blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3bf72c758d1f85638f1d963168d3d39f945b5a77
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/278/CH4/EX4.11/ex_4_11.sce
|
4bbe0ce2c8bb74d158202b5be830e2861af770b2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,052
|
sce
|
ex_4_11.sce
|
clc
//solution
//given
lc=3000//mm//length of steel and copper bar
lst=3000//mm//length of steel bar
Ec=105//kN/mm^2//young's modulus of copper
Est=210//kN/mm^2//young's modulus of steel
b=25//mm//width
t=12.5//mm//thickness
P=50//kN//load applied
//refer fig 4.14 in book
//let dl be increace in length of compound bar
Ast=b*t//mm^2//area of steel bar
Ac=b*t//mm^2//area of copper bar
Pc=(P*Ec)/(Ec+Est)//kN//load taken by copper bar
Pst=P-Pc//kN//load taken by steel bar
dl=(Pc*lc)/(Ac*Ec)//mm//change in length
//stresses produced in individual bars are
//since strain produced are same therefore
//(Fst/Est)=(Fc/Ec)//since Est=2Ec,therefore Fst(stress in steel)=2*Fc(stress in copper)
P=Pst+Pc//(Fst*Ast)+(Fc*Ac)//Ast=Ac//Fst=2Fc,therefore gievn equation can ve written as
//50=2*Fc*Ac+(Fc*Ac)
Fc=50/(3*Ac)//N/mm^2//stress in copper bar
Fst=2*Fc//N/mm^2//stress in steel bar
printf("the change in lentgth of compound bar is,%f mm\n",dl)
printf("the stress in copper bar is ,%f kN/mm^2\n",Fc)
printf("the stress in steel bar is , %f kN/mm^2",Fst)
|
8066eed6d23b205fdf3ebcf6c14555a683c97476
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2102/CH3/EX3.7/exa_3_7.sce
|
481180bebf4d40e73d273e2d0b0c155e713766ca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 468
|
sce
|
exa_3_7.sce
|
// Exa 3.7
clc;
clear;
close;
// Given data
n=2;
V_T=26;// in mV
Io= 30;// in mA
// (i) when
I_D= 0.1;// in mA
V_D= n*V_T*log(I_D/Io);// in mV
disp(V_D,"(i) When I_D is 0.1 mA, The junction forward-bias voltage in mV is : ")
// (ii) when
I_D= 10;// in mA
V_D= n*V_T*log(I_D/Io);// in mV
disp(V_D,"(ii) When I_D is 10 mA, The junction forward-bias voltage in mV is : ")
// Note: There is calculation error in the book so answer in the book is wrong.
|
52fed44bbbc8304855ac831bbd1d9e4132c5d191
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1373/CH3/EX3.33/Chapter3_Example33.sce
|
3d3432dc50d96e681ef6945fe943394c735ada62
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 979
|
sce
|
Chapter3_Example33.sce
|
//Chapter-3, Example 3.33, Page 117
//=============================================================================
clc
clear
//INPUT DATA
k=200;//Thermal conductivity of aluminium in W/m.K
t=0.001;//Thickness of fin in m
L=0.015;//Width of fin in m
D=0.025;//Diameter of the tube in m
Tb=170;//Fin base temperature in degree C
Ta=25;//Ambient fluid temperature in degree C
h=130;//Heat transfer coefficient in W/m^2.K
//CALCULATIONS
Lc=(L+(t/2));//Corrected length of fin in m
r1=(D/2);//Radius of tube in m
r2c=(r1+Lc);//Corrected radius in m
Am=t*(r2c-r1);//Corrected area in m^2
x=Lc^(3/2)*sqrt(h/(k*Am));//x for calculating efficiency
n=0.82;//From fig. 3.18 on page no. 112 efficiency is 0.82
qmax=(2*3.14*(r2c^2-r1^2)*h*(Tb-Ta));//Maximum heat transfer in W
qactual=(n*qmax);//Actual heat transfer in W
//OUTPUT
mprintf('Heat loss per fin is %3.2f W',qactual)
//=================================END OF PROGRAM==============================
|
692f49ee6d1ca93dc80572600c4770b3f2960f37
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/623/CH1/EX1.1.30/U1_C1_30.sce
|
6f36fdea2aa86cf5bfceeb6d28e9e64eaae33fc4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 369
|
sce
|
U1_C1_30.sce
|
//variable initialization
RestEnergy=0.51 //rest energy of electron (Mev)
//calculation of minimum energy of a gamma ray photon which is required to produce an electron positron pair
E=2*RestEnergy; //minimum energy of gamma ray photon (Mev)
printf("\nMinimum energy required = %.2f Mev",E);
|
6611ca797e5fffc5dd80becc9a3264c44af89e8a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2150/CH6/EX6.25/ex6_25.sce
|
0b7cc50227eb7310c48b4aa1aa130dc660eb7a76
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 326
|
sce
|
ex6_25.sce
|
// Exa 6.25
clc;
clear;
close;
// Given data
I_DSS = 20;// in mA
V_P = 4;// in V
I_D = I_DSS;// in mA
disp(I_D,"The maximum drain current in mA is");
V_GS = -V_P;// in V
disp(V_GS,"The gate source cut off voltage in volts is");
R_DS = V_P/I_DSS;// in kΩ
disp(R_DS*10^3,"The value of ohmic resistance in Ω is");
|
cf425c8341ad44c2a672c2430911743561432460
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2606/CH11/EX11.16/ex11_16.sce
|
2be1a7036c72574105e9613be16712b25c17e372
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 859
|
sce
|
ex11_16.sce
|
//Page Number: 11.21
//Example 11.16
clc;
//(b)I(X;Y)
//Given
a=0.5;
p=0.1;
//As we know
//P(Y)=P(X)*P(Y/X)
//We have
PX=[a (1-a)];
PYbyX=[(1-p) p;p (1-p)];
PY=PX*PYbyX;
//As H(Y)=-Sum of[P(yi)log2P(yi)]
//Where i=0 to n;
HofY=0;
for i=1:2
HofY=HofY+(PY(i)*log2(PY(i)));
end
//For BSC, I(X;Y)=H(Y)+plog2(p)+(1-p)log2(1-p)
IXY=-HofY+[(p*log2(p))+((1-p)*log2(1-p))];
disp(IXY,'I(X;Y) for a=0.5 and p=0.1:');
//(c)I1(X;Y)
//Given
a1=0.5;
p1=0.5;
//As we know
//P(Y)=P(X)*P(Y/X)
//We have
PX1=[a1 (1-a1)];
PYbyX1=[(1-p1) p1;p1 (1-p1)];
PY1=PX1*PYbyX1;
//As H(Y)=-Sum of[P(yi)log2P(yi)]
//Where i=0 to n;
HofY1=0;
for i=1:2
HofY1=HofY1+(PY1(i)*log2(PY1(i)));
end
//For BSC, I(X;Y)=H(Y)+plog2(p)+(1-p)log2(1-p)
IXY1=-HofY1+(p1*log2(p1))+((1-p1)*log2(1-p1));
disp(IXY1,'I(X;Y) for a=0.5 and p=0.5:');
|
f4ef7849aabdf39483caa50e9afdd903fdf42f2e
|
1bb72df9a084fe4f8c0ec39f778282eb52750801
|
/test/PG25IE.prev.tst
|
ef67f26504a3dcfd00aab522195cd3466d285d5c
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/ramath
|
498adfc7a6d353d4775b33020fdf992628e3fbff
|
b09b48639ddd4709ffb1c729e33f6a4b9ef676b5
|
refs/heads/master
| 2023-08-17T00:10:37.092379
| 2023-08-04T07:48:00
| 2023-08-04T07:48:00
| 30,116,803
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 7,941
|
tst
|
PG25IE.prev.tst
|
[[2,0,0,2,0],[0,-2,1,-1,-1],[2,0,1,1,1]] [4,-3,5] [12,-5,13]*3 [24,-7,25]*7 [40,-9,41]*13 [60,-11,61]*21 [84,-13,85]*31 [112,-15,113]*43
[[-2,2,2,0,0],[0,2,1,-2,-1],[-2,2,1,-2,-1]] [1,0,-1]*2 [-8,15,-17] [-45,28,-53]*2 [-352,135,-377] [-475,132,-493]*2 [-2088,455,-2137] [-2009,360,-2041]*2
[[2,0,2,0,0],[0,0,2,0,1],[2,0,2,0,1]] [4,3,5] [40,9,41] [180,19,181] [544,33,545] [1300,51,1301] [2664,73,2665] [4900,99,4901]
[[-2,0,2,0,0],[0,0,2,0,-1],[-2,0,2,0,-1]] [0,1,-1] [-24,7,-25] [-144,17,-145] [-480,31,-481] [-1200,49,-1201] [-2520,71,-2521] [-4704,97,-4705]
[[-2,-2,2,0,0],[0,-2,1,2,-1],[-2,-2,1,2,-1]] [-1,0,-1]*2 [-40,-9,-41] [-99,-20,-101]*2 [-608,-105,-617] [-725,-108,-733]*2 [-2952,-385,-2977] [-2695,-312,-2713]*2
[[-2,0,0,2,0],[0,2,1,1,-1],[-2,0,-1,1,-1]] [0,1,-1]*3 [-4,3,-5]*7 [-12,5,-13]*13 [-24,7,-25]*21 [-40,9,-41]*31 [-60,11,-61]*43 [-84,13,-85]*57
[[-2,2,2,-2,0],[0,-2,1,2,-1],[-2,2,1,-2,1]] [0,0,0] [-4,-3,-5]*3 [-12,-5,-13]*8 [-24,-7,-25]*15 [-40,-9,-41]*24 [-60,-11,-61]*35 [-84,-13,-85]*48
[[-2,-2,2,2,0],[0,2,1,-2,-1],[-2,-2,1,2,1]] [0,0,0] [-12,5,-13]*3 [-24,7,-25]*8 [-40,9,-41]*15 [-60,11,-61]*24 [-84,13,-85]*35 [-112,15,-113]*48
[[-2,0,2,0,0],[0,2,1,-1,0],[-2,0,1,-1,0]] [0,1,-1]*2 [-4,3,-5]*6 [-12,5,-13]*12 [-24,7,-25]*20 [-40,9,-41]*30 [-60,11,-61]*42 [-84,13,-85]*56
[[-2,0,2,0,0],[0,2,-1,-1,0],[-2,0,1,1,0]] [0,0,0] [-12,5,-13]*2 [-24,7,-25]*6 [-40,9,-41]*12 [-60,11,-61]*20 [-84,13,-85]*30 [-112,15,-113]*42
[[2,2,0,0,0],[0,2,1,0,0],[2,2,1,0,0]] [4,3,5] [12,5,13]*4 [24,7,25]*9 [40,9,41]*16 [60,11,61]*25 [84,13,85]*36 [112,15,113]*49
[[-2,2,0,0,0],[0,-2,1,0,0],[-2,2,-1,0,0]] [0,-1,-1] [-4,-3,-5]*4 [-12,-5,-13]*9 [-24,-7,-25]*16 [-40,-9,-41]*25 [-60,-11,-61]*36 [-84,-13,-85]*49
[[-1,2,2,-2,-1],[0,2,-2,-2,0],[-1,2,0,-2,-1]] [0,-1,-1]*2 [3,4,-5] [-8,15,-17]*2 [-105,88,-137] [-168,95,-193]*2 [-805,348,-877] [-816,287,-865]*2
[[-1,-2,2,2,-1],[0,2,2,-2,0],[-1,-2,0,2,-1]] [0,1,-1]*2 [-21,20,-29] [-56,33,-65]*2 [-345,152,-377] [-408,145,-433]*2 [-1645,492,-1717] [-1488,385,-1537]*2
[[-1,1,2,-1,-1],[0,2,-2,-2,0],[-1,1,0,1,1]] [0,-1,1]*2 [-3,4,-5] [-4,3,-5]*10 [-15,8,-17]*11 [-12,5,-13]*38 [-35,12,-37]*29 [-24,7,-25]*82
[[-1,0,2,0,-1],[0,2,0,-2,0],[-1,0,0,0,1]] [0,0,0] [-3,4,-5]*3 [-4,3,-5]*16 [-15,8,-17]*15 [-12,5,-13]*48 [-35,12,-37]*35 [-24,7,-25]*96
[[-1,-1,2,1,-1],[0,2,2,-2,0],[-1,-1,0,-1,1]] [0,1,-1]*2 [-3,4,-5]*5 [-4,3,-5]*22 [-15,8,-17]*19 [-12,5,-13]*58 [-35,12,-37]*41 [-24,7,-25]*110
[[-1,2,1,-2,0],[0,0,2,-2,-2],[-1,2,1,-2,-2]] [0,-1,-1]*2 [0,1,-1]*2 [-12,5,-13]*2 [-60,11,-61]*2 [-180,19,-181]*2 [-420,29,-421]*2 [-840,41,-841]*2
[[-1,-1,1,-2,0],[0,2,0,0,2],[1,1,1,0,2]] [-3,4,5] [-4,3,5]*6 [-15,8,17]*7 [-12,5,13]*26 [-35,12,37]*21 [-24,7,25]*62 [-63,16,65]*43
[[1,0,2,0,0],[0,0,2,0,2],[1,0,2,0,2]] [3,4,5] [12,5,13]*2 [99,20,101] [144,17,145]*2 [675,52,677] [684,37,685]*2 [2499,100,2501]
[[-1,0,2,0,0],[0,0,2,0,-2],[-1,0,2,0,-2]] [1,0,-1] [-4,3,-5]*2 [-63,16,-65] [-112,15,-113]*2 [-575,48,-577] [-612,35,-613]*2 [-2303,96,-2305]
[[-1,1,1,2,0],[0,2,0,0,-2],[-1,1,-1,0,-2]] [1,0,-1]*3 [0,1,-1]*14 [-3,4,-5]*13 [-4,3,-5]*42 [-15,8,-17]*31 [-12,5,-13]*86 [-35,12,-37]*57
[[-1,-2,1,2,0],[0,0,2,2,-2],[-1,-2,1,2,-2]] [0,1,-1]*2 [-12,5,-13]*2 [-60,11,-61]*2 [-180,19,-181]*2 [-420,29,-421]*2 [-840,41,-841]*2 [-1512,55,-1513]*2
[[-1,2,1,-2,0],[0,-2,2,2,-2],[-1,2,-1,-2,2]] [0,0,0] [0,-1,-1]*6 [-3,-4,-5]*8 [-4,-3,-5]*30 [-15,-8,-17]*24 [-12,-5,-13]*70 [-35,-12,-37]*48
[[-1,-2,1,2,0],[0,2,2,-2,-2],[-1,-2,-1,2,2]] [0,0,0] [-4,3,-5]*6 [-15,8,-17]*8 [-12,5,-13]*30 [-35,12,-37]*24 [-24,7,-25]*70 [-63,16,-65]*48
[[-1,1,1,-1,0],[0,-2,2,0,0],[-1,1,-1,1,0]] [0,0,0] [-3,-4,-5]*2 [-4,-3,-5]*12 [-15,-8,-17]*12 [-12,-5,-13]*40 [-35,-12,-37]*30 [-24,-7,-25]*84
[[-1,1,2,0,0],[0,2,0,-2,0],[-1,1,0,-2,0]] [1,0,-1]*2 [0,1,-1]*12 [-3,4,-5]*12 [-4,3,-5]*40 [-15,8,-17]*30 [-12,5,-13]*84 [-35,12,-37]*56
[[-1,-1,2,0,0],[0,2,0,-2,0],[-1,-1,0,2,0]] [0,0,0] [-4,3,-5]*4 [-15,8,-17]*6 [-12,5,-13]*24 [-35,12,-37]*20 [-24,7,-25]*60 [-63,16,-65]*42
[[1,2,0,0,0],[0,2,2,0,0],[1,2,2,0,0]] [3,4,5] [4,3,5]*8 [15,8,17]*9 [12,5,13]*32 [35,12,37]*25 [24,7,25]*72 [63,16,65]*49
[[-1,0,1,0,0],[0,2,0,0,0],[1,0,1,0,0]] [0,1,1]*2 [-3,4,5]*4 [-4,3,5]*18 [-15,8,17]*16 [-12,5,13]*50 [-35,12,37]*36 [-24,7,25]*98
[[-1,2,0,0,0],[0,-2,2,0,0],[-1,2,-2,0,0]] [1,0,-1] [0,-1,-1]*8 [-3,-4,-5]*9 [-4,-3,-5]*32 [-15,-8,-17]*25 [-12,-5,-13]*72 [-35,-12,-37]*49
[[-1,-1,1,1,0],[0,2,2,0,0],[1,1,1,1,0]] [0,1,1]*4 [-3,4,5]*6 [-4,3,5]*24 [-15,8,17]*20 [-12,5,13]*60 [-35,12,37]*42 [-24,7,25]*112
[[-1,-2,0,-2,1],[0,2,0,-2,0],[-1,-2,-2,2,-1]] [-1,0,-1]*4 [-35,12,-37] [-35,12,-37]*4 [-391,120,-409] [-221,60,-229]*4 [-1739,420,-1789] [-775,168,-793]*4
[[-1,0,1,-2,1],[0,-2,2,0,0],[-1,0,-1,2,-1]] [-1,0,-1] [-15,-8,-17] [-77,-36,-85] [-247,-96,-265] [-609,-200,-641] [-1271,-360,-1321] [-2365,-588,-2437]
[[-1,1,0,-1,1],[0,-2,2,-2,0],[-1,1,-2,1,-1]] [0,-1,-1]*2 [-3,-4,-5]*3 [-4,-3,-5]*14 [-15,-8,-17]*13 [-12,-5,-13]*42 [-35,-12,-37]*31 [-24,-7,-25]*86
[[-1,-2,-1,0,1],[0,0,2,2,0],[1,2,1,0,1]] [-3,4,5] [-35,12,37] [-143,24,145] [-399,40,401] [-899,60,901] [-1763,84,1765] [-3135,112,3137]
[[-1,0,0,0,1],[0,2,0,2,0],[1,0,2,0,1]] [0,1,1]*4 [-3,4,5]*5 [-4,3,5]*20 [-15,8,17]*17 [-12,5,13]*52 [-35,12,37]*37 [-24,7,25]*100
[[-1,2,-1,0,1],[0,0,2,-2,0],[-1,2,-1,0,-1]] [1,0,-1] [-3,4,-5] [-35,12,-37] [-143,24,-145] [-399,40,-401] [-899,60,-901] [-1763,84,-1765]
[[-1,0,0,0,1],[0,0,2,0,0],[1,0,0,0,1]] [0,1,1]*2 [-15,8,17] [-40,9,41]*2 [-255,32,257] [-312,25,313]*2 [-1295,72,1297] [-1200,49,1201]*2
[[-1,-1,0,1,1],[0,2,2,2,0],[1,1,2,1,1]] [0,1,1]*6 [-3,4,5]*7 [-4,3,5]*26 [-15,8,17]*21 [-12,5,13]*62 [-35,12,37]*43 [-24,7,25]*114
[[-1,2,0,2,1],[0,2,0,-2,0],[-1,2,-2,-2,-1]] [1,0,-1]*4 [5,12,-13] [-5,12,-13]*4 [-119,120,-169] [-91,60,-109]*4 [-851,420,-949] [-425,168,-457]*4
[[-1,0,1,2,1],[0,2,2,0,0],[1,0,1,2,1]] [3,4,5] [-7,24,25] [-65,72,97] [-231,160,281] [-589,300,661] [-1247,504,1345] [-2337,784,2465]
[[0,0,0,2,2],[0,0,1,2,0],[0,0,1,2,2]] [4,3,5] [3,4,5]*2 [8,15,17] [5,12,13]*2 [12,35,37] [7,24,25]*2 [16,63,65]
[[0,0,2,0,-2],[0,1,-1,-2,0],[0,-1,1,0,-2]] [0,-1,-1]*2 [1,0,-1]*6 [4,3,-5]*4 [3,4,-5]*10 [8,15,-17]*6 [5,12,-13]*14 [12,35,-37]*8
[[0,0,2,0,-2],[0,1,1,-2,0],[0,1,1,0,-2]] [0,0,0] [3,4,5]*2 [8,15,17]*2 [5,12,13]*6 [12,35,37]*4 [7,24,25]*10 [16,63,65]*6
[[0,0,0,2,-2],[0,0,1,-2,0],[0,0,-1,2,-2]] [0,-1,-1] [1,0,-1]*2 [4,3,-5] [3,4,-5]*2 [8,15,-17] [5,12,-13]*2 [12,35,-37]
[[0,0,0,2,1],[0,0,2,2,0],[0,0,2,2,1]] [3,4,5] [5,12,13] [7,24,25] [9,40,41] [11,60,61] [13,84,85] [15,112,113]
[[0,0,2,-1,-1],[0,2,0,-2,0],[0,2,0,-1,-1]] [0,0,0] [5,12,13] [7,24,25]*2 [9,40,41]*3 [11,60,61]*4 [13,84,85]*5 [15,112,113]*6
[[0,1,1,-1,-1],[0,0,2,2,0],[0,1,1,1,1]] [0,1,1]*4 [3,4,5]*3 [4,3,5]*8 [15,8,17]*5 [12,5,13]*12 [35,12,37]*7 [24,7,25]*16
[[0,0,1,0,-1],[0,0,0,2,0],[0,0,1,0,1]] [0,1,1]*2 [3,4,5] [4,3,5]*2 [15,8,17] [12,5,13]*2 [35,12,37] [24,7,25]*2
[[0,-1,1,1,-1],[0,0,2,-2,0],[0,1,-1,1,-1]] [0,0,0] [-3,4,5] [-4,3,5]*4 [-15,8,17]*3 [-12,5,13]*8 [-35,12,37]*5 [-24,7,25]*12
[[0,0,2,1,-1],[0,2,0,-2,0],[0,-2,0,1,-1]] [1,0,-1]*2 [3,4,-5]*3 [5,12,-13]*4 [7,24,-25]*5 [9,40,-41]*6 [11,60,-61]*7 [13,84,-85]*8
[[0,0,0,2,-1],[0,0,2,-2,0],[0,0,-2,2,-1]] [1,0,-1] [3,4,-5] [5,12,-13] [7,24,-25] [9,40,-41] [11,60,-61] [13,84,-85]
[[0,0,2,2,0],[0,1,2,0,0],[0,1,2,2,0]] [4,3,5] [3,4,5]*4 [8,15,17]*3 [5,12,13]*8 [12,35,37]*5 [7,24,25]*12 [16,63,65]*7
[[0,0,2,-2,0],[0,-1,2,0,0],[0,-1,2,-2,0]] [0,1,-1] [1,0,-1]*4 [4,-3,-5]*3 [3,-4,-5]*8 [8,-15,-17]*5 [5,-12,-13]*12 [12,-35,-37]*7
[[0,0,2,1,0],[0,2,2,0,0],[0,2,2,1,0]] [3,4,5] [5,12,13]*2 [7,24,25]*3 [9,40,41]*4 [11,60,61]*5 [13,84,85]*6 [15,112,113]*7
[[0,0,2,-1,0],[0,-2,2,0,0],[0,-2,2,-1,0]] [1,0,-1] [3,-4,-5]*2 [5,-12,-13]*3 [7,-24,-25]*4 [9,-40,-41]*5 [11,-60,-61]*6 [13,-84,-85]*7
[[0,1,0,-1,0],[0,0,2,0,0],[0,1,0,1,0]] [0,1,1]*2 [3,4,5]*2 [4,3,5]*6 [15,8,17]*4 [12,5,13]*10 [35,12,37]*6 [24,7,25]*14
#---> reslines=58
|
3e435c69a63683bbf77c18ed5ec0ab7a12e3b664
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/blog/bow/bow.11_7.tst
|
4cebab93e4e782a430e944649959650276ca2136
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,037
|
tst
|
bow.11_7.tst
|
11 2:0.3333333333333333 7:0.5 10:0.2 22:0.07692307692307693 45:0.3333333333333333 66:0.125 104:0.2857142857142857 303:1.0 305:1.0 559:1.0 670:1.0
11 49:0.07692307692307693 113:1.0 149:0.5 224:1.0 257:1.0 279:0.5 1060:1.0
11 22:0.07692307692307693 45:0.3333333333333333 128:0.25 132:0.5 149:0.5 195:0.5 311:0.3333333333333333 421:1.0 909:1.0
11 257:1.0 264:1.0 392:1.0
11 22:0.07692307692307693 347:1.0 783:0.5 947:1.0 1087:1.0
11 21:0.14285714285714285 39:1.0 104:0.14285714285714285 257:1.0 419:0.5 534:2.0 1217:1.0 1300:3.0
11 7:0.5 36:0.125 77:0.5 1541:0.5
11 2:0.3333333333333333 7:1.0 36:0.125 66:0.25 70:0.2 72:0.5 77:0.5 229:1.0 251:0.5 257:1.0 268:1.0 298:0.5 381:0.5 1086:1.0
11 2:0.3333333333333333 22:0.07692307692307693 381:1.0 415:1.0
11 27:0.023255813953488372 49:0.07692307692307693 91:0.2 105:1.0 311:0.6666666666666666 391:1.0 419:0.3333333333333333 421:1.0 1538:1.0
11 2:0.3333333333333333 7:1.0 22:0.07692307692307693 66:0.125 91:0.2 104:0.14285714285714285 132:0.5 321:1.0 374:1.0 415:1.0 833:1.0 892:1.0
11 1:0.2 2:0.3333333333333333 7:1.0 21:0.8571428571428571 22:0.15384615384615385 36:0.25 104:0.14285714285714285 149:0.5 233:0.2 251:0.5 381:0.5 506:1.0 534:1.0 1124:1.0
11 2:0.3333333333333333 7:1.0 36:0.125 66:0.25 70:0.2 72:0.5 77:0.5 229:1.0 251:0.5 257:1.0 268:1.0 298:0.5 381:0.5 1086:1.0
11 2:0.3333333333333333 22:0.07692307692307693 381:1.0 415:1.0
11 77:0.5
11 868:0.3333333333333333
11 1181:1.0
11 21:0.14285714285714285 45:0.3333333333333333 77:0.5 91:0.2 104:0.14285714285714285 116:0.5 195:0.5 244:1.0 257:1.0 265:1.0 311:0.6666666666666666 419:0.16666666666666666 506:1.0 602:1.0 1015:1.0 1097:1.0 1099:1.0
11 7:0.5 22:0.07692307692307693 45:0.6666666666666666 58:0.3333333333333333 104:0.14285714285714285 195:0.5 311:0.6666666666666666 419:0.16666666666666666 421:1.0 1096:1.0 1099:1.0 1179:1.0 1257:1.0
11 15:1.0 16:1.0 21:0.2857142857142857 22:0.07692307692307693 72:0.5 104:0.14285714285714285 107:0.16666666666666666 303:1.0 311:0.6666666666666666 448:1.0 506:1.0 1022:1.0 1218:1.0
11 2:0.3333333333333333 21:0.14285714285714285 35:1.0 49:0.07692307692307693 91:0.2 153:1.0 195:0.5 303:1.0 311:0.3333333333333333 740:0.5 1175:1.0 1176:1.0
11 2:0.3333333333333333 7:0.5 21:0.14285714285714285 22:0.15384615384615385 54:0.3333333333333333 104:0.2857142857142857 113:1.0 130:1.0 143:0.5 257:1.0 290:0.5 311:0.3333333333333333 392:1.0 506:1.0 509:0.2 1200:1.0 1663:1.0
11 2:0.3333333333333333 71:0.3333333333333333 91:0.2 104:0.14285714285714285 309:1.0 311:0.3333333333333333 421:1.0
11 22:0.07692307692307693 47:1.0 268:0.5 311:0.3333333333333333 874:1.0 1015:1.0 1383:1.0
11 195:0.5 311:0.3333333333333333
11 2:0.3333333333333333 7:0.5 21:0.14285714285714285 22:0.07692307692307693 40:0.25 45:0.3333333333333333 66:0.125 71:0.3333333333333333 77:0.5 104:0.14285714285714285 115:1.0 195:1.0 270:0.3333333333333333 311:0.6666666666666666 394:1.0 443:1.0 599:1.0 1138:1.0 1139:1.0 1182:1.0
11 47:1.0 54:0.3333333333333333 195:0.5 211:0.3333333333333333 303:1.0 311:0.3333333333333333 1015:1.0 1179:1.0
11 2:0.3333333333333333 22:0.07692307692307693 40:0.25 104:0.14285714285714285 149:0.5 311:0.3333333333333333 411:1.0 421:1.0 818:1.0 1085:1.0
11 21:0.14285714285714285 22:0.07692307692307693 40:0.25 93:1.0 195:0.5 509:0.2 1077:1.0 1090:1.0 1176:1.0 1529:1.0
11 7:0.5 22:0.07692307692307693 45:0.3333333333333333 66:0.125 195:0.5 374:1.0 545:1.0 685:1.0 1083:1.0 1179:1.0 1301:1.0 1701:1.0
11 1:0.2 2:0.3333333333333333 7:0.5 21:0.14285714285714285 53:0.14285714285714285 104:0.14285714285714285 290:0.5 311:0.3333333333333333 419:0.16666666666666666 509:0.2 998:0.5 1098:1.0
11 86:0.3333333333333333 91:0.2 265:1.0 1083:1.0 1104:1.0
11 104:0.14285714285714285 443:1.0 1622:1.0
11 21:0.14285714285714285 257:1.0 868:0.3333333333333333 1083:1.0 1659:1.0
11 40:0.25 66:0.25 67:1.0 104:0.2857142857142857 127:1.0 128:0.25 307:1.0 311:0.3333333333333333 506:1.0 902:1.0 1118:1.0
11 91:0.2 104:0.2857142857142857 303:1.0 506:1.0 1174:1.0
11 104:0.14285714285714285 257:1.0 264:0.5 483:1.0 1120:1.0
|
2b0142fb0495b7c345646c5a51fd4bb9cb42c731
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3755/CH6/EX6.10/Ex6_10.sce
|
f200b33dfa38dd1921197cd73a5df3ec4919381e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 426
|
sce
|
Ex6_10.sce
|
clear
//
//
//
//Variable declaration
h=6.6*10^-34; //planck's constant(J-sec)
m=9.1*10^-31; //mass of electron(kg)
c=3*10^8; //velocity of light(m/sec)
lamda=0.82*10^-10; //wavelength(m)
//Calculations
E=h*c/lamda; //energy(J)
lamda=h*10^10/sqrt(2*m*E); //wavelength of photo-electron(angstrom)
//Result
printf("\n wavelength of photo-electron is %0.1f angstrom",lamda)
|
d41f908c1b6a943703bd9e71a0c8e93cc9dfa965
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/14/CH6/EX6.10/example_6_10.sce
|
083536e6dd27ff481668659f0457e492d8e1be8f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,508
|
sce
|
example_6_10.sce
|
//Chapter 6
//Example 6.10
//Page 159
//impedance
//run clear command then execute dependancy file and then the source file
//dependency file is pucalc.sci
clc;
//Given
P_g = 300e6;
V_g = 20e3;
X11_g = 0.20;
l = 64;
V_m = 13.2e3;
P_m1 = 200e6;
P_m2 = 100e6;
X11_m = 0.20;
T1_P = 350e6;
T1_vht = 230e3;
T1_vlt = 20e3;
x_T1 = 0.10;
T2_1_P = 100e6;
T2_1_vht = 127e3;
T2_1_vlt = 13.2e3;
x_T2 = 0.10;
x_line = 0.5;//ohm per km
V_base = V_g;
P_base = P_g;
//Calculations
T2_P = 3*T2_1_P;
T2_vht = sqrt(3)*T2_1_vht;
T2_vlt = T2_1_vlt;
V_base_line = (T1_vht/T1_vlt)*V_base;
V_base_m = V_base_line * (T2_vlt/T2_vht);
x_T1_base = x_T1 * (P_base/T1_P);
x_T2_base = x_T2 * (T2_vlt/V_base_m);
z_line_base = (V_base_line)^2/P_base;
x_line_pu = x_line * l / z_line_base;
X11_m1_pu = pucalc(X11_m,V_m,V_base_m,P_base,P_m1);
X11_m2_pu = pucalc(X11_m,V_m,V_base_m,P_base,P_m2);
//Reactance diagram is given in xcos file
disp('Base Voltages in different parts of circuit')
printf("\n Generator voltage = %.0f kV",V_g/1e3)
printf("\n Line voltage = %.0f kV",V_base_line/1e3)
printf("\n Motor voltage = %.1f kV \n\n\n",V_base_m/1e3)
disp('Base reactance in different parts of circuit')
printf("\n Transformer 1 reactance = %.4f per unit",x_T1_base)
printf("\n Transformer 2 reactance = %.4f per unit",x_T2_base)
printf("\n Line reactance = %.4f per unit",x_line_pu)
printf("\n Motor 1 reactance = %.4f per unit",X11_m1_pu)
printf("\n Motor 2 reactance = %.4f per unit",X11_m2_pu)
//impedance diagram is shown in the xcos file
|
2a0259e87743678d382c2c9a2ad1ce955bf3dcb1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3831/CH9/EX9.3/Ex9_3.sce
|
36301b55d3a54378933c85b097ae5d769bca1e6a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 501
|
sce
|
Ex9_3.sce
|
// Example 9_3
clc;funcprot(0);
// Given data
m=0.800;// kg/s
V_1=93.0;// m/s
// Station 1
p_1=97.0;// kPa
T_1=80.0;// °C
// Station 2
p_2=101.3;// kPa
g_c=1;// The gravitational constant
c_p=523;// J/(kg.K)
R=208;// J/(kg.K)
// Calculation
T_2=(T_1+273.15)+((V_1^2)/(2*g_c*c_p));// K
S_p=m*((c_p*log(T_2/(T_1+273.15)))-(R*log(p_2/p_1)));// The rate of entropy production within the diffuser in W/K
printf("\nThe rate of entropy production within the diffuser,S_p=%1.2f W/K",S_p);
|
211195f36dcfb561d3b1561d562b732f9656c464
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1946/CH2/EX2.14.b/Ex_2_14_b.sce
|
e552a0c2ec115094e03043133b3211c99363d9f1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 378
|
sce
|
Ex_2_14_b.sce
|
// Example 2.14.b:Maximum Core Readius
clc;
clear;
close;
n1=1.48;//Waveguide Refractive Index
d= 0.01;// Cange in core-cladding refractive index
a=2;// parabolic refractive index
h=1.3;//wavelngth in micro meters
v= 2.4*sqrt(1+(2/a));//maximum value of normalised frequence
a= (v*h)/(2*%pi*n1*sqrt(2*d));//Core Radius
disp(a,"maximum core radius in micro meters")
|
6ce106f53c497b1e6e766b6284b035954fbfddfa
|
56d4d4aee2dd5e0be8e7805d12846ed56080efd2
|
/examples/5.tst
|
fca9ea004ecf6f8fbd06f6bdd085c8a335f21086
|
[] |
no_license
|
vrthra/minimize-ts
|
e07f0c8f7140b8671f9aaf96b98a435f53902be2
|
2b698bfaf471252611967ced3ad90282971ad4f8
|
refs/heads/master
| 2021-01-01T05:07:44.586313
| 2016-04-27T02:27:58
| 2016-04-27T02:27:58
| 57,173,856
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 49
|
tst
|
5.tst
|
# careful.
t1 m1
t2 m1 m2
t3 m2
=T:3 M:2 t:1 m:1
|
885117e0bd28b8c4500e0eb64ebe2fe65c556f86
|
e2ae697563b1b764d79ea1933b555ab0d5e3849c
|
/macros/stepdetails.sci
|
04d719c215a813a7e27f019e333905af5a8a15d7
|
[] |
no_license
|
gq-liu/IPDesignLab
|
c49b760740f47ec636232a6947aecb3c0626518a
|
b2f9a9eecad6616c99a2ec20fcceb14fb3ed0c3f
|
refs/heads/master
| 2022-01-18T13:30:55.972779
| 2019-05-06T17:23:12
| 2019-05-06T17:23:12
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,613
|
sci
|
stepdetails.sci
|
function stepdetails(resp)
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
// Authors
// Holger Nahrstaedt - 2010
// Ishan Pendharkar - 2001-2007
//
//RLTOOL for scilab (c) Ishan Pendharkar.
//function calculates response parameter of step response.
// resp is the response vector computed by csim
[m,n]=size(resp);
flag=0;
finval=resp(n); //final value
ess=string(clean(1-abs(finval),1e-5)); // steady state erorr
[overshoot,tpeak]=max(resp); // peak overshoot (if at all!!)
if( clean(abs(overshoot-finval),1e-4) >0 & (finval*overshoot)>0 ) then
flag=1; //YES there is overshoot!
perovershoot=string((overshoot-finval)/finval*100); //percentage over shoot
tpeak=string(tpeak*tstep); //peak time
else perovershoot='No Overshoot';
tpeak= 'None';
end;
//****************damping ration calculations
if flag==1 then //there is overshoot
tmp=(%pi/(log(overshoot-finval)))^2+1;
tmp=1/tmp;
zeta=string(sqrt(tmp));
else
zeta='overdamped'
end
//*********Settling time calculations************************
band=0.03*abs(resp(n)) // 3% tolerance band
for i=1:n-2
if (abs( resp(n)-resp(n-i) )) >band then,
ts=string((n-i)*tstep);
tmp=n-i;
break
else ts='Couldnot resolve settling time.'
tmp=0;
end;
end;
if tmp>n-5 then ts='not settled. Select a larger time.';
tmp=[];
end;
if tmp<>[] then, // if not unstable then display!
messagebox([
'Final Value (on the plot): '+string(finval);
'Error (as seen on plot): '+ess;
'Percent Peak Overshoot : '+perovershoot;
'Damping ratio (2nd order approx): '+zeta;
'Peak Time (sec): '+tpeak ;
'Setting Time (sec): '+ts ;
' '],"modal");
else
messagebox(['System is unstable or output has not settled';'Increase simulation time in Settings->Step Response'],"modal");
end;
//return
endfunction
|
6fa2785cac98ea595f6b5584e1408ed6c62cc2fd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2513/CH5/EX5.1/5_1.sce
|
19738abd177f6dfa63a6abb22654cd586a0358d5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 359
|
sce
|
5_1.sce
|
clc
//initialisation of variables
t1=5.25//yr
t2=10.00//yr
yi=171000//in
ye=111000//in
yt=5.23300//in
yl=5.04532//in
yn=31500//in
ym=0.09853//in
tm=9.25//yr
tn=10.00//yr
//CALCULATIONS
T=t1/t2//yr
T1=tm/tn//yr
Y=yi-ye//in
Yt=yt-yl//in
//RESULTS
printf('the fifth intercensal year =% f yr',T)
printf('the ninth postcensal year =% f yr',T1)
|
9483b2c5d3e862e4adf90da174c050e137f30652
|
19fd40cb94855327f6f4db1330b2ccec188b13cb
|
/Codigos_Scilab/aphi_sup.sce
|
bf38ab0e6aa9b1cb1a137c3143f9614e5f7800c4
|
[] |
no_license
|
Afcam/Materiais-Eletricos-Magneticos
|
6e22194419f2704f5e49c4dc9f5b282ccabafc11
|
0fb3c8847a7c5a8ee9d46d7be1280eceefe08c79
|
refs/heads/master
| 2023-07-24T21:50:12.675217
| 2018-05-11T13:27:25
| 2018-05-11T13:27:25
| 126,596,938
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,024
|
sce
|
aphi_sup.sce
|
//programa: aphi_sup.sce
//Superposição em Poço 1D de Potenciais Infinitos
clear;
N = 100; //Número de Pontos
L = 1e-9;//[m]
x = linspace(0,L,N);//[m]
h = 6.626e-34; //[J.s]
hb = h/(2*%pi);
m = 9.1e-31; //[kg]
A = sqrt(2/L);
n1 = 1; //Nível de Energia-1
n2 = 2; //Nível de Energia-2
kn1 = n1*%pi/L; //[rad/m]
kn2 = n2*%pi/L; //[rad/m]
wn1 = (hb*(kn1^2))/(2*m); //[rad/s]
wn2 = (hb*(kn2^2))/(2*m); //[rad/s]
fn1 = wn1/(2*%pi);
Tn1 = 1/fn1;
dx = x(2)-x(1);
dt = Tn1/100 //[s]
scf(1)
plot(x,0*x);
f=gcf();
a=get("current_axes");
a.data_bounds=[0,-1.2*A;L,1.2*A];
t = 0;
while( t < 10*Tn1 )
t = t + dt;
phi1 = ((A*sin(kn1*x))*exp(-%i*wn1*t));
phi2 = ((A*sin(kn2*x))*exp(-%i*wn2*t));
phi = (1/sqrt(2))*(phi1 + phi2);
p = abs(phi).^2;
pn = (A/max(p))*p; //Normalizada
drawlater;
scf(1);
clf(1);
plot(x,real(phi),'r',x,imag(phi),'g');
plot(x,pn,'b');
a=get("current_axes");
a.data_bounds=[0,-1.2*A;L,1.2*A];
drawnow;
end
|
a5a52921f0a12850347bac4457712b701a16a977
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2969/CH13/EX13.10/Ex13_10.sce
|
c09f61b5f01af421f91ce03ac110be541032f739
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,007
|
sce
|
Ex13_10.sce
|
clc
clear
//DATA GIVEN
P=400; //maximum value of force that can be developed in N
mu=0.25; //coefficient of friction
d=0.6; //diameter of drum in m
//Refer the figure
theta=180+45; //angle of contact in degrees
theta=theta*(%pi)/180; //theta converted into radians
//moments about A, Ma=0,
T1=P*1/0.5;
//(i)Drum is rotating anticlockwise
//T1>T2 (T1/T2)=e^(mu*theta)
T2=T1/(%e^(mu*theta));
Mcac=(T1-T2)*(d/2); //maximum braking torquethat can be developed in N
//(i)Drum is rotating clockwise
//T2>T1 (T2/T1)=e^(mu*theta)
T2=T1*(%e^(mu*theta));
Mcc=(T2-T1)*(d/2); //maximum braking torquethat can be developed in N
printf(' (i) The Maximum braking torque that can be developed in anticlockwise direction is: %3.0f Nm. \n',Mcac);
printf(' (ii) The Maximum braking torque that can be developed in clockwise direction is: %3.1f Nm. \n',Mcc);
|
4c590f682377ad19add8cdf535427b0a1dabfcef
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2006/CH5/EX5.16/ex5_16.sce
|
55d20839eae6bb508ad59b9743475ba2b00ba68b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,166
|
sce
|
ex5_16.sce
|
clc;
p1=3; // Pressre of air at state 1 in bar
p2=p1; // constant pressure process
T1=450; // Temperature of air at state 1 in kelvin
T2=1250; // Temperature of air at state 2 in kelvin
T3=1000; // Temperature of air at state 3 in kelvin
V3=50; // Velocity of air at state 3 in m/s
T4=800; // Temperature of air at state 4 in kelvin
Cpo=1.0035; // Specific heat at constant pressure in kJ/kg K
// (a).Combustion chamber
q=Cpo*(T2-T1); // Heat added to air
disp ("kJ/kg (round off error)",q,"Heat added to air = ","(a).Combustion chamber");
// (b).Turbine
k=1.4; // Index of adiabatic process
w=Cpo*(T2-T3)-V3^2/2000; // Work done
disp ("kJ/kg (round off error)",w,"Work done = ",("(b).Turbine)"));
// (c).Nozzle
V4=sqrt (2*Cpo*10^3*(T3-T4)+V3^2); // Velocity of air leaving the nozzle
disp ("m/s (round off error)",V4,"Velocity of air leaving the nozzle = ","(c).Nozzle");
// (d).Pressure drop
p3=p2*(T3/T2)^(k/(k-1)); // Pressure of air leaving turbine
p4=p3*(T4/T3)^(k/(k-1)); // Pressure of air leaving nozzle
disp ("bar ",p4,"Pressure of air leaving nozzle = ","bar",p3,"Pressure of air leaving turbine = ","(d).Pressure drop");
|
1e512a91f1faa4419a57c85b3da7a5bd0121e3e5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1748/CH1/EX1.20/Exa1_20.sce
|
57c7626796a10c897992714b1f075aa60d2e9e34
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 743
|
sce
|
Exa1_20.sce
|
//Exa 1.20
clc;
clear;
close;
//given data
cos_fi=0.8;//unitless
fi=acosd(cos_fi);
tan_fi=tand(fi);//unitless
//For Alternator A :
cos_fi_A=0.9;//unitless
fi_A=acosd(cos_fi_A);
tan_fi_A=tand(fi_A);//unitless
//Formula : Active load, KW=V*I*cos_fi
//Formula : Reactive load, KVAR=V*I*sin_fi
ActiveLoad=8000;//in KW
ReactiveLoad=ActiveLoad*tan_fi;//in KVAR
//For A:
ActiveLoadA=5000;//in KW
ReactiveLoadA=ActiveLoadA*tan_fi_A;//in KVAR
//For B :
ActiveLoadB=ActiveLoad-ActiveLoadA;//in KW
ReactiveLoadB=ReactiveLoad-ReactiveLoadA;//in KVAR
tan_fi_B=ReactiveLoadB/ActiveLoadB;//unitless
fi_B=atand(tan_fi_B);//in degree
cos_fi=cosd(atand(tan_fi_B));//unitless
disp("Power factor of the other machine : "+string(cos_fi));
|
4b03acbe8058bd5bf5edcf470363f8b222ffa370
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Materials_Science_R._S._Khurmi_And_R._S._Sedha_2153.zip/Materials_Science_R._S._Khurmi_And_R._S._Sedha_2153/CH3/EX3.24/ex_3_24.sce
|
10f161b5bc1a17bc492ced5d51b97d3145911f66
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 261
|
sce
|
ex_3_24.sce
|
errcatch(-1,"stop");mode(2);//Example 3.24 : concentration of iron
;
;
format('v',9)
//given data :
d=7.87;
N=6.023*10^23; // avogadro's number
A=55.85;// atomic weight
I=A/N;// mass of iron atom
atom=d/I;
disp(atom,"number of atoms(atoms/cm^3) = ")
exit();
|
35ad128756a13412bd1ca95058261978a41c835d
|
59b742e36fbe9d77cb51ec949c6625f665133d2b
|
/Resultados/results_LocGlo_21/results/21/l20-2/result2s0.tst
|
530b3ed3d0f07e5905e3108227584ad6be58e326
|
[] |
no_license
|
Tiburtzio/TFG
|
3132fd045de3a0e911e2c9e23e9c46e1075a3274
|
864ce4dd00b7f8fe90eafa65b11d799c5907177e
|
refs/heads/master
| 2023-01-03T12:44:56.269655
| 2020-10-24T18:37:02
| 2020-10-24T18:37:02
| 275,638,403
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,637
|
tst
|
result2s0.tst
|
@relation unknow
@attribute COMPACTNESS real[73.0,119.0]
@attribute CIRCULARITY real[33.0,59.0]
@attribute DISTANCECIRCULARITY real[40.0,112.0]
@attribute RADIUSRATIO real[104.0,333.0]
@attribute PRAXISASPECTRATIO real[47.0,138.0]
@attribute MAXLENGTHASPECTRATIO real[2.0,55.0]
@attribute SCATTERRATIO real[112.0,265.0]
@attribute ELONGATEDNESS real[26.0,61.0]
@attribute PRAXISRECTANGULAR real[17.0,29.0]
@attribute LENGTHRECTANGULAR real[118.0,188.0]
@attribute MAJORVARIANCE real[130.0,320.0]
@attribute MINORVARIANCE real[184.0,1018.0]
@attribute GYRATIONRADIUS real[109.0,268.0]
@attribute MAJORSKEWNESS real[59.0,135.0]
@attribute MINORSKEWNESS real[0.0,22.0]
@attribute MINORKURTOSIS real[0.0,41.0]
@attribute MAJORKURTOSIS real[176.0,206.0]
@attribute HOLLOWSRATIO real[181.0,211.0]
@attribute class{van,saab,bus,opel}
@inputs COMPACTNESS,CIRCULARITY,DISTANCECIRCULARITY,RADIUSRATIO,PRAXISASPECTRATIO,MAXLENGTHASPECTRATIO,SCATTERRATIO,ELONGATEDNESS,PRAXISRECTANGULAR,LENGTHRECTANGULAR,MAJORVARIANCE,MINORVARIANCE,GYRATIONRADIUS,MAJORSKEWNESS,MINORSKEWNESS,MINORKURTOSIS,MAJORKURTOSIS,HOLLOWSRATIO
@outputs class
@data
van van
van van
bus bus
van van
bus bus
van van
saab van
saab opel
opel van
van van
saab opel
van van
bus bus
bus bus
opel opel
van van
saab bus
bus bus
bus bus
bus bus
van van
bus bus
opel opel
van van
van van
van van
saab saab
bus bus
van van
saab opel
bus bus
bus bus
opel van
opel opel
saab saab
saab saab
van van
van van
saab saab
bus bus
saab opel
van van
opel opel
bus bus
van van
van van
opel saab
bus bus
van van
opel saab
bus bus
bus bus
opel van
bus bus
saab saab
van van
saab van
van van
van van
bus bus
bus bus
bus bus
van van
opel opel
van van
saab opel
saab saab
saab saab
saab saab
bus bus
bus bus
opel saab
saab opel
saab saab
saab opel
opel opel
opel van
opel van
opel opel
bus bus
van van
bus bus
bus bus
bus bus
bus van
bus bus
opel saab
saab saab
van van
bus bus
saab opel
saab saab
van van
opel opel
bus bus
bus bus
van van
saab opel
opel opel
saab opel
opel saab
saab saab
van van
opel opel
van van
van van
opel opel
bus bus
van van
bus van
saab opel
bus bus
opel opel
saab saab
van van
saab opel
opel opel
opel saab
opel van
opel van
opel opel
opel saab
saab van
van van
saab opel
bus bus
opel saab
opel saab
opel opel
opel opel
bus bus
saab opel
saab opel
saab opel
bus bus
bus bus
van van
saab saab
opel opel
opel opel
van van
saab saab
saab saab
bus bus
saab saab
opel opel
van van
bus bus
opel opel
saab opel
saab opel
saab saab
bus bus
van van
bus bus
saab saab
van van
opel opel
saab opel
bus bus
opel saab
van van
opel van
opel opel
bus bus
opel opel
opel opel
saab saab
van van
|
a733d31c9feb37ca5117f92ec63b6bda9a20d9e1
|
17dd6e9c9459b72f85b0a71f73e670abf1ca9f4e
|
/Wiskunde1/cursus/oud/figuren/telproblemen/permutaties.sce
|
16c3519eb0db6b244c2700840fc26f1590e608d5
|
[] |
no_license
|
Woumpousse/KHL
|
e80c9a00bf71321539b218d8ec047883a9c2fc91
|
066a06c131c617e8be9ec6ac2f4c76b637aba34e
|
refs/heads/master
| 2020-12-24T13:18:20.656259
| 2014-09-29T16:14:00
| 2014-09-29T16:14:00
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 685
|
sce
|
permutaties.sce
|
function r=swap(s,x,y)
// wissel in vector s element x en y van plaats
r=s;
r(y)=s(x);
r(x)=s(y);
endfunction
function permutatie(n)
// vind alle permutaties van 1...n
// in lexicografische volgorde
s=1:n;
disp(s);
for i=2:factorial(n)
m=n-1;
while s(m)>s(m+1)
// zoek het eerste element dat kleiner is dan het
// tweede te beginnen van rechts
m=m-1;
end
k=n;
while s(m)>s(k)
// vind het meest rechtse element s(k)
// waarbij s(m)<s(k)
k=k-1;
end
s=swap(s,m,k);
p=m+1;
q=n;
while p<q
s=swap(s,q,p);
p=p+1;
q=q-1;
end
disp(s)
end
endfunction
permutatie(3)
|
90ed5e10d77813473a408d1b3034655dda5e1038
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/331/CH10/EX10.5/Example_10_5.sce
|
5bc57292587f98fccd30d160b5d077de415b0c5a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 999
|
sce
|
Example_10_5.sce
|
//Caption: Forecasting
//Simple Moving Average Method
//Example10.5
//Page381
clear;
clc;
Dt = [24,30,27,24,39,45,42,51];//Demand Di
n = length(Dt);//Month (t)
//Three months moving average
for i = 3:n
Mt(i-2) = mean(Dt([(i-2):i]));
end
disp(Mt,'Three Months moving average Mt=')
for i = 1:length(Mt)-1
Ft(i) = Mt(i);
et(i) = Dt(i+3)-Ft(i);
end
disp(Ft,'Forecast Ft=')
disp(et,'Error et=')
MAD = sum(abs(et(:)))/length(et);
disp(MAD,'Mean Absolute Deviation MAD=')
MFE = sum(et(:))/length(et);
disp(MFE,'Mean Forecast Error MFE=')
//Result
// Three Months moving average Mt=
//
// 27.
// 27.
// 30.
// 36.
// 42.
// 46.
//
// Forecast Ft=
//
// 27.
// 27.
// 30.
// 36.
// 42.
//
// Error et=
//
// - 3.
// 12.
// 15.
// 6.
// 9.
//
// Mean Absolute Deviation MAD=
//
// 9.
//
// Mean Forecast Error MFE=
//
// 7.8
|
1ef855614c559d214cc58d3f587ddd70b4382876
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/551/CH4/EX4.61/61.sce
|
e201c6b9bdf3b20a9d236e398ee5b4e32f0552da
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 143
|
sce
|
61.sce
|
clc
h1=2776.4; //kJ/kg
h2=h1;
h_f1=884.6; //kJ/kg
h_fg1=1910.3; //kJ/kg
x1=(h1-h_f1)/h_fg1;
disp("Initial dryness fraction = ")
disp(x1)
|
eb5913479ebf05d440337a421e9025c7f3f9f965
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/545/CH4/EX4.10/ch_4_eg_10.sce
|
65b89e903a8dff9df1949c6c2bea4cb0c47c583f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,750
|
sce
|
ch_4_eg_10.sce
|
clc
disp("the solution of eg 4.10 -->Series of Stirred Tanks with Coil Heaters")
Cp=2000,A=1,U=200,m=1000,mdot=2,Ts=250 //given data
T0=20, T1=0, T2=0, T3=0
//from energy balances for the tanks we have accumulation=inlet-outlet
T1_steady=(mdot*Cp*(T0)+U*A*(Ts))/(mdot*Cp+U*A)
disp(T1_steady,"the steady state temperature of tank 1 is");
T2_steady=(mdot*Cp*(T1_steady)+U*A*(Ts))/(mdot*Cp+U*A)
disp(T2_steady,"the steady state temperature of tank 2 is");
T3_steady=(mdot*Cp*(T2_steady)+U*A*(Ts))/(mdot*Cp+U*A)
disp(T3_steady,"the steady state temperature of tank 3 is");
final_T3=.99*T3_steady
function dT1_by_dt=f1(t,T1,T2,T3),
dT1_by_dt=(mdot*Cp*(T0-T1)+U*A*(Ts-T1))/(m*Cp),
endfunction
function dT2_by_dt=f2(t,T1,T2,T3),
dT2_by_dt=(mdot*Cp*(T1-T2)+U*A*(Ts-T2))/(m*Cp),
endfunction
function dT3_by_dt=f3(t,T1,T2,T3),
dT3_by_dt=(mdot*Cp*(T2-T3)+U*A*(Ts-T3))/(m*Cp),
endfunction
T1=20,T2=20,T3=20
//solving by Newton's Method
for t=0:1:10000,
h=1 //step increment of 1
k1=h*f1(t,T1,T2,T3)
l1=h*f2(t,T1,T2,T3)
m1=h*f3(t,T1,T2,T3)
k2=h*f1(t+h/2,T1+k1/2,T2+l1/2,T3+m1/2)
l2=h*f2(t+h/2,T1+k1/2,T2+l1/2,T3+m1/2)
m2=h*f3(t+h/2,T1+k1/2,T2+l1/2,T3+m1/2)
k3=h*f1(t+h/2,T1+k2/2,T2+l2/2,T3+m2/2)
l3=h*f2(t+h/2,T1+k2/2,T2+l2/2,T3+m2/2)
m3=h*f3(t+h/2,T1+k2/2,T2+l2/2,T3+m2/2)
k4=h*f1(t+h,T1+k3,T2+l3,T3+m3)
l4=h*f2(t+h,T1+k3,T2+l3,T3+m3)
m4=h*f3(t+h,T1+k3,T2+l3,T3+m3)
T1=T1+(k1+2*k2+2*k3+k4)/6
T2=T2+(l1+2*l2+2*l3+l4)/6
e1=abs(T3-final_T3)
if e1<1e-3 then disp(t,"the approx. time when Temperature in 3rd tank is 99% of steady value is"); break
end
T3=T3+(m1+2*m2+2*m3+m4)/6
end
|
8299ae8ccd59895af70abfc25ca97a58bc2b778e
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set4/s_Design_With_Operational_Amplifiers_And_Analog_Integrated_Circuits_S._Franco_929.zip/Design_With_Operational_Amplifiers_And_Analog_Integrated_Circuits_S._Franco_929/CH6/EX6.8.a/Example6_8_a.sce
|
f225aebd97fd40eab37257b35b2f1a8f195820d3
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 188
|
sce
|
Example6_8_a.sce
|
errcatch(-1,"stop");mode(2);//Example 6.8(a)
;
;
Vs=15;
A=10;
Vim=0.5;
SR=0.5*10^6;
Vom=A*Vim;
fmax=SR/(2*%pi*Vom);
printf("fmax=%.f kHz",fmax*10^(-3));
exit();
|
c8d05290d0b4e8b5233a71dd5aaf384e456c7cf3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3020/CH4/EX4.7/ex4_7.sce
|
3308c6bbcc41aa9c9ca66a7bded123659b346f50
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 412
|
sce
|
ex4_7.sce
|
clc;
clear all;
V = 120000; // Volume of hall in cubic meters
T = 1.5; // Reverberation time
TSA = 25000; // Total absorbing surface area in square meters
A = (0.163*V)/T
TA = A/TSA;//The average absorbing power of the surface
disp('Sabine',TA,'The average absorbing power of the surface is ')
// Slight variation in answer compared to textbook.. there is mistake in book.. checked in calculator also..
|
f3ef15e6b5274c718683867a130543ca8a1736eb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3784/CH4/EX4.5/Ex4_5.sce
|
dc497ae3eec8258ce9889f42563ee6fb2072d5a2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 407
|
sce
|
Ex4_5.sce
|
clc
//Variable Initialisation
Ea=220//Input Voltage to armature in volts
N1=1000//Rated Speed of Motor in rpm
N2=500//Speed of Motor in rpm
Ia=24//Armature Current in Ampere
Ra=2//Armature resistance in ohm
Es=230//Source voltage in Volts
//Solution
Eb1=Ea-(Ia*Ra)
Eb2=(N2/N1)*Eb1
E0=Eb2+(1.2*Ia*Ra)
d=E0/Es
printf('\n\n The Duty Ratio=%0.1f\n\n',d)
//The answers vary due to round off error
|
bd5712c99c8047afabb7048068ca3df81f4357a5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1199/CH4/EX4.13/4_13.sci
|
fe28a4371b0fcd4d063ea4092b8dac0264803dfb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 87
|
sci
|
4_13.sci
|
//4.13
clc;
d_rate=100;
fc= 0.5*d_rate;
printf("cutt off frquency =%.1f kHz ",fc)
|
4aed6a41f5306e90d17be9e9b1ed78278b22312b
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1583/CH11/EX11.2/PA_Ex_11_2.sce
|
79eb6f8ff5a32cdeff1b0abf29b9403dd27ea30c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 584
|
sce
|
PA_Ex_11_2.sce
|
clc
//Chapter 11:Power amplifiers
//example 11.2 page no 466
//given
Po=5//max power in watts
Rl=50//load resistance in ohm
//asumme'1:1 truns ratio transformer coupled push pull amplifier each supllying 2.5 watt'
disp('since a push pull amplifier is used, each class B amplifier will supply 2.5W')
Pomax=2.5
Vcc=sqrt(4*Rl*Po)//supply voltage
Ptmax=Pomax*(4/%pi^2)//maximum power handling requriment of the transistor
I=sqrt((4*Pomax)/Rl)//peak output current
mprintf('maximum power handling requriment of the transistor is %d W \n peak output current is %f A ',Ptmax,I)
|
da2ef433ffaf10fcaeaadc5d1c35209b14c8aafe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1862/CH2/EX2.3/C2P3.sce
|
52173975e032a19e02af1d83acc4ee061b4df97d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,077
|
sce
|
C2P3.sce
|
clear
clc
//to find magnitude and direction of resultant of a and b and c vector
// GIVEN::
//coefficient in x direction for vector a
ax = 4.3
//coefficient in y direction for vector a
ay = -1.7
//coefficient in x direction for vector b
bx = -2.9
//coefficient in y direction for vector b
by = 2.2
//coefficient in x direction for vector c
cx = 0
//coefficient in y direction for vector c
cy = -3.6
//we can write a,b and c in vector form
a = [4.3 -1.7]
b = [-2.9 2.2]
c = [0 -3.6]
// SOLUTION:
//coefficient in x direction for resultant vector
sx = ax + bx + cx
//coefficient in y direction for resultant vector
sy = ay + by + cy
//direction of resultant vector
fi = atand(sy/sx)+360
printf ("\n\n Coefficient of resultant vector in x direction sx = \n\n %.1f",sx);
printf ("\n\n Coefficient of resultant vector in y direction sy =\n\n %.1f",sy);
printf ("\n\n Resultant vector s =\n\n %.1fi + %.1fj',sx,sy);
printf ("\n\n Direction of resultant vector with positive x axis measured counterclockwise fi =\n\n %3i degrees",fi);
|
10386025247114c1618e9daca0e2e8bb5f0804ad
|
417f69e36190edf7e19a030d2bb6aa4f15bb390c
|
/SMTTests/tests/ok_bv.tst
|
b893e71c34d37e452288b32f2b2ece8df22a119a
|
[] |
no_license
|
IETS3/jSMTLIB
|
aeaa7ad19be88117c7454d807a944e8581184a66
|
c724ac63056101bfeeb39cc3f366c8719aa23f7b
|
refs/heads/master
| 2020-12-24T12:41:17.664907
| 2019-01-04T10:47:43
| 2019-01-04T10:47:43
| 76,446,229
| 1
| 0
| null | 2016-12-14T09:46:41
| 2016-12-14T09:46:41
| null |
UTF-8
|
Scilab
| false
| false
| 183
|
tst
|
ok_bv.tst
|
; checks bit vector sorts
(set-logic QF_BV)
(declare-fun x () (_ BitVec 4))
(declare-fun y () (_ BitVec 1))
(declare-fun z () (_ BitVec 4))
(assert (= x #b0101 ))
(assert (= z #xa ))
|
d70a9d248e6eaa34d51afa35a6031543cb47476a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/213/CH14/EX14.5/14_5.sce
|
4a856cfcffddcf16e82b89e8573641fc67b2019f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 566
|
sce
|
14_5.sce
|
//To find gyroscopic couple and direction
clc
//Given:
N=1500 //rpm
m=750 //kg
omegaP=1 //rad/s
k=250/1000 //m
//Solution:
//Calculating the angular speed of the rotor
omega=2*%pi*N/60 //rad/s
//Calculating the mass moment of inertia of the rotor
I=m*k^2 //kg-m^2
//Calculating the gyroscopic couple transmitted to the hull
C=I*omega*omegaP/1000 //kN-m
//Results:
printf("\n\n Gyroscopic couple transmitted to the hull, C = %.3f kN-m.\n\n",C)
printf(" When the pitching is upward, the relative gyroscopic couple acts in the clockwise direction.\n\n")
|
9e847d6a5cd90382f9fcf4446aebf975c400f359
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1049/CH4/EX4.22/ch4_22.sce
|
a6185dab96aa276b3a82358e39c8374568497587
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 515
|
sce
|
ch4_22.sce
|
clear;
clc;
V_r=1000; //rating of SCR
I_r=200; //rating of SCR
V_s=6000; //rating of String
I_s=1000; //rating of String
disp("when DRF=.1");
DRF=.1;
n_s=V_s/(V_r*(1-DRF)); printf("number of series units=%.0f",ceil(n_s));
n_p=I_s/(I_r*(1-DRF)); printf("\nnumber of parrallel units=%.0f",ceil(n_p));
disp("when DRF=.2");
DRF=.2;
n_s=V_s/(V_r*(1-DRF)); printf("number of series units=%.0f",ceil(n_s));
n_p=I_s/(I_r*(1-DRF)); printf("\nnumber of parrallel units=%.0f",ceil(n_p));
|
907a71714ac113caea5dd6869146773280cc90cb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2471/CH6/EX6.9/Ex6_9.sce
|
72f78c3f3a6e760ad8b95e9c8ada801d1c9fd73d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 802
|
sce
|
Ex6_9.sce
|
clear ;
clc;
// Example 6.9
printf('Example 6.9\n\n');
printf('Page No. 157\n\n');
// given
P = 10;// Boiler pressure in bar
Ts = 180;// Steam temperature in degree celcius
Tf = 80;// Feed water temperature in degree celcius
X = 0.95;// Steam dryness fraction
m_s = 4100;// steam rate in kg/h
m_f = 238;// Gas rate in kg/h
G_CV = 53.5*10^6;// In J/kg
N_CV = 48*10^6;//in J/kg
//from steam table,AT 10 bar and at temperature T = Ts
h2 = (763+(X*2013))*10^3;//Specific enthalpy of steam in J/kg
//At temperature T = Tf
h1 = 335*10^3;//Specific enthalpy of feed steam in J/kg
E_G = ((m_s*(h2-h1)*100)/(m_f*G_CV));//
printf('The gross efficiency percentage is %.0f \n',E_G)
E_N = ((m_s*(h2-h1)*100)/(m_f*N_CV));//
printf('The net efficiency percentage is %.0f',E_N)
|
a7b43d4d0c35e60a431f8abab8a3a7b412443bf3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1019/CH4/EX4.3/Example_4_3.sce
|
ef65c4050a5c718e51b04cbc7bc55e8830736681
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 389
|
sce
|
Example_4_3.sce
|
//Example 4.3 (b)
clear;
clc;
//Given
a=1.24;//alpha at 290K and 1 atm in 10^-3 K^-1
b=9.3;//beta at 290K and 1 atm in 10^-5 atm^-1
T=290;//temperature in K
delS=2.1;//entropy change in J K^-1 mol^-1
//to calculate the change in molar volume
delV=(delS*b)/(a*100*101.325);//change in molar volume in dm^3 mol^-1
mprintf('change in molar volume = %f dm^3 mol^-1',delV);
//end
|
46e93a74088c43f8e46ac90d53f4e097e521bc36
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/551/CH13/EX13.42/42.sce
|
ac605c087df253347c2fe7a8d47dc541d7a5468f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 303
|
sce
|
42.sce
|
clc
cp=1.11;
T3=883; //K
T2a=529; //K
W_turbine=290.4; //kJ/kg
W_net=48.2; //kJ/kg
Qs=cp*(T3-T2a);
n_thermal=W_net/Qs*100;
disp("Thermal efficiency =")
disp(n_thermal)
disp("%")
W_ratio=W_net/W_turbine; //Work ratio=net work output/Gross work output
disp("Work ratio =")
disp(W_ratio)
|
abf12140055b9b68cfa6f81582f237cbbcb2e4a0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/196/CH6/EX6.1/example_6_1.sce
|
2334fdc7e2691b0aceacaa0fa2344e185dde3c04
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 363
|
sce
|
example_6_1.sce
|
//Chapter 6
//Example 6-1
//ProbOnThresholdVoltage
//Page 149,151, Figure 6-1
clear;clc;
//Given
R1 = 100*10^3 ;
R2 = 86*10^3 ;
Vsatp = 15 ; Vsatm = -15 ;//Saturation voltages
Vut = (R2 * Vsatp)/(R1 + R2);
Vlt = (R2 * Vsatm)/(R1 + R2);
printf ( "\n\n Upper Threshold Voltage = %.4f V ", Vut )
printf ( "\n\n Lower Threshold Voltage = %.4f V ", Vlt )
|
5c48b3a9e8cdea79f39adc718d6f4f46b91b8df9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/632/CH9/EX9.8/example9_8.sce
|
e17fc239858660f88c35b4d59264fe04987bd6fa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 629
|
sce
|
example9_8.sce
|
//clc()
F = 100;//kg
xf = 0.15;
P1 = 80;//% ( Carbonate recovered )
M1 = 106;//(Molecular weight of Na2CO3)
M2 = 286;//(Molecular weight of Na2CO3.10H2O)
x1 = M1 / M2;//(Weight fraction of Na2CO3 in crystals)
Mrecovered = P1 * F * xf / 100;
Wcrystal = Mrecovered / x1;
disp("kg",Wcrystal,"(a)quantity of crystals formed = ")
//Na2CO3 balance gives, F*xf = Wcrystal*x1 + W2*x2
//W2 weight of mother liquor remaining after crystallization
//let M = W2 * x2,therefore
M = F * xf - Mrecovered;
x2 = 0.09;
W2 = M/x2;
W3 = F - Wcrystal - W2;//weight of water evaporated
disp("kg",W3,"(b)Weight of water evaporated = ")
|
0bc6bdfbb214352c3dc18d28026bdff4d4a11ebf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3768/CH9/EX9.1/Ex9_1.sce
|
05d195472d46ac199d2a2333a53178b47d3ac30a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 368
|
sce
|
Ex9_1.sce
|
//Example number 9.1, Page number 202
clc;clear;
close;
//Variable declaration
e=1.6*10**-19; //charge(c)
ni=2.4*10**19; //particle density(per m**3)
mew_e=0.39; //electron mobility(m**2/Vs)
mew_h=0.19; //hole mobility(m**2/Vs)
//Calculation
rho=1/(ni*e*(mew_e+mew_h)); //resistivity(ohm m)
//Result
printf("resistivity is %.5f ohm-m",rho)
|
f7c84cbbfe9b4a6d82c4bff68f6ad04237862f99
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1092/CH7/EX7.4/Example7_4.sce
|
3269a85be8d915ff916cadace2ae63348e9a8040
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,704
|
sce
|
Example7_4.sce
|
// Electric Machinery and Transformers
// Irving L kosow
// Prentice Hall of India
// 2nd editiom
// Chapter 7: PARALLEL OPERATION
// Example 7-4
clear; clc; close; // Clear the work space and console.
// Given data
P1 = 300 ; // Power rating of generator 1 in kW
P2 = 600 ; // Power rating of generator 2 in kW
V = 220 ; // Voltage rating of generator 1 and 2 in volt
V_o = 250 ; // No-load voltage applied to both the generators in volt
// Assume linear characteristics
V_1 = 230 ; // Terminal voltage in volt (case a)
V_2 = 240 ; // Terminal voltage in volt (case b)
// Calculations
// case a
kW1_a = (V_o - V_1)/(V_o - V) * P1 ; // kW carried by generator 1
kW2_a = (V_o - V_1)/(V_o - V) * P2 ; // kW carried by generator 2
// case b
kW1_b = (V_o - V_2)/(V_o - V) * P1 ; // kW carried by generator 1
kW2_b = (V_o - V_2)/(V_o - V) * P2 ; // kW carried by generator 2
// case c
frac_a = (V_o - V_1)/(V_o - V); // Fraction of rated kW carried by each generator
frac_b = (V_o - V_2)/(V_o - V); // Fraction of rated kW carried by each generator
// Display the results
disp("Example 7-4 Solution : ");
printf(" \n a: At 230 V, using Eq.(7-3) below : ");
printf(" \n Generator 1 carries = %d kW ", kW1_a );
printf(" \n Generator 2 carries = %d kW \n", kW2_a );
printf(" \n b: At 240 V, using Eq.(7-3) below : ");
printf(" \n Generator 1 carries = %d kW ", kW1_b );
printf(" \n Generator 2 carries = %d kW \n", kW2_b );
printf(" \n c: Both generators carry no-load at 250 V; ");
printf(" \n %f rated load at %d V; ", frac_b , V_2 );
printf(" \n %f rated load at %d V; ", frac_a , V_1 );
printf(" \n and rated load at %d V. ", V );
|
19782ea2c5aa713cd8b7d23c75dbde525e980ee0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/431/CH3/EX3.16/EX3_16.sce
|
9c2dad4bf7e2a7c315bb0f803e5f4239be5d863e
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 987
|
sce
|
EX3_16.sce
|
//Calculating secondary voltage and voltage regulation
//Chapter 3
//Example 3.16
//page 218
clear;
clc;
disp("Example 3.16")
kVA=10; //rating of the transformer
V1=2000; //primary voltage in volts
V2=400; //secondary voltage in volts
R1=5.5; //primary voltage in ohms
R2=0.2; //secondary voltage in ohms
X1=12; //primary reactance in ohms
X2=0.45; //secondary reactance in ohms
//assuming (V1/V2)=(N1/N2)
Re=R2+(R1*(V2/V1)^2);
printf("equivalent resistance referred to the secondary=%fohms",Re);
Xe=X2+(X1*(V2/V1)^2);
printf("equivalent reactance referred to the secondary=%fohms",Xe);
Ze=sqrt(Re^2+Xe^2);
printf("equivalent impedance referred to the secondary=%fohms",Ze);
phi=acosd(0.8);
Vl=374.5;
printf("\nVoltage across the full load and 0.8 p.f lagging=%fV",Vl);
reg=((V2-Vl)*100)/Vl;
printf("\npercentage voltage regulation=%f percent",reg);
|
ea120d6c76cb9beb0ff9ab58ba3f8e99f073f6b7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1619/CH5/EX5.4.4/Example5_4_4.sce
|
053d15673d38498b8fdda3dc6179683a6eb8d9aa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 571
|
sce
|
Example5_4_4.sce
|
//Example 5.4.4 page 5.15
clc;
clear;
Ts= 10*10^-9;
Tn=9*10^-9;
Tc=2*10^-9;
Td=3*10^-9;
BW= 6*10^6;
Tsyst= 1.1*sqrt(Ts^2+(5*Tn)^2+(5*Tc)^2+Td^2);
Tsyst=Tsyst*10^9;//converting in ns for displying...
Tsyst_max = 0.35/BW;
Tsyst_max=Tsyst_max*10^9;//converting in ns for displying...
printf("Rise system of the system is %.2f ns",Tsyst)
printf("\n\nMaximum Rise system of the system is %.2f ns",Tsyst_max)
printf("\n\nSpecified components give a system rise time which is\n adequate for the bandwidth and distance requirements of the optical fibre link.");
|
a675f6c7eeaeea349d1959fa28399045356ffabd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3768/CH9/EX9.12/Ex9_12.sce
|
20ea090b90004e35c9affd091f6acaafa6c9cd46
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 332
|
sce
|
Ex9_12.sce
|
//Example number 9.12, Page number 208
clc;clear;
close;
//Variable declaration
n=5*10**17; //concentration(m**3)
vd=350; //drift velocity(m/s)
E=1000; //electric field(V/m)
e=1.6*10**-19; //charge(c)
//Calculation
sigma=n*e*vd/E; //conductivity(per ohm m)
//Result
printf("conductivity is %.3f per ohm-m",sigma)
|
521633261e8562f101c27fae46a8e389c9684075
|
f6134e0a162a059c42ec3ef8de2a63941d73936c
|
/Scilab_code/RLG/RLG_Euler.sci
|
cd6fd51268dbd30393e01d137f56b9e685164a56
|
[] |
no_license
|
mxch18/SRL-WRT_pathPlanning
|
38a1701934a4a0e919a6c1c7990092b242df72da
|
6992febbbe103814d2cef5351a0e8917b183a2b0
|
refs/heads/master
| 2020-03-23T06:43:54.155192
| 2018-09-26T17:26:56
| 2018-09-26T17:26:56
| 141,226,032
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 21,451
|
sci
|
RLG_Euler.sci
|
function [P,Q,THETA,SUCCESS,NB_TRY] = RLG_Euler(STANCE,NORMALS,PARAMS)
//Author : Maxens ACHIEPI
//Space Robotics Laboratory - Tohoku University
//Description:
// Cxy,WS_proj_R0,footPlane_Rmat,zFinalInterval,psiInter,thetInter,phiInter
//[]
//INPUT
//STANCE: Row array of the current footholds. Contains struct describing
// footholds:
// *foothold: struct.
// *foothold.leg: string identifying the leg (FR,FL,HR,HL);
// *foothold.pos: row vector. Position of the foot in R0
//PARAMS: a struct containing all the parameters relating to the robot
// geometry, as well as problem-specific parameters:
// *PARAMS.extRad;
// *PARAMS.distApiOb: distances between the leg attachment and the EoF CoM
// *PARAMS.intRad;
// *PARAMS.halfAngle;
// *PARAMS.shellPtsNb;
// *PARAMS.shrink
// *PARAMS.kpxy;
// *PARAMS.kpz;
// *PARAMS.kRz;
// *PARAMS.kRx;
// *PARAMS.tInc;
// *PARAMS.aInc;
// *PARAMS.baseDimensions: (1) on x, (2) on y;
// *PARAMS.legLength: [l1,l2,l3]
// *PARAMS.verbose: %T or %F
//OUTPUT
//P: the base position
//Q: the quaternion defining the rotation
//THETA: the leg's joint angles
//RMAT: the rotation matrix
//SUCCESS: boolean for benchmarking purposes (atm)
//NB_TRY: number of tries to sample a configuration
//TODO : put psi/theta/phi range finding in function
// could you put bounds on phi so that it doesn't flip over? NAH(?)
// put IK in function
// Remove RMAT output
// Change rotation parametrization to full quaternion
//----------------------------------------------------------------------------//
P = 0;Q = 0;THETA = 0;SUCCESS = %F;RMAT = 0;NB_TRY = 1;
//Compute LS-fit plane by ACP
stance_pos_list = STANCE(:).pos;
stance_pos_array = [];
for i=1:size(STANCE,2)
stance_pos_array(i,:) = stance_pos_list(i);
end
foot_nb = size(stance_pos_array,1);
[footPlane_z,footPlane_d,footPlane_or] = plane_ACP(stance_pos_array);
footPlane_z = footPlane_z/norm(footPlane_z);
FL_present = %f;HL_present = %f;FR_present = %f;HR_present = %f;
for i=1:foot_nb
select STANCE(i).leg
case 'FL' then
FL = i;
FL_present = %t;
case 'HL' then
HL = i;
HL_present = %t;
case 'FR' then
FR = i;
FR_present = %t;
case 'HR' then
HR = i;
HR_present = %t;
end
end
if HR_present&FR_present then
footPlane_x = (STANCE(HR).pos-footPlane_or) + 0.5*(STANCE(FR).pos-STANCE(HR).pos);
footPlane_x = projectionPlan(footPlane_x,footPlane_or,footPlane_z);
footPlane_x = footPlane_x - (footPlane_z*footPlane_or')*footPlane_z
footPlane_x = footPlane_x/norm(footPlane_x);
footPlane_y = cross(footPlane_z,footPlane_x);
elseif HL_present&FL_present then
footPlane_x = (STANCE(HL).pos-footPlane_or) + 0.5*(STANCE(FL).pos-STANCE(HL).pos);
footPlane_x = projectionPlan(footPlane_x,footPlane_or,footPlane_z);
footPlane_x = footPlane_x/norm(footPlane_x);
footPlane_y = cross(footPlane_z,footPlane_x);
end
footPlane_Rmat = [footPlane_x;footPlane_y;footPlane_z];
[footPlane_angle,footPlane_vector] = angle_vector_FromMat(footPlane_Rmat);
footPlane_Q = createQuaternion(footPlane_angle,footPlane_vector);
//Compute leg approximate workspaces. Project them on footPlane.
for i = 1:foot_nb
//leg workspace, all points in R0
WSmi_R0 = [];
WSmi_proj_RP = [];
//shell descriptions
shellDesc_i = struct('origin',stance_pos_array(i,:),'extRad',PARAMS.extRad(i),'intRad',PARAMS.intRad(i),'axis',NORMALS(i,:),'halfAngle',PARAMS.halfAngle);
shellDesc(i) = shellDesc_i;
shellDesc_AUG_i = struct('origin',stance_pos_array(i,:),'extRad',PARAMS.extRad(i)+PARAMS.distApiOb(i),'intRad',PARAMS.intRad(i),'axis',NORMALS(i,:),'halfAngle',PARAMS.halfAngle);
shellDesc_AUG(i) = shellDesc_AUG_i;
WSmi_alpha = linspace(0,2*%pi,PARAMS.shellPtsNb);
WSmi_theta = linspace(%pi/2-shellDesc_AUG_i.halfAngle,%pi/2,PARAMS.shellPtsNb);
[x1,y1,z1] = halfSph(shellDesc_AUG_i.origin,shellDesc_AUG_i.extRad,2*WSmi_alpha,WSmi_theta,shellDesc_AUG_i.axis);
WSmi_R0 = [x1',y1',z1'];
if shellDesc_i.intRad then
[x2,y2,z2] = halfSph(shellDesc_AUG_i.origin,shellDesc_AUG_i.intRad,2*WSmi_alpha,WSmi_theta,shellDesc_AUG_i.axis);
WSmi_R0 = [WSmi_R0;x2' y2' z2'];
end
WS_R0(:,:,i) = WSmi_R0;
//projection, all points in RP
for j=1:size(WSmi_R0,1)
v = projectionPlan(WSmi_R0(j,:),footPlane_or,footPlane_z);
WSmi_proj_R0(j,1) = v(1);WSmi_proj_R0(j,2) = v(2);WSmi_proj_R0(j,3) = v(3);
v = footPlane_Rmat*(v'-footPlane_or');
WSmi_proj_RP(j,1) = v(1);WSmi_proj_RP(j,2) = v(2);
end
WS_proj_RP(:,:,i) = WSmi_proj_RP;
WS_proj_R0(:,:,i) = WSmi_proj_R0;
end
//Compute Cxy
Cxy = computeCxy(WS_proj_RP,[1 0;0 1]);
if isnan(Cxy.origin) then
if PARAMS.verbose then
mprintf('Could not compute intersection of workspaces! Stance is probably unreachable...\n');
end
return;
end
//Sample pxy_RP, transform into pxy_R0
kpxy = 0;
while kpxy<PARAMS.kpxy
kpxy = kpxy+1;
kpz = 0;
pxy_RP = sampleInBBox(Cxy,PARAMS.shrink);
pxy_R0 = footPlane_Rmat'*[pxy_RP 0]'+footPlane_or';
if PARAMS.verbose then
mprintf("XY - At iteration %d of %d:\nBase xy_R0 position: [%.4f, %.4f]\n",kpxy,PARAMS.kpxy,pxy_R0(1),pxy_R0(2));
end
zInterval = cell(1,foot_nb);
//Compute intersections of the line perpendicular to footPlane, going through pxy_R0, with the WSmi
line_z = struct('origin',pxy_R0','direction',footPlane_z);
for i=1:foot_nb
[boolInterT_i,tMultiple_i,tInterval_i,d_i]=intersectLineWS(WS_R0(:,:,i),shellDesc_AUG(i),line_z,PARAMS.tInc);
if boolInterT_i then
tInterval(i).entries = createZInterval(tInterval_i,d_i);
if PARAMS.verbose & tMultiple_i then
mprintf(" T - For leg %d, t lies in %d different intervals", i, size(tInterval(i).entries,1));
elseif PARAMS.verbose then
mprintf(" T - For leg %d, t range is: %.4f to %.4f\n",i,tInterval(i).entries(1),tInterval(i).entries(2));
end
else
if PARAMS.verbose then
mprintf(" T - No intersection with leg %d workspace! Resampling pxy_RP...\n",i);
NB_TRY = NB_TRY+1;
end
break;
end
end
if ~boolInterT_i then continue; end
//Sample pz_R0
[tFinalBool,tFinalInterval] = intersectSetIntervals(tInterval);
if ~tFinalBool then
if PARAMS.verbose then
mprintf(" T - t valid intervals do not intersect! Resammpling pxy_RP...\n");
NB_TRY = NB_TRY+1;
end
continue;
end
while kpz<PARAMS.kpz
kpz = kpz+1;
kRz = 0;
t_R0 = sampleFromMultInterval(tFinalInterval);
if PARAMS.verbose then
mprintf('T - At iteration %d of %d:\n Base t_R0 : %.4f\n",kpz,PARAMS.kpz,t_R0);
end
//Compute intersections of Api arcs and WSmi for each rotation parameters
//Rotations are represented by Euler angles (norm ZXY): (psi,Z0);(thet,X1);(phi,Y2)
base_R0 = pxy_R0'+t_R0*line_z.direction;
P = base_R0;
offset_i = [];
xOff = [1 0 0]*PARAMS.baseDimensions(1)/2;
yOff = [0 1 0]*PARAMS.baseDimensions(2)/2;
R_0_EF = footPlane_Rmat; //Transformation matrix between end-eff frame and R0. At first is R_0_plane.
psiInter=cell(1,foot_nb);
arcDesc_psi = struct('origin',base_R0,'normal',[0 0 1]) //rotation around Z0
//First start with (psi,Z0)
for i=1:foot_nb
select STANCE(i).leg
case 'FR' then
offset_i = xOff + yOff;
case 'FL' then
offset_i = - xOff + yOff;
case 'HR' then
offset_i= + xOff - yOff;
case 'HL' then
offset_i = - xOff - yOff;
else
if PARAMS.verbose then
mprintf("Error in the definition of foothold %d : leg name does not exist!\n",i);
end
return;
end
[boolInterPsi_i,psiMultiple_i,psiInter_i] = intersectArcWS(WS_R0(:,:,i),offset_i,R_0_EF,shellDesc(i),arcDesc_psi,PARAMS.aInc);
if boolInterPsi_i then
psiInter(i).entries = createAngleInterval(psiInter_i);
if PARAMS.verbose & psiMultiple_i then
mprintf(" PSI - For leg %d, psi lies in %d different intervals\n", i, size(psiInter(i).entries,1));
elseif PARAMS.verbose then
mprintf(" PSI - For leg %d, psi range is: %.4f to %.4f\n",i,psiInter(i).entries(1),psiInter(i).entries(2));
end
else
if PARAMS.verbose then
mprintf(" PSI - No intersection with leg %d workspace! Resampling pz_0...\n",i);
NB_TRY = NB_TRY+1;
end
break;
end
end
if ~boolInterPsi_i then continue; end
//Sample (psi,Z0)
[psiBoolFinal,psiFinalInterval] = intersectSetIntervals(psiInter);
if ~psiBoolFinal then
if PARAMS.verbose then
mprintf(" PSI - psi valid intervals do not intersect! Resampling z_R0...\n");
NB_TRY = NB_TRY+1;
end
continue;
end
while kRz<PARAMS.kRz
kRz = kRz +1;
kRx = 0;
psi = sampleFromMultInterval(psiFinalInterval);
if PARAMS.verbose then
mprintf("PSI - At iteration %d of %d:\n Base psi: %.4f\n",kRz,PARAMS.kRz,psi);
end
//Rotate base
Rz0 = [cos(psi), -sin(psi), 0;sin(psi), cos(psi) 0;0 0 1];
[Rz0_angle,Rz0_vector] = angle_vector_FromMat(Rz0);
Rz0_Q = createQuaternion(Rz0_angle,Rz0_vector);
R_0_EF = R_0_EF*Rz0;
thetInter=cell(1,foot_nb);
arcDesc_thet = struct('origin',base_R0,'normal',[1 0 0]) //rotation around X1
//Then (thet,X1)
for i=1:foot_nb
select STANCE(i).leg
case 'FR' then
offset_i = xOff + yOff;
case 'FL' then
offset_i = - xOff + yOff;
case 'HR' then
offset_i= + xOff - yOff;
case 'HL' then
offset_i = - xOff - yOff;
else
if PARAMS.verbose then
mprintf("Error in the definition of foothold %d : leg name does not exist!\n",i);
end
return;
end
[boolInterThet_i,thetMultiple_i,thetInter_i] = intersectArcWS(WS_R0(:,:,i),offset_i,R_0_EF,shellDesc(i),arcDesc_thet,PARAMS.aInc);
if boolInterThet_i then
thetInter(i).entries = createAngleInterval(thetInter_i);
if PARAMS.verbose & thetMultiple_i then
mprintf(" THET - For leg %d, theta lies in %d different intervals\n", i, size(thetInter(i).entries,1));
elseif PARAMS.verbose then
mprintf(" THET - For leg %d, theta range is: %.4f to %.4f\n",i,thetInter(i).entries(1),thetInter(i).entries(2));
end
else
if PARAMS.verbose then
mprintf(" THET - No intersection with leg %d workspace! Resampling psi...\n",i);
NB_TRY = NB_TRY+1;
end
break;
end
end
if ~boolInterThet_i then continue; end
//Sample (theta,X1)
[thetBoolFinal,thetFinalInterval] = intersectSetIntervals(thetInter);
if ~thetBoolFinal then
if PARAMS.verbose then
mprintf(" THET - theta valid intervals do not intersect! Resampling psi...\n");
NB_TRY = NB_TRY+1;
end
continue;
end
while kRx<PARAMS.kRx
kRx = kRx +1;
theta = sampleFromMultInterval(thetFinalInterval);
if PARAMS.verbose then
mprintf("THETA - At iteration %d of %d:\n Base theta: %.4f\n",kRx,PARAMS.kRx,theta);
end
//Rotate base
Rx1 = [1, 0, 0;0, cos(theta), -sin(theta);0 sin(theta) cos(theta)];
R_0_EF = R_0_EF*Rx1;
phiInter=cell(1,foot_nb);
arcDesc_phi = struct('origin',base_R0,'normal',[0 1 0]) //rotation around Y2
//Then (phi,Y2)
for i=1:foot_nb
select STANCE(i).leg
case 'FR' then
offset_i = xOff + yOff;
case 'FL' then
offset_i = - xOff + yOff;
case 'HR' then
offset_i= + xOff - yOff;
case 'HL' then
offset_i = - xOff - yOff;
else
if PARAMS.verbose then
mprintf("Error in the definition of foothold %d : leg name does not exist!\n",i);
end
return;
end
[boolInterPhi_i,phiMultiple_i,phiInter_i] = intersectArcWS(WS_R0(:,:,i),offset_i,R_0_EF,shellDesc(i),arcDesc_phi,PARAMS.aInc);
if boolInterPhi_i then
phiInter(i).entries = createAngleInterval(phiInter_i);
if PARAMS.verbose & phiMultiple_i then
mprintf(" PHI - For leg %d, phi lies in %d different intervals\n", i, size(phiInter(i).entries,1));
elseif PARAMS.verbose then
mprintf(" PHI - For leg %d, phi range is: %.4f to %.4f\n",i,phiInter(i).entries(1),phiInter(i).entries(2));
end
else
if PARAMS.verbose then
mprintf(" PHI - No intersection with leg %d workspace! Resampling theta...\n",i);
NB_TRY = NB_TRY+1;
end
break;
end
end
if ~boolInterPhi_i then continue; end
//Sample (phi,Y2)
[phiBoolFinal,phiFinalInterval] = intersectSetIntervals(phiInter);
if ~phiBoolFinal then
if PARAMS.verbose then
mprintf(" PHI - phi valid intervals do not intersect! Resampling theta...\n");
NB_TRY = NB_TRY+1;
end
continue;
end
phi = sampleFromMultInterval(phiFinalInterval);
if PARAMS.verbose then
mprintf("PHI - Base phi: %.4f\n",phi);
end
Ry2 = [cos(phi), 0, sin(phi);0, 1 0;-sin(phi) 0 cos(phi)];
R_0_EF = R_0_EF*Ry2;
RMAT = R_0_EF;
[angle,vector] = angle_vector_FromMat(RMAT);
Q = createQuaternion(angle,vector);
if PARAMS.verbose then
mprintf("\nBase state sampled! Now using closed form IK for the legs...\n");
end
for i=1:foot_nb
select STANCE(i).leg
case 'FR' then
offset_i = xOff + yOff;
R_Leg_EF = [0 1 0;1 0 0;0 0 -1];
factor_t2 = -1;
factor_t3 = -1;
factor_elbow = +1;
case 'FL' then
offset_i = - xOff + yOff;
R_Leg_EF = [0 1 0;-1 0 0;0 0 1];
factor_t2 = +1;
factor_t3 = +1;
factor_elbow = -1;
case 'HR' then
offset_i= + xOff - yOff;
R_Leg_EF = [0 -1 0;1 0 0;0 0 1];
factor_t2 = +1;
factor_t3 = +1;
factor_elbow = -1;
case 'HL' then
offset_i = - xOff - yOff;
R_Leg_EF = [0 -1 0;-1 0 0;0 0 -1];
factor_t2 = -1;
factor_t3 = -1;
factor_elbow = +1;
end
IK_target_RLeg = -R_Leg_EF*offset_i' + R_Leg_EF*R_0_EF'*(STANCE(i).pos'-base_R0'); //the foothold for the ith leg, in the leg base frame
IK_target_array(:,i) = IK_target_RLeg;
THETA(i,1) = atan(IK_target_RLeg(2),IK_target_RLeg(1));
rem = sqrt(IK_target_RLeg(1)**2+IK_target_RLeg(2)**2)-PARAMS.legLength(1);
nc3 = IK_target_RLeg(3)**2+rem**2-PARAMS.legLength(2)**2-PARAMS.legLength(3)**2;
dc3 = 2*PARAMS.legLength(2)*PARAMS.legLength(3);
c3 = nc3/dc3;
bool_ik = abs(c3)>1;
if bool_ik then
if PARAMS.verbose then
mprintf("\nIK - NO SOLUTION FOR LEG %s INVERSE KINEMATICS\n",STANCE(i).leg);
NB_TRY = NB_TRY+1;
end
// return;
break;
end
s3 = factor_elbow*sqrt(1-c3**2); //ELBOw UP
THETA(i,3) = factor_t3*atan(s3,c3);
THETA(i,2) = factor_t2*(atan(IK_target_RLeg(3),rem)-atan(PARAMS.legLength(3)*s3,PARAMS.legLength(2)+PARAMS.legLength(3)*c3))
end
if bool_ik then continue; end
SUCCESS=%T;
// NB_TRY = kRx*kRz*kpz*kpxy;
if PARAMS.verbose then
mprintf("\nSUCCESS!\n");
end
return;
end
if PARAMS.verbose then
mprintf("THET - Reached maximum number of trials, resampling psi...\n");
end
end
if PARAMS.verbose then
mprintf("PSI - Reached maximum number of trials, resampling z...\n");
end
end
if PARAMS.verbose then
mprintf("Z - Reached maximum number of trials, resampling XY...\n");
end
end
if PARAMS.verbose then
mprintf("XY - Reached maximum number of trials, aborting...\n");
end
endfunction
|
72d246ecadcfb1577df0c1f1bc87cdd6206d843d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2078/CH5/EX5.19/Example5_19.sce
|
188b22591dd9a12010bc87599edb2c23ac54749a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 419
|
sce
|
Example5_19.sce
|
//Exa 5.19
clc;
clear;
close;
//Given data :
L=80;//km
f=50;//Hz
Z=(0.15+%i*0.78)*L;//ohm
Y=(%i*5*10^-6)*L;//mho
A=1+1/2*Y*Z;//parameter of 3-phase line
D=A;//parameter of 3-phase line
B=Z*(1+1/4*Y*Z);//parameter of 3-phase line
C=Y;//parameter of 3-phase line
disp(A,"Parameter A : ");
disp(B,"Parameter B : ");
disp(C,"Parameter C : ");
disp(D,"Parameter D : ");
//Answer of B is wrong in the book.
|
b52173e40d8fcde23bd6dd73fb9a2545d972c81c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2339/CH3/EX3.30.1/Ex3_30.sce
|
87212cfdfe6f08d5f28580f5f126e88c663c5d5c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 364
|
sce
|
Ex3_30.sce
|
clc
clear
//Inputs
V1=0.028;
P1=1;
T1=27+273;
n=1.3;
V2=0.0046;
T3=T1;
T2=T1*((V1/V2)^(n-1));
printf('Temperature after compression: %1.2f K',T2);
printf('\n');
P2=P1*((V1/V2)^n);
W=((P1*100*V1)-(P2*100*V2))/(n-1);
printf('Work Done: %1.2f kJ',W);
printf('\n');
P3=(T3*P2)/T2;
printf('Final Pressure: %1.2f bar',P3);
printf('\n');
|
cfd0bd31c5fb745cad5e4992d1f0c6ead9626122
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1962/CH12/EX12.4/example12_4.sce
|
e3f5dcceb32f1070e8fff99af2574b19364396cd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 287
|
sce
|
example12_4.sce
|
//example 12.4
//page 454
clc; funcprot(0);
//initialisation of variable
Q=500/449;
D=8/12;
pi=3.14;
g=32.2;
N=1800;//rpm
A=pi*D^2/4;
V=Q/A;
f=0.022//from chart
HL=V^2/2/g*(12.1+224.9*f);
hs=HL+119.4;
Ns=N*sqroot(Q*449)/hs^0.75;
disp(Ns,"specific speed (rpm)");
clear
|
2b3653edfd8dd92ad46aadaac1d423c27c81cfd4
|
dacb210e4fc5dbb894a8358ca5b425e801829c17
|
/Finite Difference, PDE, one-way wave/lax_fried.sce
|
f359c87bdea64361256e1cc574d65fa4eb4d5ea0
|
[] |
no_license
|
amiedemmel/Diff-Eq-Projects
|
ba0fe0a45cee568b65b2b508bd55d193668f7a14
|
7edbd8a46aec2df62990c8fb11365498cb583335
|
refs/heads/master
| 2020-05-30T04:10:56.223423
| 2015-05-08T15:50:50
| 2015-05-08T15:50:50
| 35,286,857
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,289
|
sce
|
lax_fried.sce
|
clear u u1 u2 u3 tr x x1 nu
col=['-+b'; '-+g'; '-+r'; '-+c'];
iter=1;
flag=1;
//lambda=input('lambda : ');
while(flag)
//h=input('Enter space step h : ');
h=1/20;
k=lambda*h;
ax=-3;
bx=3;
at=0;
bt=2;
n=(bt-at)/k + 1;
m=(bx-ax)/h + 1;
//True Solution for comparison
//t=2;
//x=ax;
//for i=1:m
// tx=x-t;
// if(abs(tx)<.5)
// tr(i)=cos(%pi*tx);
// else
// tr(i)=0;
// end
// x=x+h;
//end
u=zeros(n,m);
w=zeros(n,m);
x=ax;
for i=1:m
u(1,i)=1-abs(x);
w(1,i)=1-2*abs(x);
if u(1,i)<0
u(1,i)=0;
end
if w(1,i)<0
w(1,i)=0;
end
x=x+h;
end
for j=1:n-1
for i=2:m-1
//Lax-Friedrichs
u(j+1,i)=(1-lambda)/2*u(j,i+1)+(1+lambda)/2*u(j,i-1)
end
u(j+1,m)=u(j+1,m-1);
end
x1=ax:h:bx;
plot(x1,u(n,:),col(iter))
//err3=abs(u(n,:)-tr');
//if abs(err3)<5 then
// nratio3(iter)=err3(m);
// nerr3=norm(err3);
// disp(nerr3)
//else disp('u is usless');
//end
iter=iter+1;
lambda=input('lambda : ');
if lambda == 0 then
flag = 0;
end
end
plot(x1,tr,'k')
|
6ea465acf545757532bf51c2128259167044afd2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2267/CH12/EX4.1/Ex12_1.sce
|
99c8603d315603cedf9aaeb84467e2aa44bb8bec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 298
|
sce
|
Ex12_1.sce
|
//Part B Chapter 4 Example 1
clc;
clear;
close;
R=75;//mm
G=75;//GN/m^2
L=3;//m
tau_s=75;//MN/m^2
theta=tau_s*L/R/G*180/%pi;//degree
disp("Angle of twist is "+string(theta)+" degree.");
r=50;//mm
tau=tau_s*r/R;//MN/m^2
disp("Shear stress at inside surface is "+string(tau)+" MN/m^2");
|
1e182a99c88363925eac521f4c3028712ccc0861
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1280/CH8/EX8.11/8_11.sce
|
7efc4d38465a7c7720308acae06d99b0dad25164
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 216
|
sce
|
8_11.sce
|
clc
//initialisation of variables
Vm= 0.6 //in^3
N= 2400 //rpm
Qa= 6.5 //gpm
p= 50
//CALCULATIONS
ev= Vm*N*100/(Qa*231)
Tf= (100-ev)*Qa/100
Cl= p*Tf/100
//RESULTS
printf ('Case drain loss = %.3f gpm',Cl)
|
d460860980c8995133b8bead4138a169fc3e8ba6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/323/CH3/EX3.3/ex3_3.sci
|
e1837c5a12cd4dcbe788fa5fadc714915cc99a5b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 401
|
sci
|
ex3_3.sci
|
clc;
f=50 //Frequence in hertz
Irms=20 //Rms current in amperes
Im=Irms*sqrt(2)
disp("(i)")
printf("\n Im=%02f A \n",Im)
t=0.0025 //Time in seconds
i=Im*sin(2*%pi*f*t)
disp("(ii)")
printf("\n i=%.0f \n",i)
t=0.0125
i=Im*sin(2*%pi*f*t)
disp("(iii)")
printf("\n i=%.0f \n",i)
i1=14.14/Im
disp(i1)
i2=asin(i1)
i2=i2*180/%pi
disp(i2)
i=i2/(2*180*f)
printf("\n i=%.2f \n ms",i*10^3)
|
56a7ac521535322f5bb9a888604e9b15f7ea9a87
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1646/CH13/EX13.11/Ch13Ex11.sce
|
59ee7651c4f648d2f98fca7e672500025d355562
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 411
|
sce
|
Ch13Ex11.sce
|
// Scilab Code Ex13.11: Page-652 (2011)
clc;clear;
mu = 1.5;....// Optical index of refraction of NaCl crystal
K = 5.6;....// Static dielectric constant of NaCl crystal
P_IP = (1-((mu^2-1)*(K+2))/((mu^2+2)*(K-1)))*100;
printf("\nThe percentage of ionic polarizibility in NaCl crystal = %4.1f percent ", P_IP);
// Result
// The percentage of ionic polarizibility in NaCl crystal = 51.4 percent
|
35b3d64f113ec238da5cb31a71128a956e3276ff
|
36e294af022143c4ad0adaf1a40183c8114cb39a
|
/Scripts/max_hold_plots.sce
|
b473205368a67eac212e55c418bb0ab9837af8d6
|
[] |
no_license
|
pflynn/Spectrum_analysis
|
d6388a46f686912a4d4a543f18b2a49063374506
|
eb31f3349fdf4f16227b25782d40937b126b297e
|
refs/heads/master
| 2016-09-05T17:10:44.896865
| 2011-06-27T15:01:20
| 2011-06-27T15:01:20
| 1,960,672
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 801
|
sce
|
max_hold_plots.sce
|
// plot max hold graphs
// change directory to the desired location to save these plot files
cd('C:\Documents and Settings\pflynn\Desktop\Max hold plots');
clf()
plot([x],evstr(A))
//threshold line
plot([x],threshold,'r--') // plots a dash-dotted line
// give it titles
xset("font size", 3) // sets font size for axis values
xtitle('MAX HOLD','Frequency (MHz)','Power (dBm)');
a = gca() //gets handle of current axis
a.title.font_size = 3 // sets title fontsize to 5
a.x_label.font_size = 3 // sets x lable font size to 4
a.y_label.font_size = 3 // sets y lable font size to 4
a.x_label.font_style = 2;
a.title.font_style = 4;
a.tight_limits = "on"
xs2jpg(0,'mh plot '+ band_name');
xs2jpg(gcf(),'/mh plot '+ band_name + 'MHz.jpg')
//end
|
173052b7b03d22c6c8ccf41bda825d3474dd4dd5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1364/CH9/EX9.1.1/9_1_1.sce
|
2b808164db077e35f93495e53b3f6a5fbefbaaa2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 302
|
sce
|
9_1_1.sce
|
clc
//initialisation of variables
d= 1.6 //lb/ft^3
vk= 6.2*10^-6 //ft^2/sec
R= 1.8 //lbf
v= 100 //ft/sec
d1= 64 //lb/ft^3
vk1= 1.7*10^-5 //ft62/sec
l= 10 //ft
//CALCULATIONS
u= v*vk1/(vk*l)
u1= v*vk1/(vk*l*1.98)
r= d1*l^2*(u/100)^2/d
F= r*R
//RESULTS
printf (' resistance= %.f lbf ',F)
|
c8fd33e04e7b55a7d72c6e875306a1f4cf5b111a
|
4a1effb7ec08302914dbd9c5e560c61936c1bb99
|
/Project 2/Experiments/C45-C/results/C45-C.vowel-10-1tra/result8.tst
|
9a08793422883547b3906f01799b5157786f3dfd
|
[] |
no_license
|
nickgreenquist/Intro_To_Intelligent_Systems
|
964cad20de7099b8e5808ddee199e3e3343cf7d5
|
7ad43577b3cbbc0b620740205a14c406d96a2517
|
refs/heads/master
| 2021-01-20T13:23:23.931062
| 2017-05-04T20:08:05
| 2017-05-04T20:08:05
| 90,484,366
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 976
|
tst
|
result8.tst
|
@relation vowel
@attribute TT integer[0,1]
@attribute SpeakerNumber integer[0,14]
@attribute Sex integer[0,1]
@attribute F0 real[-5.211,-0.941]
@attribute F1 real[-1.274,5.074]
@attribute F2 real[-2.487,1.431]
@attribute F3 real[-1.409,2.377]
@attribute F4 real[-2.127,1.831]
@attribute F5 real[-0.836,2.327]
@attribute F6 real[-1.537,1.403]
@attribute F7 real[-1.293,2.039]
@attribute F8 real[-1.613,1.309]
@attribute F9 real[-1.68,1.396]
@attribute Class{0,1,2,3,4,5,6,7,8,9,10}
@inputs TT,SpeakerNumber,Sex,F0,F1,F2,F3,F4,F5,F6,F7,F8,F9
@outputs Class
@data
0 0
2 2
5 6
6 6
10 10
7 7
2 2
7 7
0 9
4 4
5 5
10 10
9 9
2 2
3 3
1 1
5 5
8 10
0 0
5 4
3 5
8 8
3 3
7 6
2 2
1 1
8 8
2 2
6 7
3 3
4 4
4 4
9 9
5 10
10 10
1 1
5 4
6 6
10 5
8 9
10 5
4 4
2 2
3 3
6 6
6 6
10 10
0 0
9 9
6 6
9 9
8 8
10 10
0 0
10 10
1 9
8 8
1 9
5 3
5 5
9 9
1 1
6 7
2 2
4 4
7 7
9 9
4 6
3 3
7 7
6 6
8 8
10 10
3 3
6 6
2 5
5 5
7 7
0 0
9 9
0 0
7 7
9 9
1 2
3 3
8 8
0 0
7 7
8 1
2 2
7 7
1 1
3 3
9 8
4 4
0 0
1 1
4 4
4 4
|
ddbbe964226b6f76c8ed608f7f849bd553598ece
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1049/CH12/EX12.28/ch12_28.sce
|
9966cda6479574ac05c89650be20f25b3dbd4ef2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 452
|
sce
|
ch12_28.sce
|
clear;
clc;
V=400;
V_ph=V/sqrt(3);
N_s=1000;
N=800;
a=.7;
I_d=110;
R=2;
k=1-((1-N/N_s)*(2.339*a*V_ph)/(I_d*R)); printf("value of duty cycle=%.3f",k);
P=I_d^2*R*(1-k);
I1=a*I_d*sqrt(2/3);
r1=.1;
r2=.08;
Pr=3*I1^2*(r1+r2);
P_o=20000;
P_i=P_o+Pr+P;
eff=P_o/P_i*100; printf("\nefficiency=%.2f",eff);
I11=sqrt(6)/%pi*a*I_d
th=43;
P_ip=sqrt(3)*V*I11*cosd(th);
pf=P_ip/(sqrt(3)*V*I11); printf("\ninput power factor=%.4f",pf);
|
072d4fec37e5915afdefd5b4261b4fa4b59dc25f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1109/CH13/EX13.5/13_5.sce
|
c2e48eb2f75ea10909e6166971f0181c4d82f4bc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 252
|
sce
|
13_5.sce
|
clear;
clc;
Y1=1;Y2=1;Y3=2;V3=3;
Z1=1/Y1;Z2=1/Y2;Z3=1/Y3;
V1=1;I1=-1;
z11=V1/I1;
V2=1;I2=3;
z22=V2/I2;
z21=V2/I1;
printf("z11 = %f ohms\n",z11);
printf(" z22 = %f ohms\n",z22);
printf(" z21 = %f ohms\n",z21);
printf(" z11 = %f ohms\n",0);
|
e088298f626ec875e728cd68aebf473c8ac017e9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1442/CH11/EX11.7/11_7.sce
|
19d8027530db639716b33c6ee07ce07c9ba53d54
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 334
|
sce
|
11_7.sce
|
clc
//initialisation of variables
h1= 182.07 //kJ/kg
h4= 76.26 //kJ/kg
h2= 217.97 //kJ/kg
Q= 10^6 //kJ/h
Tc= -5 //C
Th= 32 //C
//CALCULATIONS
COP= (h1-h4)/(h2-h1)
W= Q/(COP*3600)
COPcarnot= (273.15+Tc)/(Th-Tc)
//RESULTS
printf (' COP= %.2f ',COP)
printf (' \n power= %.1f kW ',W)
printf (' \n COP= %.3f ',COPcarnot)
|
9a2daf0551365e982f37bbd71a383ee233767d56
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/572/CH13/EX13.15/c13_15.sce
|
80a64b7dc47c64c1bc08ad415ec4d35b2d104345
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 836
|
sce
|
c13_15.sce
|
//(13.15) Devise and evaluate an exergetic efficiency for the internal combustion engine of Example 13.4. For the fuel, use the chemical exergy value determined in Example 13.12(a).
//solution
mFdot = 1.8e-3 //fuel mass flow rate in kg/s
ech = 47346 //in kj/kg, from example 13.12(a)
Wcvdot = 37 //power developed by the engine in kw
Efdot = mFdot*ech //rate at which exergy enters with the fuel in kw
epsilon = Wcvdot/Efdot //exergetic efficiency
printf('the exergetic efficiency is: %f',epsilon)
|
d14f16ffcde2b042482528bbeeae99cc261f1929
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1004/CH12/EX12.3/Ch12Ex3.sci
|
7d6346c7b888200538dc7825aea8bc69ce0d5327
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 485
|
sci
|
Ch12Ex3.sci
|
// Scilab Code Ex12.3 Binding energy of helium nucleus: Pg: 247 (2008)
e = 1.6e-019; // Energy equivalent of 1 eV, J/eV
amu = 931; // Energy equivalent of 1 amu, MeV
m = 2*1.007825+2*1.008665-4.002603; // Mass difference in formation of He, amu
E = m*amu; // Energy equivalent of mass difference for He nucleus, MeV
printf("\nThe minimum energy required to break He nucleus = %5.2f MeV", E);
// Result
// The minimum energy required to break He nucleus = 28.28 MeV
|
120cbfa892aafb26216b3d2d34a834988a329f0c
|
1573c4954e822b3538692bce853eb35e55f1bb3b
|
/DSP Functions/allpasslp2bsc/test_10.sce
|
562093b27edecac366679f9f7e888ba362f4519d
|
[] |
no_license
|
shreniknambiar/FOSSEE-DSP-Toolbox
|
1f498499c1bb18b626b77ff037905e51eee9b601
|
aec8e1cea8d49e75686743bb5b7d814d3ca38801
|
refs/heads/master
| 2020-12-10T03:28:37.484363
| 2017-06-27T17:47:15
| 2017-06-27T17:47:15
| 95,582,974
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 351
|
sce
|
test_10.sce
|
// Test #10 : Valid input test case #2
exec('./allpasslp2bsc.sci',-1);
[n,d]=allpasslp2bsc(0.786,[0.549,0.8746]);
disp(d);
disp(n);
//
//Scilab Output
//d=1. 0.0888982 - 0.1132783i
//n=0.1439960 0.6173655 - 0.7866765i
//
//Matlab Output
//n= 0.1440 + 0.0000i 0.6174 - 0.7867i
//d= 1.0000 + 0.0000i 0.0889 - 0.1133i
|
f48914d5097d6759b57400cd4d3121dc9062ce9a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1938/CH1/EX1.21/1_21.sce
|
95c5d09a3dd30c539b3c7be00a0e48a4a2d82037
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,263
|
sce
|
1_21.sce
|
clc,clear
printf('Example 1.21\n\n')
Pole=4
Z=32 //no of conductors
coil_sides=Z
segments=16
pole_pitch=Z/Pole
slots=16
slots_per_pole=slots/Pole
//for Simplex lap winding
y_b=pole_pitch+1 //back pitch
y_f=pole_pitch-1 //front pitch
y_c=1 //Commutator pitch; Note that it is positive and it is progressive type of Simplex lap winding
printf('WINDING TABLE:\n\n 1<- 10-> 3<- 12-> 5<- 14\n-> 7<- 16-> 9<- 18-> 11<- 20\n->13<- 22-> 15<- 24-> 17<- 26\n->19<- 28-> 21<- 30-> 23<- 32\n->25<- 2-> 27<- 4-> 29<- 6\n->31<- 8->1 ')
printf('\nNote that <- indicates back connection with y_back=%.0f and -> indicates front connection with y_front=%.0f\n',y_b,y_f)
printf('\nAnother form of winding table:')
printf('\n BACK CONNECTIONS FRONT CONNECTIONS')
printf('\n\n 1 to (1+9) =10 -> 10 to (10-7) =3')
printf('\n 3 to (3+9) =12 -> 12 to (12-7)= 5')
printf('\n 5 to (5+9) =14 -> 14 to (14-7)= 7')
printf('\n 7 to (7+9) =16 -> 16 to (16-7)= 9')
printf('\n 9 to (9+9) =18 -> 18 to (18-7)=11')
printf('\n 11 to (11+9)=20 -> 20 to (20-7)=13')
printf('\n 13 to (13+9)=22 -> 22 to (22-7)=15')
printf('\n 15 to (15+9)=24 -> 24 to (24-7)=17')
printf('\n 17 to (17+9)=26 -> 26 to (26-7)=19')
printf('\n 19 to (19+9)=28 -> 28 to (28-7)=21')
printf('\n 21 to (21+9)=30 -> 30 to (30-7)=23')
printf('\n 23 to (23+9)=32 -> 32 to (32-7)=25')
printf('\n 25 to (25+9)=34=(34-32)=2 -> 2 to (34-7)=27')
printf('\n 27 to (27+9)=36=(36-32)=4 -> 4 to (36-7)=29')
printf('\n 29 to (29+9)=38=(38-32)=6 -> 6 to (38-7)=31')
printf('\n 31 to (31+9)=40=(40-32)=4 -> 8 to (40-7)=33 -32= 1')
|
3587df24acb70992320659024adfd1e9bb1ab23b
|
725517259e3eea555ad0f79d421792c632bc4655
|
/scripts/contours.sci
|
868b57b19c0512d0f119b5cde19100d30680b6dd
|
[] |
no_license
|
Exia-epickiwi/exolife
|
58b8a72aa397c5d3df8dc6f61730b3b2b217740e
|
b1bdb3ec2adb92c0fc8c546c9bd56a654523bd22
|
refs/heads/master
| 2020-05-25T14:05:45.795829
| 2017-03-20T09:26:15
| 2017-03-20T09:26:15
| 84,937,674
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 506
|
sci
|
contours.sci
|
function imgout=contours(imgsrc)
filterx = [-1 -2 -1;0 0 0;1 2 1]
imgfx = convolution(imgsrc,filterx,6)
filtery = [-1 0 1;-2 0 2;-1 0 1]
imgfy = convolution(imgsrc,filtery,6)
[wd,he]=size(imgfx);
//Create an empty image
imgout = zeros(wd,he);
//For each lines
for i=1:he
//For each columns
for j=1:wd
pix1 = imgfx(j,i);
pix2 = imgfy(j,i);
imgout(j,i) = sqrt(pix1^2 + pix2^2);
end
end
endfunction
|
9fb2d8c6c7d641d618d96ca455db5bd73ad01518
|
e9d5f5cf984c905c31f197577d633705e835780a
|
/data_reconciliation/linear/scilab/P11/P11.sce
|
8c3343e86900e7977adb5a74ff2da09511a9bc78
|
[] |
no_license
|
faiz-hub/dr-ged-benchmarks
|
1ad57a69ed90fe7595c006efdc262d703e22d6c0
|
98b250db9e9f09d42b3413551ce7a346dd99400c
|
refs/heads/master
| 2021-05-18T23:12:18.631904
| 2020-03-30T21:12:16
| 2020-03-30T21:12:16
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,539
|
sce
|
P11.sce
|
// Data Reconciliation Benchmark Problems From Lietrature Review
// Author: Edson Cordeiro do Valle
// Contact - edsoncv@{gmail.com}{vrtech.com.br}
// Skype: edson.cv
//Rao, R Ramesh, and Shankar Narasimhan. 1996.
//“Comparison of Techniques for Data Reconciliation of Multicomponent Processes.”
//Industrial & Engineering Chemistry Research 35:1362-1368.
//http://dx.doi.org/10.1021/ie940538b.
//Bibtex Citation
//@article{Rao1996,
//author = {Rao, R Ramesh and Narasimhan, Shankar},
//isbn = {0888-5885},
//journal = {Industrial \& Engineering Chemistry Research},
//month = apr,
//number = {4},
//pages = {1362--1368},
//publisher = {American Chemical Society},
//title = {{Comparison of Techniques for Data Reconciliation of Multicomponent Processes}},
//url = {http://dx.doi.org/10.1021/ie940538b},
//volume = {35},
//year = {1996}
//}
// 12 Streams
// 7 Equipments
clear xm var jac nc nv i1 i2 nnzeros sparse_dg sparse_dh lower upper var_lin_type constr_lin_type constr_lhs constr_rhs
getd('../functions');
// In the original paper, all streams for this problem are unmeasures,
//theses values are estimates givem by the paper's original author.
xm =[691.67
727.54
699.36
687.15
35.87
12.51
27.88
23.36
22.67
4.79
4.52
9.31
];
//the variance proposed by the original author
//var = (0.0001*ones(12,1)).^2;
//the variance proposed by this work
var = (0.03*xm).^2;
// gross error
gerror = zeros(length(xm),1);
// to setup gross errors, select the stream and magnitude as the line bellow
//gerror(2) = 9*sqrt(var(2));
xm = xm + gerror;
//The jacobian of the constraints
// 1 2 3 4 5 6 7 8 9 10 11 12
jac = [ 1 -1 0 0 1 0 0 0 0 0 0 0
0 1 -1 0 0 0 -1 0 0 0 0 0
0 0 1 -1 0 -1 0 0 0 0 0 0
0 0 0 0 -1 1 0 1 0 0 0 0
0 0 0 0 0 0 0 -1 1 0 0 -1
0 0 0 0 0 0 1 0 -1 1 0 0
0 0 0 0 0 0 0 0 0 -1 -1 1 ];
// 1 2 3 4 5 6 7 8 9 10 11 12
//observability/redundancy tests
umeas_P11 = [];
[red_P11, just_measured_P11, observ_P11, non_obs_P11, spec_cand_P11] = qrlinclass(jac,umeas_P11)
// reconcile with all measured. To reconcile with only redundant variables, uncomment the "red" assignments
measured_P11 = setdiff([1:length(xm)], umeas_P11);
red = measured_P11;//
// to reconcile with all variables, comment the line above and uncomment bellow
//red = [1:length(xm)];
// to run robust reconciliation,, one must choose between the folowing objective functions to set up the functions path and function parameters:
//WLS = 0
// Absolute sum of squares = 1
//Cauchy = 2
//Contamined Normal = 3
//Fair = 4
//Hampel = 5
//Logistic = 6
//Lorenztian = 7
//Quasi Weighted = 8
// run the configuration functions with the desired objective function type
obj_function_type = 0;
exec ../functions/setup_DR.sce
// to run robust reconciliation, it is also necessary to choose the function to return the problem structure
if obj_function_type > 0 then
[nc_eq, n_non_lin_eq, nv, nnzjac_ineq, nnzjac_eq, nnz_hess, sparse_dg, sparse_dh, lower, upper, var_lin_type, constr_lin_type, constr_lhs, constr_rhs] = robust_structure(jac, 0, xm, objfun, res_eq, res_ineq);
else
// for WLS, only the line bellow must be choosen and comment the 3 lines above
[nc, nv, i1, i2, nnzeros, sparse_dg, sparse_dh, lower, upper, var_lin_type, constr_lin_type, constr_lhs, constr_rhs] = wls_structure(jac);
end
params = init_param();
// We use the given Hessian
params = add_param(params,"hessian_approximation","exact");
params = add_param(params,"derivative_test","second-order");
params = add_param(params,"tol",1e-8);
params = add_param(params,"acceptable_tol",1e-8);
params = add_param(params,"mu_strategy","adaptive");
params = add_param(params,"journal_level",5);
[x_sol, f_sol, extra] = ipopt(xm, objfun, gradf, confun, dg, sparse_dg, dh, sparse_dh, var_lin_type, constr_lin_type, constr_rhs, constr_lhs, lower, upper, params);
//Q = 2*hessf ( xm );
//p=-4*(xm./var)';
//C=jac;
//me=nc;
//b=zeros(nc,1);
//ci=lower;
//cs=upper;
//
//[x,iact,iter,f_sol]=qpsolve(Q,p,C,b,ci,cs,me)
//[x_solqp,lagr,info]=qld(Q,p,C,b,ci,cs,me, 1.0e-8)
//status = info;
//x_sol = x';
//f_sol=0;
mprintf("\n\nSolution: , x\n");
for i = 1 : nv
mprintf("x[%d] = %e\n", i, x_sol(i));
end
mprintf("\n\nObjective value at optimal point\n");
mprintf("f(x*) = %e\n", f_sol);
|
25cc5d2065db20c9a88b26180ad8efeeb541e96f
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set10/s_Fluid_Mechanics_I._A._Khan_1962.zip/Fluid_Mechanics_I._A._Khan_1962/CH9/EX9.4/example9_4.sce
|
3656a0fdf0d77da59c81b7546e8321f17d4a8f90
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 191
|
sce
|
example9_4.sce
|
errcatch(-1,"stop");mode(2);
//example 9.4
//page 318
; funcprot(0);
//initialisation of variable
L=500;
S=0.004;//slope of slope line
hf=S*L;
disp(hf,"head loss (ft)=");
exit();
|
6c27d5876ede037822899ae9147ee52f08ea8aea
|
bdcdb5519332ddbd8a617f520463f1cba2229350
|
/codes/scilab/Poisson_Dir_DF.sce
|
08b382208a3c21c4d467ddef0dc7ccfc2c47d2be
|
[] |
no_license
|
gdelay/cours_agreg
|
23777cbd74dd21c8e17974e299ea5851aa522439
|
2dbfbb85937344be8e07158c6657d36e4f6f294f
|
refs/heads/master
| 2023-06-25T18:33:05.935240
| 2023-06-09T17:44:28
| 2023-06-09T17:44:28
| 247,672,260
| 3
| 2
| null | 2023-01-26T09:57:14
| 2020-03-16T10:23:00
|
Jupyter Notebook
|
UTF-8
|
Scilab
| false
| false
| 1,527
|
sce
|
Poisson_Dir_DF.sce
|
//////// Probleme de Poisson Dirichlet par differences finies sur (0,1)
clear
/////// Parametres
M = 100 // nb de subdivisions
h = 1.0/M // pas
k = 1.0 // raideur
vect_M = [10,20,50,100,200]
for l=1:length(vect_M)
M = vect_M(l)
h=1.0/M
// sous-divisions de l'espace
X = linspace(0,1,M+1)
// f : terme source
function z = f(x)
//z = 1.0
//z = x
z=x.*x
endfunction
// u : solution exacte
function z = u(x)
// z = x.*(1.0-x) ./ (2.0*k)
//z = x.*(1.0-x.*x) ./ (6.0*k)
z = x.*(1.0-x.*x.*x) / (12.0*k)
endfunction
// sous-divisions de l'espace
X = linspace(0,1,M+1)'
// calcul de la matrice de Poisson Dirichlet
A = zeros(M-1,M-1)
A(1,1) = 2
A(1,2) = -1
for i=2:M-2
A(i,i-1) = -1
A(i,i) = 2
A(i,i+1) = -1
end
A(M-1,M-2) = -1
A(M-1,M-1) = 2
A = k.*A./(h*h)
// calcul du second membre F
for i=1:M-1
F(i) = f(X(i+1))
end
// calcul de la solution num U
U_temp = A \ F
U(1) = 0
U(2:M) = U_temp
U(M+1) = 0
// affichage de la solution exacte
Uex = u(X)
figure(1,"Figure_name",'probleme de Dirichlet homogene')
plot(X,Uex,'o-b')
// affichage de la solution approchee
plot(X,U,'o-r')
// calcul de l'erreur
err = abs(Uex - U)
disp(max(err))
vect_err(l) = max(err)
vect_h(l) = h
end
figure(2,"Figure_name",'etude de la convergence')
plot(log10(vect_h),log10(vect_err),'o-b')
xtitle("Erreur du schema en fonction de h (echelle logarithmique)","log(h)","log(erreur)")
//legend("k=5","k=1","k=0.5")
//xtitle("Solution du problème de Poisson-Dirichlet","Position (x)","Solution (u)")
|
e73c434e5297a5fe3d038c8b442bb2b4f0fcdd0f
|
91da29a7783c3162b1b743ad75d48814bd1f556e
|
/3_año/MF/Entrega2/algoritmoTE.sce
|
30fdb060b5fcca2e9a1dd80e1034290a6f90080f
|
[] |
no_license
|
jfarizano/LCC
|
a149631059129b07a7c603bf16df0c1b25479edb
|
70cb03b0ff0a788b1bbbf1a6bcd51beff48460fe
|
refs/heads/master
| 2022-11-15T14:46:36.171561
| 2022-11-10T21:15:13
| 2022-11-10T21:15:13
| 246,933,544
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 424
|
sce
|
algoritmoTE.sce
|
function v = algoritmo(m, xf)
x = 0
k = 0.046
v2 = 0
incx = xf / 10
R = 0
flag = 0
while (x <= xf)
if flag == 2
incx = incx * 2
end
var = 19.6 - (2000 / m) * R
v2 = v2 + incx * var
R = k * v2
flag = flag + 1
x = x + incx
printf("x = %f, R = %f, var = %f, v2 = %f \n", x, R, var, v2)
end
v = sqrt(v2)
endfunction
|
48d3a6eb78834062afb6e849f2609da85bb73ef7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/213/CH15/EX15.2/15_2.sce
|
d3489ab5a94e40b91f6aa8d2f4bf1d7b92046eb8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,630
|
sce
|
15_2.sce
|
//To find linear and angular velocity and acceleration
clc
//Given:
OC=150/1000, PC=600/1000, CD=150/1000 //m
N=450 //rpm
//Solution:
//Refer Fig. 15.6
//Calculating the angular speed of the crank
omega=2*%pi*N/60 //rad/s
//By measurement,
OM=145/1000, CM=78/1000, QN=130/1000, NO=56/1000 //m
//Velocity and acceleration of alider:
//Calculating the velocity of the slider P
vP=omega*OM //m/s
//Calculating the acceleration of the slider P
aP=omega^2*NO //m/s^2
//Velocity and acceleration of point D on the connecting rod:
//Calculating the length od CD1
CD1=CD/PC*CM //m
//By measurement,
OD1=145/1000, OD2=120/1000 //m
//Calculating the velocity of point D
vD=omega*OD1 //m/s
//Calculating the acceleration of point D
aD=omega^2*OD2 //m/s^2
//Angular velocity and angular acceleration of the connecting rod:
//Calculating the velocity of the connecting rod PC
vPC=omega*CM //m/s
//Calculating the angular velocity of the connecting rod
omegaPC=vPC/PC //rad/s
//Calculating the tangential component of the acceleration of P with respect to C
atPC=omega^2*QN //m/s^2
//Calculating the angular acceleration of the connecting rod PC
alphaPC=atPC/PC //rad/s^2
//Results:
printf("\n\n Velocity of the slider P, vP = %.3f m/s.\n\n",vP)
printf(" Acceleration of the slider P, aP = %.1f m/s^2.\n\n",aP)
printf(" Velocity of point D, vD = %.3f m/s.\n\n",vD)
printf(" Acceleration of point D, aD = %.2f m/s^2.\n\n",aD)
printf(" Angular velocity of the connecting rod, omegaPC = %.3f rad/s.\n\n",omegaPC)
printf(" Angular acceleration of the connecting rod PC, alphaPC = %.2f rad/s^2.\n\n",alphaPC)
|
2a7172704001cf8ef57a9be6f59ea3a1b925f4ed
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2276/CH3/EX3.10/chapter3_ex10.sce
|
0bb6599f58f8dbbe90933105cd47b42d3d2b6926
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 865
|
sce
|
chapter3_ex10.sce
|
clc
clear
//input
v=230;//voltage of a shunt generator in volts
ra=0.2;//armature resistance of the shunt generator in ohms
rf=115;//feild resistance of the shunt generator in ohms
n=0.85;//overall effeciency in per units
il=37;//load current in amperes
//calculations
inp=(v*il)/n;//input in watts
inp1=inp/1000;//input power in kilo watts
fi=v/rf;//feild current in amperes
ai=il+fi;//armature current in amperes
e=v+(ai*ra);//generated e.m.f. in volts
ap=e*ai;//armature power in watts
ml=inp-ap;//mechanical losses in watts
nm=ap/inp;//mechanical effeciency in per units
Nm=nm*100;
ne=(v*il)/ap;//electrical effeciency in per units
Ne=ne*100;
//output
mprintf('the input power will be %3.0f kW and the mechanical losses are %3.0f W \n the mechanical and electrical effeciecies are %3.1f per cent and %3.1f per cent',inp1,ml,Nm,Ne)
|
0c35264408ff0ba16d148c9ec7b6662c0c3b5df7
|
594cb2143db2483dc9a060b26f3ccbd77cdff0d9
|
/ass1-LDU.sce
|
2af9cb4cd469a13006734b32e1034cb150b72f87
|
[] |
no_license
|
Srija-1955/scilab-assignment
|
7c6761eb238359810e87656fcbfbdaf5871b028e
|
ad979aa462fc5bac54f26d4f8bbba6cbfcff9086
|
refs/heads/master
| 2020-12-31T09:47:41.409220
| 2020-04-04T11:47:30
| 2020-04-04T11:47:30
| 238,985,033
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,568
|
sce
|
ass1-LDU.sce
|
//LU DECOMPOSITION
//FACTORIZING A INTO L AND U (A = LU)
clc;clear;
function lu_decomposition(A)
[r,c]=size(A);
u=A;
l=eye(r,c);
for i=1:(r-1)
m=det(u(i,i));
for j=i+1:c
n=det(u(j,i))
a=n/m;
l(j,i)=a;
u(j,:)=u(j,:)-u(i,:)/(m/n);
end
end
disp(l,'The lower triangular matrix L is');
disp(u,'The upper triangular matrix U is');
endfunction
disp('Factorization of A into L and U');
A=input('Enter elements of matrix: ');
disp(A,'The given matrix is A=');
lu_decomposition(A);
//SOLVING SYSTEM OF EQUATIONS BY LU DECOMOSITION
clc;clear;
format('v',5);
function lu_decomposition(a, b)
[r,c]=size(a);
b=b';
l=eye(r,c);
for i=1:r
for j=1:c
s=0;
if j>=i
for k=1:i-1
s=s+l(i,k)*u(k,j);
end
u(i,j)=a(i,j)-s;
else
for k=1:j-1
s=s+l(i,k)*u(k,j);
end
l(i,j)=(a(i,j)-s)/u(j,j);
end
end
end
c=l\b;
x=u\c;
disp(l,'The lower triangular matrix L is');
disp(u,'The upper triangular matrix U is');
disp(x,'Solution of system of equation is ');
endfunction
disp("Solving system of equation by LU decomposition");
a=input('Enter elements of matrix A: ');
b=input('Enter elements of matrix B: ');
disp(a,'The coefficient matrix A is');
disp(b,'The constant matrix b is');
lu_decomposition(a,b);
|
15c2078f7d4755baf97a302b8b2b89a6db820d66
|
0ade4f8a7ec375e54db514312b562334ab304d3e
|
/data/benchmark/Pagie_1.tst
|
95b8051383c045c6ca029ebf6b005d8fe5be5bbc
|
[] |
no_license
|
zeta1999/go-pge
|
39ac86612d4a90c1e53d2c45c1177e98b3bcf4e4
|
99a4b600185145bcc047e8e42cecfd2346b6b16d
|
refs/heads/master
| 2021-01-01T11:10:20.053388
| 2014-01-16T16:06:50
| 2014-01-16T16:06:50
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 750
|
tst
|
Pagie_1.tst
|
x y
f(xs)
-5.000000 -5.000000 1.996805
-4.600000 -5.000000 1.996174
-4.200000 -5.000000 1.995199
-3.800000 -5.000000 1.993630
-3.400000 -5.000000 1.990975
-3.000000 -5.000000 1.986207
-2.600000 -5.000000 1.976988
-2.200000 -5.000000 1.957462
-1.800000 -5.000000 1.911428
-1.400000 -5.000000 1.791859
-1.000000 -5.000000 1.498403
-0.600000 -5.000000 1.113133
-0.200000 -5.000000 1.000000
0.200000 -5.000000 1.000000
0.600000 -5.000000 1.113133
1.000000 -5.000000 1.498403
1.400000 -5.000000 1.791859
1.800000 -5.000000 1.911428
2.200000 -5.000000 1.957462
2.600000 -5.000000 1.976988
3.000000 -5.000000 1.986207
3.400000 -5.000000 1.990975
3.800000 -5.000000 1.993630
4.200000 -5.000000 1.995199
4.600000 -5.000000 1.996174
|
d3b364f712e31e40b34624b85c4e4edfcf21b2c8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH15/EX15.8/15_08.sce
|
bbf8e124f551242129a3cc591e4cf57d99ff68e9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 547
|
sce
|
15_08.sce
|
//Chapter 16, Problem 8
clc;
L=0.20; //inductance
R=60; //resistance
C=20e-6; //capacitance
V=20; //supply voltage
fr=(2*%pi)^-1*sqrt((1/(L*C))-(R^2/L^2));
Xl=2*%pi*fr*L; //inductive reactance
Rd=L/(R*C);
Ir=V/Rd;
Q=Xl/R;
printf("(a) Resonant frequency of the circuit = %f Hz\n\n",fr);
printf("(b) Dynamic resistance Rd = %f ohm\n\n",Rd);
printf("(c) Current at resonance Ir = %f A\n\n",Ir);
printf("(d) Q factor of circuit = %f",Q);
|
393ff2aaee16551cc1e1b72b58ae3275c37a54a9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/671/CH4/EX4.21/4_21.sce
|
7b34071e69ddf61ba52c1347cdcc1f31d798e92c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 222
|
sce
|
4_21.sce
|
I=35
VR=25
Vrl=40
VRrl=50
Vc=45
C=50E-6
Xc=Vc/I
w=1/(Xc*C)
theta=acos((VR^2+VRrl^2-Vrl^2)/(2*VR*VRrl))
x=VRrl*cos(theta)-25
y=VRrl*sin(theta)
r=x/I
L=y/(I*w)
Vappl=sqrt((VR+x)^2+y^2)
R=VR/I
disp(L,r,R)
|
b4231b991ea2b6ed4a47f2d23fc8f9e58d83bda5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/887/CH11/EX11.7/11_7.sce
|
b33a20bec67dbc3df0a7a6941827993c34c44ce8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 306
|
sce
|
11_7.sce
|
clc
//ex11.7
R_i=1*10^3;
R_o=100;
A_voc=100;
//V_ooc=A_voc*V_i and I_i=V_i/R_i gives R_moc=V_ooc/I_i
R_moc=A_voc*R_i;
disp('The resulting transconductance model is with an:')
disp(R_i,'input resitance in ohms')
disp(R_o,'output resistance in ohms')
disp(R_moc,'and transresistance in ohms')
|
d8312717b42f91ed7102e06129f2f350077515f9
|
af301357b0dfd5c5ca0825378008dd7924e7d5db
|
/SistemasGauss.sci
|
84ff5f471028eb38fbc237db32e8035c3c05aeea
|
[] |
no_license
|
fonte-nele/Metodos-Numerico-Scilab
|
c544f1a9951f33708f62bdee38a7cddf7699625b
|
62a2be7afb3a1f7901bc5f005500475f52f2caae
|
refs/heads/master
| 2020-06-10T11:31:42.291337
| 2019-07-03T18:10:03
| 2019-07-03T18:10:03
| 193,640,719
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,987
|
sci
|
SistemasGauss.sci
|
clc;clear;
printf("\nBalanço de Massa\nMétodos Decomposição LU e Jacobi\n\n")
/*ordem = input("Qual a ordem da matriz? ")
printf("Preencha os valores da matriz dos coeficientes:\n")
for i = 1:ordem
printf("Linha %d\n", i)
for j = 1:ordem
printf("Coluna %d", j)
A(i, j) = input("Valor: ")
end
end
printf("Preencha os valores dos termos independentes:\n")
for i = 1:ordem
B(i) = input("Termo: ")
end*/
n = 3;
A = [0.8 0.8 0.9; 0.05 0.9 0.9; 0.02 0.02 0.05];
b = [500; 300; 200];
L = zeros(n,n); // Matriz triangular inferior com os coeficientes
U = zeros(n,n); // Matriz que resta da eliminação de Gauss
// Decomposição LU
for j = 1:n
L(j,j) = 1; // diagonal principal com 1
for i = 1:j
soma = 0.0;
for k=1:i-1
soma = soma + L(i,k)*U(k,j);
end
U(i,j) = A(i,j) - soma; // Cálculo da matriz U
end
for i = j+1:n
soma = 0.0;
for k=1:j-1
soma = soma + L(i,k)*U(k,j);
end
L(i,j) = (A(i,j)-soma)/U(j,j); // Cálculo da matriz L
end
end
printf('Matriz L: \n')
disp(L)
printf('\nMatriz U: \n')
disp(U)
// resolve L*y = b: substituicao progressiva
y = zeros(1,n);
y(1) = b(1)/L(1,1);
for i=2:n
soma = 0.0;
for j=1:i-1
soma = soma + L(i,j)*y(j);
end
y(i) = (b(i)-soma)/L(i,i);
end
// resolve U*x = y: substituicao retroativa
x(n) = y(n)/U(n,n);
for i=n-1:-1:1
soma = 0.0;
for j=i+1:n
soma = soma + U(i,j)*x(j);
end
x(i) = (y(i)-soma)/U(i,i);
end
// Eliminação de Gauss
function y = eliminacaoGauss(A, n)
for i = 1:n
w = abs(A(i,i)) // Pegando o primeiro elemento como o maior
r = i
for j = i:n // Analisando o maior elemento da coluna
if abs(A(j,i)) > w then
w = abs(A(j,i))
r = j
end
end
troca = A(i, :) // Fazendo a troca da linha do pivô com a maior em módulo
A(i, :) = A(r, :)
A(r, :) = troca
for k = i+1:n // Fazendo a eliminação de Gauss
mult = -A(k,i)/A(i,i)
for p = i:n+1
A(k,p)=A(k,p)+mult*A(i,p)
end
end
end
y = A
endfunction
function y=subRetroativa(A, n)
pos = 2
x(n) = A(n,n+1) / A(n,n) // Cálculo do último x
for i = n-1:-1:1 // Cálculo dos demais x
soma = 0
for j = i+1:n // Somatório da substituição retroativa
soma = soma + A(i,j) * x(j)
end
x(i) = (A(i,i+pos) - soma) / A(i,i)
pos = pos + 1
end
y = x
endfunction
matrizAumentada = [A b]
matrizAumentada = eliminacaoGauss(matrizAumentada,n)
printf("\nO sistema triangular superior resultante é:\n")
disp(matrizAumentada)
printf('\nResultados pelo método da Decomposição LU: \n')
disp(x)
printf("\nResultados pelo método da Eliminação de Gauss com pivotação parcial: \n")
x2 = subRetroativa(matrizAumentada, n)
disp(x2)
|
0be6a3353943eb9ab92f987ba901a55e1bde8d62
|
6e257f133dd8984b578f3c9fd3f269eabc0750be
|
/ScilabFromTheoryToPractice/Programming/testfunctionmultivar.sce
|
c56ff3f7b397c086248f2b48633a069c1ff28698
|
[] |
no_license
|
markusmorawitz77/Scilab
|
902ef1b9f356dd38ea2dbadc892fe50d32b44bd0
|
7c98963a7d80915f66a3231a2235010e879049aa
|
refs/heads/master
| 2021-01-19T23:53:52.068010
| 2017-04-22T12:39:21
| 2017-04-22T12:39:21
| 89,051,705
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 235
|
sce
|
testfunctionmultivar.sce
|
function [a,b,c]=foo(x,y,z)
a=x+y
b=x*y
c=z
endfunction
foo(2,3,4) // only the value of a is displayed
[a,b]=foo(2,3,4) // a and b are retrieved as outputs
[a,b,c]=foo(2,3,4) // a,b,c are retrieved as outputs
|
8e58034a5b61cfeb9bd619828bd6258ec6b41685
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2063/CH10/EX10.7/10_7.sce
|
031f7363e737ec6afc96136ddc6674bfb3ea141d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 956
|
sce
|
10_7.sce
|
clc
clear
//Input data
T1=263;//Minimum temperature at which ammonia refrigerating machine works in K
T2=303;//Maximum temperature at which ammonia refrigerating machine works in K
x1=0.6;//Dryness fraction of ammonia during suction stroke
sf1=0.5443;//Liquid entropy at 263 K in kJ/kg K
hfg1=1297.68;//Latent heat at 263 K in kJ/kg
sf2=1.2037;//Liquid entropy at 303 K in kJ/kg K
hfg2=1145.8;//Latent heat at 303 K in kJ/kg
hf1=135.37;//Liquid enthalpy at 263 K in kJ/kg
hf2=323.08;//Liquid enthalpy at 303 K in kJ/kg
//Calculations
s1=sf1+((x1*hfg1)/T1);//Entropy at point 1 in kJ/kg K
x2=(s1-sf2)/(hfg2/T2);//Entropy at point 2 in kJ/kg K
h1=hf1+(x1*hfg1);//Enthalpy at point 1 in kJ/kg
h2=hf2+(x2*hfg2);//Enthalpy at point 2 in kJ/kg
COP=(h1-hf2)/(h2-h1);//Theoretical COP of ammonia refrigerating machine
//Output
printf('The theoretical COP of a ammonia refrigerating machine working between given temperatures is %3.2f',COP)
|
615617b9670a76523d0f109cda2fc3b99c6c67fa
|
7b7be9b58f50415293def4aa99ef5795e6394954
|
/sim/cmd/test/pipesegment.tst
|
632b644a344337d68ec308f178c16888f41dc36f
|
[] |
no_license
|
sabualkaz/sim42
|
80d1174e4bc6ae14122f70c65e259a9a2472ad47
|
27b5afe75723c4e5414904710fa6425d5f27e13c
|
refs/heads/master
| 2022-07-30T06:23:20.119353
| 2020-05-23T16:30:01
| 2020-05-23T16:30:01
| 265,842,394
| 0
| 0
| null | 2020-05-21T12:26:00
| 2020-05-21T12:26:00
| null |
UTF-8
|
Scilab
| false
| false
| 3,675
|
tst
|
pipesegment.tst
|
clear
$th = VirtualMaterials.Advanced_Peng-Robinson
/ -> $th
th + WATER
pipe = PipeSegment.PipeSegment()
cd /pipe.In
P = 300 kPa
T = 300.0 K
Fraction = 1.0
MoleFlow = 1000.0
cd /pipe.Out
#P = 200.0
#T = 300.0
cd /
pipe.Diameter = 0.1
pipe.Length = 20.0
pipe.Roughness = 0.0001
pipe.Elevation0 = 0.0
pipe.Elevation1 = 0.0
pipe.OutQ = 0
pipe.In
pipe.Out
#Calculate flow
pipe.In.MoleFlow =
pipe.Out.P = 280 kPa
pipe.Out
#Calculate from deltaP
pipe.Out.P =
pipe.DeltaP = 10
pipe.Out
#Back to
pipe.In.P =
pipe.Out.P = 270
pipe.In
pipe.Out
#Negative deltaP -> Negative flow calc
pipe.DeltaP = -10
pipe.Out
#Calculate with negative flow
pipe.DeltaP.DP =
pipe.Out.P =
pipe.In.P = 300 kPa
pipe.In.MoleFlow = -5000.0
pipe.In
pipe.Out
#Play with elevation now
pipe.In.MoleFlow = 9000.0
pipe.Out
pipe.Elevation1 = 10
pipe.Out
pipe.Elevation0 = 10
pipe.Out
pipe.Elevation0 = 20
pipe.Out
#Play with roughness
pipe.Elevation1 = 0
pipe.Elevation0 = 0
pipe.Roughness = 0.0001
pipe.Out
pipe.Roughness = 0.000001
pipe.Out
pipe.Roughness = 0.0
pipe.Out
#ignore kinetic and potential energy calcs
/pipe.In.T =
/pipe.In.P =
/pipe.In.H = -34353.018
/pipe.In
/pipe.Out
/pipe.IgnoreKineticAndPotential = 1
#The enthalpy should be passed directly from the In to Out
/pipe.Out
#Solve
/pipe.In.P = 300
copy /pipe
paste /
/pipeClone.In
/pipeClone.Out
#Resolve
/pipe.In.H =
/pipe.In.T = 90
/pipe.Out
#Get rid of this
IgnoreKineticAndPotential = 0
#Remove energy
/pipe.OutQ.Energy = 1.0e7
/pipe.Out
/pipe.Energy
/pipe.T
#Solve with T out as a spec
/pipe.In.MoleFlow =
/pipe.Out.T = 38
/pipe.Out
#Did not work, solve with other numerical method
/pipe.SolutionMethod = Secant
/pipe.Out
/pipe.Energy
/pipe.T
#Worked, now try again newton raphson but don't minimize error
/pipe.SolutionMethod = NewtonRaphson
/pipe.MinimizeError = 0
/pipe.TryLastConverged = 0
/pipe.Out
/pipe.Energy
/pipe.T
#Different solve scheme
/pipe.In.T =
/pipe.In.MoleFlow = 9000
/pipe.Out
/pipe.Out
/pipe.Energy
/pipe.T
#Flip specs around
/pipe.In.P =
/pipe.Out.T =
/pipe.Out.P = 150
/pipe.In.T = 90
/pipe.Out
/pipe.Energy
/pipe.T
/pipe.u
#Change energy model
/pipe.EnergyLossModel = LinearTemperature
#Didn't finish. Add iterations
/pipe.MaxNumIterations = 50
/pipe.Out
/pipe.Energy
/pipe.T
#add sections
NumberSections = 5
/pipe.Out
/pipe.Energy
/pipe.T
#all u are equal
/pipe.EnergyLossModel = EqualU
/pipe.Out
/pipe.Energy
/pipe.T
/pipe.u
#Try secant method
/pipe.SolutionMethod = Secant
/pipe.Out
/pipe.Energy
/pipe.T
/pipe.u
#Now solve for energy
/pipe.OutQ.Energy =
/pipe.Out.T = 38
/pipe.Out
/pipe.Energy
/pipe.T
/pipe.u
#Change numerical method
/pipe.SolutionMethod = NewtonRaphson
/pipe.Out
/pipe.EnergyLossModel = LinearTemperature
/pipe.Out
/pipe.T
/pipe.EnergyLossModel = LinearEnergy
/pipe.Out
/pipe.Energy
/pipe.Out.P =
/pipe.In.P = 300
/pipe.Out
#Now spec u and change the energy models (nothing should change since u as a spec implies all u equal)
/pipe.Out.T =
/pipe.U.U = 4.8846261
/pipe.u
/pipe.EnergyLossModel = LinearTemperature
/pipe.u
/pipe.EnergyLossModel = LinearEnergy
/pipe.u
#Back to energy spec but change nergy models
/pipe.U.U =
/pipe.OutQ.Energy = 9931444.4
/pipe.Out
/pipe.Energy
/pipe.T
/pipe.u
/pipe.SolutionMethod = Secant
/pipe.EnergyLossModel = LinearTemperature
/pipe.T
/pipe.EnergyLossModel = EqualU
/pipe.SolutionMethod = NewtonRaphson
/pipe.T
/pipe.u
|
13991c05f8181a45133f9d726fb188606c32d0bf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3472/CH14/EX14.16/Example14_16.sce
|
e8ce1dea8c25b756f02372d85089b1124ec3d676
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,971
|
sce
|
Example14_16.sce
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 7: UNDERGROUND CABLES
// EXAMPLE : 7.16 :
// Page number 222-223
clear ; clc ; close ; // Clear the work space and console
// Given data
V = 33.0*10**3 // Line Voltage(V)
f = 50.0 // Frequency(Hz)
l = 4.0 // Length(km)
d = 2.5 // Diameter of conductor(cm)
t = 0.5 // Radial thickness of insulation(cm)
e_r = 3.0 // Relative permittivity of the dielectric
PF = 0.02 // Power factor of unloaded cable
// Calculations
// Case(a)
r = d/2.0 // Radius of conductor(cm)
R = r+t // External radius(cm)
e_0 = 8.85*10**-12 // Permittivity
C = 2.0*%pi*e_0*e_r/log(R/r)*l*1000 // Capacitance of cable/phase(F)
// Case(b)
V_ph = V/3**0.5 // Phase voltage(V)
I_c = V_ph*2.0*%pi*f*C // Charging current/phase(A)
// Case(c)
kVAR = 3.0*V_ph*I_c // Total charging kVAR
// Case(d)
phi = acosd(PF) // Φ(°)
delta = 90.0-phi // δ(°)
P_c = V_ph*I_c*sind(delta)/1000 // Dielectric loss/phase(kW)
// Case(e)
E_max = V_ph/(r*log(R/r)*1000) // RMS value of Maximum stress in cable(kV/cm)
// Results
disp("PART II - EXAMPLE : 7.16 : SOLUTION :-")
printf("\nCase(a): Capacitance of the cable, C = %.3e F/phase", C)
printf("\nCase(b): Charging current = %.2f A/phase", I_c)
printf("\nCase(c): Total charging kVAR = %.4e kVAR", kVAR)
printf("\nCase(d): Dielectric loss/phase, P_c = %.2f kW", P_c)
printf("\nCase(e): Maximum stress in the cable, E_max = %.1f kV/cm (rms)", E_max)
|
d4a96f8c89596ce6c67861c6270a8d79e1d1f9ea
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/548/CH6/EX6.16.c/6_16c.sce
|
27c7c91c58e107a8565db8005b8c1b9cebcd3743
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 258
|
sce
|
6_16c.sce
|
pathname=get_absolute_file_path('6_16c.sce')
filename=pathname+filesep()+'6_16c_data.sci'
exec(filename)
A=2*Tf/W;B=W/S;C=1/L_Dmax^2;E=sqrt(A^2-C)
Vmax=sqrt((A*B+B*E)/(D*Cdo))
printf("\Answer:\n")
printf("\n\Maximum Velocity for CJ-1: %f m/s\n\n",Vmax)
|
fd8f1851c2693128fcd3b13e0af2e8419eeb796a
|
31cc146b7597c1571ad100fc4dd888898b1b4eb0
|
/algebra/compute_bd.sce
|
ea1e05a4ed841696ba155f6d95b963cbcf6a0fd9
|
[] |
no_license
|
rigid1980/gpp_scilab
|
a525ae046722e7ba52ebea6003ce712b51631ff6
|
fadb75dea26cf341e6dc60874efd88c016df4f3b
|
refs/heads/master
| 2016-09-11T08:37:44.538715
| 2014-03-26T08:37:35
| 2014-03-26T08:37:35
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,210
|
sce
|
compute_bd.sce
|
//// compute_bd
// find boundary of mesh, returned bd will be in ccw consective order. For
// multiple boundary mesh, return a cell, each cell is a closed boundary.
// For single boundary mesh, return an array.
//
//// Syntax
// bd = compute_bd(face)
//
//// Description
// face: double array, nf x 3, connectivity of mesh
//
// bd: double array, n x 1, consective boundary vertex list in ccw order
// cell, n x 1, each cell is one closed boundary
//
//// Contribution
//
// Author : Wen Cheng Feng
// Created: 2014/03/06
// Revised: 2014/03/14 by Wen, add document
// Revised: 2014/03/23 by Wen, revise doc
//
// Copyright 2014 Computational Geometry Group
// Department of Mathematics, CUHK
// http://www.lokminglui.com
function bd = compute_bd(face)
// amd stores halfedge information, interior edge appear twice in amd,
// while boundary edge appear once in amd. We use this to trace boundary.
//
// currently, there is problem for multiple boundary mesh. Some boundary may
// be missing.
[am,amd] = compute_adjacency_matrix(face);
md = am - (amd>0)*2;
[I,~,~] = find(md == -1);
[~,Ii] = sort(I);
bd = zeros(size(I));
k = 1;
for i = 1:size(I)
bd(i) = I(k);
k = Ii(k);
end
|
ff6bf8a5898120dfaf34fbad157e5b48ade5e4ac
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2705/CH8/EX8.18/Ex8_18.sce
|
c0961970ada18cf7ea418e0a930ad3ec6a802851
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,234
|
sce
|
Ex8_18.sce
|
clear;
clc;
disp('Example 8.18');
// aim : To determine
// the actual mass of air supplied/kg coal
// the velocity of flue gas
// given values
mc = 635;// mass of coal burn/h, [kg]
ea = .25;// excess air required
C = .84;// mass composition of carbon
H2 = .04;// mass composition of hydrogen
O2 = .05;// mass composition of oxygen
ash = 1-(C+H2+O2);// mass composition of ash
P1 = 101.3;// pressure, [kJn/m^2]
T1 = 273;// temperature, [K]
V1 = 22.4;// volume, [m^3]
T2 = 273+344;// gas temperature, [K]
P2 = 100;// gas pressure, [kN/m^2]
A = 1.1;// cross section area, [m^2]
aO2 = .23;// composition of O2 in air
mCO2 = 44;// moleculer mass of carbon
mH2O = 18;// molecular mass of hydrogen
mO2 = 32;// moleculer mas of oxygen
mN2 = 28;// moleculer mass of nitrogen
// solution
mtO2 = 8/3*C+8*H2-O2;// theoretical O2 required/kg coal, [kg]
msa= mtO2/aO2;// stoichiometric mass of air supplied/kg coal, [kg]
mas = msa*(1+ea);// actual mass of air supplied/kg coal, [kg]
m1 = 11/3*C;// mass of CO2/kg coal produced, [kg]
m2 = 9*H2;// mass of H2/kg coal produced, [kg]
m3 = mtO2*ea;// mass of O2/kg coal produced, [kg]
m4 = mas*(1-aO2);// mass of N2/kg coal produced, [kg]
mt = m1+m2+m3+m4;// total mass, [kg]
x1 = m1/mt*100;// %age mass composition of CO2 produced
x2 = m2/mt*100;// %age mass composition of H2O produced
x3 = m3/mt*100;// %age mass composition of O2 produced
x4 = m4/mt*100;// %age mass composition of N2 produced
vt = x1/mCO2+x2/mH2O+x3/mO2+x4/mN2;// total volume
v1 = x1/mCO2/vt*100;// %age volume composition of CO2
v2 = x2/mH2O/vt*100;// %age volume composition of H2O
v3 = x3/mO2/vt*100;// %age volume composition of O2
v4 = x4/mN2/vt*100;// %age volume composition of N2
Mav = (v1*mCO2+v2*mH2O+v3*mO2+v4*mN2)/(v1+v2+v3+v4);// average moleculer mass, [kg/kmol]
// since no of moles is constant so PV/T=constant
V2 = P1*V1*T2/(P2*T1);//volume, [m^3]
mp = mt*mc/3600;// mass of product of combustion/s, [kg]
V = V2*mp/Mav;// volume of flowing gas /s,[m^3]
v = V/A;// velocity of flue gas, [m/s]
mprintf('\n The actual mass of air supplied is = %f kg/kg coal\n',mas);
mprintf('\n The velocity of flue gas is = %f m/s\n',v);
// End
|
0524c6fd936d62323ad5f67c190b6c9f79c59e58
|
676ffceabdfe022b6381807def2ea401302430ac
|
/solvers/AcousticSolver/Tests/LEE_2DPulseAdv_WeakDG_MODIFIED.tst
|
8db36bc29a3bca1f2d332c03b7cff28ba9eee915
|
[
"MIT"
] |
permissive
|
mathLab/ITHACA-SEM
|
3adf7a49567040398d758f4ee258276fee80065e
|
065a269e3f18f2fc9d9f4abd9d47abba14d0933b
|
refs/heads/master
| 2022-07-06T23:42:51.869689
| 2022-06-21T13:27:18
| 2022-06-21T13:27:18
| 136,485,665
| 10
| 5
|
MIT
| 2019-05-15T08:31:40
| 2018-06-07T14:01:54
|
Makefile
|
UTF-8
|
Scilab
| false
| false
| 1,017
|
tst
|
LEE_2DPulseAdv_WeakDG_MODIFIED.tst
|
<?xml version="1.0" encoding="utf-8"?>
<test>
<description>desc P=10</description>
<executable>AcousticSolver</executable>
<parameters>LEE_2DPulseAdv_WeakDG_MODIFIED.xml</parameters>
<files>
<file description="Session File">LEE_2DPulseAdv_WeakDG_MODIFIED.xml</file>
</files>
<metrics>
<metric type="L2" id="1">
<value variable="p" tolerance="1e-4"> 6.77196</value>
<value variable="rho" tolerance="1e-12"> 1.04459e-06</value>
<value variable="rhou" tolerance="1e-7">0.00191276</value>
<value variable="rhov" tolerance="1e-7">0.00195208</value>
</metric>
<metric type="Linf" id="2">
<value variable="p" tolerance="1e-4"> 30.1611</value>
<value variable="rho" tolerance="1e-12"> 7.98548e-06</value>
<value variable="rhou" tolerance="1e-7">0.00713893</value>
<value variable="rhov" tolerance="1e-7">0.0098122</value>
</metric>
</metrics>
</test>
|
b2920eb03f2409519d504f6ef89b54eb18da0683
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH5/EX5.11/Ex5_11.sce
|
848a13b443163c79e1aa7d75eeb95443312ed6aa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 200
|
sce
|
Ex5_11.sce
|
clear
//Given
D=0.13*10**-2
R=3.4 //ohms
l=10.0
//Calculation
//
A=(%pi/4.0)*D**2
a=R*A/l
b=1/a
//Result
printf("\n Conductivity of a material is %0.1f *10**6 S/m",b*10**-6)
|
9985b2f7a412845cfac8d2cb5706e6d5976e29d2
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.5/Unix-Windows/scilab-2.5/tests/examples/xend.man.tst
|
d84fa035391b56bcdd1e81d474c20dc79f0e17f6
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 76
|
tst
|
xend.man.tst
|
clear;lines(0);
driver("Pos")
xinit("foo.ps")
plot2d()
xend()
driver("X11")
|
5b89d7bf5d96f418449b1cf4683f75049e8aa8fa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3622/CH9/EX9.4/Ex9_4.sce
|
5d985378d34b68f2c263608c9b1f33d64001d1a1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 140
|
sce
|
Ex9_4.sce
|
//Initialisation of variables
clc
h=1
k=1
l=1
dhkl=1.75e-8//
a=dhkl*sqrt(h^2+k^2+l^2)
printf('inter atomic spacing is %e cms \n',a)
|
18cc906a2b352e6a9dd43bdff1f3a746f5621fad
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1322/CH2/EX2.12/26ex1.sce
|
dc079ee95926f1c02368211ddb77533c0fe3083c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 223
|
sce
|
26ex1.sce
|
//4*x^3*y/(6*x*y^3)
clear;
clc;
close;
d=int32([4,6]);
m=4/gcd(d);
n=6/gcd(d);
x=poly(0,'x');y=poly(0,'y');
p1=x^3;p2=x;p=p1/p2;
q1=y;q2=y^3;q=q1/q2;
//val=m/n*p*q
disp('val=')
mprintf("%i/%i*x^2/y^2",m,n)
|
6458e00832f87054e228181b729e0cd967bb4fda
|
1db0a7f58e484c067efa384b541cecee64d190ab
|
/macros/upsamplefill.sci
|
60ca1da76209bd623fdc898db5da1c0e54ae57bb
|
[] |
no_license
|
sonusharma55/Signal-Toolbox
|
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
|
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
|
refs/heads/master
| 2020-03-22T21:37:22.593805
| 2018-07-12T12:35:54
| 2018-07-12T12:35:54
| 140,701,211
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,034
|
sci
|
upsamplefill.sci
|
function y = upsamplefill (x, w, cpy)
//This function upsamples a vector interleaving given values or copies of the vector elements.
//Calling Sequence
//y = upsamplefill (x, w)
//y = upsamplefill (x, w, cpy)
//Parameters
//x: scalar, vector or matrix of real or complex numbers
//w: scalar or vector of real or complex values
//cpy: can take in "true" or "false", default is false
//Description
//This is an Octave function.
//This function upsamples a vector interleaving given values or copies of the vector elements.
//The second argument has the values in the vector w that are placed in between the elements of x.
//The third argument, if true, means that w should be scalar and that each value in x repeated w times.
//Examples
//upsamplefill([0.4,0.5],7)
//ans =
// 0.4 7. 0.5 7.
funcprot(0);
rhs = argn(2)
if(rhs<2 | rhs>3)
error("Wrong number of input arguments.")
end
select(rhs)
case 2 then
y = callOctave("upsamplefill", x, w)
case 3 then
y = callOctave("upsamplefill", x, w, cpy)
end
endfunction
|
c0d800d4011a2b0ea2cb79f5ad61318788ed7efd
|
6f30ef068d949e73e485abfb605802910fda394f
|
/core/regions/src/test/resources/profileconfig/s3_regional_config_profile.tst
|
63f652f50aa5fa435adc84aa14042c5acc26add1
|
[
"Apache-2.0"
] |
permissive
|
aws/aws-sdk-java-v2
|
48ed50e2caefc202239ce41ecd7169dabcf205f9
|
69f7191252c26b351f7fb1c5f031948dac43e4c9
|
refs/heads/master
| 2023-09-03T20:46:57.534761
| 2023-09-01T21:38:09
| 2023-09-01T21:38:09
| 95,247,959
| 1,987
| 932
|
Apache-2.0
| 2023-09-14T20:37:22
| 2017-06-23T18:56:01
|
Java
|
UTF-8
|
Scilab
| false
| false
| 70
|
tst
|
s3_regional_config_profile.tst
|
[profile regional_s3_endpoint]
s3_us_east_1_regional_endpoint=regional
|
6ee7a89eb441bb356beaf0070edc8ed13fceeabf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/557/CH10/EX10.7/7.sce
|
ee77d0f8196a9b05cb35030e1852a9cb41aafc96
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 319
|
sce
|
7.sce
|
clc; funcprot(0); //Example 10.7
//Initializing the variables
d1 = 0.140;
d2 = 0.250;
DpF_DpR = 0.6; //Difference in head loss when in forward and in reverse direction
K = 0.33 ;//From table
g = 9.81;
//Calculations
ratA = (d1/d2)^2;
v = sqrt(DpF_DpR*2*g/((1 - ratA)^2 - K));
disp(v,"Velocity (m/s):");
|
bb77fba75e00c9702f9ec8c044eb0eec16443226
|
17dd6e9c9459b72f85b0a71f73e670abf1ca9f4e
|
/Wiskunde1/cursus/figuren/scilab/cijfers.sce
|
6ba695ee2ef5a0aaa1c57c8bbede185a6096ba34
|
[] |
no_license
|
Woumpousse/KHL
|
e80c9a00bf71321539b218d8ec047883a9c2fc91
|
066a06c131c617e8be9ec6ac2f4c76b637aba34e
|
refs/heads/master
| 2020-12-24T13:18:20.656259
| 2014-09-29T16:14:00
| 2014-09-29T16:14:00
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 573
|
sce
|
cijfers.sce
|
function W=cijfers(V)
// output initialiseren
W=[];
// controleren of V enkel cijfers 0:9 bevat
for i=1:length(V)
if (V(i)<0)|(V(i)>9)
disp('input mag enkel cijfers tussen 0 en 9 bevatten')
abort // foute input, dus functie afbreken
end
end
// cijfer per cijfer controleren of het voorkomt in V
for i=0:9
for j=1:length(V)
if V(j)==i
W=[W,i] // cijfer komt voor, dus plakken aan output-vector
break // cijfer is gevonden, dus niet meer verder zoeken
// voor dit cijfer
end
end
end
endfunction
|
39c76969dbe99fa71c93c166dc8facc9d03e2be9
|
eb7eeb04a23a477e06f3c0e3d099889caee468b4
|
/src/tools/scilab/iome_toolbox/macros/scilab_sum.sci
|
fe0547c148d9c3a71c536752fb4f4979a2632658
|
[] |
no_license
|
mikeg64/iome
|
55699b7d7b3d5c1b006d9c82efe5136b8c909dfd
|
cc1c94433133e32776dcf16704ec4ec337b1b4a0
|
refs/heads/master
| 2020-03-30T15:57:33.056341
| 2016-04-13T09:24:27
| 2016-04-13T09:24:27
| 151,387,236
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 395
|
sci
|
scilab_sum.sci
|
// ====================================================================
// Allan CORNET
// INRIA 2008
// Template toolbox_skeleton
// This file is released into the public domain
// ====================================================================
//
//
function s = scilab_sum(valA,valB)
s = valA + valB;
endfunction
// ====================================================================
|
a36bf5f08fa9de76594cbecac77859dfbb8ac086
|
8200349559e237758f87bc09a9eb4e0178932815
|
/Magnet/Scilab/translate3d.sce
|
cee1fe41bdcf0b7988f70171c2f5cff7388d23b3
|
[] |
no_license
|
rmorenoga/Testing
|
6e50ea8e5f334b6d69f25e56f81fd7a505c012bb
|
06713e61ababad3fb738ec4ac9ea771772585a12
|
refs/heads/master
| 2021-05-25T09:31:54.351782
| 2020-08-08T20:55:59
| 2020-08-08T20:55:59
| 35,949,400
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 139
|
sce
|
translate3d.sce
|
function [xnew,ynew,znew] = translate3d(x,y,z,tx,ty,tz)
xnew = x + tx
ynew = y + ty
znew = z + tz
endfunction
|
717c739fc150f21da384c9f1bc917daf9dd184d5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1994/CH9/EX9.17/Example9_17.sce
|
bfe4506110484cb7719a7884b20ef29289cb8676
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 304
|
sce
|
Example9_17.sce
|
//Chapter-9,Example9_17,pg 9_66
Ra=0.08
Eb1=242
V=250
Ia=87
Vt=V//generator supply
Nm=1500
Ia1=(V-Eb1)/Ra
//at start N=0, Eb=0
Ias=V/Ra//Ia(start)
Ia2=120
Eb2=V-Ia2*Ra
Eg=Vt+Ia*Ra//generator e.m.f
Ng=Nm*Eg/Eb1//speed as generator
printf("speed as generator\n")
printf("Ng=%.2f r.p.m",Ng)
|
8af4c6463ae3a754390733aac3f054851bcc2534
|
a159f59d19e2b03b234e9c2977ba4a932180e648
|
/Software/GreenScilabV0.9/smb/IDsmb.sci
|
383eb5056af1826722142e16eab3c28778ccebca
|
[] |
no_license
|
OpenAgricultureFoundation/openag_sim
|
e052bbcc31b1d7f9b84add066327b479785f8723
|
425e678b55e24b5848d17181d25770175b8c2c3f
|
refs/heads/master
| 2021-07-01T06:25:08.753260
| 2017-09-20T21:44:18
| 2017-09-20T21:44:18
| 80,540,145
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,638
|
sci
|
IDsmb.sci
|
0 fbegin
100 internode
101 internode-bone
200 default
202 cottonleaf
203 sunflowerleaf
204 wheatleaf
205 leaflob1
206 leaflob2
207 leaf_5lob
208 leaf_5lob2
209 leaf_aescu2
210 maizeleaf2
211 leafaecu
212 leafpen11
213 leafpen11_2
214 leafplatan
215 leafplatan2
216 leafsquare1
217 leafsquare2
218 needle
219 needle2
220 needle4
221 cube
222 yinxing_win
223 test1
224 test2
225 test3
226 test4
227 test5
228 test6
229 test7
230 test8
231 test9
232 test10
233 tomatoleaf
234 maizeleaf6
235 cottonleafvert2
236 cotilydonver
237 e1
238 leaf_maize_vert
239 leaf_wheat_vert
240 maizeleaf
241 maizeleaf_vert
242 petal1
243 spike
244 spike_a
245 spike_b
247 maizeleaf_yell
248 leaf_wheat_yell
249 leaf_tomato2
250 leaf_tomato2d
251 leaf_maize_yell
252 cottonleafyel2
300 femaleorgan
301 flower_1
302 cube2
303 maizecone
304 sunflower
305 wheatspike
306 sunflower2
307 tomatobunch
308 flower_chrys_a_glab
309 flower
310 ball
311 cob2
312 fcoton2
313 fruit1
314 flower_2
315 r3
316 r4
317 sunflower0
318 sunflower_a
319 sunflower_b
320 sunflower_c
400 male3
401 maizetassel
402 malemaize2
403 male3a
404 malemaizeok2
405 male_yell2
406 male_yell
500 fend
%index of smb files. 100-200 internode, 200-300 leaf, 300-400 female organ, 400-500 male organ
|
ad78a1b47733acfd58ad88da08599abd5d74e191
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1061/CH3/EX3.4/Ex3_4.sce
|
a32e6f80e4e03d1fb4dd6e10f3dce9101387ac2b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 302
|
sce
|
Ex3_4.sce
|
//Ex:3.4
clc;
clear;
close;
b=1/2;// propagtion constant
printf("normalised propagtion constant");
printf("\n B=((b/k)^2-n2^2)/(n1^2-n2^2)");
printf("\n thus when b=1/2");
printf("\n B=k*sqrt(n2^2+b*(n1^2-n2^2))");
printf("\n B=k*sqrt((n1^2-n2^2)/2)");
printf("\n which gives its rms value");
|
8d4de3b8f1f2c62ff44903cf2d1a36b0ebcd1f11
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3808/CH3/EX3.3/Ex3_3.sce
|
a3a469d65255acbc9ed852b9311629b8baa26db8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 544
|
sce
|
Ex3_3.sce
|
//Chapter 03: Algorithms
clc;
clear;
function []= binarysearch (arr ,n ,i)
last =1;
h=n;
while (last <= h )
mid = int (( last + h ) /2) ;
if ( arr ( mid ) == i )
printf ( "\nElement:%d found at position %d",i ,mid) ;
break ;
else
if ( arr ( mid ) >i )
h = mid -1;
else
last = mid +1;
end
end
end
endfunction
//Note:input array has to be sorted
ar =[1 2 3 5 6 7 8 10 12 13 15 16 18 19 20 22]
l=length(ar)
disp (ar , " Given array " ) ;
binarysearch (ar ,l ,19) //Note:input format for function is (array,length,element to be searched)
|
4723e7116942db70b0fabad51e993dbf986f05c8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1457/CH12/EX12.1/12_1.sce
|
932b810bcdc06f1f37178a44fa9171c4eedd0abc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 429
|
sce
|
12_1.sce
|
clc
//Initialization of variables
P1=10 //psia
Q=0.6 //cfs
A1=0.0491 //ft^2
g=32.2
V=39.2//fps
A0=0.0218 //ft^2
d1=2 //in
d2=3 //in
//calculations
Phead=P1*144/62.4
V1=Q/A1
V2i= sqrt(2*g*(Phead + V1^2 /(2*g)))
Cv=V/V2i
A2=Q/V
Cc=A2/A0
Cd=Cc*Cv
hL=(1/Cv^2 -1)*(1- (d1/d2)^4)*V^2 /(2*g)
//results
printf("Cc = %.2f ",Cc)
printf("\n Cd= %.2f",Cd)
printf("\n Cv= %.2f",Cv)
printf("\n Head loss = %.2f ft",hL)
|
f5b1b12f09d46a5e985bdd95590a66c0a42bbd0d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/896/CH10/EX10.6/6.sce
|
b21c4f6e1d9d8ac70929cfdc18abf84cd16f6653
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 187
|
sce
|
6.sce
|
clc
//Example 10.6
//Calculate the pump head
rho=62.3//lbm/ft^3
g=32.2//ft/s^2
v=18.46//ft/s
//1 lbf/s^2 = 32.2 lbm.ft
h=(v^2/2)*32.2/rho/g//ft
printf("The pump head is %f ft",h);
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.