m*g //N
w=2*%pi*n/60 //rad/s
//using equations of motion
By=m*g //N
//Solving for Bx and C
A=[1,1;-0.3,0.9]
B=[m*0.3*w^2;By*0.3]
C=inv(A)*B //N
//Result
clc
printf('The solution is Bx=%f N ,By=%f N and C=%f N',C(1),By,C(2))
|
8fae1213e347080bee34cdd743df4ac3ca4a0dab
|
c6ff8c80e0c7009b3257df2eb885e20072e0f658
|
/Puzzles/ProyectEuler/Scilab/Problem1.sce
|
4cb8907ae38e012f43b41860a62fb0ffb08fe2e0
|
[] |
no_license
|
TavoGLC/Competitions-And-Puzzles
|
b4e7f336ec5afeff6f1ebd4af3ca8593a41f0e85
|
737d324ccda13b351de1db0c385f6e1999b22516
|
refs/heads/master
| 2022-11-17T16:13:33.316882
| 2022-11-16T07:16:52
| 2022-11-16T07:16:52
| 165,334,176
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 309
|
sce
|
Problem1.sce
|
clear
clc
function[remValue]=LocalReminder(xVal,yVal)
remValue=xVal-fix(xVal./yVal).*yVal
endfunction
container=0
for k=1:1:1000-1
cVal=k
if LocalReminder(cVal,3)==0 | LocalReminder(cVal,5)==0
container=container+cVal
end
end
disp(container)
|
319839a582c00b7cbf9025a0815619a79c41834d
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/firpmord/firpmord5.sce
|
1032a15ece889703b14adbda7b808e96d7569161
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 363
|
sce
|
firpmord5.sce
|
//too few i/p args
f = ['a' 'b' 'c'];
a = [1 0];
dev = [0.01 0.1];
fs = 8000;
[n,fo,ao,w] = firpmord(f,a);
//output
//!--error 77
//firpmord: Wrong number of input argument; 3-4 expected
//at line 71 of function firpmord called by :
// [n,fo,ao,w] = firpmord(f,a);
|
b363de8d5669dcf7881a7993e3200a68ca88df3e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/611/CH14/EX14.9/Chap14_Ex9.sce
|
bdbe5d2fedf94f38fee9b5ff57bc22d5628c73c5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,638
|
sce
|
Chap14_Ex9.sce
|
// Y.V.C.Rao ,1997.Chemical Engineering Thermodynamics.Universities Press,Hyderabad,India.
//Chapter-14,Example 9,Page 499
//Title: Degree of conversion
//================================================================================================================
clear
clc
//INPUT
//Industrial methanol is produced by the following reaction:
//CO(g)+2H2(g)--->CH3OH(g)
T0=298.15;//standard temperature in K
T=500;//temperature in K
P=5;//pressure in bar
del_Hv=37.988;//enthalpy of vapourization of CH3OH at 298.15K in kJ/mol
R=8.314;//universal gas constant in J/molK
del_Gf=[-161.781;-137.327;0]//Standard Gibbs free energies of formation of CH3OH(g) from Example(14.2),CO(g) and H2(g) respectively in kJ
del_Hf=[-238.648;-110.532;0]//Standard enthalpies of formation of CH3OH(l), CO(g) and H2(g) respectively in kJ
//The isobaric molar capacity is given by Cp=a+bT+cT^2+dT^3+eT^-2 in J/molK and T is in K from Appendix A.3
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for CH3OH(g),CO(g),H2(g) respectively)
a=[18.382;28.068;27.012];
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for CH3OH(g),CO(g),H2(g) respectively)
b=[101.564*10^-3;4.631*10^-3;3.509*10^-3];
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for CH3OH(g),CO(g),H2(g) respectively)
c=[-28.683*10^-6;0;0];
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for CH3OH(g),CO(g),H2(g) respectively)
d=[0;0;0];
//coefficient in the expression for computing the isobaric molar heat capacity from Appendix A.3 (for CH3OH(g),CO(g),H2(g) respectively)
e=[0;-0.258*10^5;0.690*10^5];
n=[1;-1;-2];//stoichiometric coefficients of CH3OH(g),CO(g) and H2(g) respectively (no unit)
m=[0.02;1;2];//mole number in feed (for CH3OH(g),CO(g),H2(g) respectively)
//CALCULATION
del_Hf_CH3OH_g=del_Hf(1,:)+del_Hv;//calculation of the standard enthalpy of formation of CH3OH(g) in kJ
del_G=(n(1,:)*del_Gf(1,:))+(n(2,:)*del_Gf(2,:))+(n(3,:)*del_Gf(3,:));//calculation of the Gibbs free energy of reaction in kJ
del_H=del_Hf_CH3OH_g+(n(2,:)*del_Hf(2,:))+(n(3,:)*del_Hf(3,:));//calculation of the enthalpy of the reaction in kJ
//Framing the isobaric molar heat capacity expression
del_a=(n(1,:)*a(1,:))+(n(2,:)*a(2,:))+(n(3,:)*a(3,:));
del_b=(n(1,:)*b(1,:))+(n(2,:)*b(2,:))+(n(3,:)*b(3,:));
del_c=(n(1,:)*c(1,:))+(n(2,:)*c(2,:))+(n(3,:)*c(3,:));
del_d=(n(1,:)*d(1,:))+(n(2,:)*d(2,:))+(n(3,:)*d(3,:));
del_e=(n(1,:)*e(1,:))+(n(2,:)*e(2,:))+(n(3,:)*e(3,:));
//Using Eq.14.21 to compute the value of del_H0 in kJ
del_H0=((del_H*10^3)-((del_a*T0)+((del_b/2)*T0^2)+((del_c/3)*T0^3)+((del_d/4)*T0^4)-(del_e/T0)))*10^-3;
//Using Eq.14.23 to compute the integration constant (no unit)
I=(1/(R*T0))*((del_H0*10^3)-(del_a*T0*log(T0))-((del_b/2)*T0^2)-((del_c/6)*T0^3)-((del_d/12)*T0^4)-((del_e/2)*(1/T0))-(del_G*10^3));
//Using Eq.14.23 to compute the Gibbs free energy of the reaction at T in kJ
del_G_T=((del_H0*10^3)-(del_a*T*log(T))-((del_b/2)*T^2)-((del_c/6)*T^3)-((del_d/12)*T^4)-((del_e/2)*(1/T))-(I*R*T))*10^-3;
Ka=exp((-del_G_T*10^3)/(R*T));//calculation of the equilibrium constant (no unit)
del_n=n(1,:)+n(2,:)+n(3,:);//calculation of the total mole number (no unit)
Ky=Ka/((P)^del_n);//calculation of the equilibrium constant in terms of the mole fractions using Eq.(14.30) (no unit) (K_phi=1.0,assuming ideal gas behaviour)
mtot=m(1,:)+m(2,:)+m(3,:);//calculation of the total mole number of feed entering (no unit)
//To determine the degree of conversion, the inbuilt function fsolve is used to solve the equation given by Ky=(y_CH3OH)/(y_CO*y_H2^2), where y_CH3OH,y_CO,y_H2 are the mole fractions of CH3OH,CO,H2 respectively. Let the equilibrium conversion be denoted as E
E_guess=0.1;//taking a guess value for the degree of conversion,to be used in the inbuilt function fsolve (no unit)
tol=1e-6;//tolerance limit for convergence of the system when using fsolve
function[fn]=solver_func(Ei)
//Function defined for solving the system
fn=Ky-((((m(1,:)+(n(1,:)*Ei))/(mtot+(del_n*Ei)))^n(1,:))*(((m(2,:)+(n(2,:)*Ei))/(mtot+(del_n*Ei)))^n(2,:))*(((m(3,:)+(n(3,:)*Ei))/(mtot+(del_n*Ei)))^n(3,:)));
endfunction
[E]=fsolve(E_guess,solver_func,tol)//using inbuilt function fsolve for solving the system of equations
//OUTPUT
mprintf('The degree of conversion at 500K and 5bar pressure=%f\n',E);
//===============================================END OF PROGRAM===================================================
|
ff1d95e786d644a3cc506a21e061fdf1e5f1a413
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3731/CH5/EX5.5/Ex5_5.sce
|
168a12d7ea480d4f51f722e130fd6187abfd63da
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,587
|
sce
|
Ex5_5.sce
|
//Chapter 5:Dc Motor Drives
//Example 5
clc;
//Variable Initialization
//Ratings of the DC shunt motor which operated under dynamic braking
Rb=1 //braking resisance in ohms
Ra=0.04 //armature resistance in ohms
Rf=10 //field resistance in ohms
T=400 //load torque in N-m
//Magnetisation curve at N1
N1=600 //speed in rpm
If=[2.5,5,7.5,10,12.5,15,17.5,20,22.5,25] //field current in A
E =[25,50,73.5,90,102.5,110,116,121,125,129] //back emf in V
//Solution
disp(If,"Field current If:in A")
x=(Rb+Rf)/Rb
Ia = If * x //armature current
Wm=2*%pi*N1/60
Ke_flux=E / Wm //Ke*flux=constant
T=[]
for i=1:10
T($+1)=(Ke_flux(i))*(Ia(i)) //torque
end
disp(Ke_flux,"Ke_flux :")
disp(T,"Torque :in N-m")
//Results
//Plotting the values of Ke*flux vs If
If=[2.5,5,7.5,10,12.5,15,17.5,20,22.5,25] //field current in A
subplot(2,1,1)
plot(If,Ke_flux,'y')
xlabel('field current I_f')
ylabel('Ke*flux')
title('If vs Ke*flux')
xgrid(2)
//Plotting the values of T vs If
If=[2.5,5,7.5,10,12.5,15,17.5,20,22.5,25] //field current in A
subplot(2,1,2)
plot(T,If)
xlabel('Torque T')
ylabel('field current I_f')
title('T vs If')
xgrid(2)
mprintf("\nFrom the plot we can see that when the torque is 400 N-m, ")
mprintf("\nthe field current is If=19.3 A, and Ke*flux=1.898 when If=19.3 A")
T=400 // braking torque in N-m
If=19.13 // field current in A
Ke_flux=1.898 // Ke*flux
Ia=x*If
E=If*Rf+Ia*Ra //since E=V+Ia*Ra
N2=(E/Ke_flux)*(60/(2*%pi)) //required speed
mprintf("\nHence the required speed in is :%.1f rpm",N2)
|
fc80fba71b7fd7ca6dfb8fc3095396fc9c3da0b8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/728/CH9/EX9.4/Ex9_4.txt
|
70fa5627665c5c644717363a02b643df81e34649
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 439
|
txt
|
Ex9_4.txt
|
//Caption:Calculate (i)-critical voltage ,(ii)-breakdown voltage, (iii)-breakdown electric field
//Exa:9.4
clc;
clear;
close;
E_s=12.5;
E_o=8.85*10^-12;
E=E_o*E_s;
N=3.2*10^22;//per cubic meter
L=8*10^-6;//in m
q=1.6*10^-19;//in coulombs
V_c=q*N*L^2/(2*E);
V_bd=2*V_c;
E_bd=V_bd/L;
disp(V_c/10^3,'Critical voltage(in kV) =');
disp(V_bd/10^3,'Breakdown Voltage (in kV) =');
disp(E_bd,'Breakdown Electric field (in V/cm) =');
|
9f9009e78c89ed83f57ba7dbe7240ab268841dbb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1332/CH1/EX1.24/1_24.sce
|
3495a2234ef01b61698edfe6d23b46df31e2b4b4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 759
|
sce
|
1_24.sce
|
//Example 1.24
//Multiplication
//Page no. 18
clc;clear;close;
function [x1]=mul(x,y)
for i=1:8
x1(1,i)=0
end
printf('Multiplication of %.4i and %.4i = ',x,y)
x=x*y;
c=0;
for i=8:-1:1
x=x/10;
xd=floor((x-fix(x))*10+0.1)
if c==1 then
if xd==0 then
x1(1,i)=1;c=0
elseif xd==1
x1(1,i)=0;
c=1;
elseif xd==2
x1(1,i)=1;c=1;
end
else
if xd==0 | xd==1 then
x1(1,i)=xd;c=0
elseif xd==2
x1(1,i)=0;
i=i-1;c=1;
end
end
end
disp(x1)
endfunction
mul(1110,1011);
|
813ec659ef083cfdfb0d20102c1c5b95848449d9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH12/EX12.6/12_06.sce
|
0cbbb522ef7c75079055401c91d896b7cd0b15ed
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 249
|
sce
|
12_06.sce
|
//Chapter 12, Problem 6
clc;
hFE=125; //common-emitter current gain
Ic=50*10^-3; //collector current
Ib=Ic/hFE; //calculating base current
printf("Base current Ib = %d microampere",Ib*10^6);
|
2c771146584c9caf6932498142fec2c56fdd8458
|
9835e6a99ef801fdd06a9193c1846cae987d740a
|
/Fonctions/eclaircir.sci
|
28eef8e0724cd9e1433cc65a7cb795dcc07a53b2
|
[] |
no_license
|
Martinhubz/Exo-Life
|
c2356d064d2f4727b7a42b104aaca340c0e65a64
|
dcea54e689b2d7bb3b454648d7cb6fb5a57f115f
|
refs/heads/master
| 2021-04-30T08:52:50.851933
| 2018-02-13T16:19:34
| 2018-02-13T16:19:34
| 121,385,860
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 247
|
sci
|
eclaircir.sci
|
function image = eclaircir(img, multiplicateur)
[width,height]=size(img)
for i=1:height
for j=1:width
if img(j,i) > 0
image(j,i) = img(j,i)*multiplicateur
end
end
end
endfunction
|
b39df1148250c27132c10ea1ecec1ada944ceb29
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/db/db4.sce
|
b5349772452d995749851836fbfdadc4ecbd8912
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 93
|
sce
|
db4.sce
|
//check output when i/p is negative
v=db(-4);
disp(v);
//output
//
// 12.0412
//
|
2290413af31809f0c4b8f9c2b5baf9c7c80d6ff0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/416/CH12/EX12.4/example12_4.sce
|
7a7e0bef158722baa5c53c9cb8e3f6c80b5f2f55
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 544
|
sce
|
example12_4.sce
|
clc
clear
disp('example 12 4')
z=10+5*%i //load
e1=250;e2=250 //emf of generator
z1=2*%i;z2=2*%i //synchronous impedence
v=(e1*z2+z1*e2)/((z1*z2/z)+z1+z2);vph=atand(imag(v)/real(v)) //substitution the value in equation 12.10
i1=(z2*e1+(e1-e2)*z)/(z1*z2+(z1+z2)*z);iph=atand(imag(i1)/real(i1)) //substitution the value in equation 12.7
pf1=cosd(vph-iph)
pd=v*i1*pf1
printf("terminal voltage %.2fV \ncurrent supplied by each %.2fA \npower factor of each %.3f lagging \npower delivered by each %.4fKW",abs(v),abs(i1),abs(pf1),abs(pd))
|
f889afe822cc2551b1e77e010e33279bc5e7defd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2615/CH1/EX2.1/2_1.sce
|
88bb91193f379a117d739e6201ee435a223e9991
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 220
|
sce
|
2_1.sce
|
clc
//initialisation of variables
p1=400//kg
p2=-200//kg
p3=-350//kg
p4=100//kg
p5=-175//kg
//CALCULATIONS
F=p1+p2+p3+p4+p5//kg
//RESULTS
printf('The resultant of the following five collinear force=% f kg',F)
|
2cefe18988c4ca46a8b0d90e49d8861a49702dce
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/377/CH9/EX9.1/9_1.sce
|
64e9e97f5c6150613715d769822f6f86587631ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 467
|
sce
|
9_1.sce
|
a=1.6; //say a=σn
q=1.6*10^-19;
b=4000; //say b=μe
c=0.8; //say c=σp
d=2000; //say d=μh
e=0.0258; //sat e=K*T/q
g=16*8.854*10^-14;
ni-2.1*10^13;
Nd=a/(q*b);
Na=c/(q*d);
printf('\n The value of Nd is %f/cm^3',Nd);
printf('\n The value of Na is %f/cm^3',Na);
Vbi=e*log(Nd*Na/(ni^2))/2.303;
printf('\n The value of Vbi is %fV',Vbi);
h=5*10^15;
i=1;
j=1;
W=((2*g*0.2467/(q*(h)))^0.5)*2;
printf('\n The value of depletion bandwidth is %f cm',W);
|
da2a4cfbdb59e4815a68edf6b5fc57b84c301b71
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3792/CH3/EX3.16/Ex3_16.sce
|
26376deda4b3a3b3260c4fae7594883d8d1a00f2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 726
|
sce
|
Ex3_16.sce
|
// SAMPLE PROBLEM 3/16
clc;clear;funcprot(0);
// Given data
mg=6;// lb
k=2;// lb/in
g=32.2;// The acceleration due to gravity in ft/sec^2
h=24;// in
x_1=24/12;// ft
x_2=(((24*sqrt(2))/12)-(24/12));// ft
// Calculation
// The reaction of the rod on the slider is normal to the motion and does no work.
T_1=0;// ft-lb
U_12=0;// ft-lb
// We define the datum to be at the level of position 1, so that the gravitational potential energies are
V_1g=0;// ft-lb
V_2g=-(mg)*(h/12);// ft-lb
V_1e=(1/2)*(k*12)*(x_1)^2;// ft-lb
V_2e=(1/2)*(k*12)*(x_2)^2;// ft-lb
v_2=sqrt(((T_1+(V_1g+V_1e)+U_12)-(V_2g+V_2e))*(2*(g/mg)));// ft/sec
printf("\nThe velocity of the slider as it passes position 2,v_2=%2.1f ft/sec",v_2);
|
1eba2b93de351f96d354700a680b1403fa494571
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/851/CH2/EX2.3/Example2_3.sce
|
7a55a63d93442786cb068304fad2dd44181da30c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,009
|
sce
|
Example2_3.sce
|
//clear//
//Caption:Entropy, Average length, Variance of Huffman Encoding
//Example 2.3: Huffman Encoding: Calculation of
// (a)Average code-word length 'L'
//(b)Entropy 'H'
clear;
clc;
P0 = 0.4; //probability of codeword '00'
L0 = 2; //length of codeword S0
P1 = 0.2; //probability of codeword '10'
L1 = 2; //length of codeword S1
P2 = 0.2; //probility of codeword '11'
L2 = 2; //length of codeword S2
P3 = 0.1; //probility of codeword '010'
L3 = 3; //length of codeword S3
P4 =0.1; //probility of codeword '011'
L4 = 3; //length of codeword S4
L = P0*L0+P1*L1+P2*L2+P3*L3+P4*L4;
H_Ruo = P0*log2(1/P0)+P1*log2(1/P1)+P2*log2(1/P2)+P3*log2(1/P3)+P4*log2(1/P4);
disp('bits',L,'Average code-word Length L')
disp('bits',H_Ruo,'Entropy of Huffman coding result H')
disp('percent',((L-H_Ruo)/H_Ruo)*100,'Average code-word length L exceeds the entropy H(Ruo) by only')
sigma_1 = P0*(L0-L)^2+P1*(L1-L)^2+P2*(L2-L)^2+P3*(L3-L)^2+P4*(L4-L)^2;
disp(sigma_1,'Varinace of Huffman code')
|
f2339e46a75566ef377d3ef4d0cd8ff81a5acaeb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/647/CH7/EX7.10/Example7_10.sce
|
386fb15bdcbe788b7149681d2dc73ee51c92c273
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 615
|
sce
|
Example7_10.sce
|
clear;
clc;
// Example: 7.10
// Page: 280
printf("Example: 7.10 - Page: 280\n\n");
// Solution
//*****Data******//
P1 = 800;// [kPa]
T1 = 773;// [K]
H1 = 3480;// [kJ/kg]
P2 = 100;// [kPa]
T2 = 573;// [K]
H2 = 3074;// [kJ/kg]
//***************//
// Solution (a)
// Velocity of the fluid exiting the nozzle:
// U2 = sqrt(U1^2 + 2*(H1 - H2))
// Neglecting initial velocity:
U2 = sqrt(2*(H1 - H2)*1000);// [m/s]
printf("(a) Final Velocity is %.2f m/s\n",U2);
// Solution (b)
U1 = 40;// [m/s]
U2 = sqrt((U1^2 + 2*(H1 - H2))*1000);// [m/s]
printf("(b) Final Velocity is %.2f m/s\n",U2);
|
db7691c0455a810ce9c24761540cc23b979f6cc0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1511/CH2/EX2.1/ex2_1.sce
|
c4bf786b171c41869a7a7829b5d9dbfdf86d5d61
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 226
|
sce
|
ex2_1.sce
|
// Example 2.1 page no-45
clear
clc
n=1
h=6.626*10^-34 //J-sec
eps=10^-9/(36*%pi)
m=9.1*10^-31 //kg
e=1.6*10^-19
r=n^2*h^2*eps/(%pi*m*e^2)
printf("\nradius of the lowest state of Ground State, r=%.2f A°",r*10^10)
|
a2660c919f7155cef722946f45ce98b3811a9515
|
4bbc2bd7e905b75d38d36d8eefdf3e34ba805727
|
/ee_scicoslab/scicos_flex/dspic/NativeInteger/NAT_SUMMATION.sci
|
4c5c5e6e803a3e8e5341a689848db4002ee08b68
|
[] |
no_license
|
mannychang/erika2_Scicos-FLEX
|
397be88001bdef59c0515652a365dbd645d60240
|
12bb5aa162fa6b6fd6601e0dacc972d7b5f508ba
|
refs/heads/master
| 2021-02-08T17:01:20.857172
| 2012-07-10T12:18:28
| 2012-07-10T12:18:28
| 244,174,890
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 5,315
|
sci
|
NAT_SUMMATION.sci
|
function [x,y,typ]=NAT_SUMMATION(job,arg1,arg2)
// Copyright INRIA
//** 16 JAN 2008 : Native integer Summation block .
//** This block uses native integer operations
//**
x=[]; y=[]; typ=[];
select job
case 'plot' then
sgn = arg1.model.ipar
standard_draw(arg1)
case 'getinputs' then
[x,y,typ]=standard_inputs(arg1)
case 'getoutputs' then
[x,y,typ]=standard_outputs(arg1)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x = arg1;
graphics = arg1.graphics ;
model = arg1.model ;
exprs = graphics.exprs ;
//** back compatibility ?
if size(exprs,1)==1 then
exprs = [sci2exp(1);exprs;sci2exp(0)];
elseif size(exprs,1)==2 then
exprs=[exprs;sci2exp(0)];
end
while %t do
[ok, Datatype, sgn, satur, exprs] = getvalue('Set Native Integer sum block parameters',..
['IN/OUT Datatype (1=real double 2=complex 3=int32 ...)';..
'Number of inputs or sign vector (of +1, -1)' ;..
'Do on Overflow (0=Nothing 1=Saturate 2=Error)'],..
list('vec',1,'vec',-1,'vec',1),exprs)
if ~ok then
break ; //** exit on "cancel" operation
end
sgn = sgn(:); //** why ?
//** check "Do on overflow"
if (satur~=0 & satur~=1 & satur~=2) then
message("Do on overflow must be 0,1,2");
ok=%f;
end
//** check on input vector size and/or sign
if size(sgn,1)==1 then
if sgn<1 then
message('Number of inputs must be > 0')
ok=%f
elseif sgn==1 then
in=-1;in2=-2
sgn=[]
nout=1;nout2=1
else
in=-ones(sgn,1);in2=2*in
sgn=ones(sgn,1)
nout=-1;nout2=-2
end
else
if ~and(abs(sgn)==1) then
message('Signs can only be +1 or -1')
ok=%f
else
in=-ones(size(sgn,1),1);in2=2*in
nout=-1;nout2=-2
end
end
it = Datatype*ones(1,size(in,1));
ot = Datatype;
if Datatype==1 then //** real (double) datatype
model.sim=list('summation',4) ;
elseif Datatype==2 then //** complex (2x double) datatype
model.sim=list('summation_z',4) ;
elseif ((Datatype<1) |(Datatype>8)) then
//** for input values beyond supported type
message("Datatype is not supported");
ok = %f;
else
//** Native Integer Support
if satur==0 then
//** Do nothing on overflow
if Datatype==3 then
model.sim=list('nat_summation_i32n',4)
elseif Datatype==4 then
model.sim=list('nat_summation_i16n',4)
elseif Datatype==5 then
model.sim=list('nat_summation_i8n',4)
elseif Datatype==6 then
model.sim=list('summation_ui32n',4)
elseif Datatype==7 then
model.sim=list('summation_ui16n',4)
elseif Datatype==8 then
model.sim=list('summation_ui8n',4)
end
elseif satur==1 then
//** Saturate on overflow
if Datatype==3 then
model.sim=list('summation_i32s',4)
elseif Datatype==4 then
model.sim=list('summation_i16s',4)
elseif Datatype==5 then
model.sim=list('summation_i8s',4)
elseif Datatype==6 then
model.sim=list('summation_ui32s',4)
elseif Datatype==7 then
model.sim=list('summation_ui16s',4)
elseif Datatype==8 then
model.sim=list('summation_ui8s',4)
end
elseif satur==2 then
//** error on overflow
if Datatype==3 then
model.sim=list('summation_i32e',4)
elseif Datatype==4 then
model.sim=list('summation_i16e',4)
elseif Datatype==5 then
model.sim=list('summation_i8e',4)
elseif Datatype==6 then
model.sim=list('summation_ui32e',4)
elseif Datatype==7 then
model.sim=list('summation_ui16e',4)
elseif Datatype==8 then
model.sim=list('summation_ui8e',4)
end
end
end
if ok then
[model,graphics,ok]=set_io(model,graphics,...
list([in,in2],it),...
list([nout,nout2],ot),[],[])
end
if ok then
model.rpar = satur ;
model.ipar = sgn ;
graphics.exprs = exprs;
x.graphics = graphics ;
x.model = model ;
break
end
end //** 'set'
case 'define' then
//** default values
sgn = [1;-1]
model = scicos_model()
model.sim = list('summation',4)
model.in = [-1;-1]
model.out= -1
model.in2= [-2;-2]
model.out2 = -2
model.ipar = sgn
model.blocktype = 'c'
model.dep_ut = [%t %f]
exprs = sci2exp(sgn);
gr_i = list();
gr_i_Icon = ['[x,y,typ]=standard_inputs(o) ';
'dd=sz(1)/8,de=0,'
'if ~arg1.graphics.flip then dd=6*sz(1)/8,de=-sz(1)/8,end'
'for k=1:size(x,''*'')';
'if size(sgn,1)>1 then'
' if sgn(k)>0 then';
' xstring(orig(1)+dd,y(k)-4,''+'')';
' else';
' xstring(orig(1)+dd,y(k)-4,''-'')';
' end';
'end';
'end';
'xx=sz(1)*[.8 .4 0.75 .4 .8]+orig(1)+de';
'yy=sz(2)*[.8 .8 .5 .2 .2]+orig(2)';
'xpoly(xx,yy,''lines'')']
gr_i_BackColor = 4 ; //** NativeIngerBackgroundColorDefault
gr_i = list(gr_i_Icon, gr_i_BackColor) ;
x = standard_define([2 3], model, exprs, gr_i)
end
endfunction
|
36d71c8852ad148bd1825eecc5b9cfede6e9ce5e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2021/CH16/EX16.5/EX16_5.sce
|
40101c8c4894affa90b314a332ccad1369dc3dc0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 184
|
sce
|
EX16_5.sce
|
//Finding of Weight
//Given
D=0.05;
v=1.5*10^-4;
V=10;
rho=1.25;
Cd=0.5;
//TO Find
A=(%pi/4)*D^2;
Fd=Cd*rho*A*((V^2)/2);
disp("Weight of the ball ="+string(Fd)+" Newtons");
|
c1f477e5cb2ad7668407b41f89c1ac37463816ca
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2096/CH1/EX1.46/ex_1_46.sce
|
2381461914499f881c4cbd87b8cd0a0acadd4549
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 502
|
sce
|
ex_1_46.sce
|
//Example 1.46://limiting error
clc;
clear;
dE=0.2;//erroe in modulus of elesticity
d1=0.01;//change in width
b=4.5;//width
dB=d1/b;//error in width
d2=0.01;//change in width
D=0.9;//width
dD=d2/D;//error in width
d3=0.01;//change in beam
L=45;//BEAM
dL=d3/L;//error in beam
d4=0.1;//change in deflection
y=1.8;//deflectrion
dy=d2/D;//error in deflection
lr= (dE+dB+3*dD+3*dL+dy);//percentage limiting error
disp(lr," peercentage limiting error in percentage is ±")
// answer is wrong in the textbook
|
11c39e3bb06d43c5e9b6368d3be6e546afbb565b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2465/CH3/EX3.5/Example_5.sce
|
589cf1fdd399a6da2a649df298008cff52cae2c3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 459
|
sce
|
Example_5.sce
|
//Chapter-3,Example 5,Page 57
clc;
close;
//Part (a)
t_half= 1620 //half life of radium
lamda= 0.693/t_half
//as radium lose one centigram mass
N_0=100 // in centigram
N_1=N_0-1
t_1=log10(N_0/N_1)/(lamda*log10(%e))
printf('Part (a)---total number of years required are %.2f years ',t_1)
// Part (b)
N_2= 1
t_2=log10(N_0/N_2)/(lamda*log10(%e))
printf('\n Part (b)---total number of years required are %.2f years ',t_2)
|
59b990d013fc183e9643ad4cd666d7e836f972cd
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/findcontours.sci
|
382aa885de19debe5883e0d6faf54821d9ec18bb
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957
| 2017-01-15T21:26:17
| 2017-01-15T21:26:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 276
|
sci
|
findcontours.sci
|
function [outputMat]= findcontours(inputImage, Mode, method, point_x, point_y)
inputList=mattolist(inputImage);
outputList=opencv_findcontours(inputList,Mode, method, point_x, point_y)
for i=1:size(outputList)
outputMat(:,:,i)=outputList(i)
end
endfunction
|
48ec7f3b87cebb4b6b6112f2a8c4174a0de619de
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1748/CH2/EX2.9.p/problem2_9.sce
|
27143b69821c49f7d4476cf729f06067044511f3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 381
|
sce
|
problem2_9.sce
|
//problem 2.9
clc;
clear;
close;
//given data :
format('v',5);
P=6;//No. of poles
m=3;//No. of phase
f=50;//in Hz
Xo_int=1;//in ohm/phase
Rrotor_int=0.1;//in ohm/phase
//S=1 for starting
S=1;//unitless
disp("Max. Torque condition : R2=X2");
//Rext+Rrotor_int=Xo_int
Rext=Xo_int-Rrotor_int;//in ohm/phase
disp(Rext,"External resistance to be added(ohm/phase) : ");
|
fb3a3774047668d0aa6862ad100a9a2c88cee835
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3733/CH4/EX4.13/Ex4_13.sce
|
fe5ed0f5e6f1b9930d75c1dad19c4811b386fb9c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 477
|
sce
|
Ex4_13.sce
|
//Example 4_13
clc;funcprot(0);
//Given data
p_a=750;// mm of Hg
p_v=400;// mm of Hg
p_d=p_a-p_v;// mm of Hg
V_c=13; // m/sec
// Assume Friction loss and exit velocity of water head (V_a^2/(2*g))+h_f=V
V=1.5;//m
rho=1000;// kg/m^3
g=9.81;// m/s^2
//Calculation
w=rho*g;// N
h=(((p_a-p_d)*1.03*10^5)/(w*760))-((V_c^2)/(2*g))+V;// m
printf('\nThe position of the kaplan turbine with respect to tail race,h=%0.2f m',h);
// The answer vary due to round off error
|
99902859a70d26f6dc3749d66f8ff5d6d202b1f8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1595/CH12/EX12.8/ex12_8.sce
|
b75e66079d0fc03019d5c03ad58b32caf5038a94
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 497
|
sce
|
ex12_8.sce
|
//Transmission Lines : example 12-8 : (pg 597)
Zo=100;//characteristic impedance
j=%i;
Zl = 200-j*150;//load impedance
l=4.3;//length of transmission line
x=200/Zo;
y=150/Zo;
a=0.4*Zo;
b=0.57*Zo;
mprintf("\nTo normalize the load impedance: \nzL = ZL/Zo = %.f - j*%.1f",x,y);
//VSWR and equation of zin should b drawn from impedance smith chart,the plotted points should be read
printf("\n zin = 0.4 + j*0.57");//from smith chart
mprintf("\nZin = zin*Zo = %.f Ohm + j* %.f Ohm",a,b);
|
c2605145ee09935c2e6d3fb1d8989e7d64ebc822
|
16bc0f0143e1916c84c6fc0f7cfb18fb9e6ca37b
|
/misc/pcs/pcs_7.sce
|
ef71929a7d7b82f144de308c145a3765fe044462
|
[] |
no_license
|
shubhamc1200/LabFiles
|
9a4268e216c58a1cdfc2f3b3e482e73567033e9f
|
45d7611a3089380f6c7b683142ad186238d7754c
|
refs/heads/main
| 2023-08-02T11:38:27.592450
| 2021-09-30T07:21:23
| 2021-09-30T07:21:23
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 381
|
sce
|
pcs_7.sce
|
s = poly(0,'s');
n1 = [s^2+2*s+2];
d1 = [(s+2)*(s+4)];
TF1 = syslin('c',n1/d1);
subplot(1,4,1);
evans(TF1,50);
n2 = [1];
d2 = [s^3];
TF2 = syslin('c',n2/d2);
subplot(1,4,2);
evans(TF2,50);
n3 = [1];
d3 = [s*(s+1)*(s+1)*(s+2)];
TF3 = syslin('c',n3/d3);
subplot(1,4,3);
evans(TF3,50);
n4 = [(s+1)*(s+1)];
d4 = [s*(s+2)];
TF4 = syslin('c',n4/d4);
subplot(1,4,4);
evans(TF4,50);
|
86828224fbcda6d18781cd3d4a08e95398f4f23e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1322/CH14/EX14.23/109ex2.sce
|
ab2c8c518829bcc295c45e6cea543b09c8a2c7a8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 629
|
sce
|
109ex2.sce
|
//area of ring between 2 concentric circles.
//given,r1=97mm,r2=83mm
clear;
clc;
close;
r1=97;r2=83;
//the area of ring is difference between the areas of 2 circles
diff_in_area=(r1^2-r2^2);
mprintf("difference in area=%ipi mm^2",diff_in_area)
|
f75d7c746bd8291c7d49f8d1ce7735365d6af31a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/83/CH12/EX12.9/example_12_9.sce
|
8fe19762c46e5b07c8c2b2eeacf1a237ba463790
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 626
|
sce
|
example_12_9.sce
|
//Chapter 12
//Example 12.9
//page 479
//To calculate critcal clearing angle
clear;clc;
Pmax1=2; // prefault(2 lines)
Pmax2=0.5; //deuring fault
Pmax3=1.5; //post fault(1 line)
Pm=1; //initial loading
delta0=asin(Pm/Pmax1);
delta_max=%pi-asin(Pm/Pmax3);
//to find critical angle,using eq.12.67
delta_cr=acos((Pm*(delta_max-delta0)-Pmax2*cos(delta0)+Pmax3*cos(delta_max))/(Pmax3-Pmax2));
printf('Pmax1=%0.1f PU\t Pmax2=%0.2f PU\t Pmax3=%0.2f PU\n\n',Pmax1,Pmax2,Pmax3);
printf('Delta0=%0.3f rad\n\n',delta0);
printf('Delta_max=%0.3f rad\n\n',delta_max);
printf('Delta_cr=%0.3f rad =%0.2f deg\n\n',delta_cr,delta_cr*180/%pi);
|
83ca93d8b6d88bdf09d025efce409dcba91048d1
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.4/Unix-Windows/scilab-2.4/macros/util/x_choices.sci
|
babeef92ecad2f64538f8607f0ca34ff8716e5ba
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,664
|
sci
|
x_choices.sci
|
function [rep]=x_choices(title,choices_l)
// Copyright INRIA
[lhs,rhs]=argn(0)
if rhs<=0 then s_mat=['l1=list(''choice 1'',1,[''toggle c1'',''toggle c2'',''toggle c3'']);';
'l2=list(''choice 2'',2,[''toggle d1'',''toggle d2'',''toggle d3'']);';
'l3=list(''choice 3'',3,[''toggle e1'',''toggle e2'']);';
'rep=x_choices(''Toggle Menu'',list(l1,l2,l3));'];
write(%io(2),s_mat);execstr(s_mat);
return;end;
if typeof(title)<>'string' then
write(%io(2),'x_choices first argument is not character string')
return
end
if typeof(choices_l)<>'list' then
write(%io(2),'x_choices argument is not a list')
return
end
n=size(choices_l)
items=['void']
defv=[]
for i=1:n, l_ch=choices_l(i);
if typeof(l_ch)<>'list' then
write(%io(2),'x_choices(t,x): x('+string(i)+') is not a list');
return
end
if typeof(l_ch(1))<>'string' then
write(%io(2),'x_choices(t,x): x('+string(i)+')(1) is not a string');
return
end
items= [items, l_ch(1)];
if typeof(l_ch(3))<>'string' then
write(%io(2),'x_choices(t,x): x('+string(i)+')(3) is not vector of strings');
return
end
[xxxl,xxxc]=size(l_ch(3));
if xxxl<>1 then
write(%io(2),'x_choices(t,x): x('+string(i)+')(3) must be a row vector of strings');
return
end
items= [items, l_ch(3)];
if typeof(l_ch(2))<>'constant' then
write(%io(2),'x_choices(t,x): x('+string(i)+')(2) is not of type int');
return
end
if prod(size(l_ch(2)))<>1 then
write(%io(2),'x_choices(t,x): x('+string(i)+')(2) must be an integer');
return
end
defv=[defv,l_ch(2)];
if n<>i then items=[items,"[--sep--]"];end
end
items=items(2:prod(size(items)))
rep=xchoicesi(defv,title,items)
|
53c35fb7350ad8bea46255633ac8019d9d188138
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1938/CH2/EX2.2/2_2.sce
|
38d63897ee721a85750ca96d6ac112b1be800ccb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 372
|
sce
|
2_2.sce
|
clc,clear
printf('Example 2.2\n\n')
Pole=4
A=Pole //for lap winding
V=230
Z=250 //number of armature conductors
phi=30*10^-3 //flux per pole in weber
I_a=40,R_a=0.6 //Armature resistance
E_b=V - I_a*R_a // Since V= E_b+ I_a*R_a
N=E_b * 60*A/(phi*Pole*Z) //because E_b = phi*P*N*Z/(60*A)
printf('Back emf is %.0f V and running speed is %.0f rpm',E_b,N)
|
629a5ec8f72546d829ade5c489ac17827a140345
|
0dd46f764213376689f04c662c7bef9c1517ae8b
|
/lb1/scilab/gauss.sci
|
763d6b41e2791061001f6db650ad4eda97ac1508
|
[] |
no_license
|
hospitaler17/NumMeth
|
85d174e6f8adfb488b577855b0f5b9977a87438b
|
283677e9f47df559febaab33cc216e3634b95612
|
refs/heads/master
| 2021-09-12T12:43:55.522029
| 2018-04-16T20:09:09
| 2018-04-16T20:09:09
| 109,737,971
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,596
|
sci
|
gauss.sci
|
disp('Лабораторная работа 1: метод Гаусса')
Matrix = read("matr.txt", -1, 4);
copyMatrix = Matrix;
disp(Matrix,"Исходная матрица:")
n = length(Matrix(:,1));;
j = 1;
tic;
for i=1:n
bla = 1;
tmp = Matrix(i,i);
while tmp == 0
if bla >= n then
disp("Wrong matrix!")
exit;
end;
swap = Matrix(i, :);
Matrix(i, :) = Matrix(bla, :);
Matrix(bla, :) = swap;
tmp = Matrix(i,i);
bla = bla + 1;
end;
bla = 0;
Matrix(i,i) = 1;
for j=n+1:-1:i
Matrix(i,j) = Matrix(i,j)/tmp;
end;
for j = i+1:1:n
tmp = Matrix(j,i);
Matrix(j,i) = 0;
for k = n+1:-1:i+1
Matrix(j,k) = Matrix(j,k) - tmp*Matrix(i,k);
end;
end;
end;
toc;
disp(toc(),"Время на прямой ход:");
tic;
solution = [0 0 0];
solution(n) = Matrix(n,n+1);
for i=n-1:-1:1
solution(i) = Matrix(i,n+1);
for j = i+1:1:n
solution(i) = solution(i) - Matrix(i,j) * solution(j);
end;
end;
disp(toc(),"Время на обратный ход:");
format(15);
disp(solution,"Решение:");
disp("Вектор невязки:");
neviaz = [0 0 0];
for i = 1:1:n
for j = 1:1:n
neviaz(i) = neviaz(i) + copyMatrix(i,j)*solution(j);
end;
end;
for i=1:1:n
neviaz(i) = neviaz(i) - copyMatrix(i,n+1);
end;
disp(neviaz);
delta = neviaz(1);
for i = 1:1:n
if abs(neviaz(i)) > delta then
delta = abs(neviaz(i));
end;
end;
disp("Норма вектора невязки:");
disp(delta);
|
4d8fe22f78b7fb0b849a20723c8740c61d4f998e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/764/CH6/EX6.10.b/solution6_10.sce
|
baef0f20fb9cfb1b8844c7047378db6f7a507b81
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,992
|
sce
|
solution6_10.sce
|
//Function to round-up a value such that it is divisible by 10
function[v] = round_ten(w)
v = ceil(w)
rem = pmodulo(v,10)
if (rem ~= 0) then
v = v + (10 - rem)
end
endfunction
//Obtain path of solution file
path = get_absolute_file_path('solution6_10.sce')
//Obtain path of data file
datapath = path + filesep() + 'data6_10.sci'
//Clear all
clc
//Execute the data file
exec(datapath)
//Calculate force required to shear the sheet W (N)
W = (%pi * d * t * Sus)
//Compressive stress in the screw sigmac (N/mm2)
sigmac = Syt/fs
//Core diameter of the screw dc (mm)
dc = ((4 * W)/(%pi * sigmac))^(1/2)
dc = ceil(dc)
//Obtain the correct number of starts for the screw n
for n = 1:1:%inf
//Calculate the lead of the screw l (mm)
l = n * p
if (l > lmin) then
break
end
end
//Obtain the correct nominal diameter d in multiples of 10 (mm)
for d = dc:1:%inf
d = round_ten(d)
//Calculate the mean diameter of the screw dm (mm)
dm = d - (0.5 * p)
//Calculate the lead angle alpha (degree)
alpha = atand(l/(%pi * dm))
//Calculate the angle of repose (fi)
fi = atand(mu)
//Calculate the torque required Mt (N-mm)
Mt = (W * dm * tand(fi + alpha))/2
//Calculate the new core diameter dcNew (mm)
dcNew = d - p
//Calculate the stress in the screw CNew (N/mm2)
CNew = ((W * 4)/(%pi * (dcNew^2)))
//Calculate the torsional stress tau (N/mm2)
tau = (16 * Mt)/(%pi * (dcNew^3))
//Calculate the maximum shear stress tauMax (N/mm2)
tauMax = (((CNew/2)^2) + (tau^2))^(1/2)
//Calculate the afctor of safety fsNew
fsNew = ((50/100)*Syt)/tauMax
if(fsNew > fs)
break
end
end
//Calculate the efficiency of the screw eta (%)
eta = (tand(alpha)/tand(fi + alpha))*100
//Calculate the number of threads z
z = (4 * W)/(%pi * Sb * ((d^2) - (dcNew^2)))
z = ceil(z)
//Calculate the length of the nut L (mm)
L = z * p
//Calculate the shear stress in the screw tauS (N/mm2)
to = p/2
tauS = (W/(%pi * dcNew * to * z))
//Calculate the shear stress in the nut tauN (N/mm2)
tauN = (W/(%pi * d * to * z))
//Calculate the work done by the punch work (J)
work = (W * (t/2))/1000
//Work done by balls workB (J)
workB = work/(eta/100)
//Calculate the average angular velocity wavg (rad/s)
wavg = fsd/tf
//Calculate the maximum angular velocity wmax (rad/s)
wmax = 2 * wavg
//Calculate the mass of the one ball m (kg)
m = ((workB * 2)/(((Rm/1000)^2) * (%pi^2)))/2
//Calculate the diameter of the ball dia (mm)
dia = ((m * 6)/(%pi * dense))^(1/3)
//Print results
printf('\nScrew\n')
printf('\nNominal diameter of the screw(d) = %f mm\n',d)
printf('\nCore diameter of the screw(dcNew) = %f mm\n',dcNew)
printf('\nLead of the screw(l) = %f mm\n',l)
printf('\nNut\n')
printf('\nLength of the nut(L) = %f mm\n',L)
printf('\nMass of each ball(m) = %f kg\n',m)
printf('\nDiameter of each ball(dia) = %f mm\n',dia*1000)
|
2d4b48378e089f29c0119754395ae8921eb0c381
|
f5bb8d58446077a551e4d9a6461a55255db523fe
|
/integracao_numerica/calc2.sce
|
e276b27cc2d30558b13c627a00a85dc61fb817f3
|
[] |
no_license
|
appositum/numerical-calculus
|
6be1a9990a1621c705af6ba5694cf8c7b891d06e
|
7759e74ce9ce5c5826f96be7de84a2f7ecb97c91
|
refs/heads/master
| 2021-07-19T18:19:09.336819
| 2018-11-27T21:52:36
| 2018-11-27T21:52:36
| 143,060,426
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 391
|
sce
|
calc2.sce
|
// regra 1/3 de Simpson
function y=f(x)
y = cos(x)
endfunction
// derivada de ordem 4
function y=df(x)
y = cos(x)
endfunction
a = 0
b = 0.6
h = (b-a)./2
x1 = a
x2 = x1+h
x3 = b
R = (h./3).*(f(x1) + 4.*f(x2) + f(x3))
printf("Aproximacao da integral: %g\n", R)
// calculo do erro
x = a:0.05:b
err = ((h.^(5))./90).*max(abs(df(x)))
printf("\nLimitante superior do erro: %g\n", err)
|
76d4432c8dea8863018ecdd446d713533f7674f7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3311/CH16/EX16.5/Ex16_5.sce
|
a0aa10dd5f300218c5cae80db00dd25fedb40b1b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,322
|
sce
|
Ex16_5.sce
|
// chapter 16
// example 16.5
// Calculate back-up time and charger peak output power
// page-997-998
clear;
clc;
// given
VA_rating=6; // in kVA
V=230; // in V
E=144; // in V
PF=0.8;
neta=0.85; // invertor efficiency
AH_rating=500; // in AH
E1=10.6, E2=13.4; // in V (range of battery voltage)
E_normal=12; // in V (normal battery voltage)
T=4; // in Hrs (charging time)
t=8; // in Hrs
capacity_derating=0.5;
// calculate
VA_rating=VA_rating*1E3;
Battery_kW=VA_rating*PF/neta; // calculation of battery power
num_Battery=E/E_normal; // calculation of number of batteries
// considering worst case for calculation of discharge current
Total_battery_voltage=E1*num_Battery; // calculation of total battery voltage
// since Battery_kW=Total_battery_voltage*I_dc, therefore we get,
I_dc=Battery_kW/Total_battery_voltage; // calculation of battery discharge current
T_backup=AH_rating*capacity_derating/I_dc; // calculation of back-up time
Ic=AH_rating*capacity_derating/T; // calculation of charging current
P_peak=E*Ic; // calculation of charging peak power
printf("\nThe back-up time is \t\t %.3f hours",T_backup);
printf("\nThe charging peak power is \t %.f kW",P_peak*1E-3);
// Note : There is calculation mistake in the book while calculating T_backup. Thats why answer in the book is wrong
|
7496631323d633a15f0b5f0a2ba102ed4fa3a527
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1364/CH8/EX8.3.3/8_3_3.sce
|
dfbdbaa56eee1284665874521de8e997a04ecaaf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 239
|
sce
|
8_3_3.sce
|
clc
//initialisation of variables
v= 0.02 //lb/ft sec
L= 5 //in
D= 2.5 //in
M= 26 //lbf in
w= 1200 //rev/min
g= 32.2 //ft/sec^2
//CALCULATIONS
C= %pi*v*w*2*%pi*D^3*L/(2*M*g*60*144)
//RESULTS
printf (' coefficient= %.4f in ',C)
|
aca4b6b93318f7bb88e877bf715bdb19c2e2620f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1898/CH1/EX1.2/Ex1_2.sce
|
a2eae33459225037b755119c10fcb0dd8d88d9d5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,417
|
sce
|
Ex1_2.sce
|
clear all; clc;
disp("Scilab Code Ex 1.2 : ")
f_d = 225; //N
w_uniform = 800; // N/m
l_ac = 0.200; //m
l_cb = 0.05+0.1; //m
l_bd = 0.100; //m
l_bearing = 0.05; //m
f_resultant = w_uniform*l_cb //120N
l_f_resultant_b = (l_cb/2)+ l_bearing; //0.125m
l = l_ac + l_cb + l_bearing + l_bd
// This problem is solved by considering segment AC of the shaft.
//Support Reactions:
m_b = 0; // Net moment about B is zero for equilibrium . Sum Mb = 0.
a_y = -((f_d*l_bd) - (f_resultant*l_f_resultant_b))/ (l - l_bd) // finding the reaction force at A
// Refer to the free body diagram in Fig.1-5c.
f_c = 40 //N
//Balancing forces in the x direction:
n_c = 0
//Balncing forces in the y direction:
v_c = a_y - f_c //-18.75N - 40N-Vc = 0
// Balncing the moments about C:
m_c = ((a_y * (l_ac + 0.05)) - f_c*(0.025) ) // Mc+40N(0.025m)+ 18.75N(0.250m) = 0
// Displaying results:
printf('\n\nThe resultant force = %.2f N',f_resultant);
printf('\nThe reaction force at A = %.2f N',a_y);
printf('\nThe horizontal force at C = %.2f N',n_c);
printf('\nThe vertical force at C = %.2f N',v_c);
printf('\nThe moment about C = %.2f Nm',m_c);
//-------------------------------------------------------------------END-----------------------------------------------------------------------------------------
|
c8c83da2bf41e18386442c62f103a35e19a5d629
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2912/CH4/EX4.8/Ex4_8.sce
|
0e22a64e1db74087a8ee3c0293c512fba4474bb2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,000
|
sce
|
Ex4_8.sce
|
//chapter 4
//example 4.8
//calculate angle of first order diffraction maximum
//page 78-79
clear;
clc;
//given
K=0.02; // in eV (kinetic energy)
d=2.0; // in Angstrom (Bragg's spacing)
m=1.00898; // in amu (mass of neutron)
amu=1.66E-27; // in Kg (1amu=1.66E-27 Kg)
h=6.625e-34; // in J-s (Plank's constant)
n=1; //order
e=1.6E-19; // charge on electron
//calculate
//Since K=m*v^2/2
// therefore v=sqrt(2*K/m)
// since lambda=h/(m*v)
//therefore we have lambda=h/sqrt(2*m*K)
m=m*amu; //changing unit from amu to Kg
K=K*e; //changing unit to J from eV
lambda=h/sqrt(2*m*K); // calculation of lambda
printf('\nThe wavelength is \t\t =%1.1E m',lambda);
lambda=lambda*1E10; //changing unit from m to Angstrom
printf('\n\t\t\t\t =%.1f Angstrom',lambda);
// Since 2dsin(theta)=n(lambda)
// therefore we have
theta=asind(n*lambda/(2*d)); // calculation of angle of first order diffraction maximum
printf('\nThe angle of first order diffraction maximum is %.f Degree',theta);
|
80a6ee2e0d7cd05dad9876a9be4c5d1c708ff4ec
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1073/CH2/EX2.37/2_37.sce
|
159947812a6facc2d163678cf54c6f3ddcbc640d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 691
|
sce
|
2_37.sce
|
clc;
clear;
//Example 2.37
//Calculate the time required for a ball to attain a temperature of 423 K
//Given
k_steel=35 //W/m.K
Cp_steel=0.46 //kJ/(kg*K)
Cp_steel=Cp_steel*1000 //J/(kg*K)
h=10 //W/sq m.K
rho_steel=7800 //kg/cubic m
dia=50 //mm
dia=dia/1000 //m
R=dia/2 //radius in m
A=4*%pi*R^2 //Area in sq m
V=A*R/3 //Volume in cubic meter
Nbi=h*(V/A)/k_steel
//As Nbi<0.10,internal temp gradient is negligible
T=423 //K
T0=723 //K
T_inf=373 //K
//(T-T_inf)/(T0-T_inf)=e^(-h*At/rho*Cp*V)
t=-rho_steel*Cp_steel*R*log((T-T_inf)/(T0-T_inf))/(3*h); //s
printf("Time required for a ball to attain a temperature of 423 K is %f s= %f h",t,t/(3600))
|
e08f2721fd66cdd7e6a271d328f65bce6b3b1fa6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3554/CH2/EX2.1/Ex2_1.sce
|
68775e314241ec23e51e5c8fc77ec7b3280176e9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 548
|
sce
|
Ex2_1.sce
|
// Exa 2.1
clc;
clear all;
// Given data
N= 100; // Number of turns
W=20; // Width of coil(mm)
D= 30; // Depth of coil(mm)
B= 0.1; // Flux density (wb/m^2)
I= 10; // Current in coil(mA)
K= 2*10^-6; // Spring constant(Nm/degree)
// Solution
A= W*10^-3*D*10^-3; // Area of coil(m^2)
Td= B*N*A*I*10^-3; // Deflecting torque(Nm)
disp("As deflecting torque = restoring torque(K*Theta)");
Theta= Td/K;
printf(' The defecting torque = %.1f * 10^-6 Nm \n ', Td*10^6);
printf('Therefore, the deflection = %d degrees \n ' , Theta);
|
96397053e8e2063355b24222844659506e74c83c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3764/CH4/EX4.7/Ex4_7.sce
|
81ad525fe3bd8c9edfe4a30978d03f22a0a0b2a3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 875
|
sce
|
Ex4_7.sce
|
clc
//
// Variable declaration
y=7 // Distance(in)
s=-3.01 // Stress(ksi)
// Calculation
//Loading
M=10230 // Couple of moment(kip.in)
//Elastic Unloading
sMl=((10230)*(8))/(1524.0) // Maximum stress(ksi)
//Permanent Radius of Curvature
p=(((7)*(29*(10**6))*((10**-3)))/(3.01)**-2) // Permanent radius of curvature(in)
p=((p*0.083333)) // Conversion(ft)
// Result
printf("\n Case(a) Residual stress = %0.3f ksi' ,sMl)
printf("\n Case(a) Permanent radius of curvature = %0.3f ft' ,p)
|
108ed05a799dae389d294d886dcce65251308558
|
3c47dba28e5d43bda9b77dca3b741855c25d4802
|
/microdaq/macros/mlink_dsp_start.sci
|
31b29dd513d5d31f90856552e59f7eda4af3c02f
|
[
"BSD-3-Clause"
] |
permissive
|
microdaq/Scilab
|
78dd3b4a891e39ec20ebc4e9b77572fd12c90947
|
ce0baa6e6a1b56347c2fda5583fb1ccdb120afaf
|
refs/heads/master
| 2021-09-29T11:55:21.963637
| 2019-10-18T09:47:29
| 2019-10-18T09:47:29
| 35,049,912
| 6
| 3
|
BSD-3-Clause
| 2019-10-18T09:47:30
| 2015-05-04T17:48:48
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 417
|
sci
|
mlink_dsp_start.sci
|
function result = mlink_dsp_start(connection_id, model_tsamp)
result = call("sci_mlink_dsp_start",..
connection_id, 1, "i",..
"out",..
[1,1], 2, "i");
result = mlink_set_obj(connection_id, 'model_tsamp', model_tsamp );
if result < 0 then
disp("ERROR: Unable to set model sample rate - model will run with defaults")
return;
end
endfunction
|
7fbf93a3cb82ef5230adffb0df770b8fbed17c14
|
1485852dd59aafc286600126cf832a32e10f117f
|
/macros/trainCascaseObjectDetector.sci
|
daf0d710df7ad3da63f0992d1703b5db5f8a4ad5
|
[] |
no_license
|
rg77/Scilab-Image-Processing-And-Computer-Vision-Toolbox
|
dec9fbbce32cfd1eab3c45ccb29c89aaa1384758
|
8adb116da3a9c29a32e5e0727105aff571e5b374
|
refs/heads/master
| 2020-12-02T16:14:45.282650
| 2017-07-07T10:12:04
| 2017-07-07T10:12:04
| 96,524,257
| 0
| 0
| null | 2017-07-07T09:43:50
| 2017-07-07T09:43:50
| null |
UTF-8
|
Scilab
| false
| false
| 5,473
|
sci
|
trainCascaseObjectDetector.sci
|
function trainCascadeObjectDetector(outputFile,positiveInstances,negativeImages,varargin)
//outputfile- ex.xml
//positiveInstances- array of structure with field names path(string) and Bbox(4 length vector);
//negativeImages- path to negative images folder
//varargin- name,value pairs (Eg:numPos,numNeg,numStages,minHitRate,maxFalseAlarmRate,featureType,w,h)
[lhs rhs]=argn(0);
if rhs<3 then
error(msprintf(" Not enough input arguments"))
elseif rhs>23 then
error(msprintf(" Too many input arguments to the function"))
elseif modulo(rhs-3,2)
error(msprintf(" wrong number of input arguments,name-value pairs not macthed"))
end
//validating variables
[path,fname,extension]=fileparts(outputFile)
if strcmp(extension,".xml") then
error(msprintf(" wrong input argument #1,must be a string with an XML extension"))
elseif ~isdir(negativeImages)
error(msprintf(" wrong input argument #3,existing directory expected"))
end
//default values
numPos=4;
numNeg=2;
numStages=30;
precalcValBufSize=512
precalcIdxBufSize=512
featureType="HAAR"
minHitRate=0.995
maxFalseAlarmRate=0.5
w=20
h=20
for i=1:2:rhs-3
if strcmpi(varargin(i),"numPos")==0 then
i=i+1;
numPos=varargin(i);
if numPos<0 then
error(msprintf(" numPos value must be positive"))
end
elseif strcmpi(varargin(i),'numNeg')==0 then
i=i+1;
numNeg=varargin(i);
if numNeg<0 then
error(msprintf(" numNeg value must be positive"))
end
elseif strcmpi(varargin(i),'numStages')==0 then
i=i+1;
numStages=varargin(i);
if numStages<0 then
error(msprintf(" numStages value must be positive"))
end
elseif strcmpi(varargin(i),'precalcValBufSize')==0 then
i=i+1;
precalcValBufSize=varargin(i);
if precalcValBufSize<0 then
error(msprintf(" precalcValBufSize value must be positive"))
end
elseif strcmpi(varargin(i),'precalcIdxBufSize')==0 then
i=i+1;
precalcIdxBufSize=varargin(i);
if precalcIdxBufSize<0 then
error(msprintf(" precalcIdxBufSize value must be positive"))
end
elseif strcmpi(varargin(i),'featureType')==0 then
i=i+1;
featureType=varargin(i);
if strcmpi(featureType,'haar') & strcmpi(featureType,'lbp') & strcmpi(featureType,'hog')
error(msprintf(" wrong input argument #%d,featureType not matched",i));
end
elseif strcmpi(varargin(i),'minHitRate')==0 then
i=i+1;
minHitRate=varargin(i);
if minHitRate<0 | minHitRate>1 then
error(msprintf(" minHitRate value must lie in between 0 and 1"))
end
elseif strcmpi(varargin(i),'maxFalseAlarmRate')==0 then
i=i+1;
maxFalseAlarmRate=varargin(i);
if maxFalseAlarmRate<0 | minFalseRate>1 then
error(msprintf(" maxFalseAlarmRate value must lie in between 0 and 1"))
end
elseif strcmpi(varargin(i),'w')==0 then
i=i+1;
w=varargin(i);
if h<0 then
error(msprintf(" w value must be positive"))
end
elseif strcmpi(varargin(i),'h')==0 then
i=i+1;
h=varargin(i);
if h<0 then
error(msprintf(" h value must be positive"))
end
else
error(msprintf(_(" Wrong value for input argument #%d",i)));
end
end
[noOfPositiveInstances nCols]=size(positiveInstances);
fields=fieldnames(positiveInstances);
fd = mopen('positive.txt','wt');
for i=1:noOfPositiveInstances
mfprintf(fd,'%s 1',getfield(fields(1),positiveInstances(i)));
for j=1:4
mfprintf(fd,' %d',getfield(fields(2),positiveInstances(i)));
end
mfprintf(fd,'\n');
end
mclose(fd);
disp("Creating positive samples:");
cmd=sprintf("opencv_createsamples -info positive.txt -num%d -vec positive.vec -w %d -h %d",numPos,w,h);
unix_w(cmd);
if isdir(negativeImages)
if getos()=="Linux"
temp=strcat(["ls ",negativeImages])
elseif getos()=="Windows"
temp=strcat(["dir ",negativeImages])
end
s=unix_g(temp);
[noOfFilesInFolder noOfCols]=size(s);
fd = mopen('negative.txt','wt');
for i=1:noOfFilesInFolder
[path,fname,extension]=fileparts(s(i))
if ~strcmp(extension,".jpg") | ~strcmp(extension,".jpeg") | ~strcmp(extension,".png") | ~strcmp(extension,".bmp")
mfprintf(fd,'%s\n',s(i));
end
end
end
disp("Training Cascade");
cmd=sprintf("opencv_traincascade -data %s -vec positive.vec -bg negative.txt -numPos %d -numNeg %d -numStages %d -precalcValBufSize %d -precalcIdxBufSize %d -featureType %s -minHitRate %d -maxFalseAlarmRate %d -w %d -h %d",outputFile,numPos,numNeg,numStages,precalcValBufSize,precalcIdxBufSize,featureType,minHitRate,maxFalseAlarmRate,w,h);
unix_w(cmd);
endfunction;
|
bd28cae30e3fae31b9a8f0911e4ec57e1c017437
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2201/CH8/EX8.11/ex8_11.sce
|
a32a8bfa333cdb5097f955eaf59bdf440b96bf68
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 601
|
sce
|
ex8_11.sce
|
// Exa 8.11
clc;
clear;
close;
// Given data
V_DS1 = 14;// in V
V_DS2 = 5;// in V
del_V_DS = V_DS1-V_DS2;// in V
I_D1 = 3.3;// in mA
I_D2 = 3;// in mA
del_I_D = I_D1-I_D2;// in mA
r_d = del_V_DS/del_I_D;// in k ohms
disp(r_d,"The drain resistance in k ohms is");
V_GS1 = 0.4;// in V
V_GS2 = 0.1;// in V
del_V_GS = V_GS1-V_GS2;// in V
I_D1 = 3.3;// in mA
I_D2 = 0.71;// in mA
del_I_D = I_D1-I_D2;// in mA
g_m = del_I_D/del_V_GS;// in mA/V
g_m = g_m * 10^3;// in µmhos
disp(g_m,"The transconductance in µmhos is");
Miu =r_d*10^3*g_m*10^-6;
disp(Miu,"Amplification factor is");
|
01c5266677c20f1d55e5bfa1901c71a07e0aa39d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1109/CH11/EX11.18/11_18.sce
|
aa20ab76dd76d3c45d25f9ce569c78abf017399d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 624
|
sce
|
11_18.sce
|
clear;
clc;
Rg=8000;Zl=500+(%i*500);f=5*(10^6);
//value of f as taken in solution
w=2*%pi*f;
Xc=-%i*imag(Zl);
Rl=real(Zl);
X21=sqrt(Rl*(Rg-Rl));
X22=-X21;
X31=-Rg*sqrt(Rg/(Rg-Rl));
X32=-X31;
X2a=X21+(Xc/%i);
L2a=X2a/w;
C3a=-1/(w*X31);
printf("(a)X2 is inductive and X3 is capacitive where\n X2=L2 = %f mH\n",round(L2a*(10^3)*1000)/1000);
printf(" X3=C3 = %f pf\n",round(C3a*(10^12)*1000)/1000);
X2b=X22+(Xc/%i);
C2b=-1/(w*X2b);
L3b=X32/w;
printf("(b)X2 is capacitive and X3 is inductive where\n X2=C2 = %f pf\n",round(C2b*(10^12)*100)/100);
printf(" X3=L3 = %f mH",round(L3b*(10^3)*1000)/1000);
|
339105173479f16b09931bcadb4c52de26da0bee
|
1489f5f3f467ff75c3223c5c1defb60ccb55df3d
|
/tests/test_ods_1_b.tst
|
0991e340ce095fe0e10f4c71d60a9f464975f7fe
|
[
"MIT"
] |
permissive
|
ciyam/ciyam
|
8e078673340b43f04e7b0d6ac81740b6cf3d78d0
|
935df95387fb140487d2e0053fabf612b0d3f9e2
|
refs/heads/master
| 2023-08-31T11:03:25.835641
| 2023-08-31T04:31:22
| 2023-08-31T04:31:22
| 3,124,021
| 18
| 16
| null | 2017-01-28T16:22:57
| 2012-01-07T10:55:14
|
C++
|
UTF-8
|
Scilab
| false
| false
| 374
|
tst
|
test_ods_1_b.tst
|
** File Info
Version: 1.0
Num Logs = 0
Num Trans = 0
Num Writers = 0
Init Tranlog = 0
Total Entries = 14
Tranlog Offset = 0
Transaction Id = 11
Index Free List = 12
Total Size of Data = 428
Data Transformation Id = 9
Index Transformation Id = 57
** Freelist Info
First freelist entry = 12
Iterating over freelist...(OK)
Final freelist entry = 13
Total freelist entries = 2
|
6780e0cd17179f492e2573540021289e2d0127a1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/779/CH10/EX10.13/10_13.sce
|
236351998024346803b22d521050dd523bee8608
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 342
|
sce
|
10_13.sce
|
P1 = 300e03; V1 = 0.07;
m = 0.25; T1 = 80+273;
R = (P1*V1)/(1000*m*T1);
P2 = P1;
V2 = 0.1;
T2 = (P2*V2)/(1000*m*R);
W = -25;
cv = -W/(m*(T2-T1));
cp = R+cv;
S21 = m*cp*log(V2/V1); // S21 = S2-S1
disp("kJ/kg K",cv,"cv of the gas is")
disp("kJ/kg K",cp,"cp of the gas is")
disp("kJ/kg K",S21,"Increase in the entropy of the gas is")
|
a81640daca3d302bbdb8074f9f9630777867bc0e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2510/CH12/EX12.4/Ex12_4.sce
|
b30b7a3a8adc2b18867eca9d7c094cc1715b7fe0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 408
|
sce
|
Ex12_4.sce
|
//Variable declaration:
//From steam tables:
U1 = 1237.1 //Internnal energy of gas (Btu/lb)
U2_g = 1112.2 //Internal energy of gas (Btu/lb)
U2_l = 343.15 //Internal energy of liquid (Btu/lb)
//Calculation:
Q = 0.5*(U2_g+U2_l)-1*U1 //Heat removed (Btu/lb)
//Result:
printf("Heat removed from the system during the process is : %.1f Btu/lb.",Q)
|
3f01e17b1b2385e4435b9cd7fb9192c27f4fa8ff
|
44dccf35d0d05580e3fc20af3b7697b3c638d82d
|
/testcases/corner/1.sce
|
5baf025de47be088d71a03f654b63b7865b035d5
|
[] |
no_license
|
surirohit/Scilab-Image-Processing-Toolbox-Unclean
|
213caacd69badd81ec0f99a800f44a2cf8f79b5d
|
3a8057f8a8d05e7efd83704a0e732bdda23fa3a0
|
refs/heads/master
| 2020-04-09T07:31:20.042501
| 2016-06-28T09:33:57
| 2016-06-28T09:33:57
| 60,406,367
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 90
|
sce
|
1.sce
|
i = imread('test1.jpg');
corners = corner(i,'Method','MinimumEigenValue');
disp(corners);
|
4d4aa0ee39d2811a20324494af996788f245c34f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3871/CH7/EX7.21/Ex7_21.sce
|
121a5b0e34d62b614168d5e6ce1ed015ebd1e8aa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 784
|
sce
|
Ex7_21.sce
|
//===========================================================================
//chapter 7 example 21
clc;
clear all;
//variable declaration
R = 10; //resistance in Ω
XL = 10; //reactance in Ω
VL = 440; //load voltage in V
//calculations
Z = sqrt((R^2)+(XL^2)); //impedance of each choking coil in Ω
VP = VL/sqrt(3); //phase voltage in V
IP = VP/Z; //phase current in A
IL = IP; //line current in A
phi = atan(XL/R); //phase angle in °
phi1 = phi*180/%pi;
W1 = VL*IL*cos((30*%pi/180)-(phi1*%pi/180)); //wattmeter reading in W
W2 = VL*IL*cos((30*%pi/180)+(phi1*%pi/180)); //wattmeter reading in W
//result
mprintf("line current = %3.2f A",IL);
mprintf("\nwattmeter reading = %3.2f W",W1);
mprintf("\nwattmeter reading = %3.2f W",W2);
|
671dc9ff3e0cdc41a41598e7471baf1bc82abab4
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/752/CH12/EX12.9.1/12_9_1.sce
|
316e96b6d2100f0c1771ac3f6d78a5b8ddc60421
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 223
|
sce
|
12_9_1.sce
|
clc;
//page no 435
//problem no 12.9.1
ENR=10;// energy to noise density ratio
Pbe1=1/2 * erfc(sqrt(ENR/2));
disp(Pbe1,'a)The bit error probability');
Pbe2=1/2 * %e^-(ENR/2);
disp(Pbe2,'b)The bit error probability');
|
0fe8475eb52befdfb22cfa8978748fd5e4d9ad88
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1913/CH1/EX1.35/ex35.sce
|
b719574b9517eafd9202a4884c13271840db4052
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 482
|
sce
|
ex35.sce
|
clc
clear
T=[32,212];//Temperatures of ice point and steam point respectively
P=[1.86,6.81];//P values at ice point and steam point respectively
P1=2.5;//Reading on the thermometer
//Calculations
A=[log(P(2)) 1
log(P(1)) 1] //Coefficient matrix
B=[T(2)
T(1)] //Constant matrix
X=inv(A)*B;//Variable matrix
t=(X(1)*log(P1)+X(2));//Required temperature in degree C
//Output
printf('Temperature corresponding to the thermometric property is %3.0f degree C',t)
|
7eb65f6133bd32b2cf74b298b07da693906ffd7d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2252/CH1/EX1.11/Ex1_11.sce
|
f85950e2ddd05d12b09451cb18312465e1087ba0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 280
|
sce
|
Ex1_11.sce
|
//by Norton's Theorem
I=2*10//total current produced by current source
r=2*2/(2+2)//resultant resistance of current source
In=20*r/(r+1)//norton current
Rn=1+r//norton resistance
I=In*Rn/(Rn+8)
mprintf("Current through the load resistance of 8 ohm=%f A from A to B", I)
|
a2bebd28df27e8c3159f9e10f6fd7aa50132d100
|
b3fbe9bda16ce383718ae9fd21ec3e67e7e19471
|
/src/projects/07/MemoryAccess/BasicTest/BasicTest.tst
|
daaa91a38bb24c9d06bc439009eb5e1a5aa6c71e
|
[
"MIT"
] |
permissive
|
stesta/ComputingSystem
|
b1703bf52e7ed6e133a21a392d10732158c5aa92
|
0f0010c7d2919f6d6891bd43d315d7d03c115db2
|
refs/heads/main
| 2022-01-03T20:33:15.143761
| 2022-01-03T17:46:43
| 2022-01-03T17:46:43
| 26,368,783
| 0
| 0
|
MIT
| 2022-01-03T17:46:43
| 2014-11-08T17:46:04
|
Assembly
|
UTF-8
|
Scilab
| false
| false
| 858
|
tst
|
BasicTest.tst
|
// This file is part of www.nand2tetris.org
// and the book "The Elements of Computing Systems"
// by Nisan and Schocken, MIT Press.
// File name: projects/07/MemoryAccess/BasicTest/BasicTest.tst
load BasicTest.asm,
output-file BasicTest.out,
compare-to BasicTest.cmp,
output-list RAM[256]%D1.6.1 RAM[300]%D1.6.1 RAM[401]%D1.6.1
RAM[402]%D1.6.1 RAM[3006]%D1.6.1 RAM[3012]%D1.6.1
RAM[3015]%D1.6.1 RAM[11]%D1.6.1;
set RAM[0] 256, // stack pointer
set RAM[1] 300, // base address of the local segment
set RAM[2] 400, // base address of the argument segment
set RAM[3] 3000, // base address of the this segment
set RAM[4] 3010, // base address of the that segment
repeat 600 { // enough cycles to complete the execution
ticktock;
}
// Outputs the stack base and some values
// from the tested memory segments
output;
|
9293d6f956f95ce2691b3bd82ac03f9084201ea0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/55/CH7/EX7.5/ex5.sci
|
81ec374c5023c25ed356c95de78f27d6cf8a9869
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,298
|
sci
|
ex5.sci
|
//EXAMPLE 7.5 (a)
disp(" Experiment: A die is tossed and the outcomes are observed");
disp("To find: probability (PM) of an event that one of the dice is 2 if the sum is 6");
E=["(1,5)","(2,4)","(3,3)","(4,2)","(5,1)"] //event that the sum of the two numbers on the two dice is 6
A=["(2,1)","(2,2)","(2,3)","(2,4)","(2,5)","(2,6)","(1,2)","(3,2)","(4,2)","(5,2)","(6,2)"] //event that 2 appears on atleast one die
B= intersect(A,E) //possible combination of numbers on two die such that their sum is 6 and 2 appears atleast on one die
PM=2/5 //since E has 5 elements and B has 2 elements
//EXAMPLE 7.5(b)
disp("A couple has two children");
b=1; //boy child
g=2; //girl child
S=[11,12,21,22] ; //sample space where 11 implies both children being boys,12 implies first child being a boy and the second child being a girl and so on
disp("To find: probability(PM) that both children are boys ");
//7.5(b).i
L=S(:,1:3) //reduced sample space if it is known that one of the children is a boy
PM=1/length(L)
//7.5(b).ii
R=S(:,1:2) //reduced sample space if it is known that the older child is a boy
PM=1/length(R)
|
2f529c9f58b4bc239480eae036f6696865466a73
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1913/CH1/EX1.23/ex23.sce
|
9b1762a6fbf130d4f8bd52ec495e60a4d866eebf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 817
|
sce
|
ex23.sce
|
clc
clear
//Input data
Z=0.76;//Barometer reading in m
g=9.81;//Gravity in m/sec^2
d=13.6*10^3;//Density of Hg in kg/m^3
Pab=1.2*10^5;//Absolute pressure in N/m^2
do=0.8*1000;//Density of oil in kg/m^3
dw=1000;//Density of water in kg/m^3
dh=13.6*10^3;//Density of Hg in kg/m^3
//calculations
Pa=dh*g*Z;//Atmospheric pressure in N/m^2
Pg=Pab-Pa;//Gauge pressure in N/m^2
Zo=Pg/(do*g);//Height of oil in manometer in m
Pw=Pab-Pa;//Pressure exercted by water in N/m^2
Zw=Pw/(dw*g);//Height of water in manometer in m
P=Pab-Pa;//Pressure of Hg in N/m^2
Zh=P/(d*g);//Height of Hg in manometer in m
//Output
printf('(a)The height of fluid for oil Manometer Zo = %3.2f m \n (b)The height of fluid for water Manometer Zw = %3.2f m \n (c)The height of fluid for Hg Manometer Zh = %3.2f m ',Zo,Zw,Zh)
|
89f8f71fd59b26ee97ce6647de7a69dfa775fb2e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/668/CH3/EX3.3/eg3_3.sce
|
39b2ce6383567b7ede4b542c235f6db787df1777
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 336
|
sce
|
eg3_3.sce
|
u = 8500*10^-4; //in m2/V.s
Nd = 10^17;
new_u = 5000*10^-4;
m0 = 0.91 * 10^-30; //in kg
m = 0.067*m0;
q = 1.6*10^-19;
t1 = m*u/q;
disp(t1,"relaxation time(in s) = ")
t2 = m*new_u/q;
disp(t2, "If the ionized impurities are present, the time (in s) =")
t_imp = t2*t1/(t1-t2);
disp (t_imp,"The impurity-related time (in s) = ")
|
ae2844c5aab833929670f39e445a022ec5bf1920
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/848/CH12/EX12.4/Example12_4.sce
|
e71d977a75d8e5343f533d20a48e42116bc87329
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 372
|
sce
|
Example12_4.sce
|
//clear//
//Caption:Full-width Half-Maximum(FWHM) soliton pulse normalized time
//Example12.4
//page 446
clear;
clc;
close;
Ts = [15e-12,50e-12]; //FWHM soliton pulse width
To = Ts/1.7627;
disp(To*1e12,'Normalized time for FWHM soliton pulse in pico seconds To =')
//Result
//Normalized time for FWHM soliton pulse in pico seconds To = [8.5096727 28.365576]
|
e660ce2d205cc2dbfc6bd0a2f698db08b5977d28
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1319/CH12/EX12.8/i_8.sce
|
13dc21584b5ce50a1de2784997250e1215bd52e4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 304
|
sce
|
i_8.sce
|
//To calculate current ratings and maximum voltage of a rated resistor.
clc;
clear;
P=1;
R=10*(10^3);
// Using Power Equation and Ohm's Law.
V=sqrt(P*R);
I=sqrt(P/R);
disp('volts',V,'The Maximum voltage of the resistor =')
disp('amperes',I,'The Current rating of the resistor =')
|
f77c11da4e79c0bb0fca4ef9fcbd9e6f8167abc6
|
48a400042c41feb1b305da0aff3b8a2ad535bdc1
|
/clang/test/RC99/encoding/utils/goya.tst
|
14e902b79aef8ddd4547811592465872a2e778a1
|
[
"Apache-2.0",
"LLVM-exception",
"NCSA"
] |
permissive
|
Daasin/tpc_llvm
|
d9942f0a031213ba5f23e2053d04c3649aa67b03
|
ece488f96ae81dd9790f07438a949407dc87ef66
|
refs/heads/main
| 2023-07-29T16:10:36.488513
| 2021-08-23T10:38:48
| 2021-09-10T05:48:53
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 387
|
tst
|
goya.tst
|
// RUN: %disasm -mcpu=dali -no-common-header %S/*.o | %tpc_clang -c -x assembler -march=dali - -o %ttest.o
// RUN: %disasm -mcpu=dali -no-common-header -tpc-encoding-info -ignore-mov-dt %S/*.o > %tenc1.txt
// RUN: %disasm -mcpu=dali -no-common-header -tpc-encoding-info -ignore-mov-dt %ttest.o > %tenc2.txt
// RUN: diff %tenc1.txt %tenc2.txt
// RUN: echo $? | FileCheck %s
// CHECK: 0
|
c4d18daf6f6319bf574ff300934a241de44641da
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3311/CH16/EX16.12/Ex16_12.sce
|
64e8213b6b1f192f4d34d91966a07aabfa8fce30
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 429
|
sce
|
Ex16_12.sce
|
// chapter 16
// example 16.12
// Determine supply frequency
// page-1037
clear;
clc;
// given
del=2.5; // in mm (depth of heating)
rho=5E-5; // in ohm-cm (resistivity)
ur=1; // relative permeability
// calculate
del=del*1E-3; // changing unit from mm to m
rho=rho*1E-2; // changing unit from ohm-cm to ohm-m
f=(rho/ur)*(503/del)^2; // calculation of supply frequency
printf("\nThe supply frequency is \t f=%.2f kHz",f*1E-3);
|
2cc08ab0becd488482bc6a8a00c04f127160cfba
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1868/CH9/EX9.5/Ch09Ex5.sce
|
6ddf1d7e4a9e481c212ef6e5628b1caf5c51f90e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 456
|
sce
|
Ch09Ex5.sce
|
// Scilab code Ex9.5: Pg 316 (2005)
clc; clear;
n = 1; // Principal quantum number
Z = 2; // Atomic number of Helium
E_a = (-13.6*Z^2)/n^2; // Energy of the electron in state 'a', eV
E_b = (-13.6*Z^2)/n^2; // Energy of the electron in state 'b', eV
E = E_a + E_b; // Total electronic energy of Helium, eV
printf("\nTotal electronic energy of Helium = %5.1f eV", E);
// Result
// Total electronic energy of Helium = -108.8 eV
|
6f6a20cf7bff3fd29a234e2f2c940f15bd9ef90b
|
a24c640895f1cfb1e3242099f641df51ee10297e
|
/example_programs/inline_functions.tst
|
ef6bb535e906b49f649d40c7a794a30677deeb89
|
[
"CC-BY-3.0"
] |
permissive
|
supermaximo93/Toast-Prototype-Interpreter
|
1c3d981a550f6498bb5fcc8952fdd6a5ae4c71b3
|
13547e96813add755791b33a19a4831f5e338094
|
refs/heads/master
| 2021-01-19T10:58:00.401688
| 2012-03-14T09:18:27
| 2012-03-14T09:18:27
| 3,140,649
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 715
|
tst
|
inline_functions.tst
|
///////////////////////////////////////////////////////////////////////
/////////////// INLINE FUNCTIONS ///////////////
///////////////////////////////////////////////////////////////////////
// These could be pretty dangerous, so in the next version of Toast I might make it so you call them
// a bit like this: inline_func.execute() (assuming that I make the next version object oriented)
let my_func(func) =
let x = 10
func()
print(x)
end
let inline_func = begin
let x = 20
end
my_func(inline_func) // will print 20
let my_result = inline_func() // can also be used as a regular function
print(x) // but it has been inlined into the main program, so now x has been declared
|
56536b81619ac3ba99b853f500d60cd2a6053b20
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2207/CH8/EX8.12.1/ex_8_12_1.sce
|
e9ed4d55b6f9d3da2ffafd0d273058479a4adca0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 509
|
sce
|
ex_8_12_1.sce
|
//Example 8.12.1: back emf ,Required armature voltage and Rated armatuer current
clc;
clear;
close;
//given data :
format('v',7)
TL=45;// in N-M
N=1200;//in rpm
Rf=147;//in ohm
Ra=25;// in ohm
Kv=0.7032;
w=(2*%pi*N)/60;
Vf=220;//in volts
Kt=Kv;
If=Vf/Rf;
T=TL;
Ia=T/(Kt*If);
Eg=Kv*w*If;
disp("part (a)")
disp(Eg,"Back emf,Eg(Volts) = ")
disp("part (b)")
Ea=(Ia*(Ra/100))+Eg;
disp(Ea,"Required armature voltage,Ea(volts) = ")
disp("part (c)")
rac=11191.4/Vf;//
disp(rac,"rated armature current in amperes is")
|
653130d4a1f87a8a898c9d17ef67903bd5281a97
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1430/CH7/EX7.1/exa7_1.sce
|
b3b3db530fa05f47589b52c7b55e2925dcf2c46d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 655
|
sce
|
exa7_1.sce
|
// Example 7.1
// AC Power Calculations
// From Example 6.8 we already found that,
Z=complex(4.8,6.4);
V_m=80;
V_c_m=40;
I_m=10*10^-3;
// The total average power supplied by the source is,
R_omega=4.8*10^3;
R1=40*10^3;
R2=5*10^3;
P=0.5*R_omega*I_m^2; // Average Power
// This power is actually dissipated by 40kohm and 5kohm resistor
P_R1= V_m^2/(2*R1);
P_R2=V_c_m^2/(2*R2);
disp(P,"Total Average Power Dissipation(in Watt)=")
disp(P_R1,"Power dissipated across 40kohm(in Watt)=")
disp(P_R2,"Power dissipated across 5kohm(in Watt)=")
if P==(P_R1+P_R2) then
disp("This shows average power dissipation in the due to all resistors")
end
|
2ecdd02fc3010fb988efe39a758dfa538ac3a402
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1787/CH4/EX4.16/Exa4_16.sce
|
a7743c86672131dcc30c30869a9d39824914707e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 477
|
sce
|
Exa4_16.sce
|
//Exa4.16
clc;
clear;
close;
//given data
Vs=16;//in volts
RL=1.2;//in Kohm
Rs=1;//in Kohm
//If zener open circuited
VL=Vs*RL/(Rs+RL);//in Volts
disp(VL,"When zener open circuited Voltage across load in volts : ");
disp("Since voltage across load VL is less than breakdown voltage of zener diode i.e. VL < Vz. The zener diode will not conduct and VL = 8.73 Volt");
Iz=0;//in mA
disp(Iz,"Zener current in mA : ");
Pz=VL*Iz;//in watts
disp(Pz,"Power in watts : ");
|
88c92d386f201dc7cc4ddcbbffa1e082bf339cd0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/992/CH5/EX5.5/ex5_5.sce
|
b9e289bddfa1724de931fcce18c1a4b0b3e3a52b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 346
|
sce
|
ex5_5.sce
|
//Exa:5.5
clc;
clear;
close;
//Given:
Fmx=107.218;//in MHz
Fmn=107.196;//in MHz
fm=4;//in Khz
swing=Fmx-Fmn;//in MHz
fd=swing/2;
fc=Fmx-fd;
m=(fd*10^3)/fm;
printf("\n\t carrer swing = %f MHz",swing);
printf("\n frequency deviation = %f KHz",fd*10^3);
printf("\n career frequency = %f",fc);
printf("\n modulation index = %f",m);
|
66d2332fb980beb66228cfd1c46e8842dc0424b2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3250/CH7/EX7.3/Ex7_3.sce
|
68c9241d4ad0e1841fb388c56df1aa742e499863
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 276
|
sce
|
Ex7_3.sce
|
clc
// Given that
J = 2 // The threshold value of dose in kJ/cm^3
h = 300 // Height in micro meter
// Sample Problem 3 on page no. 448
printf("\n # PROBLEM 7.3 # \n")
J_o = J*(exp(0.1*sqrt(h)))
printf("\n The minimum level of exposure of the PMMA surface = %f kJ/cm^3",J_o)
|
a8a4bd1db18e3d430b6b29db9c55613928e363ed
|
4a1effb7ec08302914dbd9c5e560c61936c1bb99
|
/Project 2/Experiments/GAssist-Interval-C/results/GAssist-Intervalar-C.abalone-10-1tra/result4s0.tst
|
4910344d53cfff15643308fba3ee2f9f68cb520e
|
[] |
no_license
|
nickgreenquist/Intro_To_Intelligent_Systems
|
964cad20de7099b8e5808ddee199e3e3343cf7d5
|
7ad43577b3cbbc0b620740205a14c406d96a2517
|
refs/heads/master
| 2021-01-20T13:23:23.931062
| 2017-05-04T20:08:05
| 2017-05-04T20:08:05
| 90,484,366
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,541
|
tst
|
result4s0.tst
|
@relation abalone
@attribute Sex{M,F,I}
@attribute Length real[0.075,0.815]
@attribute Diameter real[0.055,0.65]
@attribute Height real[0.0,1.13]
@attribute Whole_weight real[0.002,2.8255]
@attribute Shucked_weight real[0.001,1.488]
@attribute Viscera_weight real[5.0E-4,0.76]
@attribute Shell_weight real[0.0015,1.005]
@attribute Rings{15,7,9,10,8,20,16,19,14,11,12,18,13,5,4,6,21,17,22,1,3,26,23,29,2,27,25,24}
@inputs Sex, Length, Diameter, Height, Whole_weight, Shucked_weight, Viscera_weight, Shell_weight
@outputs Rings
16 9
7 8
10 7
11 9
11 9
11 9
9 9
8 8
10 9
8 8
11 10
9 9
12 9
7 9
9 9
8 8
9 8
13 9
14 10
4 5
11 10
21 10
13 10
10 10
12 9
9 9
10 9
9 8
7 8
11 10
9 7
19 10
10 10
11 9
13 10
18 10
15 9
8 8
13 10
21 10
14 10
7 7
12 9
8 8
11 10
9 9
10 9
15 10
10 9
10 9
16 10
12 9
10 8
9 9
10 9
9 7
19 9
14 9
12 10
15 10
13 10
12 10
9 8
5 5
11 7
7 8
15 9
17 10
9 8
12 8
18 9
7 8
10 8
10 8
6 8
10 8
19 9
14 9
17 9
23 9
16 10
9 8
7 7
4 5
16 8
14 9
9 8
11 8
13 9
12 9
20 10
17 9
14 10
11 10
11 10
5 5
12 10
12 9
6 7
6 7
6 8
9 7
7 7
9 7
6 9
11 10
11 10
6 5
6 7
5 7
6 7
8 7
8 7
7 7
6 8
7 8
8 9
9 9
8 10
9 10
8 10
11 10
4 5
6 7
7 7
8 7
8 9
6 8
9 9
10 9
8 9
8 9
9 9
9 10
9 9
9 10
8 9
8 9
14 10
9 10
10 10
11 10
6 5
5 7
5 7
8 8
9 7
9 9
10 9
9 9
8 9
11 9
11 10
10 10
12 10
10 10
11 10
10 10
11 10
3 5
4 5
5 7
7 7
5 7
7 8
9 9
11 9
11 10
6 7
7 7
7 7
7 7
9 9
8 9
10 10
10 9
10 10
9 9
9 10
13 10
11 10
10 10
9 10
12 10
11 10
5 5
10 10
10 10
9 10
10 10
9 10
8 7
7 7
8 9
9 9
9 9
9 9
9 10
9 9
11 10
15 10
11 9
12 10
10 10
10 10
13 10
13 10
6 5
7 7
8 7
9 9
10 9
5 5
9 7
8 10
10 10
8 9
7 7
9 7
8 9
8 9
9 7
7 8
10 9
7 5
8 8
20 10
9 9
17 10
17 10
7 7
14 10
7 5
8 7
9 9
15 10
8 7
17 10
13 10
18 10
10 8
12 9
14 9
16 8
14 10
10 9
13 10
16 9
10 8
10 8
8 8
11 9
13 9
11 9
20 10
8 8
14 9
8 9
9 9
9 9
10 10
12 10
7 7
7 9
9 9
12 10
5 5
6 7
6 7
7 7
7 7
7 7
7 7
7 9
9 9
9 10
6 7
8 7
7 7
8 7
8 9
8 9
10 9
10 9
10 10
11 9
9 9
13 10
11 10
7 7
8 9
10 10
11 10
5 5
10 9
8 10
9 9
9 10
10 9
10 10
10 9
11 10
11 10
12 10
12 10
6 7
10 9
10 9
9 10
9 9
9 9
13 10
11 10
6 5
8 7
10 9
10 9
9 9
15 10
15 10
10 10
6 8
5 5
10 9
14 7
12 10
11 9
13 8
12 9
18 10
11 9
13 9
12 9
11 7
12 8
12 8
8 5
15 9
16 10
6 5
7 7
6 7
8 9
8 9
10 10
10 10
3 5
6 7
8 7
10 10
6 7
6 7
8 7
8 7
8 9
8 9
10 10
9 10
11 9
9 10
11 10
11 10
8 7
8 7
8 7
7 7
10 9
11 9
9 10
12 9
10 10
11 10
11 10
12 10
10 10
11 10
7 7
7 7
9 7
9 7
10 10
10 9
11 9
9 9
8 9
8 10
10 10
9 9
11 10
9 8
15 10
7 9
12 9
12 10
4 5
13 9
9 7
11 10
6 7
10 10
8 7
7 7
10 9
8 9
13 10
13 10
9 10
13 10
11 10
9 10
11 10
7 7
8 7
9 9
8 9
10 9
10 10
|
096f2548ff5295f3f47006195010227769831395
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2282/CH2/EX2.16/ex2_16.sce
|
ef93477a0e492e4881c0dfc20111af3078ce8fbe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 332
|
sce
|
ex2_16.sce
|
// Example 2.16, page no-49
clear
clc
A1=12000 //first Apogee distance
P=8000 // Perigee distance
v1=1 // assume v1 as 1
v2=1.2*v1 //20% higher than v1
x=(v2/v1)^2
k=(((1+(P/A1))/x)-1)
k=floor(k*10^4)/10^4
A2=P/k
printf("A2 = %.0fkm",ceil(A2))
|
71544bce19d1ef553a695deddec144e20b141f16
|
f5f41d427e165a46b51c8b06f6c2010b4213033a
|
/Scilab/19mcmi23jan17program5.sce
|
3d92bd841886b189a6c52e0eab20cc17477f581c
|
[] |
no_license
|
rissuuuu/IT_LAB
|
a40f6ea5311f5d8012364cfa3d3ad37d83be3afd
|
8d0f44a2b8b20ed1101c34a5cb263e6229c200cc
|
refs/heads/master
| 2021-01-03T05:06:49.877644
| 2020-02-12T07:42:44
| 2020-02-12T07:42:44
| 239,934,733
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 356
|
sce
|
19mcmi23jan17program5.sce
|
clc;
clear all;
clf();
lambda=2;
x=grand(1000000,1,"exp",1/lambda);
xmax=max(x);
histplot(40,x,style=2);
x=linspace(0,max(xmax),100);
plot2d(x,lambda*exp(-lambda*x),strf="000",style=5)
legend(["Exponential random simple histogram" "exact density curve"]);
xlabel("Sample value");
ylabel("Exponential output values");
title("Exponential distribution data")
|
17fb4ebb50a648c693ac614c48faa7f4d0b26ca2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/593/CH6/EX6.11/ex6_11.sce
|
7dc8bbf0af535fb1f7abd33a953151c4fb58aa99
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 390
|
sce
|
ex6_11.sce
|
clear;
//clc();
// Example 6.11
// Page: 121
printf("Example-6.11 Page no.-121\n\n");
//***Data***//
x_b = 0;
x_a = 1;
// We have
//dv_a/dx_a = 3*x_b^(2)+2*x_b
// We have the equation
// dv_b/dx_a = -(dv_a/dx_a)/(x_b/x_a)
// So
// dv_b/dx_a = -(x_a/x_b)*(3*x_b^(2)+2*x_b)
dv_b_by_dx_a = x_a*(-3*x_b-2);
printf("Value of the dv_b/dx_a at x_b =0 is %0.0f",dv_b_by_dx_a);
|
2274250115cbd04d99a5c10f099983620c089b1e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2594/CH4/EX4.6/Ex4_6.sce
|
e783dd3fea32c1391041f661b682e7155caddef6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 958
|
sce
|
Ex4_6.sce
|
clc
Nd=5*10^16
disp("Nd = "+string(Nd)+"cm^-3") //initializing value of donor ion concentration.
Na=0
disp("Na = "+string(Na)+"cm^-3") //initializing value of acceptor ion concentration.
no=1.5*10^10
disp("no = "+string(no)+"cm^-3") //initializing value of electron and hole concentration per cm^3.
n1=5*10^14
disp("n* = "+string(n1)+"cm^-3") //initializing value of excess electron carrier concentration.
p1=5*10^14
disp("p* = "+string(p1)+"cm^-3") //initializing value of excess hole carrier concentration.
KT=0.0259
disp("KT = "+string(KT)) //initializing value of thermal voltage.
Ef_Efi=(KT*log(Nd/no))
disp("thermal equilibrium fermi level,(Ef_Efi)=(KT*log(n/no)))="+string(Ef_Efi)+"eV")//calculation.
Efn_Efi=log((Nd+n1)/no)*KT
disp("Excess carrier concentration ,(Efn_Efi)=(KT*log((n+n*)/no))="+string(Efn_Efi)+"eV")//calculation.
Efi_Efp=log((Na+p1)/no)*KT
disp("(Ef_Efi)=(KT*log((p+p*)/no))="+string(Efi_Efp)+"eV")//calculation.
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.