blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
78b285ab098ddd19356717d5b33f9fd79f5d608a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2297/CH6/EX6.9/Ex6_9.sce
|
8df637c42f68cdc20f0a013f4d2bc1c3e93471bf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 402
|
sce
|
Ex6_9.sce
|
//Example 6.9// speed
clc;
clear;
close;
format('v',6)
i1=50;//primary current in amperes
i2=i1/(sqrt(2));//secondary current in amperes
r1=0.2;//primary resistance in ohms
v1=220;//primary voltage in volts
eb1=((v1-(i1*r1)));//primary emf in volts
eb2=((v1-(i2*r1)));//secondary emf in volts
n1=1000//primary speed in rpm
n2=(n1*(eb2/eb1)*(i1/i2));//seconadry speed in rpm
disp(n2,"speed is,(rpm)=")
|
8d830453d7d4adcff23a13bda8170b2e83be6e41
|
c557cd21994aaa23ea4fe68fa779dd8b3aac0381
|
/test/tagcreate.tst
|
638abec9fca8e8455f026dc8265539d6a6a2b5f0
|
[
"BSD-3-Clause",
"BSD-2-Clause"
] |
permissive
|
dougsong/reposurgeon
|
394001c0da4c3503bc8bae14935808ffd6f45657
|
ee63ba2b0786fa1b79dd232bf3d4c2fe9c22104b
|
refs/heads/master
| 2023-03-09T15:22:45.041046
| 2023-02-25T08:33:06
| 2023-02-25T08:33:06
| 280,299,498
| 1
| 0
|
NOASSERTION
| 2023-02-25T08:33:08
| 2020-07-17T01:45:32
|
Go
|
UTF-8
|
Scilab
| false
| false
| 76
|
tst
|
tagcreate.tst
|
## Tag create test
read <sample1.fi
set echo
tag newtag create :15
write -
|
1d908f80dca7ddca942ebd59ddc86f998b1f0764
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1529/CH5/EX5.6/5_06.sce
|
8acd1a7f997976c2bb851494e737141b6f7d8559
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 356
|
sce
|
5_06.sce
|
//Chapter 5, Problem 6, Figure 5.13
clc;
//Potential difference across R1 is the same as the supply voltage V
R1=5;
R3=20;
I=11;
I1=8;
//Hence supply voltage is
V=R1*I1;
I3=V/R3;
//Reading on ammeter,
printf("Reading on ammeter = %f A\n\n\n",I3);
I2=I-I1-I3;
R2=V/I2;
//Current flowing through R2
printf("Resistance R2 = %f ohm\n\n\n",R2);
|
8d4dc78adaf48c540ce35ac6bcb8d49a5fa6d1ef
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1574/CH2/EX2.5/SCS_ex_2_5.sce
|
a7c8e59a698a4f9acae048b8a70d71a2c31eb088
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 559
|
sce
|
SCS_ex_2_5.sce
|
clc;
// Chapter 2 Switched communication systems
//Example 2.5,page no 127
//given
N=1000//no of turns
L1=5e-8//inductance per turn
L=N^2*L1//total inductance
mprintf('total inductance is %f H \n',L)
R=100//resistance of winding in ohm
MMF=5//operating MMF in amp. turn
V=1//voltage of received signal in volts
Im=V/R//maximum current
mprintf('maximum current is %f mA \n',Im*1e3)
Io=MMF/N//operating current
mprintf('operating current is %f mA \n',Io*1e3)
to=(L/R)*log(1/(1-(Io/Im)))//operate lag
mprintf('operate lag is %f msec \n',to*1e3)
|
7141b60a763cd86c557c5c4feae9135a9673f22a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1949/CH5/EX5.11/Ex5_11.sce
|
6d32a3bad3341988fb83a96866a37a339b6e3759
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 638
|
sce
|
Ex5_11.sce
|
//Chapter-5,Example 5_11,Page 5-29
clc()
//Given Values:
m1=50*10^-9 //mass of particle in kg
m2=9.1*10^-31 //mass of electron in kg
h=6.625*10^-34 //Planck's constant
v1=1 //velocity of particle
v2=3*10^6 //velocity of electron
//Calculations:
lam1=h/(m1*v1)*10^10 //de Broglie wavelength
printf('de Broglie wavelength associated with particle is =%.20f Angstrom \n \n',lam1)
lam2=h/(m2*v2)*10^10 //de Broglie wavelength
printf(' de Broglie wavelength associated with electron is =%.3f Angstrom \n \n',lam2)
printf(' Wavelength of electron is measurable.')
|
0380f1d681b6e44ad6149b8e4ca97f77e345df2a
|
f6134e0a162a059c42ec3ef8de2a63941d73936c
|
/Scilab_code/kNN/kNN.sci
|
007778216d4748205bbcd7798d6d1a02ba5900be
|
[] |
no_license
|
mxch18/SRL-WRT_pathPlanning
|
38a1701934a4a0e919a6c1c7990092b242df72da
|
6992febbbe103814d2cef5351a0e8917b183a2b0
|
refs/heads/master
| 2020-03-23T06:43:54.155192
| 2018-09-26T17:26:56
| 2018-09-26T17:26:56
| 141,226,032
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,938
|
sci
|
kNN.sci
|
function neighbors = kNN(kdtree,k,point)
//Author : Maxens ACHIEPI
//Space Robotics Laboratory - Tohoku Univeristy
//Description:
//Outputs the k-nearest neighbors of an input point. Uses a k-d tree structure as input.
///2018/08/01 : Doesn't output the actual nearest neighbors, nut more of an approximation
//INPUT:
//kdtree : the k-d tree structure. It is a cell array.
//k : the numbers of neighbors we want
//point : the point from which we want neighbors
//OUTPUT:
//neighbors: a (k x 3) matrix containing the coordinates of the k nearest neighbors
//TODO: Debug; Probably due to not unwraping new explorations of the tree when recursing up the tree.
// Should probably change the way we check for intersection.
//----------------------------------------------------------------------------//
// distance field
distance = zeros(k,1);
//init neighbors with root point
for i=1:k
neighbors(i,:) = kdtree(1).entries.point;
// distance(i) = normNoSqrt(point-kdtree(1).entries.point);
distance(i) = 1000000000000;
end
//init current node
curNode = kdtree(1).entries;
//init stack
stack = list();
// stack = stackInsert(stack,curNode);
//first exploration of the tree
//[stackOut,neighborsOut,distanceOut] = tree_expl(kdtree,root,point,neighborsIn,stackIn,distanceIn)
[stack,neighbors,distance] = tree_expl(kdtree,curNode,point,neighbors,stack,distance);
disp("Done with first exploration");
// [curNode,stack] = stackPop(stack); //pop the leaf node, throw it away
//reverse exploration of tree
//[stackOut,distanceOut,neighborsOut] = tree_rev_expl(kdtree,stackIn,point,distanceIn,neighborsIn)
[stack,distance,neighbors] = tree_rev_expl(kdtree,stack,point,distance,neighbors);
disp("Done with reverse exploration");
endfunction
|
b51ff9f94f49edcefc81b8d23210c23466be7c6f
|
1db0a7f58e484c067efa384b541cecee64d190ab
|
/macros/levin.sci
|
cde4dab7b7f745b2c894615aee84eb1780f37498
|
[] |
no_license
|
sonusharma55/Signal-Toolbox
|
3eff678d177633ee8aadca7fb9782b8bd7c2f1ce
|
89bfeffefc89137fe3c266d3a3e746a749bbc1e9
|
refs/heads/master
| 2020-03-22T21:37:22.593805
| 2018-07-12T12:35:54
| 2018-07-12T12:35:54
| 140,701,211
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,507
|
sci
|
levin.sci
|
function [ar, sigma2,rc] = levin(r);
// //[ar,sigma2,rc]=lev(r)
// //Resolve the Yule-Walker equations:
// //
// // |r(0) r(1) ... r(N-1)|| a(1) | |sigma2|
// // |r(1) r(0) ... r(n-1)|| a(2) | | 0 |
// // | : : ... : || : |=| 0 |
// // | : : ... : || : | | 0 |
// // |r(N-1) r(N-2) ... r(0) ||a(N-1)| | 0 |
// //
// //using Levinson's algorithm.
// // r :Correlation coefficients
// // ar :Auto-Regressive model parameters
// // sigma2 :Scale constant
// // rc :Reflection coefficients
<<<<<<< HEAD
// Example :
=======
>>>>>>> 6bbb00d0f0128381ee95194cf7d008fb6504de7d
if length(r)==1 then
ar=1;
sigma2=r;
rc=[];
else
ar = 0;
aj(1) = 1;
ej = r(1);
rc = [];
p=length(r)-1
for j=1:p,
aj1 = zeros(j+1, 1);
aj1(1) = 1;
gammaj = r(j+1);
for i=2:j,
gammaj = gammaj + aj(i)*r(j-i+2);
end
if ej==0 then
lambdaj1=%nan
else
lambdaj1 = -gammaj/ej;
end
rc=[rc; lambdaj1];
for i=2:j,
aj1(i) = aj(i)+lambdaj1*(aj(j-i+2)');
end
aj1(j+1) = lambdaj1;
ej1 = ej*(1-abs(lambdaj1)^2);
aj = aj1;
ar = aj1;
ej = ej1;
end
sigma2 = sqrt(ej1);
end
endfunction
|
db6aa6832e6ee0350ec57e0e66a373da2f77ee36
|
126193a2cf6352c93a4bfd8f1de87484f6704a61
|
/ann03.sce
|
d2bdded7664a408b8195c160b29f88fdfa35730a
|
[
"MIT"
] |
permissive
|
edenlandpl/training-neuron-in-artificial-neural-newtorks
|
33f86553afbfdf2f5de68dcf4f85c0db5fbb6ecb
|
ab842f0ad3edc72c37ba5d15b993f349781cfe86
|
refs/heads/master
| 2022-02-11T18:58:58.133425
| 2019-07-21T11:19:32
| 2019-07-21T11:19:32
| 198,047,207
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,669
|
sce
|
ann03.sce
|
//---- perceptron trenowanie
//---- okreslenie par wektorow trenujacych
//---- dla funktora AND
A = ones(4,4);
A(1,2) = -1; A(1,3) = -1; A(1,4) = -1;
A(2,2) = -1;
A(3,3) = -1;
//---- wykreslenie obszaru klasyfikacji
mtlb_hold on;
for i=1:4
if A(i,4)==1
plot(A(i,2),A(i,3),'ko:');
else
plot(A(i,2),A(i,3),'r+:');
end
end
mtlb_axis([-2 2 -2 2]);
//---- ustalenie poczatkowych wartosci wag
W=[0 0 0];
//---- proces trenowania
disp(W);
disp('----------------');
BrakZmiany=0;
Nr_Wektora=1;
while (BrakZmiany<4)
//--- kolejno pobiera wektory trenujace
S=A(Nr_Wektora,1)*W(1)+A(Nr_Wektora,2)*W(2)+A(Nr_Wektora,3)*W(3);
Sig=0;
if S>0
Sig=1;
end
if S<0
Sig=-1;
end
if ((Sig>0) & (A(Nr_Wektora,4)==1)) | ((Sig<0) & (A(Nr_Wektora,4)==-1))
W=W;
BrakZmiany=BrakZmiany+1;
else
BrakZmiany=0;
if S~=0
for j=1:3
W(j)=W(j)+0.5*(A(Nr_Wektora,4)-Sig)*A(Nr_Wektora,j);
end
else
for j=1:3
W(j)=W(j)+A(Nr_Wektora,4)*A(Nr_Wektora,j);
end
end
end
disp(W);
Nr_Wektora=Nr_Wektora+1;
if Nr_Wektora>4
Nr_Wektora=1;
end
end
u1 = input('Podaj u1: ');
u2 = input('Podaj u2: ');
S = 1 * W(1) + u1 * W(2) + u2 * W(3);
Sig = 0;
if S > 0 then
Sig = 1;
end
if S < 0 then
Sig = -1;
end
disp(Sig,'Sig = ');
//---- wykreslenie otrzymanej linii podzialu
k=0;
for i=-2:0.01:2
k=k+1;
XX(k)=i;
YY(k)=-((W(2)/W(3))*i)-(W(1)*1)/W(3);
end
plot(XX,YY);
mtlb_axis([-2 2 -2 2]);
|
4aab7c982b685ffd2d657762773c702e21be809a
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set10/s_Fiber_Optics_And_Optoelectronics_R._P._Khare_2216.zip/Fiber_Optics_And_Optoelectronics_R._P._Khare_2216/CH4/EX4.4/ex_4_4.sce
|
f5bbc81151e55c2b2cab87eadc92c38a5f2afa55
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 296
|
sce
|
ex_4_4.sce
|
errcatch(-1,"stop");mode(2);// Example 4.4:core diameter
;
;
format('v',4)
d=0.02;//difference
n1=1.5;//core refrative index
m=1000;// number of modes
h= 1.3;// Wavelenght in micrometers
a=((h/(%pi*n1))*(m/d)^(1/2));//core diamter in micro meter
disp(a,"core diameter in micro meter")
exit();
|
be7de1eb277b7a23824380f1a09f151754e6200a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/443/DEPENDENCIES/17_21_data.sci
|
8135339f3f185e14f0f6a28d3df0dc382357e6da
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 345
|
sci
|
17_21_data.sci
|
//Working loop mean effective pressure(in bar)
wlep=6;
//Pumping loop mean effective pressure(in bar)
plep=0.4;
//Speed of the engine(in rpm)
N=400;
//Working cycle per minue in no load conditioons(in rpm)
Wc=50;
//Mean effective pressure(in bar)
pfm=0.6;
//Diameter of he engine(in m)
D=0.18;
//Stroke of the engine(in m)
L=0.33;
|
61f4ef9573ba68004f9ecaf712365bf0f05a51e5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1553/CH6/EX6.3/6Ex3.sce
|
9a1c43b76f074832fdaf3fc6beda7d055713c878
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 188
|
sce
|
6Ex3.sce
|
//chapter 6 Ex 3
clc;
clear;
close;
a=[];
for i=1:20
a(i)=7*i;
end
Sum=sum(a);
Average=Sum/size(a,"r");
printf("The average of first 20 multiples of 7 is %3.2f",Average);
|
e4162d2eab3f90350d03b2059ca5b762db83b21a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1472/CH12/EX12.1/12_1.sce
|
9a4caaccbe90df33397b654ee46cdaaf2ef5b4fa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 357
|
sce
|
12_1.sce
|
clc
//initialization of varaibles
P=15 //psia
T2=70+460 //R
T1=55+460 //R
//calculations
pw=0.2141
pA=P-pw
mratio=pA*29/(pw*18)
mAbym=mratio/(1+mratio)
mwbym=1/(1+mratio)
pg=0.3631 //psia
phi=pw/pg
gamma=1/mratio
//results
printf("Partial pressure of water vapor = %.2f psia",pA)
printf("\n Specific humidity = %.4f lb vapor/lb air",gamma)
|
4a6e59eab4d487e01c4c52988bd0847936653b0c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH10/EX10.57/ExampleA57.sce
|
d0ca0ff443259583c31171a1f01c651292744b2c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 709
|
sce
|
ExampleA57.sce
|
clc
clear
//Page number 497
//Input data
L=80;//The latent heat of fusion of ice in cal/gm
Li=3.3*10^5;//Specific latent heat of ice fusion in Jkg^-1
dp=1;//The increase in pressure in atmospheres
t=0;//The given temperature in degree centigrade
v=-0.1;//The change in specific volume in cm^3/gm
//Calculations
dP=0.76*13.6*10^3*9.8;//The increase in pressure in N/m^2
V=v*10^-3;//The change in specific volume in m^3/kg
T=t+273;//The given temperature in K
dT=-(dP*T*(V))/Li;//The decrease in the melting point of ice with increase in the pressure of one atmosphere in K
//Output
printf('The decrease in melting point of ice is %3.4f K (or) %3.4f degree centigrade ',dT,dT)
|
3ea3a604134ba99b3078a133a36aac7ab05ad006
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1595/CH9/EX9.5/ex9_5.sce
|
3871055196b681b6868a21ece2af90f3fef0d4b3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 195
|
sce
|
ex9_5.sce
|
//Wired Digital Communications : example 9-5 : (pg 411)
Tb=1/(8*10^3);//bit frequency
BWmin=1/(2*Tb);//minimum bandwidth
printf("\nTb = %.8f s",Tb);
printf("\nBWmin = 1/2.Tb = %.f Hz",BWmin);
|
ace253a278a62d8735f1972d9d1433a0ce833e5e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/226/CH18/EX18.2/example2_sce.sce
|
0dc0e65b7b6fecf66fa75a736aa5f1e2033251c9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 400
|
sce
|
example2_sce.sce
|
//chapter 18
//example 18.2
//page 762
printf("\n")
printf("given")
Vo=12;Il=40*10^-3;Vs=20;Vbe=.7;
Vz=.75*Vo
disp("for minimum D1 current select")
Ir2=10*10^-3;
R2=(Vo-Vz)/Ir2
Ie1=Il+Ir2
disp("specification for Q")
Vce1=20;Vs=Vce1;
Ic1=50*10^-3;
Pd=(Vs-Vo)*Ie1
hfe=50;
Ib1=Ie1/hfe
Ic2=5*10^-3;
R1=(Vs-(Vo+.7))/(Ic2+Ib1)
Iz=Ie2+Ir2
I4=1*10^-3;
R4=(Vz+Vbe)/I4
R3=(Vo-(Vz+Vbe))/I4
|
525a4307b87556822538d1629a8ff756c6cdb3c9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3845/CH31/EX31.4/Ex31_4.sce
|
4e2e62ad12ca3640e69cc61bf97fa52b7fe9ead2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 420
|
sce
|
Ex31_4.sce
|
//Example 31.4
t_half=5730;//Half-life of Carbon-14 (y)
lambda=0.693/t_half;//Decay constant (1/y)
t=-log(0.92)/lambda;//Calculated age (y)
//Above formula is obtained after mathematical simplification of Equation 31.38
printf('The age of the Shroud of Turin = %0.1f years',t)
//The answer varies due to round off error
//Openstax - College Physics
//Download for free at http://cnx.org/content/col11406/latest
|
6f0f48c4f0bed16f2c2fb9ac4a1b75cd1c7dd4d0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH43/EX43.03/43_03.sce
|
02785749363f3eb8996018b1d376da2dc3ba4375
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 432
|
sce
|
43_03.sce
|
//Problem 43.03: Two coils have self inductances of 250 mH and 400 mH respectively. Determine the magnetic coupling coefficient of the pair of coils if their mutual inductance is 80 mH.
//initializing the variables:
La = 250E-3; // in Henry
Lb = 400E-3; // in Henry
M = 80E-3; // in Henry
//calculation:
//coupling coefficient,
k = M/(La*Lb)^0.5
printf("\n\n Result \n\n")
printf("\n coupling coefficient, is %.3f",k)
|
701e46c271232daf6137f6abc09be3018c4292f9
|
e806e966b06a53388fb300d89534354b222c2cad
|
/macros/decorrstretch.sci
|
257f19100a811bcf78e0793dcd4786438c5ed711
|
[] |
no_license
|
gursimarsingh/FOSSEE_Image_Processing_Toolbox
|
76c9d524193ade302c48efe11936fe640f4de200
|
a6df67e8bcd5159cde27556f4f6a315f8dc2215f
|
refs/heads/master
| 2021-01-22T02:08:45.870957
| 2017-01-15T21:26:17
| 2017-01-15T21:26:17
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 196
|
sci
|
decorrstretch.sci
|
function new_image = decorrstretch(image)
image_list = mattolist(image)
out = opencv_decorrstretch(image_list)
sz = size(out)
for i=1:sz
new_image(:, :, i) = out(i)
end
endfunction
|
9adea2d9f9e34ca91da1665b6e2b3b89ac53caeb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1076/CH4/EX4.4/4_4.sce
|
71d547296b73061e53038e6ea78d66659a77af84
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 321
|
sce
|
4_4.sce
|
clear;
clc;
v3=20;
v2=15;
//putting v1=15/(1+k)
s=poly([-1 5 3],"x","coeff");
K=roots(s);
k=K(2)
v1=15/(1+k);
//disp(v1)
x=v1(1);
//disp(x);
vnew=x+v3+v2;
xl=sqrt(3)*vnew;
n=vnew/(3*v3);
mprintf("capacitance ratio= %.2f \nthe line to neutral voltage= %.1fkV \n string efficiency=%.1fpercent",k,xl,n*100);
|
e3d8640a2e45a86afa028ab2a42b87ff9773d3cd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1004/CH9/EX9.5/Ch09Ex5.sci
|
8da3202e2605002b265e660e23e8dd944f8d335f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 548
|
sci
|
Ch09Ex5.sci
|
// Scilab Code Ex9.5 Change in voltage across a G.M. tube: Pg:202 (2008)
e= 1.6e-019; // Charge on an electron, coulomb
W = 25; // Ionization potential of gas (Ar/N2), eV
E = 5e+06; // Energy of incident alpha particles, eV
C = 1e-010; // Capacity of the system, farad
N = E/W; // Number of ions produced
delta_V = N*e/C; // Change in voltage across the G.M. tube, volt
printf("\nThe change in voltage across the G.M. tube = %3.1e volt", delta_V);
// Result
// The change in voltage across the G.M. tube = 3.2e-004 volt
|
799e09452171aec9e1d2f43e539d6eaaaee8b7f4
|
56ae453b5537f39dbd832dd0416f3c804aa1b937
|
/microdaq/macros/microdaq_macros/mdaqAIScanInit.sci
|
d85052941f3dca097dcaf36aab58ce53a48f45e1
|
[
"BSD-3-Clause"
] |
permissive
|
grtwall/Scilab
|
38bc8bc978e715b770da61482a9ac30e0cb806d3
|
e44e0dc0d357a6baf875d33ddd435a29e053b7f1
|
refs/heads/master
| 2020-07-22T16:48:31.589484
| 2018-07-31T13:15:40
| 2018-07-31T13:15:40
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 7,306
|
sci
|
mdaqAIScanInit.sci
|
function mdaqAIScanInit(arg1, arg2, arg3, arg4, arg5, arg6)
link_id = -1;
if argn(2) == 5 then
channels = arg1;
aiRange = arg2;
aiMode = arg3;
scan_freq = arg4;
scan_time = arg5;
end
if argn(2) == 6 then
link_id = arg1;
channels = arg2;
aiRange = arg3;
aiMode = arg4;
scan_freq = arg5;
scan_time = arg6;
if link_id < 0 then
error("Invalid connection ID!")
return;
end
end
global %microdaq;
if %microdaq.private.mdaq_hwid <> [] then
adc_info = get_adc_info(%microdaq.private.mdaq_hwid);
if argn(2) > 6 | argn(2) < 5 then
mprintf("Description:\n");
mprintf("\tInitiates AI scanning session\n");
mprintf("Usage:\n");
mprintf("\tmdaqAIScanInit(linkID, channels, range, isDifferential, rate, duration)\n");
mprintf("\tlinkID - connection id returned by mdaqOpen() (OPTIONAL)\n");
mprintf("\tchannels - analog input channels to read\n");
mprintf("\trange - analog input range matrix e.g.\n");
mprintf("\t [-10,10] - single range argument applied for all used channels\n");
mprintf("\t [-10,10;-5,5] - multi-range argument for two channels\n");
mprintf("\tisDifferential - scalar or vector with measurement mode settings: %s - differential, %s - single-ended mode\n", "%T", "%F");
mprintf("\trate - scans per second rate (scan frequency)\n");
mprintf("\tduration - scan duration in seconds\n");
return;
end
else
error('Unable to detect MicroDAQ configuration. Run mdaqHWInfo() function.');
end
ch_count = size(channels, 'c');
if scan_time < 0 then
scan_time = -1;
end
if size(channels, 'r') > 1 then
error('Wrong channel - scalar or single row vector expected')
end
if size(aiRange, 'c') <> 2 then
error('Wrong range - matrix range [low,high;low,high;...] expected')
end
aiRangeSize = size(aiRange, 'r');
if aiRangeSize <> 1 & aiRangeSize <> ch_count then
error('Range vector should match selected AI channels')
end
if type(aiMode) == 1 then
if size(find(aiMode>1), '*') > 0
error('Wrong mode (isDifferential parameter) - boolean value expected (%T/1, %F/0)')
end
end
if size(aiMode, 'r') > 1 then
error('Wrong mode (isDifferential parameter) - scalar or single row vector expected')
end
aiModeSize = size(aiMode, 'c');
if aiModeSize <> 1 & aiModeSize <> ch_count then
error('Mode (isDifferential parameter) vector should match selected AI channels')
end
if aiRangeSize == 1 then
range_tmp = aiRange;
aiRange = ones(ch_count,2);
aiRange(:,1) = range_tmp(1);
aiRange(:,2) = range_tmp(2);
clear range_tmp;
end
aiRange_t = aiRange;
aiRange = matrix(aiRange', 1, ch_count*2);
aiMode(find(aiMode==%T))=1;
if aiModeSize == 1 then
aiMode = ones(1, ch_count) * aiMode;
end
if argn(2) == 5 then
link_id = mdaqOpen();
if link_id < 0 then
error("Unable to connect to MicroDAQ device!");
end
end
result = [];
real_freq = scan_freq;
[result real_freq] = call("sci_mlink_ai_scan_init",..
link_id, 1, "i",..
channels, 2, "i",..
ch_count, 3, "i",..
aiRange, 4, "d",..
aiMode, 5, "i",..
scan_freq, 6, "d",..
scan_time, 7, "d",..
"out",..
[1, 1], 9, "i",..
[1, 1], 8, "d");
if result < 0 & result <> -88 then
if argn(2) == 5 then
mdaqClose(link_id);
end
error(mdaq_error2(result), 10000 + abs(result));
else
if result == -88 then
disp("Warninng: AI scanning interrupted!")
mdaqAIScanStop()
// time to terminate TCP connection
sleep(200);
[result real_freq] = call("sci_mlink_ai_scan_init",..
link_id, 1, "i",..
channels, 2, "i",..
ch_count, 3, "i",..
aiRange, 4, "d",..
aiMode, 5, "i",..
scan_freq, 6, "d",..
scan_time, 7, "d",..
"out",..
[1, 1], 9, "i",..
[1, 1], 8, "d");
end
if argn(2) == 5 then
mdaqClose(link_id);
end
if result < 0 then
error(mdaq_error2(result), 10000 + abs(result));
end
if result == 1 then
limited_cap = %t;
else
limited_cap = %f;
end
rows = [];
row = '';
adc_res = strtod(part(adc_info.resolution, 1:2))
for j=1:ch_count
if aiMode(j) == 1 then
measure_type = "Differential"
elseif (aiMode(j) == 0)
measure_type = "Single-ended"
end
adc_range = aiRange_t(j, 2) - aiRange_t(j, 1);
resolution = string((int(adc_range/2^adc_res * 1000000)) / 1000);
rangeStr="";
if aiRange_t(j, 1) < 0 then
rangeStr = "±" + string(aiRange_t(j, 2))+"V";
else
rangeStr = "0-" + string(aiRange_t(j, 2))+"V";
end
rows = [rows; "AI"+string(channels(j)), measure_type, rangeStr, resolution+"mV"]
end
mprintf("\nAnalog input scanning session settings:\n");
mprintf("\t--------------------------------------------------\n")
str2table(rows, ["Channel", "Measurement type", "Range", "Resolution"], 3)
mprintf("\t--------------------------------------------------\n")
if scan_freq >= 1000
mprintf("\tScan frequency:\t\t%.5f kHz\n", scan_freq/1000);
mprintf("\tActual scan frequency:\t%.5f kHz\n", real_freq/1000);
else
mprintf("\tScan frequency:\t\t%.5f Hz\n", scan_freq);
mprintf("\tActual scan frequency:\t%.5f Hz\n", real_freq);
end
if 1 /real_freq > 0.001 then
mprintf("\tScan period: \t\t%.5f seconds\n", 1 / real_freq);
end
if 1 /real_freq <= 0.001 then
mprintf("\tScan period: \t\t%.5f ms\n", 1 / real_freq * 1000);
end
if scan_time < 0
mprintf("\tNumber of channels:\t%d\n", ch_count)
mprintf("\tNumber of scans:\tInf\n");
mprintf("\tDuration:\t\tInf\n");
else
mprintf("\tNumber of channels:\t%d\n", ch_count)
mprintf("\tNumber of scans:\t%d\n", scan_time * scan_freq);
if scan_time == 1
mprintf("\tDuration:\t\t%.2f second\n", scan_time);
else
mprintf("\tDuration:\t\t%.2f seconds\n", scan_time);
end
end
mprintf("\t--------------------------------------------------\n")
end
endfunction
|
23c428c6552e0a5510821cfe756ab3299c7850b0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH4/EX4.21/Ex4_21.sce
|
febb360128261bd7a3177e667d6ff247c33ed578
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 205
|
sce
|
Ex4_21.sce
|
clear
//Given
C1=2 //micro F
C2=2 //micro F
C3=2
C4=2
//Calculation
Cs=C1*C2/(C1+C2)
Cab=C3*C4/(C3+C4)
//Result
printf("\n The capacitance of the Capacitors %0.3f micro F", Cab)
|
f20a83bde288cee132c4a9b3d066cc90c89e3493
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/104/CH3/EX3.6/3_6.sce
|
21eaff84e28fc831c640d1981fd0bdfe29a1f0dc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 548
|
sce
|
3_6.sce
|
//mason's gain formula applied to SFG in figure 3-16
//y2 as output node
syms G1 G2 G3 G4 G5 H1 H2 H3 H4
M1=1
L11=-G1*H1
L21=-G3*H2
L31=G1*G2*G3*-H3
L41=-H4
L12=G1*H1*G3*H2
L22=G1*H1*H4
L32=G3*H2*H4
L42=-G1*G2*G3*H3*H4
L13=-G1*H1*G3*H2*H4
delta=1-(L11+L21+L31+L41)+(L12+L22+L32+L42)+L13
delta1=1-(L21+L41)+(L32)
x=M1*delta1/delta
disp(x,"y2/y1=")
//y7 as output node
M1=G1*G2*G3*G4
M2=G1*G5
delta1=1
delta2=1-(L21)
y=(M1*delta1+M2*delta2)/delta
disp(y,"y7/y1=")
z=y/x // (y7/y2)=(y7/y1)/(y2/y1)
disp(z,"y7/y2=")
|
eabc9efd1150ca84487935068ca4058ec107bf3f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2513/CH9/EX9.1/9_1.sce
|
b9b751a98486e07f47bef3d5ffbd7ebe2219fe27
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 182
|
sce
|
9_1.sce
|
clc
//initialisation of variables
t=10//C
s=74.2//days
c=0.01//mm
d=245//mm
//CALCULATIONS
h=s/(d*c)//cm
//RESULTS
printf('the high will water at a temperature =% f cm',h)
|
aed3d460082fda6e5fa3548d46297628cd462c0b
|
f899d543cb5b5c85a30e44f26996c67e2f22564d
|
/PLSQL/ims3_job.tst
|
7ef913104cec799ad3d6dc7675adaabed081f664
|
[] |
no_license
|
uniqxh/HZAU.GP.DataMonitor
|
5196a2a8bda937b74a227da888f433f1ac8dfcbc
|
a4c36e230f2c8e6fb3072032d8adbb7f48ecf8df
|
refs/heads/master
| 2021-01-02T09:20:23.723785
| 2015-04-11T03:54:38
| 2015-04-11T03:54:38
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 193
|
tst
|
ims3_job.tst
|
PL/SQL Developer Test script 3.0
8
-- Created on 2014/8/25 by XINHUAZHOU
declare
-- Local variables here
i integer;
begin
-- Test statements here
sys.dbms_job.run(job => i);
end;
0
0
|
496fc1eb087e560974c84f8054f49827f1f93685
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3.1/macros/auto/equil.sci
|
b7175c3fdf2bace2af0f347c9e7f25d0c0f0331a
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 113
|
sci
|
equil.sci
|
function [t]=equil(p,q)
t=chol(q);
[u,s,u]=svd(t*p*t');
s=diag(s);
ll=ones(s)./sqrt(sqrt(s));
t=diag(ll)*u'*t
|
8e1f2e978a5f02e20b8922cc2855abfeff76528c
|
9bc415d58bf063a1bca303fea640e644333dbdbd
|
/Scilab/Sinais_e_Sistemas/cleancomplex.sci
|
422d0b6643f995f55cd03a7efc36212485dd6bb1
|
[] |
no_license
|
Roast-Lord/SMGcodes
|
36e55be6c1cc17af91ab2e3f5117c78684f20604
|
b75107be829fb4373dc1bc4b8696fe4b9cec437a
|
refs/heads/main
| 2023-07-05T05:25:50.557705
| 2021-08-17T17:46:25
| 2021-08-17T17:46:25
| 301,012,145
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 332
|
sci
|
cleancomplex.sci
|
function Y=cleancomplex(X)
e=1D-14
n=length(X)
Y=X;
for i=1:n
if(abs(X(i))<e)
Y(i)=0
else
if(abs(real(X(i)))<e)
Y(i) = %i*imag(X(i))
else
if (abs(imag(X(i)))<e)
Y(i) = real(X(i))
end
end
end
end
endfunction
|
d7391a76107832e95d310f692dab93fbdc704fdb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3204/CH2/EX2.4/Ex2_4.sce
|
283329c2f016f7551d26a4d01fca8b45cc6227e9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 490
|
sce
|
Ex2_4.sce
|
//Initilization of variables
Tac=3.5 //kN
Tbc=3.5 //kN
alpha=20 //degree //angle made by Tac with -ve X axis
beta=50 //degree //angle made by Tbc with +ve X axis
//Calculations
theta=atand(((Tac*sind(alpha))+(Tbc*sind(beta)))/((Tac*cosd(alpha))-(Tbc*cosd(beta)))) //degree
P=Tac*(cosd(alpha)-cosd(beta))/(cosd(theta)) //kN // from eq'n 1
//Results
clc
printf('The maximum force that can be applied is %f kN \n',P)
printf('The direction of applied force is %f degree \n',theta)
|
9489fc709d7887f24d097db4fbb724a0cdd32b8d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/542/CH16/EX16.6/Example_16_6.sci
|
f55ccd97bbfedabbed49ae2bad1d77e7f2c0e167
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,015
|
sci
|
Example_16_6.sci
|
clear;
clc;
printf("\n Example 16.6");
H = 0.036; //Humidity is in kg/kg at 811 K
//Taking R as 90 per cent and P as 101.3 kN/m2, then, for assumed values of Tb of 321, 333 and 344 K
//Pw = 13,20 and 32 kN/m2, respectively
//G = 27.8, 12.9 and 6.02 kg/s, respectively.
//for Tb = 321, 333 and 344 K,
//G = 7.16, 7.8 and 7.54 kg/s respectively.
Tb = [321 333 344];
G1 = [27.8 12.9 6.02]; //Temperature is in kelvins
G = [7.16 7.8 7.54]; //flow rate in kg/secs
plot2d(Tb,G,style=3);
plot2d(Tb,G1,style=2);
xtitle("Temperature vs Flow rate","Temperature Tb(K)","Flow rate G(kg/secs)");
//Plotting G against Tb for each equation on the same axis, then
Go = 8.3; //Gas flow rate is in kg/secs
Tb = 340; //temperature is in Kelvins
uf = 0.61; //velocity is in m/secs
D = sqrt(340*(8.3+(1.58*1.26))/(278*0.61));
printf("\n D = %.2f m",D);
|
1cc60f886cd3bc1e8c9794824af6ade55abc8f18
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2465/CH10/EX10.9/Example_9.sce
|
d9ab56f372bfde1b546532a5aba8ade79aa27515
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 365
|
sce
|
Example_9.sce
|
//Chapter-10,Example 9,Page 255
clc();
close();
E0_Ag = 0.799 //standard potential for copper
Ksp=8.3*10^-17
I=1
Ag= Ksp/I
n= 2
R=8.314 //gas constant
F=96500 //Farade's constant
n=2
T=298 //temperature in Kelvin
E_Ag=E0_Ag+(2.303*R*T/(n*F))*log10(Ag)
printf('the single electrode potential of Ag is %.5f V ',E_Ag)
|
9862fe4a75bc0a1d2c15783e52222c4da0c7808e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3793/CH5/EX5.7/exp_5_7.sce
|
0be71feab0c847d0eaae8cb0b37b5d048bac38cc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 250
|
sce
|
exp_5_7.sce
|
clear;
clc;
v=220;
s=5;
z=4.5;
Vb=11;
sb=50;
Zb=(Vb^2)/s;
Zpu=z/Zb;
mprintf("pu leakage reactance is %f\n",Zpu);
a=Vb/v;
Zs=z/(a^2);
//case2
vb1=220;
Zb1=(vb1^2)/s;
Zpu1=Zs/Zb1;
mprintf("Ratio of pu leakage reactances are %f",Zpu1);
|
303f0f6257d89d076c1568f22d767403f8b802bf
|
7fa099e9d565bee9cdd572755843852769c99498
|
/tests/fix-page.tst
|
7cc34a5a837defa9c3ef3dcaada60cda1ace7992
|
[
"LicenseRef-scancode-unknown-license-reference",
"LicenseRef-scancode-other-permissive",
"BSD-2-Clause"
] |
permissive
|
Peter-J-Jansen/SDL-hyperion
|
0d2a16f1d837fa27b8f0aaa927dc84a8ebdb44f6
|
58578601d7a34fc11f050b0ac4fd425a4c0422eb
|
refs/heads/master
| 2023-04-27T03:42:18.421272
| 2022-11-27T00:16:06
| 2022-11-27T00:16:06
| 238,422,138
| 2
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 466
|
tst
|
fix-page.tst
|
*Testcase fix-page: Test the Fix Page E502 Assist
# Created and placed into the public domain 09 OCT 2020 by Bob Polmanter.
# Runtest *Compare dependency removed on 2022-03-08 by Fish.
# Suppress logging of program checks. Processing of this test script
# intentionally generates program checks as it runs as part of the
# instuction's test and validation.
ostailor quiet
archlvl S/370
sysclear
loadcore "$(testpath)/fix-page.core"
runtest
ostailor default
*Done
|
d3256aec81dcc67533bce5a98bb963885c6b0187
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2234/CH5/EX5.5/ex5_5.sce
|
e1be4f504434deaf38dcd584c987bbf086946522
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 188
|
sce
|
ex5_5.sce
|
clc;
l=0.1; //length in m
A=10^-4; //area in m square
R=0.01; //resistance in Ohm
p=(A*R)/l; //calculating resistivity
disp(p,"Resistivity in Ohm metre = "); //displaying result
|
3b26c2827f3ca7736e6072e10d00b80b65ea2a82
|
9cb37875b74a713c93c09fa50ccc70ac0f71ecdb
|
/CostHriFunction/Justin/SCNARIOS_PRESENTATION/Justin_ICRA_tmp2.sce
|
bc4bdc0601ccce79c419b60557a342c75131d529
|
[] |
no_license
|
jmainpri/move3d-assets
|
a5b621daaedaaf8784fed0da1e80d029c83f3983
|
939db49d17a14e052bb58324b70e6112803d3105
|
refs/heads/master
| 2021-01-16T17:48:56.669119
| 2016-02-16T14:04:09
| 2016-02-16T14:04:09
| 20,237,987
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,548
|
sce
|
Justin_ICRA_tmp2.sce
|
#************************************************************
# Scenario of Ikea
#
# date : Thu Aug 23 16:43:06 2012
#************************************************************
p3d_sel_desc_name P3D_ENV Ikea
p3d_sel_desc_name P3D_ROBOT HUMAN_ACHILE
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.604000 -1.790000 0.760000 1.116000 0.830000 135.000000 0.000000 0.000000 14.540000 -30.350000 9.770000 7.740000 72.995000 22.460000 -6.399000 16.856000 3.330000 -148.270000 -8.210000 -76.970000 30.000000 -4.790000 -34.400000 0.000000 -100.420000 0.000000 4.320000 -80.930000 8.000000 84.360000 0.000000 0.000000 0.000000 4.760000 -83.140000 -0.210000 94.570000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -10.000000 0.000000 0.000000 0.000000 0.000000 -180.000000 0.000000
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_sel_desc_name P3D_ROBOT JUSTIN_ROBOT
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.102000 -1.282000 20.772000 -47.384000 -20.972493 69.017768 -48.045275 -1.327433 3.871682 -45.000000 -94.000000 -50.000000 115.000000 2.000000 14.000000 40.000000 25.841768 -111.803735 -45.594000 69.898098 33.291390 -27.455391 6.043048 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.470044 -1.892000 1.112000 -13.845620 16.481564 -169.873548
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -0.102000 -1.282000 20.772000 -47.384000 -20.972493 69.017768 -48.045275 -1.327433 3.871682 -45.000000 -94.000000 -50.000000 115.000000 2.000000 14.000000 40.000000 44.482241 -77.122447 -35.972000 84.496293 16.680790 17.970387 -38.622868 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.965000 -1.614000 1.360538 23.587517 -22.056058 -106.344000
p3d_constraint p3d_kuka_arm_ik 6 10 11 13 14 15 16 1 29 0 3 12 1 3
p3d_constraint p3d_kuka_arm_ik 6 18 19 21 22 23 24 1 30 0 3 20 -1 1
p3d_set_cntrt_Tatt 1 -0.982797 0.018403 -0.183754 -0.036039 -0.003530 0.992963 0.118341 -0.346482 0.184640 0.116955 -0.975819 -0.017708
p3d_constraint p3d_fix_jnts_relpos 1 30 1 24 0 0
p3d_set_cntrt_Tatt 2 -0.982795 -0.003528 0.184639 -0.033370 0.018406 0.992963 0.116959 0.346768 -0.183752 0.118344 -0.975820 0.017099
p3d_constraint p3d_fixed_jnt 1 29 0 6 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0
p3d_constraint p3d_min_max_dofs 0 2 4 3 2 0.000000 135.000000 0
p3d_constraint p3d_lin_rel_dofs 1 5 2 3 4 3 -1.000000 -1.000000 0.000000 0
p3d_constraint p3d_fixed_jnt 1 1 0 3 1.020000 -0.440000 -53.460000 0
p3d_constraint p3d_fixed_jnt 1 7 0 1 -1.327433 0
p3d_constraint p3d_fixed_jnt 1 8 0 1 3.871682 0
p3d_constraint p3d_fixed_jnt 1 10 0 1 -45.000000 0
p3d_constraint p3d_fixed_jnt 1 11 0 1 -94.000000 0
p3d_constraint p3d_fixed_jnt 1 12 0 1 -50.000000 0
p3d_constraint p3d_fixed_jnt 1 13 0 1 115.000000 0
p3d_constraint p3d_fixed_jnt 1 14 0 1 2.000000 0
p3d_constraint p3d_fixed_jnt 1 15 0 1 14.000000 0
p3d_constraint p3d_fixed_jnt 1 16 0 1 40.000000 0
p3d_set_object_base_and_arm_constraints 29 1 0 2 0 1
p3d_set_arm_data 0 3 29
p3d_set_arm_data 1 3 30
p3d_sel_desc_name P3D_ROBOT Lampe
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.766000 -1.740000 0.770000 0.000000 0.000000 0.000000
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_sel_desc_name P3D_ROBOT Assiette
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 1.020000 -1.470000 0.787611 0.000000 0.000000 0.000000
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_sel_desc_name P3D_ROBOT Pommes
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.442478 -1.622419 0.762537 0.000000 0.000000 0.000000
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_sel_desc_name P3D_ROBOT Verre
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -6.156000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_sel_desc_name P3D_ROBOT Tabouret
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -13.930000 0.220000 0.000000 0.000000 0.000000 0.000000
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_sel_desc_name P3D_ROBOT sailLamp1
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -3.743000 -0.090000 0.286000 0.000000 0.000000 0.000000
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_sel_desc_name P3D_ROBOT sailLamp2
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -3.200000 0.000000 0.573000 0.000000 0.000000 0.000000
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_sel_desc_name P3D_ROBOT sailLamp3
p3d_set_robot_steering_method Linear
p3d_set_robot_current 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.760000 -1.712000 2.501000 0.000000 0.000000 -19.300000
p3d_set_robot_goto 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
p3d_set_camera_pos 0.441313 -1.179626 0.716971 2.521610 5.223810 0.747500 0.000000 0.000000 1.000000 0.000000
|
0f38c228727e6fa964eaba26b53af5c15bded19c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3772/CH3/EX3.1/Ex3_1.sce
|
745356751f0fa54a70111ea29698de5795d1b8fc
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 328
|
sce
|
Ex3_1.sce
|
// Problem 3.1,Page no.54
clc;clear;
close;
P=40 //mm //Force applied to stretch a tape
L=30 //m //Length of steel tape
A=6*1 //mm //Cross section area
E=200*10**9*10**-6 //KN/m**2 //Modulus of Elasticity
//Calculations
sigma_L=(P*L*10**3)*(A*E)**-1 //mm
//Result
printf("The Elongation of steel tape is %.1f mm",sigma_L)
|
057614ab1512af88ad814a54b74fe10dd5ed66f3
|
a159f59d19e2b03b234e9c2977ba4a932180e648
|
/Software/GreenScilabV0.9/env/12prodDemand.sci
|
fbb3d43aafcaf58e97b55c7b1783ff2622dca245
|
[] |
no_license
|
OpenAgricultureFoundation/openag_sim
|
e052bbcc31b1d7f9b84add066327b479785f8723
|
425e678b55e24b5848d17181d25770175b8c2c3f
|
refs/heads/master
| 2021-07-01T06:25:08.753260
| 2017-09-20T21:44:18
| 2017-09-20T21:44:18
| 80,540,145
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 249
|
sci
|
12prodDemand.sci
|
Q/D5.66642
0.14538
0.07386
0.05633
0.05425
0.06050
0.07451
0.09866
0.13805
0.20166
0.30368
0.46410
0.70536
1.04153
1.43517
1.88726
2.31613
2.66028
2.90113
3.05778
3.15885
3.22527
3.26912
3.29715
3.31341
3.32032
3.31915
|
fb572342a2e41b62655da3f6d0f3884eb6ac6d06
|
5a05d7e1b331922620afe242e4393f426335f2e3
|
/macros/ellipord.sci
|
f0c52a4c02eff37a356734c63b1f614919275e5b
|
[] |
no_license
|
sauravdekhtawala/FOSSEE-Signal-Processing-Toolbox
|
2728cf855f58886c7c4a9317cc00784ba8cd8a5b
|
91f8045f58b6b96dbaaf2d4400586660b92d461c
|
refs/heads/master
| 2022-04-19T17:33:22.731810
| 2020-04-22T12:17:41
| 2020-04-22T12:17:41
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,334
|
sci
|
ellipord.sci
|
// Copyright (C) 2018 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Original Source : https://octave.sourceforge.io/signal/
// Modifieded by:Sonu Sharma, RGIT Mumbai
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [n, Wp] = ellipord(Wp, Ws, Rp, Rs)
//Minimum filter order of a digital elliptic or Cauer filter with the desired response characteristics.
//Calling Sequence
//[n] = ellipord(Wp, Ws, Rp, Rs)
//[n, Wp] = ellipord(Wp, Ws, Rp, Rs)
//Parameters
//Wp: scalar or vector of length 2 (passband edge(s)), all elements must be in the range [0,1]
//Ws: scalar or vector of length 2 (stopband edge(s)), all elements must be in the range [0,1]
//Rp: passband ripple in dB.
//Rs: stopband attenuation in dB.
//n: Minimum order of filter satisfying given specs.
//Description
//This function computes the minimum filter order of an elliptic filter with the desired response characteristics.
//Stopband frequency ws and passband frequency wp specify the the filter frequency band edges.
//Frequencies are normalized to the Nyquist frequency in the range [0,1].
//Rp is measured in decibels and is the allowable passband ripple and Rs is also measured in decibels and is the minimum attenuation in the stop band.
//If ws>wp then the filter is a low pass filter. If wp>ws, then the filter is a high pass filter.
//If wp and ws are vectors of length 2, then the passband interval is defined by wp and the stopband interval is defined by ws.
//If wp is contained within the lower and upper limits of ws, the filter is a band-pass filter. If ws is contained within the lower and upper limits of wp, the filter is a band-stop or band-reject filter.
//Examples
//Wp = [60 200]/500;
//Ws = [50 250]/500;
//Rp = 3;
//Rs = 40;
//[n,Wp] = ellipord(Wp,Ws,Rp,Rs)
//Output :
// Wp =
//
// 0.12 0.4
// n =
//
// 5.
funcprot(0);
[nargout nargin] = argn();
if (nargin ~= 4)
error("ellipord: invalid number of inputs");
else
validate_filter_bands ("ellipord", Wp, Ws);
end
// sampling frequency of 2 Hz
T = 2;
Wpw = tan(%pi.*Wp./T); // prewarp
Wsw = tan(%pi.*Ws./T); // prewarp
// pass/stop band to low pass filter transform:
if (length(Wpw)==2 & length(Wsw)==2)
wp=1;
w02 = Wpw(1) * Wpw(2); // Central frequency of stop/pass band (square)
w3 = w02/Wsw(2);
w4 = w02/Wsw(1);
if (w3 > Wsw(1))
ws = (Wsw(2)-w3)/(Wpw(2)-Wpw(1));
elseif (w4 < Wsw(2))
ws = (w4-Wsw(1))/(Wpw(2)-Wpw(1));
else
ws = (Wsw(2)-Wsw(1))/(Wpw(2)-Wpw(1));
end
elseif (Wpw > Wsw)
wp = Wsw;
ws = Wpw;
else
wp = Wpw;
ws = Wsw;
end
k=wp/ws;
k1=sqrt(1-k^2);
q0=(1/2)*((1-sqrt(k1))/(1+sqrt(k1)));
q= q0 + 2*q0^5 + 15*q0^9 + 150*q0^13; //(....)
D=(10^(0.1*Rs)-1)/(10^(0.1*Rp)-1);
n=ceil(log10(16*D)/log10(1/q));
endfunction
|
a90c744e3fe6f580b0ef929ac0b6894ee0cc4ef7
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3774/CH3/EX3.8/Ex3_8.sce
|
1003c0c77b04200efc3c85f25bbb386b905ba5a1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 561
|
sce
|
Ex3_8.sce
|
// exa 3.8 Pg 70
clc;clear;close;
// Given Data
M=15;// N.m
P=5;// kW
N=500;// rpm
tau_d=40;// Mpa
sigma_d=58;// MPa
T=P*60*10**3/(2*%pi*N);// N.m
Te=sqrt(M**2+T**2);// N.m
//Te=(%pi/16)*d**3*tau_d
d=(Te/((%pi/16)*tau_d)*1000)**(1/3);// mm
printf('\n Using equivalent torque equation,\n shaft diameter d = %.f mm',d)
Me=(1/2)*(M+sqrt(M**2+T**2));// N.m
//Me=(%pi/32)*d**3*sigma_d
d=(Me/((%pi/32)*sigma_d)*10**3)**(1/3);//mm
printf('\n Using equivalent bending moment equation,\n shaft diameter d = %.2f mm or %.f mm',d, ceil(d))
printf('\n Adopt d=23 mm.')
|
ae060157eb7dcdfbc39c5fff7a1164266137e4c2
|
c59576b9f96a7b26dc5bc0d52998ad818380b8cf
|
/test/WW03.prev.tst
|
df0f217abaacc15480d4398fb5002de2523bcb45
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/checkdig
|
0588535521d9106a5c777a809e50d64a9204fa3c
|
3570d246efd0d102f1a2652dfe752884b5d346d8
|
refs/heads/master
| 2022-02-14T07:41:43.949901
| 2022-01-28T15:00:07
| 2022-01-28T15:00:07
| 30,117,975
| 1
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,315
|
tst
|
WW03.prev.tst
|
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="application/xhtml+xml;charset=UTF-8" />
<meta name="robots" content="noindex, nofollow" />
<link rel="stylesheet" title="common" type="text/css" href="stylesheet.css" />
<title>CheckDig Main Page</title>
</head>
<body>
<!-- function="iban", parm1="", parm2=" -->
<h2>Checkdigits</h2>
<form action="servlet" method="post">
<table>
<tr><th align="left">Check Method</th>
<th> </th>
<th align="left">Number to be checked</th>
</tr>
<tr valign="top">
<td><select name="function" size="11">
<option value="acc">German Bank Account Number (+ BLZ)</option>
<option value="ean">Internat. Article Number (EAN)</option>
<option value="iban" selected>Internat. Bank Account Number (IBAN)</option>
<option value="isbn">Internat. Standard Book Number (ISBN)</option>
<option value="isin">Internat. Stock Id Number (ISIN)</option>
<option value="ismn">Internat. Standard Music Number (ISMN)</option>
<option value="issn">Internat. Standard Serial Number (ISSN)</option>
<option value="pnd">Person-Name Database Id (PND-Id)</option>
<option value="taxid">German Tax Identification Number</option>
<option value="uci">SEPA Unique Creditor Id (UCI)</option>
<option value="vat">European Value Added Tax (VAT) Id</option>
</select>
<br />
<a title="account" href="spec/de_account.xml">XML definition</a> of <br /> German account check methods<br />
<a title="xsl" href="xslt/account.xsl">Stylesheet</a> generating<br /> corresponding Java Methods<br />
<a title="deblz" href="servlet?spec=blz/blz_search">German BLZ search</a><br />
<a title="wiki" href="http://www.teherba.org/index.php/CheckDig" target="_new">Wiki</a> Documentation<br />
<a title="github" href="https://github.com/gfis/checkdig" target="_new">Git Repository</a><br />
<a title="api" href="docs/api/index.html">Java API</a> Documentation<br />
<a title="manifest" href="servlet?view=manifest">Manifest</a>, <a title="license" href="servlet?view=license">License</a>, <a title="notice" href="servlet?view=notice">References</a><br />
</td>
<td> </td>
<td>
<input name="parm1" maxsize="80" size="40" value=""/>
<br />
<br />Optional Parameter (BLZ):
<br />
<input name="parm2" maxsize="80" size="40" value=""/>
<br />
<input type="submit" value="Submit">
<h3>
<pre>
AD<span class="OK">12</span> 0001 2030 2003 5910 0100 !OK
AT<span class="OK">61</span> 1904 3002 3457 3201 !OK
AT<span class="OK">35</span> 1200 0515 6805 2701 !OK
BE<span class="OK">68</span> 5390 0754 7034 !OK
BE<span class="OK">62</span> 5100 0754 7061 !OK
CH<span class="OK">93</span> 0076 2011 6238 5295 7 !OK
CY<span class="OK">17</span> 0020 0128 0000 0012 0052 7600 !OK
CZ<span class="OK">65</span> 0800 0000 1920 0014 5399 !OK
DE<span class="OK">89</span> 3704 0044 0532 0130 00 !OK
DK<span class="OK">50</span> 0040 0440 1162 43 !OK
EE<span class="OK">38</span> 2200 2210 2014 5685 !OK
ES<span class="OK">91</span> 2100 0418 4502 0005 1332 !OK
FI<span class="OK">21</span> 1234 5600 0007 85 !OK
FO<span class="OK">62</span> 6460 0001 6316 34 !OK
FO<span class="OK">95</span> 6460 0002 0016 77 !OK
FO<span class="OK">36</span> 9181 0002 9324 33 !OK
FR<span class="OK">76</span> 1820 6000 1030 5696 6400 117 !OK
FR<span class="OK">14</span> 2004 1010 0505 0001 3M02 606 !OK
GB<span class="OK">29</span> NWBK 6016 1331 9268 19 !OK
GL<span class="OK">50</span> 6471 0001 4414 82 !OK
GL<span class="OK">41</span> 6471 0001 0015 55 !OK
GI<span class="OK">75</span> NWBK 0000 0000 7099 453 !OK
GR<span class="OK">16</span> 0110 1250 0000 0001 2300 695 !OK
HR<span class="OK">12</span> 1001 0051 8630 0016 0 !OK
HU<span class="OK">42</span> 1177 3016 1111 1018 0000 0000 !OK
IE<span class="OK">29</span> AIBK 9311 5212 3456 78 !OK
IL<span class="OK">62</span> 0108 0000 0009 9999 999 !OK
IS<span class="OK">14</span> 0159 2600 7654 5510 7303 39 !OK
IT<span class="OK">60</span> X054 2811 1010 0000 0123 456 !OK
LI<span class="OK">21</span> 0881 0000 2324 013A A !OK
LV<span class="OK">80</span> BANK 0000 4351 9500 1 !OK
LT<span class="OK">12</span> 1000 0111 0100 1000 !OK
LU<span class="OK">28</span> 0019 4006 4475 0000 !OK
MC<span class="OK">58</span> 1244 8610 1776 1053 3010 111 !OK
MC<span class="OK">75</span> 1273 9000 7201 0919 0000 J37 !OK
MC<span class="OK">58</span> 1149 8000 0162 5023 9000 377 !OK
MC<span class="OK">58</span> 1261 9000 2300 0038 2435 419 !OK
MC<span class="OK">10</span> 1273 9000 7201 1468 3000 U30 !OK
MK<span class="OK">07</span> 3000 0000 0042 425 !FORM
MT<span class="OK">84</span> MALT 0110 0001 2345 MTLC AST0 01S !OK
NL<span class="OK">91</span> ABNA 0417 1643 00 !OK
NO<span class="OK">93</span> 8601 1117 947 !OK
PL<span class="OK">27</span> 1140 2004 0000 3002 0135 5387 !OK
PT<span class="OK">50</span> 0002 0123 1234 5678 9015 4 !OK
RO<span class="OK">49</span> AAAA 1B31 0075 9384 0000 !OK
CS<span class="OK">73</span> 2600 0560 1001 6113 79 !OK
SA<span class="OK">03</span> 8000 0000 6080 1016 7519 !OK
SE<span class="OK">35</span> 5000 0000 0549 1000 0003 !OK
SI<span class="OK">56</span> 1910 0000 0123 438 !OK
SK<span class="OK">31</span> 1200 0000 1987 4263 7541 !OK
SM<span class="OK">86</span> U032 2509 8000 0000 0270 100 !OK
TN<span class="OK">59</span> 1420 7207 1007 0712 9648 !OK
TR<span class="OK">62</span> 0001 2009 8890 0058 0088 88 !OK
TR<span class="OK">07</span> 0006 2000 0140 0006 2996 08 !OK
?CHAR
DE<span class="NOK">20</span> 6601 0075 0352 3097 57 ?NOK
DE<span class="NOK">50</span> 6723 0000 4059 5290 56 ?NOK
</pre>
</h3>
</td>
</tr>
</table>
</form>
<!-- language="en", features="quest" -->
<p><span style="font-size:small">
Questions, remarks: email to <a href="mailto:punctum@punctum.com?&subject=CheckDig">Dr. Georg Fischer</a></span></p>
</body></html>
|
7c39b8d83496b1941487a0c273c3797e693b3348
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/659/CH8/EX8.1/exm8_1.sce
|
bd31fe0ede68ac8c5311b66efce6893c56ae0d9a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 341
|
sce
|
exm8_1.sce
|
// Exampple 8.1
//Write a program to read a series of words from terminal using scanf function.
//Read data using scanf function
disp("Enter text:")
[word1,word2,word3,word4]=scanf("%s %s %s %s");
//Printing the results
printf("word1 = %s\nword2 = %s\n",word1,word2);
printf("word3 = %s\nword4 = %s\n",word3,word4);
|
5b5affa9165d7a04546c9efa46ffecb2551380ab
|
b829a470efb851fdd8700559c2092711adaa42e0
|
/Data/OVI-CV-03-Facenet/CV-Groups/cv-group-114528472703/OVI-Test/cv-group-114528472703-run-04.tst
|
8e2ba5a0077bb6c4e15b3ee55e710e4dee95fd80
|
[] |
no_license
|
achbogga/FaceRecognition
|
6f9d50bd1f32f2eb7f23c7ae56f9e7b225d32325
|
165ebc7658228d2cceaee4619e129e248665c49a
|
refs/heads/master
| 2021-07-04T21:47:57.252016
| 2017-08-01T18:53:12
| 2017-08-01T18:53:12
| 96,568,452
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 524
|
tst
|
cv-group-114528472703-run-04.tst
|
Huiping\Huiping_015.jpg
Huiping\Huiping_009.jpg
Don\Don_005.jpg
Don\Don_011.jpg
Shirley\Shirley_004.jpg
Shirley\Shirley_006.jpg
Ahmad\Ahmad_007.jpg
Ahmad\Ahmad_001.jpg
Sima\Sima_012.jpg
Sima\Sima_009.jpg
SungChun\SungChun_008.jpg
SungChun\SungChun_017.jpg
Kiran\Kiran_008.jpg
Kiran\Kiran_007.jpg
Allison\Allison_010.jpg
Allison\Allison_006.jpg
Amit\Amit_009.jpg
Amit\Amit_002.jpg
Nara\Nara_013.jpg
Nara\Nara_005.jpg
Weihong\Weihong_008.jpg
Weihong\Weihong_012.jpg
Dave\Dave_008.jpg
Dave\Dave_010.jpg
|
6d5098629c3ea9bccb54dd7bf08bd8eba853919e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3831/CH7/EX7.5/Ex7_5.sce
|
5dabbe103c60005d946a0b1934f81ecab3484ba1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 464
|
sce
|
Ex7_5.sce
|
// Example 7_5
clc;funcprot(0);
// Given data
m=0.035;// kg
p_1=0.100;// MPa
T_1=20.0;// °C
p_2=5.00;// MPa
k=1.4;// The specific heat ratio for air
R_air=0.286;// kJ/kg.K
// Solution
T_2=((T_1+273.15)*(p_2/p_1)^((k-1)/k))-273.15;// °C
v_1=(m*R_air*(T_1+273.15))/(p_1*10^3);// m^3/kg
v_2=v_1*((T_2+273.15)/(T_1+273.15))^(1/(1-k));// m^3/kg
printf('\nThe final temperature,T_2=%3.0f°C \nThe specific volume of the air,v_2=%0.5f m^3/kg',T_2,v_2);
|
aefcd1d090fc34f4ae088c66883a61b600d7840d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3311/CH14/EX14.11/Ex14_11.sce
|
9299b68f1c593cd213baa7d1e69884a925ba5fd1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,582
|
sce
|
Ex14_11.sce
|
// chapter 14
// example 14.11
// Determine the firing angle, power factor, active power and reactive power at rated speed and its 10 % and their ratio
// page-886-887
clear;
clc;
// given
P=100; // in kW (power rating of motor)
N=1000; // in rpm
Ea=460; // in V
I=300; // in A
E=415; // in V (3 phase input voltage)
neta=10; // in % (% of rated speed for new speed)
// calculate
P=P*1E3;
Em=sqrt(2/3)*E; // calculation of peak value of phase voltage
// since Ea=(3*sqrt(3)*Em/%pi)*cosd(alpha), therefore we get
alpha1=acosd((Ea/Em)*(%pi/(3*sqrt(3))));
PF1=cosd(alpha1);
Ea_alpha=(neta/100)*Ea;
alpha2=acosd((Ea_alpha/Em)*(%pi/(3*sqrt(3))));
PF2=cosd(alpha2);
Ia=P/Ea;
I=sqrt(2/3)*Ia;
P_active1=sqrt(3)*E*I*cosd(alpha1);
P_reactive1=sqrt(3)*E*I*sind(alpha1);
P_active2=sqrt(3)*E*I*cosd(alpha2);
P_reactive2=sqrt(3)*E*I*sind(alpha2);
ratio=P_reactive2/P_reactive1;
printf("\nAt rated speed, the firing angle is \t alpha=%.2f degree and the power factor is \t PF=%.2f",alpha1,PF1);
printf("\n\nAt %.f %% rated speed, the firing angle is \t alpha=%.2f degree and the power factor is \t PF=%.3f",neta,alpha2,PF2);
printf("\n\nAt rated speed, the active power is \t P_active=%.1f kW and reactive power is \t P_reactive=%.2f kVAR",P_active1*1E-3,P_reactive1*1E-3);
printf("\n\nAt %.f %% rated speed, the active power is \t P_active=%.2f kW and reactive power is \t P_reactive=%.2f kVAR",neta,P_active2*1E-3,P_reactive2*1E-3);
printf("\n\nThe ratio of reactive power at %.f %% rated speed and rated speed is %.2f",neta,ratio);
// Note: The answer vary slightly due to precise calculations
|
dba84a430adf3c88ed14faba16a8401e896f5d5f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/632/CH3/EX3.5/example3_5.sce
|
d9fb24fcd1c9c6b34828d8b4dc84d05c393e85b6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 180
|
sce
|
example3_5.sce
|
//clc()
MKClO3 = 122.55
mKClO3 = 100;//kg
NKClO3 = mKClO3 / MKClO3;
NO2 = 3 * NKClO3 / 2;
V1 = 22.4143;//m^3/kmol;
V = V1 * NO2;
disp("m^3",V,"volume of oxygen produced = ")
|
29d5f979fed4a2185a4970859d4a6e97a6fa5a62
|
99b4e2e61348ee847a78faf6eee6d345fde36028
|
/Toolbox Test/impzlength/impzlength5.sce
|
6aed98b0b979c6f4bb20013b2c0e5c8688f3ab55
|
[] |
no_license
|
deecube/fosseetesting
|
ce66f691121021fa2f3474497397cded9d57658c
|
e353f1c03b0c0ef43abf44873e5e477b6adb6c7e
|
refs/heads/master
| 2021-01-20T11:34:43.535019
| 2016-09-27T05:12:48
| 2016-09-27T05:12:48
| 59,456,386
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 437
|
sce
|
impzlength5.sce
|
clear;
clc;
exec('/home/debdeep/Desktop/TEST NOW!!/impzlength.sci');
b = [1+3*%i -0.9 2 3 4 4];
a=[1 -0.9 2 3 4 4];
len = impzlength(b,a);
disp(len);
//output
//!--error 246
//Function not defined for given argument type(s),
// check arguments or define function %p_bezout for overloading.
//at line 31 of function gcd called by :
//at line 54 of function impzlength called by :
//len = impzlength(b,a);
//matlab
// 20
|
de8c0304d82a6159ba2a97bee6eb6e2301802bbd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2333/CH5/EX5.5/5.sce
|
8c84769c475c63de7a9414a61d091a902df34440
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 339
|
sce
|
5.sce
|
clc
k = 12400 // constant
lambda = 6943 // wavelength of radiation in angstrom
n = 3e19 // Total number of ions
// Sample Problem 5 on page no. 243
printf("\n # PROBLEM 5 # \n")
E = k/(lambda) // Energy difference
E_total = E*n*1.6e-19 // Total Energy emitted
printf("\n Energy of one photon is %feV. \n Total energy is %fJ",E,E_total)
|
7625d07a5bbae6cbe9829437aaeadb39de32f9cc
|
9d545f988a80789144df937ce4a90017c378cb92
|
/Lab 9/PCM_Encoding.sce
|
4a030285d0ca289a2928290d84349c8923876d37
|
[] |
no_license
|
tshrjn/EE304P
|
215dc669daaf372242afe2c1f580a36df26e51ce
|
ac1c045262dd0b419354d2d22861c734508b7b8e
|
refs/heads/master
| 2021-01-10T03:02:18.270276
| 2015-12-01T02:42:16
| 2015-12-01T02:42:16
| 46,113,211
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 358
|
sce
|
PCM_Encoding.sce
|
function [c] = PCM_Encoding(x,L,en_code)
//Encoding:Converting Quantized decimal sample values into binary
//x=input sequence
//L=number of qunatization levels
//encode=normalized input sequence
n=log2(L);
c=zeros(length(x),n);
fori=1:length(x)
forj=n:-1:0
if(fix(en_code(i)/(2^j))==1)
c(i,(n-j))=1;
en_code(i)=en_code(i)-2^j;
end
end
end
disp(c)
|
5c7cca8f4f639a3f58f3c80b4fd508c186053df5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/74/CH3/EX3.21/example21_sce.sce
|
395cce6b17cd462f931beaaa8300d0ce0ef1307c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 214
|
sce
|
example21_sce.sce
|
//chapter 3
//example 3.21
//page 167
Ro=100;
x=0.00392;
T1=25;//temp at 25c
R(25)=Ro*(1+(x*T1));
disp(R(25))// resistance at 25 degree
T2=100;
R(100)=Ro*(1+(x*T2));
disp(R(100))//resistance at 100 degree
|
fbb338232eac2d94408074416157f3b701787dc1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3428/CH23/EX14.23.20/Ex14_23_20.sce
|
bf7f8f1cd04072cae6272f13f3380f8bede46f1a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 413
|
sce
|
Ex14_23_20.sce
|
//Section-14,Example-4,Page no.-PC.113
//To calculate the pH in the following cases.
clc;
K_a=7.3*10^-6
c_1=0.23 //(M)
alpha_1=sqrt(K_a/c_1)
C_1=c_1*alpha_1 //(M)
pH_1=-log10(C_1)
disp(pH_1,'pH of the given weak acid')
c_2=0.2 //(M)
K_b=4.4*10^-5
alpha_2=sqrt(K_b/c_2)
C_2=c_2*alpha_2 //[OH-] (M)
pOH=-log10(C_2)
pH_2=14-pOH
disp(pH_2,'pH of CH_3NH_2')
|
4db26267c221c5a9a9ff4cc3f914ab49712dae7b
|
0c7d100cb0cf4ca584a252d56aef57d8692e87bd
|
/Automatique/TP1/Exo1.sce
|
82eb8a059a513ac2c95b1aa1ade15ad85cf75b02
|
[] |
no_license
|
MacBootglass/insa
|
1957913df94ce0742e19ec400e258fec032a3619
|
612acee69e8195f3202aede45fede79fabf47d01
|
refs/heads/master
| 2021-01-10T22:36:39.551539
| 2017-04-26T09:23:02
| 2017-04-26T09:23:02
| 54,901,623
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 175
|
sce
|
Exo1.sce
|
s = %s;
to = 10^-4;
num = 1;
dem = 1 + to*s;
sys = syslin('c', num/dem);
t = (0:to/100:7*to)';
y = csim('step', t, sys);
plot2d(t, y');
tmp = find(y>=0.95);
tr5 = t(tmp(1));
|
14d15f5cda1dab7b0cff93191fcef77d05e2eab8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/632/CH5/EX5.6/example5_6.sce
|
cedcb25344814683cd6eeb23ad6ab6e851301d69
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 330
|
sce
|
example5_6.sce
|
//clc()
T = 510;//K
P = 26.6;//bar
Tc = 425.2;//K
Pc = 38;//bar
Zc = 0.274;
R = 8.314;
Pr = P / Pc;
Tr = T / Tc;
disp(Pr,"Pr = ")
disp(Tr,"Tr = ")
//From fig. 5.4 and 5.5 from the text book
Z = 0.865;
D = 0.15;
Z1 = Z + D * ( Zc - 0.27);
V = R * T * Z1 / (P * 10^5);
disp("m^3/mol",V,"Molar volume of n-butane = ")
|
ea1b1c3d746ea117f4bf6466e72bdf0696b09c2d
|
717ddeb7e700373742c617a95e25a2376565112c
|
/1766/CH2/EX2.24/EX2_24.sce
|
7725b9cb701b2e140a9331a2035c0c720b6206eb
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 875
|
sce
|
EX2_24.sce
|
clc;funcprot(0);//Example 2.24
//Initilisation of Variables
L1=0.01;....//thickness of blocks in m
b=0.08;...//length of blocks in m
W=0.06;....//width of blocks in m
K1=20;....//thermal conductivity of blocks in W/m*degrees celcius
h=10000;....//the contact conductance of 2 blocks W/m^2*degrees celcius
T1=120;....//outer temparature of 1st block in degrees celcius
T4=70;....//outer temparature of 2nd block in degrees celcius
//calculations
A=b*W;.....//area of the blocks in m
R1=L1/(K1*A);....//resistance of 2 blocks in degrees celcius/W
R2=1/(h*A);.....//contact resistance of 2 blocks in degrees celcius/W
Q=(T1-T4)/(R1+R2+R1);....//heat transfer through the blocks W
T=Q*R2;.....//temparature drop at the interface in degrees celcius
disp(Q,"heat transfer through the blocks W:")
disp(Q*R2,"temparature drop at the interface in degrees celcius:")
|
6010c7f08b14ef3f472ef095d33e5d5cb3ffe363
|
456d61ad6df72c2b22d4b518d913dea4b1c7bb74
|
/test/XX1.prev.tst
|
3fc83a4faf19f4fc82e1c60edefa9b689b5895ab
|
[
"Apache-2.0",
"LicenseRef-scancode-unknown-license-reference"
] |
permissive
|
gfis/xtool
|
33d38dbccc24f5bf064bd3d79c4fdea19971c345
|
891e1f1ffe57558c6c150e49b2d7976c15bfcc85
|
refs/heads/master
| 2022-02-13T12:50:15.773274
| 2022-01-28T14:34:39
| 2022-01-28T14:34:39
| 30,119,817
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,692
|
tst
|
XX1.prev.tst
|
<?xml version="1.0" encoding="UTF-8"?>
<html xmlns="http://www.w3.org/1999/xhtml"><head><title>Namespace Crossreference</title>
<link rel="stylesheet" type="text/css" href="stylesheet.css"></link>
<style>
<!--
dt { font-family:Lucida Console,Courier,monospace; font-weight: bold; }
dd { font-family:Lucida Console,Courier,monospace ; }
-->
</style>
</head>
<body><h2>List of Namespace URIs</h2>
<dl><a href="#http_//www_w3_org/2001/XMLSchema-instance"><dt>http://www.w3.org/2001/XMLSchema-instance</dt>
</a>
<a href="#http_//www_w3_org/2001/XMLSchema"><dt>http://www.w3.org/2001/XMLSchema</dt>
</a>
<a href="#urn_iso_std_iso_20022_tech_xsd_camt_052_001_01"><dt>urn:iso:std:iso:20022:tech:xsd:camt.052.001.01</dt>
</a>
<a href="#urn_iso_std_iso_20022_tech_xsd_pacs_004_001_01"><dt>urn:iso:std:iso:20022:tech:xsd:pacs.004.001.01</dt>
</a>
<a href="#urn_iso_std_iso_20022_tech_xsd_pacs_006_001_01"><dt>urn:iso:std:iso:20022:tech:xsd:pacs.006.001.01</dt>
</a>
<a href="#urn_iso_std_iso_20022_tech_xsd_pacs_008_001_01"><dt>urn:iso:std:iso:20022:tech:xsd:pacs.008.001.01</dt>
</a>
<a href="#urn_iso_std_iso_20022_tech_xsd_pain_001_001_02"><dt>urn:iso:std:iso:20022:tech:xsd:pain.001.001.02</dt>
</a>
<a href="#urn_iso_std_iso_20022_tech_xsd_pain_002_001_02"><dt>urn:iso:std:iso:20022:tech:xsd:pain.002.001.02</dt>
</a>
<a href="#urn_iso_std_iso_20022_tech_xsd_pain_008_001_01"><dt>urn:iso:std:iso:20022:tech:xsd:pain.008.001.01</dt>
</a>
</dl>
<h2>Namespace URI and Prefix Crossreference</h2>
<dl><dt><a name="http_//www_w3_org/2001/XMLSchema-instance" />http://www.w3.org/2001/XMLSchema-instance</dt>
<dd>xsi: pacs.008.001.01.xml</dd>
<dd>xsi: pain.001.001.02.xml</dd>
<dt><a name="http_//www_w3_org/2001/XMLSchema" />http://www.w3.org/2001/XMLSchema</dt>
<dd>xs: camt.052.001.01.xsd</dd>
<dd>xs: iso.pacs.008.001.01.xsd</dd>
<dd>xs: pacs.004.001.01.xsd</dd>
<dd>xs: pacs.006.001.01.xsd</dd>
<dd>xs: pacs.008.001.01.xsd</dd>
<dd>xs: pain.001.001.02.xsd</dd>
<dd>xs: pain.002.001.02.xsd</dd>
<dd>xs: pain.008.001.01.xsd</dd>
<dt><a name="urn_iso_std_iso_20022_tech_xsd_camt_052_001_01" />urn:iso:std:iso:20022:tech:xsd:camt.052.001.01</dt>
<dd>(default): camt.052.001.01.xsd</dd>
<dd>(targetNamespace): camt.052.001.01.xsd</dd>
<dt><a name="urn_iso_std_iso_20022_tech_xsd_pacs_004_001_01" />urn:iso:std:iso:20022:tech:xsd:pacs.004.001.01</dt>
<dd>(default): pacs.004.001.01.xsd</dd>
<dd>(targetNamespace): pacs.004.001.01.xsd</dd>
<dt><a name="urn_iso_std_iso_20022_tech_xsd_pacs_006_001_01" />urn:iso:std:iso:20022:tech:xsd:pacs.006.001.01</dt>
<dd>(default): pacs.006.001.01.xsd</dd>
<dd>(targetNamespace): pacs.006.001.01.xsd</dd>
<dt><a name="urn_iso_std_iso_20022_tech_xsd_pacs_008_001_01" />urn:iso:std:iso:20022:tech:xsd:pacs.008.001.01</dt>
<dd>(default): iso.pacs.008.001.01.xsd</dd>
<dd>(targetNamespace): iso.pacs.008.001.01.xsd</dd>
<dd>pc8: pacs.008.001.01.xml</dd>
<dd>(default): pacs.008.001.01.xsd</dd>
<dd>(targetNamespace): pacs.008.001.01.xsd</dd>
<dt><a name="urn_iso_std_iso_20022_tech_xsd_pain_001_001_02" />urn:iso:std:iso:20022:tech:xsd:pain.001.001.02</dt>
<dd>pi1: pain.001.001.02.xml</dd>
<dd>(default): pain.001.001.02.xsd</dd>
<dd>(targetNamespace): pain.001.001.02.xsd</dd>
<dt><a name="urn_iso_std_iso_20022_tech_xsd_pain_002_001_02" />urn:iso:std:iso:20022:tech:xsd:pain.002.001.02</dt>
<dd>(default): pain.002.001.02.xsd</dd>
<dd>(targetNamespace): pain.002.001.02.xsd</dd>
<dt><a name="urn_iso_std_iso_20022_tech_xsd_pain_008_001_01" />urn:iso:std:iso:20022:tech:xsd:pain.008.001.01</dt>
<dd>(default): pain.008.001.01.xsd</dd>
<dd>(targetNamespace): pain.008.001.01.xsd</dd>
</dl>
</body>
</html>
|
cf0a3dc0f3d5ba7445425c07cef14ddb508daf2d
|
717ddeb7e700373742c617a95e25a2376565112c
|
/3136/CH5/EX5.2/Ex5_2.sce
|
e2af6a96604ae4b71ad511a69e1c5750854a5933
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 3,905
|
sce
|
Ex5_2.sce
|
clear all; clc;
disp("a)")
disp("Convert: 1) Q=5 m^3/s=10595 cfm")
disp("2) rhoa=0.0761lbm/ft^3")
disp("3) SP=deltap/(rhow*g)")
delta_ps=500
rho_w=1000
g=9.8
SP=delta_p/(rho_w*g)
printf("Hence SP = %0.3f m",SP)
disp("Thus SP= 2.01 in.wg.")
disp("b)")
disp("Calculating the specific speed:Ns")
N_s=1500*((10575)^0.5)/(2.01)^0.75
printf("The value of Ns is equal to %0.2f rpm*(cfm^0.5)/(in of water^0.75)",N_s)
N=1500
omega=N*%pi/30
printf("\nOmega = %0.0f rad/s",omega)
omega_s=157*(5^0.5)/((500/1.22)^0.75)
printf("\nSo omegas = %0.2f ",omega_s)
disp("From figure 5.10b,we select v=Dh/Dt=0.5 and the blade number Zb=6*v/(1-v)")
v=0.5
Zb=6*v/(1-v)
printf("Hence Zb= %0.2f",Zb)
disp("From figure 2.2,the specific diameter obtained as deltas is approximately equal to 1.5")
D_t=1.5*(5^0.5)/((500/1.22)^0.25)
printf("\nHence Dt = %0.3f m",D_t)
v=0.5
D_t=0.74//rounded off
D_h=v*D_t
printf("\nDh= %0.2f m",D_h)
A=%pi*(D_t^2)*(1-v^2)/4
printf("\nAlso A = %0.4f m^2",A)
D_m=((D_t^2+D_h^2)/2)^0.5
printf("\nDm = %0.4f m",D_m)
A=0.322//rounded off
Q=5
V_a=Q/A
printf("\nVa= %0.1f m/s",V_a)
U_m=omega*D_m/2
printf("\nUm = %0.2f",U_m)
V_a=15.5//rounded off
PHI_m=V_a/U_m
printf("\nPHIm = %0.3f",PHI_m)
disp("Now from figure 5.10c we can obtain Phim*(s/c)=0.65")
//let s/c=x
PHI_m=0.337//rounded off
x=0.65/PHI_m
printf("\nThus (s/c)= %0.2f",x)
disp("Here s= pi*Dm/Zb")
s= %pi*D_m/Zb
printf("\n Thus s= %0.3f m",s)
disp("Assuming V1=V3=Va=15.5 m/s the total head can be calculated from g*Ht=deltaps/rho+Va^2/2")
//let y=g*Ht=deltaps/rho+(Va^2)/2
rho_a=1.22
y=delta_ps/rho_a+(V_a^2)/2
printf("\ng*Ht = %0.0f (m/s)^2",y)
disp("or TP=2.59 in.wg")
disp("c)")
ETA_h=0.77
V_u2=(y)/(ETA_h*U_m)//Since y=(g*Ht)
printf("\nVu2 is equal to %0.0f m/s",V_u2)
beta_1=(atan(U_m/V_a))*180/%pi
printf("\nß1= %0.2f degrees",beta_1)
beta_2=(atan(((U_m-V_u2)/V_a)))*180/%pi
printf("\n ß2= %0.2f degrees",beta_2)
//let m=tanßm=0.5*(tanß1+tanß2)
beta_1=71.3//rounded off
beta_2=63.4//rounded off
m=0.5*(tan(beta_1*%pi/180)+tan(beta_2*%pi/180))
printf("\ntanßm=0.5*(tanß1+tanß2) =%0.3f",m)
beta_m=(atan(m))*180/%pi
printf("\n ßm = %0.0f",beta_m)
disp("We know that Cl=2*(s/c)*(tanß1-tanß2)*cosßm")
x=1.93//rounded off
beta_1=71.3
beta_2=63.4
beta_m=68
//Let a=tanß1
//Let b=tanß2
//Letc=cosßm
a=tan(beta_1*%pi/180)
b=tan(beta_2*%pi/180)
c=cos(beta_m*%pi/180)
a=2.95//rounded off
b=2.0//rounded off
c=0.374//rounded off
Cl=2*x*(a-b)*c//Since x=(s/c)
printf("\nCl= %0.2f ",Cl)
disp("This is the cascade coefficient required.To use the isolated airfoil data,we obtain K=1.2 from figure 5.9 with gamma=60 degrees. Hence we can determine Cli")
C_li=1.37/1.2
printf("\nCli= %0.2f",C_li)
disp("d)")
disp("If NACA 4312 airfoil selection is selected,at Alpha=12 degrees,Cli=1.14 and Cl/Cd=L/D=12")
disp("Substituting the above mentioned data in Rr=Wmu/Um=phi*tan(ßm)")
phi=0.337
d=tan(beta_m*%pi/180)
R_r=phi*d
printf("\n Thus Rr= %0.3f",R_r)
disp("deltar is approximately=deltas is approximately=0.08")
Eta_h=0.337*(((0.834-(0.337*0.08))/(0.337+(0.08*0.834)))+((1-0.834-(0.337*0.08))/(0.337+(0.08*(1-0.834)))))
printf("\nETAh= %0.2f",Eta_h)
disp("Etah=0.80 is approximately equal to 0.77")
disp("Also gamma=betam-alpha=68-12=56 degrees")
disp("c=s/1.93")
c=s/1.93
printf("\nThus c = %0.2f m",c)
disp("e)")
disp("Double check the data obtained with those given in Figure 5.1.It is shown that Etas=0.74,Ds=0.35=c.")
SP=2.01
CFM=10595
Dt=0.35*(CFM^0.5)/(SP^0.25)
printf("\nHence the value of Dt= %0.1f in",D_t)
disp("On converting,Dt=0.77m")
disp("It is close to what we have. However, some alternative design maybe performed with the selection of a little higher hub-tip ratio v and other availabe airfoil sections")
|
8ece723b6df7c34b72850fed21033c740b72abd8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2150/CH1/EX1.17/ex1_17.sce
|
b7382670ef60b84b8e750407d116db30c3310e27
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 267
|
sce
|
ex1_17.sce
|
// Exa 1.17
clc;
clear;
close;
// Given data
V1 = 0.7;// in V
V2 = 5;// in V
V_o = V1-V2;// in V
R = 2.2*10^3;// in ohm
I_D = -V_o/R;
I_D = I_D * 10^3;// in mA
disp(V_o,"The output voltage in volts is : ")
disp(I_D,"The current through diode in mA is");
|
214bdb96896361b12d7e3b0ef75f609ba3e8ec83
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.4/macros/mtlb/mtlb_max.sci
|
eb6a450fd8225f189d2849f4230aa027942286db
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 123
|
sci
|
mtlb_max.sci
|
function [r,k]=mtlb_max(a)
// Copyright INRIA
if size(a,1)==1|size(a,2)==1 then
[r,k]=max(a)
else
[r,k]=max(a,'r')
end
|
b4c3f2590b7b010537767550bd5915bcb2e2026a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/752/CH12/EX12.4.3/12_4_3.sce
|
d925f0ae24005ef7cd0fd774499d0897a58138c2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 229
|
sce
|
12_4_3.sce
|
clc;
//page no 421
//problem no 12.4.3
SNR=9;//SNR in dB
//conversion of dB to power ratio
p=10^(9/10);
// for Polar
Pbe1=1/2 * erfc(sqrt(7.94/2));
disp(Pbe1);
// for Unipolar
Pbe2=1/2 * erfc(sqrt(7.94)/2);
disp(Pbe2);
|
e4839215e4aaf49969020f19ac59d04183533144
|
717ddeb7e700373742c617a95e25a2376565112c
|
/278/CH4/EX4.4/ex_4_4.sce
|
1c07aa2f8e2ebf8fc012913f8d2921abf27687c8
|
[] |
no_license
|
appucrossroads/Scilab-TBC-Uploads
|
b7ce9a8665d6253926fa8cc0989cda3c0db8e63d
|
1d1c6f68fe7afb15ea12fd38492ec171491f8ce7
|
refs/heads/master
| 2021-01-22T04:15:15.512674
| 2017-09-19T11:51:56
| 2017-09-19T11:51:56
| 92,444,732
| 0
| 0
| null | 2017-05-25T21:09:20
| 2017-05-25T21:09:19
| null |
UTF-8
|
Scilab
| false
| false
| 896
|
sce
|
ex_4_4.sce
|
//1.)calculate the stress on the lower washers before the nuts are tightened,refer fig 4.5
//2.)what could be the stress in upper and lower washers...
clc
//solution
//given
d=20//mm
d1=22//mm
d2=50//mm
d3=22//mm
d4=44//mm
P1=120000//N
P2=5000//N
//1)stress on lower washer before the nuts are tightened
pi=3.14
A1=(pi/4)*(d2^2-d1^2)//(mm^2)
A2=(pi/4)*(d4^2-d3^2)//(mm^2)
//since load is equally distributed on 4 washers,therfore load Q1=P1/4
Q1=P1/4//N
//calculating stress on lower washer
f2=Q1/A1//(N/mm^2)
printf("\n the stress on lower washer when nuts are not tightened is,%f N/mm^2\n",f2)
//2)
//stres on upper washers
P2=5000//N
f3=P2/A2//stress//(N/mm^2)
printf("the stress on upper washer is,%f N/mm^2\n",f3)
//stress on lower washer when nuts are tightened
f4=(Q1+P2)/A1//(N/mm^2)
printf("the stress on lower washer when nuts are tightened is,%f N/mm^2",f4)
|
b6a136ded198ebe64349b9991825e6335bd7e684
|
8f5f6c092c217b20c238273a87bbc107ee42cf02
|
/DictionaryDecoder.tst
|
6871aee73566c2e03e405e2a38864471c1863d35
|
[
"MIT"
] |
permissive
|
sameer-h/Dictionary-Encoder-Decoder
|
9ec588eafdd1e7f7aa0d662fd5af17012e2baf23
|
156ce774aaf0dcae930aa679d7d458a9cc659da9
|
refs/heads/main
| 2023-07-20T08:24:53.360914
| 2021-08-17T08:07:48
| 2021-08-17T08:07:48
| 371,247,454
| 0
| 0
| null | 2021-06-25T05:46:41
| 2021-05-27T04:36:04
|
Hack
|
UTF-8
|
Scilab
| false
| false
| 1,092
|
tst
|
DictionaryDecoder.tst
|
load DictionaryDecoder.hdl,
output-file DictionaryDecoder.out,
compare-to DictionaryDecoder.cmp,
output-list in%B1.16.1 outA%B1.16.1 outB%B1.16.1 outC%B1.16.1 outD%B1.16.1;
// Loads Dictionary Decoder
// Program loads 2 16 bit inputs
ROM32K load DictionaryInv.hack,
output;
set in %B1010000010000010,
eval,
output;
set in %B0100001001000010,
eval,
output;
set in %B0100001101000010,
eval,
output;
set in %B0100001101000100,
eval,
output;
set in %B0100101001000100,
eval,
output;
set in %B1001010110010110,
eval,
output;
//
set in %B0100101001001111,
eval,
output;
//
set in %B0100101101001111,
eval,
output;
//
set in %B0100101101001111,
eval,
output;
//
set in %B0100101101001001,
eval,
output;
//
set in %B1001000100000100,
eval,
output;
//
set in %B0101010101001000,
eval,
output;
//
set in %B0100101001001000,
eval,
output;
//
set in %B1001010011010011,
eval,
output;
//
set in %B1001001011001011,
eval,
output;
//
set in %B1001000110000110,
eval,
output;
//
set in %B0100111001001000,
eval,
output;
//
|
3fffba507d45aae55b671f984c157d23e2bf8008
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1309/CH5/EX5.2/ch5_2.sce
|
c1a51e1ca8dc07434e2f32c39452839207f8af78
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 802
|
sce
|
ch5_2.sce
|
clc;
clear;
printf("\t\t\tChapter5_example2\n\n\n");
// properties of Freon-12 from appendix table C3
T1_Fr=-50;
T2_Fr=-40;
rou1_Fr=1.546*1000;
rou2_Fr=1.518*1000;
beta_Fr=-(rou1_Fr-rou2_Fr)/(rou1_Fr*(T1_Fr-T2_Fr));
printf("\nThe volumetric thermal expansion coefficient calculated for Freon-12 is %.3e /K",beta_Fr);
beta_acc_Fr=2.63e-3; // the accurate value of volumetric thermal expansion coefficient for Freon-12
error_Fr=(beta_acc_Fr-beta_Fr)*100/beta_acc_Fr;
printf("\nThe error introduced in the case of Freon-12 is %d percent",error_Fr);
// properties of helium from appendix table D3
T1_He=366;
T2_He=477;
rou1_He=0.13280;
rou2_He=0.10204;
beta_He=-(rou1_He-rou2_He)/(rou1_He*(T1_He-T2_He));
printf("\nThe volumetric thermal expansion coefficient calculated for Freon-12 is %.3e /K",beta_He);
|
31208075f682817de2b18872ed3778c4c0a320a8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/291/CH9/EX9.10a/eg9_10a.sce
|
d677b0bc548ccdea17f0036a4f9b3f74c2d31381
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 640
|
sce
|
eg9_10a.sce
|
x1= [679 1420 1349 296 6975 323 4200 633];
x2 = [30.4 34.1 17.2 26.8 29.1 18.7 32.6 32.5];
y = ones(8,1);
y= [11.6 ;16.1; 9.3; 9.1; 8.4; 7.7; 11.3; 8.4];
x = ones(8,3);
for i=1:8
x(i,2)= x1(i);
x(i,3)= x2(i);
end
pro1 = x';
//disp(pro1);
pro2= pro1*x;
//disp(pro2);
pro3 = inv(pro2);
//disp(pro3);
pro4 = pro3*pro1;
pro5 = pro4*y;
//disp(pro4);
//disp(y);
B= ones(3,1);
for i=1:3
B(i,1)= 0;
for k=1:8
B(i,1)=B(i,1)+(pro4(i, k)*y(k, 1));
end
end
disp(B);
//SSR = y'*y - B'*x'y;
SSR = y';
SSR= SSR*y;
sub = B';
sub = sub*x';
sub= sub*y;
SSR =SSR - sub;
disp(SSR, "SSr is");
|
0360ddc15101b318dbd778a65bf281fd18499ce8
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.2/macros/scicos/SPLIT_f.sci
|
35f3c01846c5ccb5b253a998142811b6849804af
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 500
|
sci
|
SPLIT_f.sci
|
function [x,y,typ]=SPLIT_f(job,arg1,arg2)
x=[];y=[],typ=[];
select job
case 'plot' then
case 'getinputs' then
graphics=arg1(2); orig=graphics(1)
x=orig(1)
y=orig(2)
typ=ones(x)
case 'getoutputs' then
graphics=arg1(2); orig=graphics(1)
x=[1 1]*orig(1)
y=[1 1]*orig(2)
typ=ones(x)
case 'getorigin' then
[x,y]=standard_origin(arg1)
case 'set' then
x=arg1;
case 'define' then
model=list('lsplit',1,3,0,0,[],[],[],[],'c',%f,[%t %f])
x=standard_define([1 1]/2,model)
end
|
9dc15ad0227970b0aa07e8beca26e7bce68551aa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2417/CH11/EX11.8/Ex11_8.sce
|
5ba6b9e9a1cb66f12ea64ee14e1a1b1ffc96be3a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,388
|
sce
|
Ex11_8.sce
|
//scilab 5.4.1
clear;
clc;
printf("\t\t\tProblem Number 11.8\n\n\n");
// Chapter 11 : Heat Transfer
// Problem 11.8 (page no. 561)
// Solution
deltaX=4/12; //4 inch = 6/12 feet //deltaX=length //unit:ft
A=7*2; //area //area=hight*width //unit:ft^2
k=0.090; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity for fir //From the table
Rfir=deltaX/(k*A); //Resistance of fir //Unit:(hr*F)/Btu
printf("For fir,\n");
printf("The resistance is %f (hr*F)/Btu\n\n",Rfir);
deltaX=4/12; //4 inch = 6/12 feet //deltaX=length //unit:ft
A=7*2; //area //area=hight*width //unit:ft^2
k=0.065; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity for pine //From the table
Rpine=deltaX/(k*A); //Resistance of pine //Unit:(hr*F)/Btu
printf("For pine,\n");
printf("The resistance is %f (hr*F)/Btu\n\n",Rpine);
deltaX=4/12; //4 inch = 6/12 feet //deltaX=length //unit:ft
A=7*2; //area //area=hight*width //unit:ft^2
k=0.025; //Unit:Btu/(hr*ft*F) //k=proportionality constant //k=thermal conductivity for corkboard //From the table
Rcorkboard=deltaX/(k*A); //Resistance of corkboard //Unit:(hr*F)/Btu
printf("For corkboard,\n");
printf("The resistance is %f (hr*F)/Btu\n\n",Rcorkboard);
Roverall=inv(inv(Rfir)+inv(Rpine)+inv(Rcorkboard));
printf("The overall resistance is %f (hr*F)/Btu\n\n",Roverall);
T1=60; //temperature maintained at one face //unit:fahrenheit
T2=80; //tempetature maintained at other face //unit:fahrenheit
deltaT=T2-T1; //Change in temperature //unit:fahrenheit
Qtotal=deltaT/Roverall; //Q=Total Heat loss //Unit:Btu/hr; //ohm's law (fourier's equation)
printf("Total Heat loss from the wall is %f Btu/hr\n",abs(Qtotal));
//As a check,
Qfir=deltaT/Rfir; //Q=Fir Heat loss //Unit:Btu/hr; //ohm's law (fourier's equation)
printf("Heat loss from the wall made of fir is %f Btu/hr\n",abs(Qfir));
Qpine=deltaT/Rpine; //Q=Pine Heat loss //Unit:Btu/hr; //ohm's law (fourier's equation)
printf("Heat loss from the wall made of pine is %f Btu/hr\n",abs(Qpine));
Qcorkboard=deltaT/Rcorkboard; //Q=corkboard Heat loss //Unit:Btu/hr; //ohm's law (fourier's equation)
printf("Heat loss from the wall made of corkboard is %f Btu/hr\n",abs(Qcorkboard));
Qtotal=Qfir+Qpine+Qcorkboard; //Total Heat loss from the wall //unit:Btu/hr
printf("Total Heat loss from the wall is %f Btu/hr\n",abs(Qtotal));
|
cee5fe7077f21e1b4952448ae0b920dc691b03e1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2966/CH1/EX1.64/Ex1_64.sce
|
1a302e59dd7377a9dc179af646456e1ccc592e9c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 557
|
sce
|
Ex1_64.sce
|
//water//
//page 1.87 example 4//
clc
Hardness=500//Hardness of water(mg/lit) or ppm//
H=Hardness/100//Hardness of water(gms/lit)//
volume_NaCl=100//Volume of NaCl//
conc_NaCl=120//% NaCl consumed by zeolite bed//
Wt_per_Litre=conc_NaCl*10//gms NaCl consumed by zeolite bed per litre//
total_wt=Wt_per_Litre*volume_NaCl//total gms NaCl consumed by zeolite bed//
CaCO3_equivalent=total_wt*50/58.48//in terms of (gms/lit)//
volume_hardwater=CaCO3_equivalent/H
printf("\nQuantity of water softened using zeolite bed is %.f litres",volume_hardwater);
|
2a404e753b905d23fe2ae4cd85c2c28c490a29ae
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH15/EX15.16/example15_16.sce
|
f53857a6db72bb2ac9e3db9d27419d3d1acae234
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 614
|
sce
|
example15_16.sce
|
clc
// Given that
l = 3e-10 // width of box in m
e = 1.6e-19 // charge on an electron in C
m = 9.1e-31 // mass of electron in kg
c = 3e8 // speed of light in m/sec
h = 6.62e-34 // Planck constant in J-sec
// Sample Problem 16 on page no. 15.30
printf("\n # PROBLEM 16 # \n")
printf("Standard Formula used \n")
printf(" E = (n^2 * h^2) / (8 * m * L^2)) \n")
n = 1 // For n=1
E = (n^2 * h^2) / (8 * m * l^2)
n = 2 // For n=2
E_ = (n^2 * h^2) / (8 * m * l^2)
n = 3 // For n=3
E__ = (n^2 * h^2) / (8 * m * l^2)
printf("\n Energy of electron -\n For (n=1) is %e J.\n For (n=2) is %e J.\n For (n=3) is %e J.",E,E_,E__)
|
aa74f06fb05e0b69607395bd510a32ccfd3dde4a
|
931df7de6dffa2b03ac9771d79e06d88c24ab4ff
|
/Skeet Pistol.sce
|
49ee8efcec08123108150f73d6054e9bc4010679
|
[] |
no_license
|
MBHuman/Scenarios
|
be1a722825b3b960014b07cda2f12fa4f75c7fc8
|
1db6bfdec8cc42164ca9ff57dd9d3c82cfaf2137
|
refs/heads/master
| 2023-01-14T02:10:25.103083
| 2020-11-21T16:47:14
| 2020-11-21T16:47:14
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 65,132
|
sce
|
Skeet Pistol.sce
|
Name=Skeet Pistol
PlayerCharacters=Skeet Challenger
BotCharacters=Skeet Target.bot
IsChallenge=true
Timelimit=60.0
PlayerProfile=Skeet Challenger
AddedBots=Skeet Target.bot;Skeet Target.bot;Skeet Target.bot;Skeet Target.bot
PlayerMaxLives=0
BotMaxLives=0;0;0;0
PlayerTeam=1
BotTeams=2;2;2;2
MapName=skeet_field.map
MapScale=1.0
BlockProjectilePredictors=true
BlockCheats=true
InvinciblePlayer=false
InvincibleBots=false
Timescale=1.0
BlockHealthbars=false
TimeRefilledByKill=0.0
ScoreToWin=1.0
ScorePerDamage=0.0
ScorePerKill=1.0
ScorePerMidairDirect=0.0
ScorePerAnyDirect=0.0
ScorePerTime=0.0
ScoreLossPerDamageTaken=0.0
ScoreLossPerDeath=0.0
ScoreLossPerMidairDirected=0.0
ScoreLossPerAnyDirected=0.0
ScoreMultAccuracy=false
ScoreMultDamageEfficiency=false
ScoreMultKillEfficiency=false
GameTag=
WeaponHeroTag=Semi-auto
DifficultyTag=3
AuthorsTag=pleasewait, Cody, Sackboy_Clank5
BlockHitMarkers=false
BlockHitSounds=false
BlockMissSounds=false
BlockFCT=true
Description=Small parabolic motion targets move to both sides of the map. Shoot them, try not to miss and have to reload!
GameVersion=2.0.2.0
ScorePerDistance=0.0
MBSEnable=false
MBSTime1=0.25
MBSTime2=0.5
MBSTime3=0.75
MBSTime1Mult=1.0
MBSTime2Mult=2.0
MBSTime3Mult=3.0
MBSFBInstead=false
MBSRequireEnemyAlive=false
LockFOVRange=false
LockedFOVMin=60.0
LockedFOVMax=120.0
LockedFOVScale=Clamped Horizontal
[Aim Profile]
Name=Default
MinReactionTime=0.3
MaxReactionTime=0.4
MinSelfMovementCorrectionTime=0.001
MaxSelfMovementCorrectionTime=0.05
FlickFOV=30.0
FlickSpeed=1.5
FlickError=15.0
TrackSpeed=3.5
TrackError=3.5
MaxTurnAngleFromPadCenter=75.0
MinRecenterTime=0.3
MaxRecenterTime=0.5
OptimalAimFOV=30.0
OuterAimPenalty=1.0
MaxError=40.0
ShootFOV=15.0
VerticalAimOffset=0.0
MaxTolerableSpread=5.0
MinTolerableSpread=1.0
TolerableSpreadDist=2000.0
MaxSpreadDistFactor=2.0
AimingStyle=Original
ScanSpeedMultiplier=1.0
MaxSeekPitch=30.0
MaxSeekYaw=30.0
AimingSpeed=5.0
MinShootDelay=0.3
MaxShootDelay=0.6
[Bot Profile]
Name=Skeet Target
DodgeProfileNames=Skeet Direction
DodgeProfileWeights=1.0
DodgeProfileMaxChangeTime=100.0
DodgeProfileMinChangeTime=100.0
WeaponProfileWeights=1.0;1.0;1.0;1.0;1.0;1.0;1.0;1.0
AimingProfileNames=Default;Default;Default;Default;Default;Default;Default;Default
WeaponSwitchTime=3.0
UseWeapons=false
CharacterProfile=Skeet Target
SeeThroughWalls=true
NoDodging=false
NoAiming=true
AbilityUseTimer=0.1
UseAbilityFrequency=1.0
UseAbilityFreqMinTime=0.3
UseAbilityFreqMaxTime=0.6
ShowLaser=false
LaserRGB=X=1.000 Y=0.300 Z=0.000
LaserAlpha=1.0
[Character Profile]
Name=Skeet Challenger
MaxHealth=100.0
WeaponProfileNames=pistol;;;;;;;
MinRespawnDelay=0.000001
MaxRespawnDelay=0.000001
StepUpHeight=16.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=2.0
CameraOffset=X=0.000 Y=0.000 Z=36.000
HeadshotOnly=false
DamageKnockbackFactor=0.0
MovementType=Base
MaxSpeed=0.0
MaxCrouchSpeed=160.0
Acceleration=2560.0
AirAcceleration=16000.0
Friction=1.0
BrakingFrictionFactor=0.5
JumpVelocity=0.0
Gravity=1.0
AirControl=0.25
CanCrouch=false
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=1.000 Y=0.000 Z=0.000
EnemyHeadColor=X=1.000 Y=1.000 Z=1.000
TeamBodyColor=X=0.000 Y=0.000 Z=1.000
TeamHeadColor=X=1.000 Y=1.000 Z=1.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=0.0
MainBBType=Cylindrical
MainBBHeight=72.0
MainBBRadius=12.0
MainBBHasHead=false
MainBBHeadRadius=10.0
MainBBHeadOffset=0.0
MainBBHide=false
ProjBBType=Cylindrical
ProjBBHeight=72.0
ProjBBRadius=12.0
ProjBBHasHead=false
ProjBBHeadRadius=10.0
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=4.0
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=400.0
JetpackAirControlWithThrust=0.25
AbilityProfileNames=;;;
HideWeapon=true
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=0.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.0
AllowBufferedJumps=true
BounceOffWalls=false
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=0.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=512.0
VerticalSpawnOffset=0.0
TerminalVelocity=0.0
CharacterModel=None
CharacterSkin=Default
SpawnXOffset=0.0
SpawnYOffset=0.0
InvertBlockedSpawn=false
ViewBobTime=0.0
ViewBobAngleAdjustment=0.0
ViewBobCameraZOffset=0.0
ViewBobAffectsShots=false
IsFlyer=false
FlightObeysPitch=false
FlightVelocityUp=800.0
FlightVelocityDown=800.0
[Character Profile]
Name=Skeet Target
MaxHealth=80.0
WeaponProfileNames=;;;;;;;
MinRespawnDelay=0.000001
MaxRespawnDelay=0.000001
StepUpHeight=16.0
CrouchHeightModifier=0.5
CrouchAnimationSpeed=2.0
CameraOffset=X=0.000 Y=0.000 Z=0.000
HeadshotOnly=false
DamageKnockbackFactor=0.0
MovementType=Base
MaxSpeed=0.0
MaxCrouchSpeed=160.0
Acceleration=2560.0
AirAcceleration=16000.0
Friction=1.0
BrakingFrictionFactor=0.5
JumpVelocity=0.0
Gravity=1.0
AirControl=0.0
CanCrouch=false
CanPogoJump=false
CanCrouchInAir=false
CanJumpFromCrouch=false
EnemyBodyColor=X=1.000 Y=0.000 Z=0.000
EnemyHeadColor=X=1.000 Y=1.000 Z=1.000
TeamBodyColor=X=0.000 Y=0.000 Z=1.000
TeamHeadColor=X=1.000 Y=1.000 Z=1.000
BlockSelfDamage=false
InvinciblePlayer=false
InvincibleBots=false
BlockTeamDamage=false
AirJumpCount=0
AirJumpVelocity=256.0
MainBBType=Spheroid
MainBBHeight=32.0
MainBBRadius=16.0
MainBBHasHead=false
MainBBHeadRadius=10.0
MainBBHeadOffset=0.0
MainBBHide=false
ProjBBType=Spheroid
ProjBBHeight=32.0
ProjBBRadius=16.0
ProjBBHasHead=false
ProjBBHeadRadius=10.0
ProjBBHeadOffset=0.0
ProjBBHide=true
HasJetpack=false
JetpackActivationDelay=0.2
JetpackFullFuelTime=0.3
JetpackFuelIncPerSec=1.0
JetpackFuelRegensInAir=false
JetpackThrust=6000.0
JetpackMaxZVelocity=320.0
JetpackAirControlWithThrust=1.0
AbilityProfileNames=Skeet Movement.abilmov;;;
HideWeapon=true
AerialFriction=0.0
StrafeSpeedMult=1.0
BackSpeedMult=1.0
RespawnInvulnTime=0.0
BlockedSpawnRadius=128.0
BlockSpawnFOV=0.0
BlockSpawnDistance=0.0
RespawnAnimationDuration=0.0
AllowBufferedJumps=true
BounceOffWalls=true
LeanAngle=0.0
LeanDisplacement=0.0
AirJumpExtraControl=1.0
ForwardSpeedBias=1.0
HealthRegainedonkill=0.0
HealthRegenPerSec=0.0
HealthRegenDelay=0.0
JumpSpeedPenaltyDuration=0.0
JumpSpeedPenaltyPercent=0.0
ThirdPersonCamera=false
TPSArmLength=300.0
TPSOffset=X=0.000 Y=150.000 Z=150.000
BrakingDeceleration=512.0
VerticalSpawnOffset=0.0
TerminalVelocity=0.0
CharacterModel=None
CharacterSkin=Default
SpawnXOffset=0.0
SpawnYOffset=0.0
InvertBlockedSpawn=false
ViewBobTime=0.0
ViewBobAngleAdjustment=0.0
ViewBobCameraZOffset=0.0
ViewBobAffectsShots=false
IsFlyer=false
FlightObeysPitch=false
FlightVelocityUp=800.0
FlightVelocityDown=800.0
[Dodge Profile]
Name=Skeet Direction
MaxTargetDistance=100000.0
MinTargetDistance=0.0
ToggleLeftRight=true
ToggleForwardBack=false
MinLRTimeChange=0.01
MaxLRTimeChange=0.01
MinFBTimeChange=0.01
MaxFBTimeChange=0.01
DamageReactionChangesDirection=false
DamageReactionChanceToIgnore=0.5
DamageReactionMinimumDelay=0.125
DamageReactionMaximumDelay=0.25
DamageReactionCooldown=1.0
DamageReactionThreshold=0.0
DamageReactionResetTimer=0.1
JumpFrequency=0.0
CrouchInAirFrequency=0.0
CrouchOnGroundFrequency=0.0
TargetStrafeOverride=Ignore
TargetStrafeMinDelay=0.125
TargetStrafeMaxDelay=0.25
MinProfileChangeTime=0.0
MaxProfileChangeTime=0.0
MinCrouchTime=0.3
MaxCrouchTime=0.6
MinJumpTime=0.3
MaxJumpTime=0.6
LeftStrafeTimeMult=10000.0
RightStrafeTimeMult=10000.0
StrafeSwapMinPause=0.0
StrafeSwapMaxPause=0.0
BlockedMovementPercent=0.0
BlockedMovementReactionMin=0.1
BlockedMovementReactionMax=0.1
WaypointLogic=Ignore
WaypointTurnRate=200.0
MinTimeBeforeShot=0.15
MaxTimeBeforeShot=0.25
IgnoreShotChance=0.0
ForwardTimeMult=1.0
BackTimeMult=1.0
DamageReactionChangesFB=false
[Weapon Profile]
Name=pistol
Type=Hitscan
ShotsPerClick=1
DamagePerShot=80.0
KnockbackFactor=4.0
TimeBetweenShots=0.1
Pierces=false
Category=SemiAuto
BurstShotCount=1
TimeBetweenBursts=0.5
ChargeStartDamage=10.0
ChargeStartVelocity=X=500.000 Y=0.000 Z=0.000
ChargeTimeToAutoRelease=2.0
ChargeTimeToCap=1.0
ChargeMoveSpeedModifier=1.0
MuzzleVelocityMin=X=2000.000 Y=0.000 Z=0.000
MuzzleVelocityMax=X=2000.000 Y=0.000 Z=0.000
InheritOwnerVelocity=0.0
OriginOffset=X=0.000 Y=0.000 Z=0.000
MaxTravelTime=5.0
MaxHitscanRange=100000.0
GravityScale=1.0
HeadshotCapable=true
HeadshotMultiplier=2.0
MagazineMax=3
AmmoPerShot=1
ReloadTimeFromEmpty=1.0
ReloadTimeFromPartial=1.0
DamageFalloffStartDistance=100000.0
DamageFalloffStopDistance=100000.0
DamageAtMaxRange=25.0
DelayBeforeShot=0.0
ProjectileGraphic=Ball
VisualLifetime=0.1
BounceOffWorld=false
BounceFactor=0.5
BounceCount=0
HomingProjectileAcceleration=0.0
ProjectileEnemyHitRadius=1.0
CanAimDownSight=false
ADSZoomDelay=0.0
ADSZoomSensFactor=0.7
ADSMoveFactor=1.0
ADSStartDelay=0.0
ShootSoundCooldown=0.08
HitSoundCooldown=0.08
HitscanVisualOffset=X=0.000 Y=0.000 Z=-50.000
ADSBlocksShooting=false
ShootingBlocksADS=false
KnockbackFactorAir=4.0
RecoilNegatable=false
DecalType=0
DecalSize=30.0
DelayAfterShooting=0.0
BeamTracksCrosshair=false
AlsoShoot=
ADSShoot=
StunDuration=0.0
CircularSpread=true
SpreadStationaryVelocity=0.0
PassiveCharging=false
BurstFullyAuto=true
FlatKnockbackHorizontal=0.0
FlatKnockbackVertical=0.0
HitscanRadius=0.0
HitscanVisualRadius=6.0
TaggingDuration=0.0
TaggingMaxFactor=1.0
TaggingHitFactor=1.0
RecoilCrouchScale=1.0
RecoilADSScale=1.0
PSRCrouchScale=1.0
PSRADSScale=1.0
ProjectileAcceleration=0.0
AccelIncludeVertical=false
AimPunchAmount=0.0
AimPunchResetTime=0.05
AimPunchCooldown=0.5
AimPunchHeadshotOnly=false
AimPunchCosmeticOnly=false
MinimumDecelVelocity=0.0
PSRManualNegation=false
PSRAutoReset=true
AimPunchUpTime=0.05
AmmoReloadedOnKill=2
CancelReloadOnKill=false
FlatKnockbackHorizontalMin=0.0
FlatKnockbackVerticalMin=0.0
ADSScope=No Scope
ADSFOVOverride=72.099998
ADSFOVScale=Overwatch
ADSAllowUserOverrideFOV=true
IsBurstWeapon=false
ForceFirstPersonInADS=true
ZoomBlockedInAir=false
ADSCameraOffsetX=0.0
ADSCameraOffsetY=0.0
ADSCameraOffsetZ=0.0
QuickSwitchTime=0.1
WeaponModel=Heavy Surge Rifle
WeaponAnimation=Primary
UseIncReload=false
IncReloadStartupTime=0.0
IncReloadLoopTime=0.0
IncReloadAmmoPerLoop=1
IncReloadEndTime=0.0
IncReloadCancelWithShoot=true
WeaponSkin=Default
ProjectileVisualOffset=X=0.000 Y=0.000 Z=0.000
SpreadDecayDelay=0.0
ReloadBeforeRecovery=true
3rdPersonWeaponModel=Pistol
3rdPersonWeaponSkin=Default
ParticleMuzzleFlash=None
ParticleWallImpact=None
ParticleBodyImpact=None
ParticleProjectileTrail=None
ParticleHitscanTrace=None
ParticleMuzzleFlashScale=1.0
ParticleWallImpactScale=1.0
ParticleBodyImpactScale=1.0
ParticleProjectileTrailScale=1.0
Explosive=false
Radius=500.0
DamageAtCenter=100.0
DamageAtEdge=100.0
SelfDamageMultiplier=0.5
ExplodesOnContactWithEnemy=false
DelayAfterEnemyContact=0.0
ExplodesOnContactWithWorld=false
DelayAfterWorldContact=0.0
ExplodesOnNextAttack=false
DelayAfterSpawn=0.0
BlockedByWorld=false
SpreadSSA=1.0,1.0,-1.0,5.0
SpreadSCA=1.0,1.0,-1.0,5.0
SpreadMSA=1.0,1.0,-1.0,5.0
SpreadMCA=1.0,1.0,-1.0,5.0
SpreadSSH=0.0,0.1,0.0,0.0
SpreadSCH=1.0,1.0,-1.0,5.0
SpreadMSH=0.0,0.1,0.0,0.0
SpreadMCH=1.0,1.0,-1.0,5.0
MaxRecoilUp=0.0
MinRecoilUp=0.0
MinRecoilHoriz=0.0
MaxRecoilHoriz=0.0
FirstShotRecoilMult=1.0
RecoilAutoReset=false
TimeToRecoilPeak=0.05
TimeToRecoilReset=0.35
AAMode=0
AAPreferClosestPlayer=false
AAAlpha=1.0
AAMaxSpeed=360.0
AADeadZone=0.0
AAFOV=360.0
AANeedsLOS=true
TrackHorizontal=true
TrackVertical=true
AABlocksMouse=false
AAOffTimer=0.0
AABackOnTimer=0.0
TriggerBotEnabled=false
TriggerBotDelay=0.0
TriggerBotFOV=1.0
StickyLock=false
HeadLock=false
VerticalOffset=0.0
DisableLockOnKill=false
UsePerShotRecoil=false
PSRLoopStartIndex=0
PSRViewRecoilTracking=0.45
PSRCapUp=9.0
PSRCapRight=4.0
PSRCapLeft=4.0
PSRTimeToPeak=0.175
PSRResetDegreesPerSec=40.0
UsePerBulletSpread=false
PBS0=0.0,0.0
[Movement Ability Profile]
Name=Skeet Movement
MaxCharges=1.0
ChargeTimer=2.0
ChargesRefundedOnKill=0.0
DelayAfterUse=0.0
FullyAuto=false
AbilityDuration=0.0
LockDirectionForDuration=true
NegateGravityForDuration=true
MainVelocity=480.0
MainVelocityCanGoVertical=false
MainVelocitySetToMovementKeys=true
UpVelocity=640.0
EndVelocityFactor=1.0
Hurtbox=false
HurtboxRadius=50.0
HurtboxDamage=50.0
HurtboxGroundKnockbackFactor=1.0
HurtboxAirKnockbackFactor=1.0
AbilityBlocksTurning=false
AbilityBlocksMovement=true
AbilityBlocksAttack=false
AttackCancelsAbility=false
AbilityReloadsWeapon=false
HealthRestore=-40.0
AIUseInCombat=true
AIUseOutOfCombat=true
AIUseOnGround=true
AIUseInAir=true
AIReuseTimer=0.01
AIMinSelfHealth=0.0
AIMaxSelfHealth=100.0
AIMinTargHealth=0.0
AIMaxTargHealth=100.0
AIMinTargDist=0.0
AIMaxTargDist=1000000.0
AIMaxTargFOV=360.0
AIDamageReaction=false
AIDamageReactionIgnoreChance=0.0
AIDamageReactionMinDelay=0.125
AIDamageReactionMaxDelay=0.25
AIDamageReactionCooldown=1.0
AIDamageReactionThreshold=0.0
AIDamageReactionResetTimer=0.1
[Map Data]
reflex map version 8
global
entity
type WorldSpawn
String32 targetGameOverCamera end
UInt8 playersMin 1
UInt8 playersMax 16
brush
vertices
-73.000000 240.000000 320.000000
-308.000000 240.000000 464.000000
-129.000000 240.000000 200.000000
-404.000000 256.000000 368.000000
-129.000000 256.000000 200.000000
-404.000000 240.000000 368.000000
-308.000000 256.000000 464.000000
-73.000000 256.000000 320.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
256.000000 256.000000 288.000000
-66.000000 256.000000 335.000000
256.000000 256.000000 272.000000
-73.000000 272.000000 320.000000
256.000000 272.000000 272.000000
-73.000000 256.000000 320.000000
-66.000000 272.000000 335.000000
256.000000 272.000000 288.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 1 6 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
-66.000000 256.000000 335.000000
-296.000000 256.000000 476.000000
-73.000000 256.000000 320.000000
-308.000000 272.000000 464.000000
-73.000000 272.000000 320.000000
-308.000000 256.000000 464.000000
-296.000000 272.000000 476.000000
-66.000000 272.000000 335.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
256.000000 256.000000 144.000000
-129.000000 256.000000 200.000000
256.000000 256.000000 128.000000
-136.000000 272.000000 185.000000
256.000000 272.000000 128.000000
-136.000000 256.000000 185.000000
-129.000000 272.000000 200.000000
256.000000 272.000000 144.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 1 6 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 7 6 0x00000000
brush
vertices
-129.000000 256.000000 200.000000
-404.000000 256.000000 368.000000
-136.000000 256.000000 185.000000
-416.000000 272.000000 356.000000
-136.000000 272.000000 185.000000
-416.000000 256.000000 356.000000
-404.000000 272.000000 368.000000
-129.000000 272.000000 200.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
641.000000 240.000000 200.000000
916.000000 240.000000 368.000000
585.000000 240.000000 320.000000
820.000000 256.000000 464.000000
585.000000 256.000000 320.000000
820.000000 240.000000 464.000000
916.000000 256.000000 368.000000
641.000000 256.000000 200.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 7 0 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
256.000000 256.000000 272.000000
585.000000 256.000000 320.000000
256.000000 256.000000 288.000000
578.000000 272.000000 335.000000
256.000000 272.000000 288.000000
578.000000 256.000000 335.000000
585.000000 272.000000 320.000000
256.000000 272.000000 272.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
585.000000 256.000000 320.000000
820.000000 256.000000 464.000000
578.000000 256.000000 335.000000
808.000000 272.000000 476.000000
578.000000 272.000000 335.000000
808.000000 256.000000 476.000000
820.000000 272.000000 464.000000
585.000000 272.000000 320.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 7 0 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
256.000000 256.000000 128.000000
648.000000 256.000000 185.000000
256.000000 256.000000 144.000000
641.000000 272.000000 200.000000
256.000000 272.000000 144.000000
641.000000 256.000000 200.000000
648.000000 272.000000 185.000000
256.000000 272.000000 128.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
648.000000 256.000000 185.000000
928.000000 256.000000 356.000000
641.000000 256.000000 200.000000
916.000000 272.000000 368.000000
641.000000 272.000000 200.000000
916.000000 256.000000 368.000000
928.000000 272.000000 356.000000
648.000000 272.000000 185.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 7 0 2 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
616.000000 776.000000 1032.000000
1152.000000 776.000000 1032.000000
1152.000000 776.000000 1016.000000
616.000000 776.000000 1016.000000
616.000000 -248.000000 1032.000000
1152.000000 -248.000000 1032.000000
1152.000000 -248.000000 1016.000000
616.000000 -248.000000 1016.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-640.000000 776.000000 1032.000000
-104.000000 776.000000 1032.000000
-104.000000 776.000000 1016.000000
-640.000000 776.000000 1016.000000
-640.000000 -248.000000 1032.000000
-104.000000 -248.000000 1032.000000
-104.000000 -248.000000 1016.000000
-640.000000 -248.000000 1016.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-584.000000 -248.000000 641.000000
-640.000000 -248.000000 1016.000000
-569.000000 -248.000000 648.000000
-624.000000 776.000000 1016.000000
-569.000000 776.000000 648.000000
-624.000000 -248.000000 1016.000000
-640.000000 776.000000 1016.000000
-584.000000 776.000000 641.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 4 3 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 5 3 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 3 4 7 0x00000000
brush
vertices
-569.000000 -248.000000 648.000000
-624.000000 -248.000000 1016.000000
-449.000000 -248.000000 704.000000
-496.000000 776.000000 1016.000000
-449.000000 776.000000 704.000000
-496.000000 -248.000000 1016.000000
-624.000000 776.000000 1016.000000
-569.000000 776.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 4 3 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 5 3 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 3 4 7 0x00000000
brush
vertices
-449.000000 -248.000000 704.000000
-496.000000 -248.000000 1016.000000
-434.000000 -248.000000 711.000000
-480.000000 776.000000 1016.000000
-434.000000 776.000000 711.000000
-480.000000 -248.000000 1016.000000
-496.000000 776.000000 1016.000000
-449.000000 776.000000 704.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 2 4 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 5 3 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 3 4 7 0x00000000
brush
vertices
946.000000 -248.000000 711.000000
992.000000 -248.000000 1016.000000
961.000000 -248.000000 704.000000
1008.000000 776.000000 1016.000000
961.000000 776.000000 704.000000
1008.000000 -248.000000 1016.000000
992.000000 776.000000 1016.000000
946.000000 776.000000 711.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 4 3 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 5 3 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 3 4 7 0x00000000
brush
vertices
961.000000 -248.000000 704.000000
1008.000000 -248.000000 1016.000000
1081.000000 -248.000000 648.000000
1136.000000 776.000000 1016.000000
1081.000000 776.000000 648.000000
1136.000000 -248.000000 1016.000000
1008.000000 776.000000 1016.000000
961.000000 776.000000 704.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 4 3 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 5 3 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 3 4 7 0x00000000
brush
vertices
1081.000000 -248.000000 648.000000
1136.000000 -248.000000 1016.000000
1096.000000 -248.000000 641.000000
1152.000000 776.000000 1016.000000
1096.000000 776.000000 641.000000
1152.000000 -248.000000 1016.000000
1136.000000 776.000000 1016.000000
1081.000000 776.000000 648.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 2 4 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 5 3 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 3 4 7 0x00000000
brush
vertices
-640.000000 792.000000 1032.000000
1152.000000 792.000000 1032.000000
1152.000000 792.000000 8.000000
-640.000000 792.000000 8.000000
-640.000000 776.000000 1032.000000
1152.000000 776.000000 1032.000000
1152.000000 776.000000 8.000000
-640.000000 776.000000 8.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
1152.000000 776.000000 1032.000000
1168.000000 776.000000 1032.000000
1168.000000 776.000000 8.000000
1152.000000 776.000000 8.000000
1152.000000 -248.000000 1032.000000
1168.000000 -248.000000 1032.000000
1168.000000 -248.000000 8.000000
1152.000000 -248.000000 8.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-656.000000 776.000000 1032.000000
-640.000000 776.000000 1032.000000
-640.000000 776.000000 8.000000
-656.000000 776.000000 8.000000
-656.000000 -248.000000 1032.000000
-640.000000 -248.000000 1032.000000
-640.000000 -248.000000 8.000000
-656.000000 -248.000000 8.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-640.000000 -248.000000 1032.000000
1152.000000 -248.000000 1032.000000
1152.000000 -248.000000 8.000000
-640.000000 -248.000000 8.000000
-640.000000 -264.000000 1032.000000
1152.000000 -264.000000 1032.000000
1152.000000 -264.000000 8.000000
-640.000000 -264.000000 8.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
-640.000000 776.000000 8.000000
1152.000000 776.000000 8.000000
1152.000000 776.000000 -8.000000
-640.000000 776.000000 -8.000000
-640.000000 -248.000000 8.000000
1152.000000 -248.000000 8.000000
1152.000000 -248.000000 -8.000000
-640.000000 -248.000000 -8.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000
brush
vertices
256.000000 240.000000 272.000000
-73.000000 240.000000 320.000000
256.000000 240.000000 144.000000
-129.000000 256.000000 200.000000
256.000000 256.000000 144.000000
-129.000000 240.000000 200.000000
-73.000000 256.000000 320.000000
256.000000 256.000000 272.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 1 6 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
256.000000 240.000000 144.000000
641.000000 240.000000 200.000000
256.000000 240.000000 272.000000
585.000000 256.000000 320.000000
256.000000 256.000000 272.000000
585.000000 240.000000 320.000000
641.000000 256.000000 200.000000
256.000000 256.000000 144.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
-129.000000 272.000000 200.000000
-404.000000 272.000000 368.000000
-136.000000 272.000000 185.000000
-416.000000 776.000000 356.000000
-136.000000 776.000000 185.000000
-416.000000 272.000000 356.000000
-404.000000 776.000000 368.000000
-129.000000 776.000000 200.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 internal/editor/textures/editor_clip
brush
vertices
-66.000000 272.000000 335.000000
-296.000000 272.000000 476.000000
-73.000000 272.000000 320.000000
-308.000000 776.000000 464.000000
-73.000000 776.000000 320.000000
-308.000000 272.000000 464.000000
-296.000000 776.000000 476.000000
-66.000000 776.000000 335.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 internal/editor/textures/editor_clip
brush
vertices
256.000000 272.000000 144.000000
-129.000000 272.000000 200.000000
256.000000 272.000000 128.000000
-136.000000 776.000000 185.000000
256.000000 776.000000 128.000000
-136.000000 272.000000 185.000000
-129.000000 776.000000 200.000000
256.000000 776.000000 144.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 5 1 6 3 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 7 6 0x00000000 internal/editor/textures/editor_clip
brush
vertices
256.000000 272.000000 288.000000
-66.000000 272.000000 335.000000
256.000000 272.000000 272.000000
-73.000000 776.000000 320.000000
256.000000 776.000000 272.000000
-73.000000 272.000000 320.000000
-66.000000 776.000000 335.000000
256.000000 776.000000 288.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 5 1 6 3 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 internal/editor/textures/editor_clip
brush
vertices
256.000000 272.000000 128.000000
648.000000 272.000000 185.000000
256.000000 272.000000 144.000000
641.000000 776.000000 200.000000
256.000000 776.000000 144.000000
641.000000 272.000000 200.000000
648.000000 776.000000 185.000000
256.000000 776.000000 128.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 internal/editor/textures/editor_clip
brush
vertices
256.000000 272.000000 272.000000
585.000000 272.000000 320.000000
256.000000 272.000000 288.000000
578.000000 776.000000 335.000000
256.000000 776.000000 288.000000
578.000000 272.000000 335.000000
585.000000 776.000000 320.000000
256.000000 776.000000 272.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 internal/editor/textures/editor_clip
brush
vertices
648.000000 272.000000 185.000000
928.000000 272.000000 356.000000
641.000000 272.000000 200.000000
916.000000 776.000000 368.000000
641.000000 776.000000 200.000000
916.000000 272.000000 368.000000
928.000000 776.000000 356.000000
648.000000 776.000000 185.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 7 0 2 4 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 internal/editor/textures/editor_clip
brush
vertices
585.000000 272.000000 320.000000
820.000000 272.000000 464.000000
578.000000 272.000000 335.000000
808.000000 776.000000 476.000000
578.000000 776.000000 335.000000
808.000000 272.000000 476.000000
820.000000 776.000000 464.000000
585.000000 776.000000 320.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 3 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 7 0 2 4 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 internal/editor/textures/editor_clip
brush
vertices
-104.000000 776.000000 1032.000000
616.000000 776.000000 1032.000000
616.000000 776.000000 1016.000000
-104.000000 776.000000 1016.000000
-104.000000 -248.000000 1032.000000
616.000000 -248.000000 1032.000000
616.000000 -248.000000 1016.000000
-104.000000 -248.000000 1016.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip
brush
vertices
752.000000 792.000000 1160.000000
768.000000 792.000000 1160.000000
768.000000 792.000000 1032.000000
752.000000 792.000000 1032.000000
752.000000 -264.000000 1160.000000
768.000000 -264.000000 1160.000000
768.000000 -264.000000 1032.000000
752.000000 -264.000000 1032.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip
brush
vertices
-256.000000 792.000000 1160.000000
-240.000000 792.000000 1160.000000
-240.000000 792.000000 1032.000000
-256.000000 792.000000 1032.000000
-256.000000 -264.000000 1160.000000
-240.000000 -264.000000 1160.000000
-240.000000 -264.000000 1032.000000
-256.000000 -264.000000 1032.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 0 1 2 3 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 6 5 4 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 2 1 5 6 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 0 3 7 4 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 3 2 6 7 0x00000000 internal/editor/textures/editor_clip
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 4 5 0x00000000 internal/editor/textures/editor_clip
brush
vertices
-404.000000 -248.000000 368.000000
-569.000000 -248.000000 648.000000
-416.000000 -248.000000 356.000000
-584.000000 776.000000 641.000000
-416.000000 776.000000 356.000000
-584.000000 -248.000000 641.000000
-569.000000 776.000000 648.000000
-404.000000 776.000000 368.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 structural/dev/dev_grey128
brush
vertices
-296.000000 -248.000000 476.000000
-434.000000 -248.000000 711.000000
-308.000000 -248.000000 464.000000
-449.000000 776.000000 704.000000
-308.000000 776.000000 464.000000
-449.000000 -248.000000 704.000000
-434.000000 776.000000 711.000000
-296.000000 776.000000 476.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 structural/dev/dev_grey128
brush
vertices
-308.000000 -248.000000 464.000000
-449.000000 -248.000000 704.000000
-404.000000 -248.000000 368.000000
-569.000000 776.000000 648.000000
-404.000000 776.000000 368.000000
-569.000000 -248.000000 648.000000
-449.000000 776.000000 704.000000
-308.000000 776.000000 464.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 3 5 1 6 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
brush
vertices
820.000000 -248.000000 464.000000
961.000000 -248.000000 704.000000
808.000000 -248.000000 476.000000
946.000000 776.000000 711.000000
808.000000 776.000000 476.000000
946.000000 -248.000000 711.000000
961.000000 776.000000 704.000000
820.000000 776.000000 464.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 5 1 6 3 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 1 0 7 6 0x00000000 structural/dev/dev_grey128
brush
vertices
928.000000 -248.000000 356.000000
1096.000000 -248.000000 641.000000
916.000000 -248.000000 368.000000
1081.000000 776.000000 648.000000
916.000000 776.000000 368.000000
1081.000000 -248.000000 648.000000
1096.000000 776.000000 641.000000
928.000000 776.000000 356.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 3 4 2 5 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 5 1 6 3 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000 structural/dev/dev_grey128
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000 structural/dev/dev_grey128
brush
vertices
916.000000 -248.000000 368.000000
1081.000000 -248.000000 648.000000
820.000000 -248.000000 464.000000
961.000000 776.000000 704.000000
820.000000 776.000000 464.000000
961.000000 -248.000000 704.000000
1081.000000 776.000000 648.000000
916.000000 776.000000 368.000000
faces
0.000000 0.000000 1.000000 1.000000 0.000000 2 0 1 5 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 2 5 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 5 1 6 3 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 0 2 4 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 6 1 0 7 0x00000000
0.000000 0.000000 1.000000 1.000000 0.000000 4 3 6 7 0x00000000
entity
type CameraPath
UInt8 posLerp 2
UInt8 angleLerp 2
entity
type PlayerSpawn
Vector3 position 256.000000 256.000000 256.000000
Bool8 teamB 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 136.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 152.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 168.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 184.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 200.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 216.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 232.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 248.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 264.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 280.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 296.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 312.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 328.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 344.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 360.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 120.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 104.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 88.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 72.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 56.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 40.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 24.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 8.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 -8.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 -24.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 -40.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 -56.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 -72.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position 704.000000 -88.000000 1072.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 136.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 152.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 168.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 184.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 200.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 216.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 232.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 248.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 264.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 280.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 296.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 312.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 328.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 344.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 360.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 120.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 104.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 88.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 72.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 56.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 40.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 24.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 8.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 -8.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 -24.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 -40.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 -56.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 -72.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
entity
type PlayerSpawn
Vector3 position -192.000000 -88.000000 1104.000000
Vector3 angles 180.000000 0.000000 0.000000
Bool8 teamA 0
Bool8 initialSpawn 0
Bool8 modeCTF 0
Bool8 modeFFA 0
Bool8 modeTDM 0
Bool8 mode1v1 0
Bool8 modeRace 0
Bool8 mode2v2 0
|
92fe03adf52c9cd7f0d920d2a6dd6dac084d8c4c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/800/DEPENDENCIES/4_6.sci
|
ee09b0c8c5d3e3eff5d933675c64997ce76cbcfa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 234
|
sci
|
4_6.sci
|
k = 0.0141; //lb.mol/atm.lb cat.h
FA0 = 1.08; //lb.mol/h
FB0 = 0.54; // lb.mol/h
FI = 2.03; // lb.mol/h
bita0 = 0.0775; // atm/ft
Ac = 0.01414; // ft^2
phi = 0.45;
rhoc = 120; // lb cat/ft^3
P0 = 10; // atm
X = 0.6;
|
c3ab36fb5f1651f50d9b60ff54878a307dd11d33
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3204/CH20/EX20.1/Ex20_1.sce
|
da3deade4081c54ac3f57c66a7af9d9afd5a0dcd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 991
|
sce
|
Ex20_1.sce
|
// Initilization of variables
v_o=500 // m/s // velocity of the projectile
alpha=30 // angle at which the projectile is fired
t=30 // seconds
g=9.81 // m/s^2 // acc due to gravity
// Calculations
v_x=v_o*cosd(alpha) // m/s // Initial velocity in the horizontal direction
v_y=v_o*sind(alpha) // m/s // Initial velocity in the vertical direction
// MOTION IN HORIZONTA DIRECTION:
V_x=v_x // m/s // V_x=Horizontal velocity after 30 seconds
// MOTION IN VERTICAL DIRECTION: // using the eq'n v=u+a*t
V_y=v_y-(g*t) // m/s // -ve sign denotes downward motion
// Let the Resultant velocity be v_R. It is given as,
v_R=sqrt((V_x)^2+(-V_y)^2) // m/s
theta=atand((-V_y)/V_x) // degree // direction of the projectile
// Results
clc
printf('The velocity of the projectile is %f m/s \n',v_R) // The answer of velocity is wrong in the text book.
printf('The direction of the projectile is %f degree \n',theta) // -ve value of theta indicates that the direction is in downward direction
|
ea8f69d2f8a7102f407011a78e6dc03432725042
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/926/CH5/EX5.4/Chapter5_Example4.sce
|
67097606ea80028194003c4e9723b73589c68c2b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,092
|
sce
|
Chapter5_Example4.sce
|
//Hougen O.A., Watson K.M., Ragatz R.A., 2004. Chemical process principles Part-1: Material and Energy Balances(II Edition). CBS Publishers & Distributors, New Delhi, pp 504
//Chapter-5, Illustration 4, Page 114
//Title: Calculation of dew point
//=============================================================================
clear
clc
//INPUT
v1 = 10.1; //Composition by volume of benzene
P = [750 750 700]; //Various pressurea in mm Hg at which dew point is to be computed
//CALCULATIONS
P1 = P(1)*v1/100; //Partial pressure of benzene in mm Hg at 25 degree C and 750 mm Hg
T1 = 20; //Temperature in degree C corresponding to pressure P1 obtained from vapor-pressure data of Benzene Fig. 15 Page 84
P2 = P(2)*v1/100; //Partial pressure of benzene in mm Hg at 30 degree C and 750 mm Hg
T2 = 20; //Temperature in degree C corresponding to pressure P2 obtained from vapor-pressure data of Benzene Fig. 15 Page 84
P3 = P(3)*v1/100; //Partial pressure of benzene in mm Hg at 30 degree C and 700 mm Hg
T3 = 18.7; //Temperature in degree C corresponding to pressure P3 obtained from vapor-pressure data of Benzene Fig. 15 Page 84
//OUTPUT
// Console output
mprintf('\n Dew point of benzene vapor and air mixture at \n (a) 25 degree C and 750 mm Hg = %2.0f degee C ',T1);
mprintf('\n (b) 30 degree C and 750 mm Hg = %2.0f degree C ',T3);
mprintf('\n (c) 30 degree C and 700 mm Hg = %3.1f degree C',T3);
mprintf('\n Above results shows that the dew point does not depend on temperature but vary with the total pressure');
// File output
fd= mopen('.\Chapter5_Example4_Output.txt','w');
mfprintf(fd,'\n Dew point of benzene vapor and air mixture at \n (a) 25 degree C and 750 mm Hg = %2.0f degee C ',T1);
mfprintf(fd,'\n (b) 30 degree C and 750 mm Hg = %2.0f degree C ',T3);
mfprintf(fd,'\n (c) 30 degree C and 700 mm Hg = %3.1f degree C',T3);
mfprintf(fd,'\n Above results shows that the dew point does not depend on temperature but vary with the total pressure');
mclose(fd);
//=========================END OF PROGRAM======================================
|
b5ad56675405dbf11170cd4f39956904f9edb978
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1802/CH8/EX8.6/Exa8_6.sce
|
21dcfacedbdb631fd400edb3d72e57eebf8d86e0
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 366
|
sce
|
Exa8_6.sce
|
//Exa 8.6
clc;
clear;
close;
//given data
CN=0.4;//in uF
V=33;//in KV
VP=V/sqrt(3);//in KV
f=25;//in Hz
//Capacitance between 2 cores for 15 Km length
CN_1=15*CN;//in uF
//Capacitance of each core to neutral
CN=2*CN_1;//in uF
//Charging current per phase
I=2*%pi*f*VP*1000*CN*10^-6;//in Ampere
disp(round(I),"Charging current per phase in Ampere : ");
|
0c140bb5baede8103a8d41b46da74f3e709a8e3d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1376/CH8/EX8.2/8_2.sci
|
40abd29b7f8e358753a09c54e79b828fea4e061d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 370
|
sci
|
8_2.sci
|
//8.2
clc;
I=125/10;
ZL=50/I;
printf("Load impedance=%.1f ohm",ZL)
Z_total=150/I;
printf("\nImpedance of the combination=%.2f ohm",Z_total)
I1=125;
I2=50;
I3=150;
P=(1/(2*10))*(I3^2-I1^2-I2^2);
printf("\nPower absorbed by load=%.2f W",P)
Pr=I^2*10;
printf("\nPower consumed by the resistor=%.2f W",Pr)
pf=P/(50*I);
printf("\npower factor of load=%.2f",pf)
|
a56a03e69740033066ef63ae87367fad377a93f1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3745/CH1/EX1.8/Ex1_8.sce
|
02ec842e35b7b7c525ae7821934e0e9ae79c9c4b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 479
|
sce
|
Ex1_8.sce
|
// Ex 8 Page 348
clc;clear;close;
// Given
Z1=(6.25+%i*1.25);//ohm
Z2=(5+%i*0);//ohm
//Z3=(5-%i*XC);//ohm
V=100;//V
f=50;//Hz
//Z23=(250+5*Xc**2)/(100+Xc**2)-%i*(25*Xc)/(100+Xc**2)
//for in phase condition imag part must be zero
//5*Xc**2-100*Xc+5*100=0
A=[5 -100 500];//polynomal
XC=roots(A);
XC=XC(1);//ohm
C=1/(2*%pi*f*XC)*10**6;//uF
printf("Capacitance of XC = %.f uF",C)
Z=XC;//ohm
I=V/Z;//A
P=I**2*Z/1000;//kW
printf("\n Circuit current = %.f A and power = %.f kW",I,P)
|
a7df90de97c814667444941b682c7eedfeafa36c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2294/CH2/EX2.7/EX2_7.sce
|
966088cce4ce9ee90abe2c7c325165e68f112ecd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,626
|
sce
|
EX2_7.sce
|
//Check for the following system.
//Example 2.7 <i>
clc;
clear ;//a>check whether static or dynamic
t=-10:.1:10;T=length(t)
s=2;
for i=1:length(t)
x(i)=i;
y(i)=abs(x(i));
end
if y(2)==x(2)& y(2)==x(1) then
disp('The given signal is dynamic' );
else
disp('the given signal is static');
end
//b>check whether linear or non linear
x1=x;
y1=y;
for i=1:length(t)
x2(i)=-2;
y2(i)=abs(x2(i));
end
for i=1:length(t)
z(i)=y1(i)+y2(i);
end
for i=1:length(t)
y3(i)=abs(x1(i)+x2(i));
end
if z==y3 then
disp('The given signal is linear');
else
disp('Not linear');
end
//c>check whether time invariant or not
IP=x(T-s);
OP=y(T-s);
if IP == OP then
disp('the given signal is time invariant');
else
disp('The given signal is not time invariant');
end
//Check for the following systems
//Example 2.7 <ii>
clc;
clear all;//a>check whether static or dynamic
t=0:5;T=length(t);w=1;
s=2;
for i=1:length(t)
x(i)=i;
y(i)=x(i)*cos(w*t(i));
end
if y(2)==x(2)& y(2)==x(1) then
disp('The given signal is dynamic' );
else
disp('the given signal is static');
end
//b>check whether linear or non linear
x1=x;
y1=y;
for i=1:length(t)
x2(i)=2*i;
y2(i)=x2(i)*cos(w*t(i));
y3(i)=cos(w*t(i))*(x1(i)+x2(i));
end
z=y1+y2;
if z~=y3 then
disp('The given signal is not linear');
else
disp('linear');
end
//c>check whether time invariant or not
IP=x(T-s);
OP=y(T-s);
if IP == OP then
disp('the given signal is time invariant');
else
disp('The given signal is not time invariant');
end
|
8e8c8b84a0d4825a4a30193c9f7025f5af4d6e97
|
704dabcfde49c928e339ccb4465aa159d058200e
|
/Nbalabala/jmathplot/jplot.sci
|
b0187cace017c65d7e52e43c6761e866478f4f0b
|
[] |
no_license
|
cylong1016/Nbalabala
|
1958d26516f6f50d7a3271354d7360442785e13f
|
e16cb0bc0c32af59e2a21c297daf59599f0b5e26
|
refs/heads/master
| 2021-01-23T08:56:41.143450
| 2015-06-22T07:26:10
| 2015-06-22T07:26:10
| 31,839,185
| 5
| 3
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,119
|
sci
|
jplot.sci
|
function _cmd = jplot2d(varargin)
_arg = " -2D -l SOUTH ";
i=1;
while (i<=length(varargin))
//disp(i);
i_arg=0;
q=%f;
while ((length(varargin)>= i_arg+i+1) & (size(varargin(i+i_arg+1))==1))
i_arg = i_arg+1;
_arg = _arg + " " +varargin(i+i_arg);
end
_tmp(i) = ".xyz."+string(grand(1,1,"uin",0,10000))+".tmp";
if ((size(varargin(i),2)==1))
fprintfMat(_tmp(i),[(1:length(varargin(i)))' varargin(i)]);
else
fprintfMat(_tmp(i),varargin(i));
end
_arg = _arg + " " + _tmp(i);
i = i+1+i_arg;
end
_cmd = "java -cp jmathplot.jar org.math.plot.PlotPanel"+_arg;
//disp(_cmd);
_res = unix_g(_cmd);
endfunction
function _cmd = jplot3d(varargin)
_arg = " -3D -l SOUTH ";
i=1;
while (i<=length(varargin))
i_arg=0;
while ((length(varargin)>= i_arg+i+1) & (size(varargin(i+i_arg+1))==1))
i_arg = i_arg+1;
_arg = _arg + " " +varargin(i+i_arg);
end
_tmp(i) = ".xyz."+string(grand(1,1,"uin",0,10000))+".tmp";
fprintfMat(_tmp(i),varargin(i));
_arg = _arg + " " + _tmp(i);
i = i+1+i_arg;
end
_cmd = "java -cp jmathplot.jar org.math.plot.PlotPanel"+_arg;
//disp(_cmd);
_res = unix_g(_cmd);
endfunction
|
99bd3f0e990418b95535087127fe46d5753df78c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/965/CH2/EX2.12/12.sci
|
da627203fcf355d844c6fceea435c13328a4511f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 331
|
sci
|
12.sci
|
clc;
clear all;
disp("1-D heat flow")
disp("Fourier''s equation: q = -k*dt/dx")
disp("k=k0*(1+at+bt^2)")
disp("q = k0*(1+at+bt^2)*dt/dx")
disp("q.dx = k0*(1+at+bt^2)*dt")
disp("integrating above equation within limits t1 to t2")
disp("the required expression is, q = -k*(t2-t1)*(1+a*(t1+t2)/2+b*(t1^2+t2^2+t1*t2)/3)/L")
|
100f9923257e7dba3c24d8803f08b9dd622d7326
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/443/CH2/EX2.3/2_3.sce
|
fc01eb298f012221ce4d9fe94de4330cad6f79d6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 520
|
sce
|
2_3.sce
|
pathname=get_absolute_file_path('2_3.sce')
filename=pathname+filesep()+'2_3_data.sci'
exec(filename)
//For N2
p1=(m1*RN2*T)/V
//For O2
p2=(m2*RO2*T)/V
//For CO2
p3=(m3*RCO2*T)/V
//Total pressure of the mixture
p=p1+p2+p3
//Gas constant of the mixture
R=(m1*RN2+m2*RO2+m3*RCO2)/(m1+m2+m3)
printf("\n\nRESULTS\n\n")
printf("\npressure for N2:%f\n",p1)
printf("\npressure for O2:%f\n",p2)
printf("\npressure for CO2:%f\n",p3)
printf("\ntotal pressure:%f\n",p)
printf("\ngas consant of the mixture:%f\n",R)
|
701fb1dc5c414e48dab77e0a7b31b8bec47ed15c
|
b2beecc967bc870533445c78378994b5f0e00369
|
/Scilab Algebra e CalcNum/gramSchimdt.sci
|
0f70ccc5ead478c856ddf4e682aa58d63827bb88
|
[] |
no_license
|
gabriel-almeida/ufrj
|
2a3b100d8a9eace56f740a1654c51e0918097bf2
|
bb62b51ea2b8c4cf71d7cb9f0f2d0172a1338933
|
refs/heads/master
| 2021-01-13T02:08:16.262640
| 2013-01-15T01:44:45
| 2013-01-15T01:44:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 914
|
sci
|
gramSchimdt.sci
|
function [Q,R]=gsc(A)
[tamLinha,tamColuna]=size(A)
Q=A
R=zeros(tamColuna,tamColuna)
for j=1:tamColuna
Q(:,j)=A(:,j)
for i=1:j-1
R(i,j)=Q(:,i)'*A(:,j)
Q(:,j)=Q(:,j)-R(i,j)*Q(:,i)
end
R(j,j)=norm(Q(:,j))
Q(:,j)=Q(:,j)/R(j,j)
end
disp (Q*R==A)
endfunction
function [Q,R]=gsm(A)
[tamLinha,tamColuna]=size(A)
v=A
Q=zeros(tamColuna, tamColuna)
R=zeros(tamColuna, tamColuna)
for i=1:tamColuna
R(i,i)=norm(v(:,i))
Q(:,i)=v(:,i)/R(i,i)
for (j=i+1:tamColuna)
R(i,j)=Q(:,i)'*v(:,j)
Q(:,j)=Q(:,j)-R(i,j)*Q(:,i)
v(:,j)=v(:,j)-R(i,j)*Q(:,i)
end
end
disp (Q*R==A)
endfunction
function []=teste()
e=0.00000000000000000001
A=[1,1,1;e,0,0;0,e,0;0,0,e]
[Q,R]=gsm(A)
disp (Q'*Q)
[Q,R]=gsc(A)
disp (Q'*Q)
endfunction
|
98ed0647adc05b15e9e08a2219a5cd58b10c7c39
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set14/s_Machine_Design_U._C._Jindal_683.zip/Machine_Design_U._C._Jindal_683/CH3/EX3.16/MS_16.sce
|
79d767072cd149d1233ee7076d1e5264bb45032d
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 224
|
sce
|
MS_16.sce
|
errcatch(-1,"stop");mode(2);// sum 3-16
;
;
D=22;
d=20;
r=1;
K=2.2;
sigmax=130;
sigmax=sigmax/K;
Z=%pi*d^3/32;
M=sigmax*Z*10^-3;
// printing data in scilab o/p window
printf("M is %0.3f Nm ",M);
exit();
|
d71d9760215af2a7a2b5afad1a99e4a99d668c5c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2360/CH3/EX3.10/ex3_10.sce
|
012f64a02ae71740f3422337701feeff5f4623d8
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 789
|
sce
|
ex3_10.sce
|
// Exa 3.10
format('v',7);clc;clear;close;
// Given data
Rm = 50;//resistance of meter in ohm
Im = 2;//current in mA
Im = Im * 10^-3;// in A
V4 = 10;//voltage in V
R4 = (V4/Im) - Rm;// in ohm
R4= R4*10^-3;// in k ohm
disp(R4,"The value of R4 in kΩ is");
R4= R4*10^3;// in ohm
V3 = 50;// in V
// (R3+R4) = (V3/Im) - Rm;
R3 = (V3/Im) - Rm-R4;// in ohm
R3= R3*10^-3;// in k ohm
disp(R3,"The value of R3 in kΩ is");
R3= R3*10^3;// in ohm
V2 = 100;// in V
//(R2+R3+R4) = (V2/Im) - Rm;
R2 = (V2/Im) - Rm - R3 - R4;// in ohm
R2= R2*10^-3;// in k ohm
disp(R2,"The value of R2 in kΩ is");
R2= R2*10^3;// in ohm
V1 = 500;// in V
// (R1+R2+R3+R4) = (V1/Im) - Rm;
R1 = (V1/Im) - Rm - R4 - R3 - R2;// in ohm
R1= R1*10^-3;// in k ohm
disp(R1,"The value of R1 in kΩ is");
|
560b486a6ecfc533526a1bf227ae88747b9df5c5
|
e04f3a1f9e98fd043a65910a1d4e52bdfff0d6e4
|
/New LSTMAttn Model/.data/form-split/SURPRISE-LANGUAGES/Sino-Tibetan/bod.tst
|
66ed903f3002c22440776c82b79ed20684b5efa0
|
[] |
no_license
|
davidgu13/Lemma-vs-Form-Splits
|
c154f1c0c7b84ba5b325b17507012d41b9ad5cfe
|
3cce087f756420523f5a14234d02482452a7bfa5
|
refs/heads/master
| 2023-08-01T16:15:52.417307
| 2021-09-14T20:19:28
| 2021-09-14T20:19:28
| 395,023,433
| 3
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 20,583
|
tst
|
bod.tst
|
འཁྱོང་། V;FUT
གཡབ། V;PST
གྱར། V;PST
དྲ། V;FUT
གླ། V;IMP
གློད། V;FUT
ལན། V;PST
མཚོན། V;PRS
འགྱེལ། V;PST
འབྱོར། V;PST
བཙུམ། V;FUT
ཡུར། V;IMP
ལང་། V;IMP
ལབ། V;PST
བརྫུ། V;PRS
བཤོར། V;PST
གཏུག། V;IMP
བསག། V;PRS
ཀེར། V;PRS
ལྷུང་། V;PST
བཙོག། V;PST
བསྟང་། V;PRS
འཐེན། V;FUT
བཤེད། V;PRS
བླང་། V;PRS
བཅག། V;PRS
བསྐུམ། V;PRS
སྤྱད། V;PRS
བསྲོ། V;PST
བམ། V;FUT
བརྣབ། V;PRS
བརྩིག། V;FUT
བསྟིང་། V;IMP
བསྒུར། V;IMP
སྤུར། V;IMP
བཅོས། V;PST
བརྫུ། V;IMP
བལྡབ། V;IMP
བབ། V;PRS
བཅང་། V;IMP
བཏེག། V;PST
སྦོལ། V;IMP
ལྡོབ། V;PRS
བཟི། V;FUT
ཐེ། V;PRS
བསྐྱོར། V;IMP
ཕྱོགས། V;PST
འཚོ། V;FUT
བཅོལ། V;FUT
འཕྱ། V;IMP
བསྟབ། V;PRS
འབྱོལ། V;IMP
གཅིལ། V;IMP
འཁྱོག། V;FUT
མཉམ། V;PRS
འབྱི། V;FUT
ཟད། V;FUT
འཕྱོ། V;PRS
དོགས། V;PRS
འཆལ། V;FUT
འཚོ། V;FUT
བསྡེབ། V;PRS
སྦྱང་། V;PST
བགྲུ། V;PST
མགར། V;FUT
འཁྱུར། V;PRS
བསྙག། V;PST
མཉེས། V;FUT
འབྱོར། V;PRS
བཤུ། V;IMP
དཔོད། V;FUT
གོན། V;PRS
བསྣན། V;FUT
ལན། V;FUT
བསྒྲོན། V;PST
འབྱོན། V;FUT
ཡེར། V;PST
དམུལ། V;FUT
གཞག། V;PST
གོན། V;FUT
བསྒབ། V;IMP
འཐོབ། V;PRS
གཅུར། V;PST
གཞེས། V;PRS
བསྣོར། V;PST
འཕྱོར། V;IMP
འཛུལ། V;PST
གླེབ། V;IMP
ཡོད། V;PST
དམན། V;PRS
རེད། V;FUT
བརྒྱུ། V;PRS
བཞུགས། V;IMP
གོག། V;FUT
བསྲུལ། V;PST
དགས། V;IMP
བརྟུལ། V;IMP
སྦོལ། V;FUT
བཀླུབ། V;IMP
མགུ། V;PST
མནལ། V;IMP
གཏུག། V;FUT
སྡང་། V;PRS
བསྡམ། V;PST
བྲི། V;PST
འགྱུར། V;PST
བསྒག། V;PRS
མནོལ། V;FUT
བླད། V;IMP
འཚག། V;IMP
སོན། V;PRS
བཞུད། V;FUT
བསྒྲེ། V;IMP
བཤོལ། V;IMP
ཞ། V;PST
དཀྲི། V;PST
རྨོངས། V;PST
བསྒྲིག། V;FUT
གནོང་། V;PRS
གཙབ། V;FUT
འདྲོང་། V;FUT
དགྱེལ། V;FUT
གཏུལ། V;IMP
གཅེས། V;PRS
བདའ། V;PST
བསྙལ། V;PRS
གྱག། V;FUT
འབྲི། V;PRS
འགྲིལ། V;PST
སྐྱོ། V;PRS
བགྲུ། V;PRS
འཕྱུག། V;PRS
བསྐྱུར། V;PRS
བསླུག། V;PST
འབྲང་། V;PST
ཞེན། V;PRS
བརྩོན། V;PRS
ཤན། V;IMP
བྲན། V;FUT
གཏམས། V;PST
བསྒྲིལ། V;FUT
མཁྱེན། V;FUT
བསྒྲོ། V;FUT
བསྲུང་། V;PRS
འབྱང་། V;PST
འཐུལ། V;PRS
དྲན། V;FUT
རྙེད། V;FUT
བདག། V;PST
འཁྱུད། V;PRS
ལྷགས། V;FUT
འཁྲུ། V;PRS
བསྒྲིམ། V;IMP
བསྒྲིན། V;PRS
དགོངས། V;FUT
ཁྲུལ། V;PST
བཟློ། V;PRS
བསོད། V;FUT
བགྱེད། V;FUT
རྔུལ། V;FUT
གཡོལ། V;FUT
བརླིང་། V;PST
གདོན། V;FUT
གཞོམ། V;PRS
བཤོལ། V;PST
འཛག། V;PST
རྒྱ། V;FUT
བྲེག། V;IMP
དཀྲི། V;PRS
དབོག། V;PST
ཧྲལ། V;FUT
ཡལ། V;PST
སྦྱར། V;PRS
གཞེས། V;FUT
དགར། V;PRS
བསྐུམ། V;IMP
མཐུན། V;PST
གསུར། V;PST
གཅག། V;IMP
བཞོ། V;IMP
བཞེས། V;PRS
འཆལ། V;PRS
རྒ། V;FUT
ངེར། V;PST
བཀོལ། V;IMP
དོར། V;PST
དཔྲུལ། V;PST
འཕྲོད། V;PRS
འགྱང་། V;FUT
སྤར། V;IMP
བརྔོན། V;IMP
དགྱེད། V;PRS
འཕྱི། V;PST
འབག། V;FUT
བསྔས། V;PRS
བཤང་། V;PST
འཕམ། V;PST
གསང་། V;PST
བརྡབ། V;PST
བགོར། V;PRS
བཙུམ། V;PRS
འཕྱིང་། V;PST
འཚམ། V;PRS
བཀོན། V;PST
དར། V;PRS
གཡུར། V;PST
ཡོར། V;PST
ཧད། V;PRS
དཔྲུལ། V;FUT
ནུད། V;PRS
འགྲོགས། V;PST
འདར། V;FUT
སྤྲུལ། V;PST
བགྲད། V;FUT
ཐེང་། V;FUT
བཅང་། V;PST
བཀྱོན། V;IMP
འཆོར། V;PRS
ཞོམ། V;PST
བཞུགས། V;PST
བསྣུབ། V;PRS
བསྡུར། V;IMP
གསུར། V;PRS
འཁྲེན། V;FUT
མཉན། V;PST
བཏིག། V;PST
བརྙང་། V;PST
གཟུང་། V;PST
གཞོབ། V;FUT
ལྡང་། V;PRS
ཚ། V;PRS
འཛོལ། V;PST
གཡེང་། V;PRS
གཟབ། V;PST
བཤམ། V;PST
འཁོབ། V;PRS
སྐྱེངས། V;FUT
བརྒྱུང་། V;PRS
གཏོད། V;FUT
འཚང་། V;FUT
དགོལ། V;FUT
སྤུང་། V;PRS
སླེབ། V;PST
བསྒོམ། V;IMP
དབྲི། V;IMP
བཤེར། V;FUT
བསྟང་། V;IMP
བབ། V;FUT
བསྣན། V;IMP
འབུང་། V;PRS
བསྡུར། V;FUT
ཉོག། V;FUT
བསྡོང་། V;IMP
དཀྲིག། V;FUT
བླད། V;PST
གཏོག། V;PST
གཉིད། V;FUT
སྨན། V;PRS
འཁོང་། V;PRS
བཟོ། V;FUT
བརྒལ། V;PRS
བསླང་། V;IMP
གཡོག། V;IMP
བཤུང་། V;PST
དགལ། V;PST
བལྡེག། V;PRS
མཚོན། V;FUT
བསྐྱུར། V;PST
རེམ། V;IMP
གུས། V;FUT
བཀླག། V;IMP
གློད། V;PST
སྤྱུག། V;FUT
ཕན། V;FUT
སྤར། V;PRS
འབྲལ། V;PRS
སྤྱོ། V;PST
འཐིབ། V;PST
བཤུམ། V;PST
ཤིང་། V;PRS
སྦང་། V;FUT
བསྐོང་། V;IMP
འགྲས། V;PRS
བསྟུན། V;PST
འཁྱམ། V;FUT
བུངས། V;PRS
བརློང་། V;IMP
བཀྲེས། V;PRS
བཀྱག། V;IMP
བསྣོར། V;PRS
དོར། V;IMP
གདམ། V;PRS
ཆེས། V;PST
འཕོག། V;FUT
གདེང་། V;PST
ཉོབ། V;PRS
གཟིང་། V;PST
དབྲལ། V;IMP
མནར། V;PRS
གདང་། V;PST
བཏོག། V;IMP
བསལ། V;PST
སྨྱུང་། V;PRS
བསླེ། V;PRS
མནོ། V;PST
འཁུན། V;FUT
ལྡུར། V;PST
གསེད། V;PST
དགྲོང་། V;PST
སྦྲེང་། V;FUT
འཁེང་། V;FUT
ཟེར། V;PST
ལྟོགས། V;PST
ཞེད། V;PST
ངོམས། V;PST
བཤའ། V;FUT
འཁྱུག། V;PST
ཧོལ། V;PRS
ཡན། V;PST
དབང་། V;PRS
བཙོང་། V;FUT
འབྲིད། V;PST
ལགས། V;FUT
བསྟན། V;FUT
འདྲོག། V;FUT
བསྙུན། V;PST
ཁེག། V;PRS
དབོག། V;IMP
འཛེག། V;PRS
འབྱོང་། V;PRS
བརློང་། V;FUT
གཙེ། V;FUT
འཆད། V;FUT
ཁྱག། V;PST
བལྟ། V;IMP
འཁྲིམས། V;PST
བསྟུན། V;IMP
འཛོལ། V;PRS
སྦང་། V;IMP
མནན། V;FUT
འབབ། V;PRS
བརྒྱལ། V;PRS
སྦྱིན། V;FUT
འཁྲེབ། V;PST
འཁྲུང་། V;PRS
བྲིན། V;FUT
འབྱང་། V;FUT
གོག། V;PST
གདུལ། V;PRS
མདུད། V;IMP
བྲུབ། V;PRS
གླེང་། V;IMP
འཕོག། V;PRS
མཆོད། V;FUT
བགྲོད། V;IMP
བརྒྱང་། V;FUT
རྒྱ། V;PRS
ཚར། V;PRS
བསྙེན། V;FUT
ཞལ། V;PRS
བསྙིལ། V;PST
འཕོ། V;PST
འཐེང་། V;PRS
འཆག། V;PST
བགྲེས། V;PRS
ཞུམ། V;PRS
ངེར། V;PRS
བསུབ། V;IMP
མནབ། V;PRS
བཅིབ། V;PRS
བསོ། V;PRS
བཞད། V;FUT
བརྔོ། V;PST
གཏམ། V;IMP
དོང་། V;PRS
ཤིས། V;FUT
རལ། V;PRS
བགྱི། V;PRS
གཡོར། V;IMP
མྱུལ། V;PST
གདིང་། V;PST
འཆར། V;PST
གཏུབ། V;FUT
ལྡང་། V;PRS
བསིལ། V;PST
བསྒྲོ། V;PRS
རེང་། V;PRS
རེ། V;PRS
འབྱོན། V;IMP
འཁྲོག། V;FUT
བཙིར། V;PST
གླེབ། V;PST
གཞིལ། V;PST
འཕྱུག། V;FUT
བརྒལ། V;FUT
བདལ། V;IMP
ཁེན། V;PRS
འཕང་། V;FUT
ཀླས། V;PST
བསྲི། V;IMP
འཕྲེང་། V;PRS
འཁྲིད། V;PRS
གྱེད། V;FUT
བསྐྱུད། V;PST
ཧང་། V;FUT
ནུ། V;PST
འཁམས། V;PST
བརྒལ། V;FUT
ཚིམ། V;FUT
འཁྱལ། V;PST
འབྲུལ། V;PRS
འཐད། V;FUT
བགམ། V;FUT
བརྙབ། V;FUT
ཧྲོལ། V;PST
འགག། V;PRS
བདག། V;PRS
དཀྲོག། V;FUT
འཛེར། V;PRS
ཟིང་། V;PST
ཞུད། V;IMP
གནོང་། V;FUT
སྤྱིང་། V;FUT
མཉེལ། V;FUT
བཀྱིག། V;PRS
གཟིར། V;IMP
འབག། V;PRS
ཟེར། V;PST
གྱེར། V;FUT
ཡོར། V;FUT
འཇོ། V;PST
བསྟང་། V;FUT
གཞོག། V;IMP
གཟའ། V;FUT
གསོར། V;IMP
གཏོར། V;PRS
ཟེགས། V;IMP
བད། V;FUT
རོལ། V;PST
དྲེད། V;PRS
བརྙོག། V;PST
བརྡལ། V;FUT
བསྐྲུན། V;PST
ཤེས། V;PST
གླན། V;FUT
འདེད། V;IMP
བསྙོན། V;FUT
ཐིམ། V;FUT
འབའ། V;PRS
བསྒྲང་། V;PST
བསྐྱབ། V;PST
བདའ། V;PST
འགུལ། V;PST
མཆོང་། V;PST
བསྒྲེང་། V;PRS
བསབ། V;FUT
བསྒྲིབ། V;PST
བྲ། V;PST
བཤོར། V;PRS
ཐེ། V;PST
ལྕེབ། V;FUT
འཕར། V;PRS
བསྲབ། V;PST
སྨྱུར། V;PRS
ཁེང་། V;PST
གསེང་། V;PRS
བསྐྲུ། V;FUT
འབྲི། V;PST
བགད། V;PRS
དགྱེལ། V;IMP
སངས། V;PRS
བསྟད། V;PRS
རྨྱ། V;PST
སྙིགས། V;PST
ཁྱབ། V;FUT
བྲོད། V;PST
གཉེར། V;FUT
མཆེད། V;FUT
གཞུར། V;PRS
གཟར། V;PST
ཡན། V;FUT
བསྒྲག། V;FUT
སྦ། V;PST
གཉེར། V;IMP
བསྡེབ། V;FUT
འཁྱོང་། V;PST
གཉག། V;PST
རངས། V;PST
བརྗེ། V;PST
གཡོར། V;PST
བསྐྲོག། V;FUT
སྐྱོ། V;PST
གདིང་། V;PRS
འཁུམ། V;PRS
གསང་། V;IMP
བཟོ། V;PST
སྤྲུག། V;PRS
འཚོབ། V;FUT
རྩེན། V;FUT
གཡེམ། V;IMP
དཔྲུལ། V;PRS
འབྲལ། V;PST
བསྒྱེལ། V;FUT
སྤག། V;IMP
འགྱོད། V;PRS
བསྒབ། V;PST
གཏོད། V;PRS
བཀྲུ། V;IMP
བརྒྱུང་། V;FUT
འཁྱོམ། V;PST
བརྟིབ། V;PRS
ཐེབས། V;PRS
བསླན། V;PRS
བཅོལ། V;IMP
རྨྱ། V;PRS
ལྷོང་། V;PRS
སྲེད། V;PRS
སྤུད། V;PST
བསྐྱུད། V;IMP
གསན། V;PST
བརྡར། V;PRS
སྤེལ། V;IMP
འཚལ། V;PRS
བསག། V;PST
བྱ། V;PRS
འབུར། V;PST
འགེམ། V;PRS
འཕྱུར། V;PST
འགྲུལ། V;PST
བརྟབ། V;PRS
མྱོས། V;PRS
མཁས། V;FUT
འཐུལ། V;FUT
གཤེགས། V;FUT
དབུབ། V;PRS
འཕྲོ། V;FUT
གཏན། V;FUT
སྤང་། V;PST
དགོག། V;PRS
གདང་། V;IMP
ཚིམ། V;PRS
འཕྲ། V;PST
བསྟར། V;PRS
གློང་། V;PRS
འཚང་། V;FUT
ཡེར། V;FUT
ལྡོབ། V;PST
དགྲོལ། V;PRS
འཁར། V;PST
བཏིག། V;PRS
གནས། V;PRS
ལབ། V;IMP
བདལ། V;PRS
བསབ། V;PRS
དབྱུང་། V;FUT
གཙུབ། V;FUT
བརྩམ། V;PST
ཟེམ། V;FUT
བསྒྲེང་། V;PST
ལྡོན། V;PST
གཞའ། V;FUT
ཕྱེད། V;PST
བཅུ། V;PRS
ཐེ། V;FUT
ཀུམ། V;PRS
བྲི། V;PRS
རྨེལ། V;FUT
ལྡིང་། V;FUT
འདྲོང་། V;PRS
ཚོས། V;PRS
བརྣང་། V;IMP
འགྲིག། V;PST
ལབ། V;PRS
ཕྱག། V;PRS
འཇོལ། V;PST
དད། V;PST
བསྐྱང་། V;PST
བརྒྱོ། V;PST
བསྡམ། V;IMP
བརྩད། V;IMP
སྦྲེལ། V;PRS
དྲི། V;FUT
འཆི། V;PST
བསྐྱེད། V;PST
འཆུ། V;FUT
བསྟིམ། V;PST
འབྲིད། V;FUT
གླེབ། V;FUT
ཆུམ། V;PST
བྱང་། V;FUT
ལྡན། V;FUT
གཏོག། V;PRS
གཏུལ། V;FUT
སད། V;PST
གཟོ། V;PRS
གཞར། V;IMP
བརྫང་། V;PRS
རིགས། V;PRS
བསླུག། V;FUT
ལྡན། V;PST
སྤྱིལ། V;PST
གླེབ། V;PRS
བཏིག། V;FUT
ལད། V;FUT
བསྐྱོག། V;IMP
བསྟིང་། V;FUT
བླག། V;PRS
དམས། V;FUT
འབ། V;PST
དང་། V;FUT
བཙིར། V;PRS
སྤོ། V;IMP
འཆི། V;FUT
བསྒྲད། V;PRS
བསྒར། V;FUT
བཅའ། V;PRS
བསྐུལ། V;FUT
བཙལ། V;PST
བཟླུམ། V;IMP
གློང་། V;FUT
བསྣད། V;PST
བསྣོ། V;PST
ངར། V;PST
འདང་། V;PST
ཚད། V;PST
དགོས། V;FUT
གླལ། V;PST
དབྲལ། V;PST
བསྙེར། V;PRS
གཏང་། V;IMP
བསྩལ། V;PRS
ཟུག། V;FUT
གསེང་། V;IMP
འཚོབ། V;PST
དགུག། V;IMP
སྐྲུག། V;PRS
ཡེང་། V;FUT
བསུམ། V;PST
གཞབ། V;PRS
མནལ། V;PRS
འཁྱོམ། V;PRS
བརྣོག། V;PRS
བཀྲི། V;IMP
བསྣོལ། V;IMP
མྱག། V;FUT
བཀྱིག། V;IMP
འཛར། V;PRS
འཕེར། V;PST
བཤད། V;IMP
འགལ། V;PST
གཅུན། V;IMP
ཟག། V;FUT
ཁེབས། V;PRS
གཙུབ། V;PRS
རྙིད། V;PRS
སླེབ། V;FUT
གཞིག། V;PRS
འབྲ། V;PRS
སྣང་། V;PST
སྦག། V;PST
དབྱུང་། V;IMP
བསྒྲུབ། V;FUT
བསྐྱར། V;PST
བརྔ། V;IMP
བརྩེད། V;PST
འཁྱུས། V;PST
ཡོག། V;FUT
དགྲོལ། V;PST
མཆི། V;PST
བསྣུབ། V;PST
ལྷག། V;FUT
འགྲུབ། V;FUT
བསྒྱུར། V;PRS
གཤིབ། V;IMP
འཁོབ། V;FUT
བྲུག། V;FUT
ཟློ། V;PRS
འཇོལ། V;FUT
ཐེགས། V;PRS
མནམ། V;PST
འགྲོ། V;FUT
བཟོད། V;PST
འདེང་། V;PST
ཟུམ། V;PRS
བཞེད། V;FUT
སྤུར། V;FUT
ཉལ། V;PST
གཏང་། V;PRS
དབྱི། V;PST
མགུ། V;FUT
རྒུད། V;FUT
བརྫེ། V;IMP
བླུ། V;IMP
ངུར། V;PRS
ཁྱག། V;FUT
འཕྱུར། V;FUT
དབུར། V;FUT
འདའ། V;FUT
ཚར། V;FUT
འབྲིད། V;PRS
བསྒྱུར། V;FUT
བརྐུ། V;PST
བཙལ། V;IMP
རིག། V;PST
བརྟིབ། V;PST
གཏད། V;PST
བསྒྲུན། V;FUT
བསྙོར། V;FUT
བསྟེན། V;PRS
དྲི། V;PST
གཏོགས། V;PST
གཅུ། V;IMP
བདུང་། V;IMP
བསྐྱུང་། V;PST
མཐུད། V;PRS
བཙམ། V;FUT
འཐད། V;PRS
གྱེར། V;PRS
བསྐོ། V;PST
བརློང་། V;PST
འགོང་། V;FUT
བདམ། V;IMP
བཟླུམ། V;PST
བསྐུག། V;IMP
གཤེ། V;PRS
སྤར། V;PST
བམ། V;PST
བསྐྱལ། V;PRS
བཙམ། V;PST
བསག། V;IMP
གཤིབ། V;PST
འཐེམ། V;PRS
བླུག། V;PST
བཀླུབ། V;PST
རྒྱལ། V;FUT
བསྙེལ། V;FUT
འཛོམ། V;PRS
འཁུན། V;PRS
སྤྲུག། V;PRS
བརྔུབ། V;FUT
དབྲི། V;FUT
དཀྲུག། V;PST
བསྲེ། V;FUT
བལྟབ། V;FUT
འགྲུལ། V;PRS
བསོད། V;PRS
གཅགས། V;IMP
བསྒབ། V;FUT
རྣག། V;FUT
དྲང་། V;FUT
འཆུ། V;FUT
འཐོན། V;FUT
ཆོམ། V;PRS
བགྱང་། V;IMP
གདས། V;PST
གཟར། V;PST
འཁྱེར། V;PRS
རོལ། V;IMP
འཁུལ། V;FUT
འཁྱིལ། V;FUT
འཕུལ། V;FUT
བསྐྱོར། V;PST
ཞུལ། V;FUT
བཙག། V;FUT
ཕེབས། V;PST
མངའ། V;PST
དགོས། V;PST
ཀླས། V;PRS
འཚེམ། V;PRS
འཁྱུག། V;PRS
བརྒྱོ། V;IMP
འབྱོར། V;FUT
བྲེག། V;FUT
བསྡད། V;PRS
མྱུག། V;PRS
བརྒྱལ། V;PST
མཚོན། V;PST
བསྣུར། V;FUT
ཕྱིད། V;PST
བཞུད། V;PST
གདལ། V;PRS
མཆོང་། V;FUT
ཧལ། V;PST
ཁྲོ། V;FUT
འཕགས། V;FUT
བཀྲབ། V;PST
བསམ། V;PST
མྱག། V;PRS
བསྔགས། V;IMP
འཇང་། V;PRS
འཕོངས། V;PST
འཁྱིག། V;FUT
བཤག། V;IMP
ཐེགས། V;FUT
དབབ། V;PST
བཀྲལ། V;FUT
མཐོང་། V;PST
བསྐམ། V;IMP
གཙི། V;IMP
སྤྱོ། V;FUT
ཡར། V;PST
ཐིང་། V;PRS
བསྙོར། V;PRS
བསྐུག། V;PRS
མྱུལ། V;PST
དཔྱ། V;PST
སྦྲིད། V;FUT
གཤོ། V;IMP
གཏོགས། V;FUT
འཇེབས། V;PST
དཀུ། V;FUT
མཛད། V;PST
བཙོག། V;FUT
དྲག། V;FUT
བགྲུ། V;IMP
གཤག། V;PST
འཁྲེང་། V;FUT
བཅམ། V;FUT
བསྡོང་། V;PRS
དམིགས། V;IMP
གུས། V;PST
དཀྲུག། V;IMP
སྤྱུག། V;PRS
གཅག། V;PST
གཏུགས། V;PRS
ཞུ། V;PRS
འཁང་། V;FUT
འཕྲིག། V;PST
བྱུག། V;PST
འཚམ། V;FUT
གཉུལ། V;PST
རི། V;PRS
གདག། V;PST
བསྙོན། V;PST
འཕྲད། V;PST
གདལ། V;PST
ངུར། V;PST
གཤག། V;FUT
ཤིང་། V;FUT
མཆོད། V;PRS
བལྡག། V;FUT
དྲན། V;PST
གསད། V;PRS
བརྟན། V;PST
བསྐྱིལ། V;IMP
འཇའ། V;PST
འབྲ། V;IMP
གཡའ། V;PST
བལྡག། V;PST
བསྟེན། V;IMP
བསྲུང་། V;FUT
འཛེར། V;PRS
འགྲན། V;PRS
འབབ། V;IMP
སྤོབས། V;PRS
འབོག། V;FUT
བསྐྱོག། V;FUT
ཤབ། V;FUT
བཞུད། V;PRS
འཁུམ། V;PRS
དྲིལ། V;IMP
བསྡུ། V;IMP
བསྙེན། V;PST
བསྐྱུང་། V;PRS
བསྡུམ། V;IMP
བསྒྲུང་། V;FUT
བརྫུ། V;FUT
གཡར། V;FUT
འཆུམ། V;FUT
འཛེམ། V;IMP
བྲབ། V;IMP
བགད། V;FUT
དགྱེལ། V;PRS
བཤའ། V;PRS
འབད། V;FUT
བཟློ། V;PST
བགྱེད། V;PST
འབོག། V;FUT
འབྱོ། V;IMP
སྦོ། V;PST
འདྲུ། V;IMP
སད། V;PST
འཕག། V;PRS
བརྔོན། V;PST
བསླན། V;IMP
གསུད། V;PRS
བསྣོག། V;PRS
འཐུས། V;FUT
བླག། V;IMP
འགྲས། V;FUT
ལྷོད། V;PST
སྦྱང་། V;PRS
བཀུ། V;FUT
འཕྲིག། V;PRS
དངར། V;PRS
བསྒྲུག། V;FUT
མངལ། V;PRS
བཀྲ། V;PRS
བསྒྲིབ། V;FUT
འཇེབས། V;PRS
ཀེར། V;PST
རངས། V;FUT
བཀྱིག། V;FUT
བརྟག། V;PST
འཕུད། V;IMP
བཤུག། V;FUT
ཧྲིངས། V;PST
བསྒྲིན། V;PST
གཅགས། V;PST
སྦྲུ། V;FUT
བསྡུ། V;PRS
འབྲིད། V;IMP
འགོང་། V;PST
བཤམ། V;PRS
འཆུམ། V;PST
བརྒལ། V;PRS
བསྟིང་། V;PRS
བརྣུ། V;IMP
བྲ། V;PRS
སྟེག། V;PRS
བསུབ། V;PRS
བསྲུབ། V;PRS
བསྡིག། V;IMP
བགྱི། V;IMP
བརྙས། V;IMP
འཐེང་། V;PST
བསྡིག། V;FUT
འབོད། V;IMP
འཇབ། V;PRS
བསྟོད། V;FUT
ལྡར། V;FUT
འཁྱོར། V;PRS
འདར། V;PRS
བཅེར། V;FUT
འགལ། V;FUT
བསྐྲུ། V;IMP
|
d7e7c985397aa46378ebef70047d2c30b45ed139
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3446/CH17/EX17.5/Ex17_5.sce
|
f292773862b5d19cab7fe12ebbfef03dd60b7e7b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 822
|
sce
|
Ex17_5.sce
|
// Exa 17.5
// To calculate uplink cell load factor, number of voice users and poll capacity of the cell.
clc;
clear all;
Ri=12.2*10^3;//Information rate in bps
Rc=3.84*10^6;//Chip rate in cps(chips per second)
Eb_Nt=4; //in dB
Imargin=2; //Interference margin(3 dB)
B=0.5;//Interference factor due to other cells
Vi=0.65;//Channel activity factor
//solution
Eb_Ntreqd=10^(Eb_Nt/10);
LF_peruser=(1+B)*(1/(1+(Rc/Ri)*(1/Eb_Ntreqd)*(1/Vi))); //M(no of users=1) in Eq 17.13
printf("Cell load factor per voice user is %.5f \n ',LF_peruser);
CellLoading=(Imargin-1)/Imargin;
VoiceUsers=CellLoading/LF_peruser;
printf('No of Voice Users are %d per cell \n ',VoiceUsers);
//From EQ 17.6 assuming Power control efficiency=1
Polecap=Rc/(Ri*Vi*(1+B)*Eb_Ntreqd);
printf('Pole Capacity is %d \n',Polecap);
|
69bbff30891533e7fe16b8b825e1ec853cdd6ed4
|
0e1b45c07f0938ba9c8a003d6ae1cf2d8315efdb
|
/ch24.org/2011/Pre-round, 2011.02.12/R/python/test09.tst
|
4bf3e0327bf0ce24fd6dbb299ea518e1c0aeb757
|
[] |
no_license
|
Kot-Angens/acm
|
c85d8582c3e84f218415321743864b9680e01f2e
|
05472eaa0fff7abb6679826085da5e0c990df4cb
|
refs/heads/master
| 2021-01-24T22:36:05.159612
| 2012-10-02T13:51:56
| 2012-10-02T13:51:56
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 139,187
|
tst
|
test09.tst
|
12971
-0.00406531
-0.00323929
0.00536146
0.00235982
0.0090781
0.00299962
0.00481586
-0.0128135
-0.00798476
-0.00539748
0.00568926
-0.000128117
-0.00139389
-0.00363943
0.0215998
0.0266721
0.0252992
0.0166058
-0.025858
-0.0371402
-0.0154584
0.00104488
-0.0177649
-0.0381374
-0.021581
0.00991311
0.0777227
0.111941
0.063594
-0.000264419
-0.0270643
-0.0127644
-0.00935221
-0.00372255
-0.0353443
-0.0944555
0.0143971
0.114382
0.199996
0.19037
0.121306
0.0340191
-0.0388286
0.0412604
-0.0510382
-0.131759
-0.194786
-0.190445
-0.1224
0.00324348
0.109448
0.0341927
0.00121292
0.0234191
0.0185457
0.0197552
-0.00560307
-0.0938262
-0.138917
-0.085779
-0.00654641
0.00834264
0.0334891
0.0139199
0.00292865
0.023794
0.0416577
0.019728
-0.0160321
-0.034472
-0.0395336
-0.0165106
-0.00640416
0.00703704
-0.000843018
-0.00223691
-0.00587634
0.000219596
0.00363589
0.0134312
-0.00872263
-0.0035729
-0.00195345
-0.00190801
0.00688881
0.00462779
0.00525013
0.0069249
0.00908608
0.00928935
0.00495112
-0.00897424
-0.00923866
-0.0130471
0.00519627
0.0113479
-0.000126554
-0.012215
0.00185663
0.0240056
0.0453647
0.0283067
0.00162266
-0.0398618
-0.0290985
-0.0136636
0.00434104
-0.0389453
-0.0234178
-0.0166535
0.033212
0.14337
0.154365
0.070015
-0.0198233
-0.0263623
-0.026199
-0.0309092
-0.011154
-0.0865245
-0.110583
0.0760814
0.207357
0.301585
0.224657
0.149619
-0.022508
-0.0195793
0.0507263
-0.140174
-0.205717
-0.307021
-0.225214
-0.101957
0.0985871
0.123191
0.00619669
0.0131056
0.0263726
0.0204962
0.0207158
-0.0531677
-0.156016
-0.156986
-0.0597839
0.023534
0.0371298
0.0595225
0.00213481
0.0151369
0.0375657
0.0388998
0.00942945
-0.0321311
-0.0566092
-0.050344
-0.0168794
0.00382072
0.00741671
-0.00821372
0.00282705
0.0124356
0.0209374
0.00428661
-0.00616639
-0.0122957
-0.0211497
-0.00373653
-0.00189621
-0.00530711
0.00225926
0.00984919
0.0164515
0.0186558
0.00698702
-0.0091902
-0.0166946
-0.00551013
0.0146392
0.011696
-0.00370932
-0.0148633
0.0303952
0.0593468
0.0656608
0.0482113
-0.0222964
-0.0612055
-0.0356178
-0.0116142
-0.0156896
-0.0734904
-0.0276181
-0.0240333
0.118558
0.218926
0.186737
0.0527656
-0.033346
-0.0426532
-0.0372996
-0.010927
-0.0369424
-0.194521
-0.0848981
0.200947
0.354038
0.433789
0.286781
0.16112
-0.104939
0.0754902
-0.0179001
-0.251652
-0.360039
-0.443633
-0.281966
-0.0827609
0.20798
0.10583
0.00112321
0.0395477
0.0390859
0.0419129
0.0155889
-0.141768
-0.246009
-0.221168
-0.0319128
0.0322089
0.067232
0.0575839
-0.00973874
0.0235283
0.0643852
0.0575809
-0.0245385
-0.071815
-0.0887572
-0.0511882
-0.0101867
0.0122044
-0.00710734
-0.00306472
0.00532781
0.0202191
0.0175505
0.0134438
-0.0158643
-0.0304087
-0.0140948
-0.010953
0.000688689
-0.00724898
0.00453189
0.00792153
0.022648
0.00942331
-0.0119609
-0.0267746
-0.0205206
-0.00735497
0.00425537
0.0134674
-0.0129634
0.00435779
0.0501468
0.0815278
0.0731723
0.0241098
-0.0692328
-0.069274
-0.0321853
0.00241033
-0.0616344
-0.0795345
-0.0443651
0.0219522
0.213978
0.288601
0.182585
-0.00478378
-0.046241
-0.0528697
-0.0443298
0.00250803
-0.087362
-0.234564
0.0345205
0.30014
0.474321
0.434656
0.296322
0.0922366
-0.113745
0.124578
-0.138716
-0.306889
-0.466362
-0.436637
-0.26039
0.0151942
0.21982
0.0545945
0.0125354
0.0441877
0.041123
0.0386989
-0.0263533
-0.194849
-0.258925
-0.166262
0.0126316
0.0295445
0.0806071
0.0270322
-0.00347261
0.0475709
0.0709963
0.0316288
-0.0442192
-0.063932
-0.0752027
-0.0337078
0.00544889
0.00195232
-8.41088e-05
-0.00529558
-0.000937795
0.0182012
0.0222096
0.00235871
-0.0122912
-0.0195085
-0.019015
-0.0124407
-0.00227841
-0.00189731
0.0115915
0.02149
0.0279383
0.00935819
-0.00436595
-0.00782777
-0.0203635
0.00316297
0.0123088
0.00673865
-0.0140091
-0.000595934
0.0361581
0.0706786
0.0607406
0.0311855
-0.0457862
-0.0595413
-0.0370722
0.011973
-0.0417437
-0.0641802
-0.0299835
-0.000221317
0.160041
0.217481
0.147404
0.00288252
-0.0277943
-0.0307628
-0.0408387
-0.0152196
-0.0540401
-0.181169
0.0115789
0.21777
0.361586
0.350962
0.240971
0.0890201
-0.09325
0.0970758
-0.0956633
-0.226217
-0.341875
-0.355087
-0.209717
-0.0213534
0.177497
0.0511629
0.0143555
0.0375272
0.0244797
0.01579
-0.0125204
-0.137598
-0.197254
-0.132026
0.00350401
0.0310006
0.0495677
0.0317854
0.00663227
0.0337276
0.0474656
0.0288923
-0.031517
-0.0513868
-0.0592146
-0.0330664
-0.00664764
0.0134131
-0.010856
-0.00936131
0.00554663
0.0106969
0.01936
-0.00517065
-0.00499286
-0.0197713
-0.00179328
-0.000105798
-0.00363663
0.0011313
-0.00103343
0.00774278
0.0230253
0.0125238
0.00519846
-0.00243662
-0.015058
0.00365933
0.00390425
0.00957719
-0.00564239
-0.00541892
0.0227148
0.0420457
0.0427618
0.0245026
-0.0198847
-0.0347274
-0.0387305
-0.000197613
-0.0194009
-0.0452968
-0.0157002
-0.00873845
0.085787
0.131884
0.110531
0.01671
-0.00964647
-0.0107948
-0.0197792
-0.0108034
-0.0182693
-0.116061
-0.00559666
0.138234
0.223262
0.24227
0.164744
0.0980321
-0.0639809
0.0434265
-0.031373
-0.15445
-0.203077
-0.234594
-0.146446
-0.0428698
0.0946064
0.0259433
-0.00715531
0.0207483
0.019139
0.00918171
-0.00337716
-0.0847923
-0.120971
-0.102708
-0.00620001
0.00751059
0.0384125
0.019272
0.00489946
0.0193699
0.0271127
0.0268822
-0.0226095
-0.0251629
-0.0353515
-0.0194017
-0.000238516
0.00366573
-0.0100129
-0.000151405
-0.00557032
0.00164061
0.00492661
-0.00657519
-0.0130803
-0.00970918
-0.0134288
-0.00564775
0.00190657
0.00576153
-0.000775545
0.014532
0.00579355
0.0140612
0.0064107
-0.0148413
-0.0136352
-2.5811e-05
0.00468324
0.00815981
0.0128603
0.00234295
0.002561
0.0202201
0.0266714
0.0251273
-0.00392044
-0.0174715
-0.0279665
-0.0221799
-0.0175131
-0.00237444
0.00596624
0.00443953
0.0411633
0.0730119
0.0766537
0.0394772
0.00340494
-0.0347581
-0.0450175
0.00512916
-0.00894495
-0.0433299
0.0269166
0.0687365
0.144323
0.138123
0.114626
0.0522635
-0.0292396
0.0299234
-0.0669858
-0.101889
-0.137022
-0.11312
-0.0530113
-0.0185954
0.0240184
0.000524089
0.0119418
0.0406886
0.0327852
-0.0115448
-0.0409119
-0.0592411
-0.0425605
-0.032385
-0.00333453
-0.00125949
-0.00690725
0.0260071
0.0240167
0.0232411
0.00676536
-0.0106969
-0.0121396
-0.0134808
-0.0128182
-0.0187015
-0.0109753
-0.0062921
0.00186771
-0.00077589
0.00156706
0.00412806
0.00109239
-0.00324399
-0.00137247
-0.00529291
-0.0150124
0.00353272
0.0123605
0.0103513
0.00797689
0.0216951
0.00287878
0.00528239
0.00852687
-9.07211e-05
0.0161306
0.0195356
0.00803328
0.0172793
0.00690458
0.00571157
0.00114139
0.00480215
0.00377126
0.00855973
0.00714818
0.0132472
0.0112472
0.00526335
0.00417898
0.0147126
0.00584726
0.00836027
0.0270235
0.0127719
0.0251843
0.00269106
0.00321515
0.0151569
0.00933383
0.0266152
0.0228223
0.00516619
0.0156925
0.0196436
-0.00498949
0.0381876
0.0136723
0.0222689
0.0172683
0.00252524
0.0102625
0.00927591
-0.001421
0.00969525
0.0194703
-0.00109993
0.0189583
0.00798296
0.00169085
0.0113105
-0.00496927
0.0121017
0.000725851
0.00181824
0.0218301
0.0204576
0.0151647
0.00790418
0.0114369
0.0160455
0.0186449
-0.0121379
0.0173091
0.004684
-0.00553748
0.0107413
0.00289867
0.0267813
0.0153091
-0.00766538
0.0173659
0.00876655
0.0144781
0.00786758
0.0281736
0.016441
0.0172488
0.00889308
0.0143884
0.0101317
0.00764307
0.0118221
0.00327884
0.016878
0.0252383
-0.00200175
0.0107701
0.0204505
0.0076377
0.0186048
0.00275393
0.0120878
0.0154471
0.0227656
0.00467593
0.0126165
0.00125235
0.0117667
0.0189466
0.00936309
0.0238801
-0.00536328
0.0126658
-0.000327502
0.00119647
0.00752741
0.00947072
0.0134371
0.0123372
0.000287714
0.000518731
0.00996152
0.029024
0.00855082
0.0129006
0.0291303
0.0076927
0.0217708
0.0112207
-0.0046224
0.0187857
0.0224706
0.0152603
0.0106494
0.0062634
0.0235725
0.00500068
0.0304709
0.0179565
0.0208551
0.0166286
0.0164338
0.00876846
0.0106304
0.0116451
0.0183712
0.0184869
0.0234047
0.0165899
0.0105828
0.00397203
0.00285652
0.00523624
0.00512737
0.0169494
0.00472439
0.0293544
0.000329102
0.0138312
-0.0141583
-0.0092117
0.0139299
-0.013977
0.0120328
0.00861666
-0.00694397
0.0235735
-0.0105102
0.00210627
0.0188625
0.0151254
0.02632
0.00467536
0.00529963
-6.3646e-05
0.0281061
0.0200266
0.00571921
0.0287505
0.0149654
0.0128986
0.00973191
0.00226769
0.0105384
0.0127479
0.026268
0.00381109
0.00120777
0.0225861
0.007023
0.0210419
0.0012548
0.0121363
0.0154181
0.00688091
0.00663733
0.00178283
0.000294284
0.0161148
0.0211155
0.0128268
0.00752741
0.00512672
0.00625147
0.0226853
-0.00730591
0.0188284
0.0227215
0.00233306
0.013068
0.00546492
0.0143028
0.00162984
0.00560186
0.000706443
0.0291985
0.018822
0.0280195
0.01724
-0.00766921
0.000411834
-0.00126082
0.00783665
0.0296327
0.00480288
0.0140817
0.00285867
0.0114753
0.00453136
0.00484908
-0.00566115
0.0197009
0.0230595
0.0149291
0.0179933
0.00716479
0.00471249
0.0201527
0.00949909
0.0217738
0.0119891
0.0174838
0.0169453
0.01434
0.01632
0.0185877
0.0213741
0.0108663
0.0216304
-0.0133182
0.0188973
0.0104757
0.00199481
0.0307886
-0.00671625
0.013172
0.02859
0.0122151
0.0111005
0.0128833
0.00542569
0.00603665
0.00389635
0.00897118
0.00874665
0.00612144
0.0123729
0.0118024
0.0122484
6.90853e-05
0.0150387
-0.0058841
0.0149358
0.0126488
-0.0040561
0.0285815
0.0186795
0.00388205
0.00207279
0.00539091
-0.00534929
0.0273946
0.0274773
0.00463333
-0.00437943
0.00345723
0.00983411
0.00688505
0.0132148
0.0160735
0.00429301
0.00107243
0.0136734
0.0157642
0.0122094
0.00426115
0.0114383
0.0216797
0.0365964
0.0103011
0.01495
-0.0143106
0.00746314
0.0117003
-0.00182367
0.0306255
-0.00154607
0.00702202
-0.00539802
0.0159761
0.0113385
0.00196116
0.0118988
0.0230442
0.018016
-0.003245
-0.00346412
-0.0179323
0.0184955
-0.00717806
0.012789
0.000633704
0.013517
0.00343886
0.00172357
0.00561992
-0.000912782
0.0233377
0.00620337
0.00307241
0.0148748
-0.00388449
0.0194404
0.0189752
-0.0101647
0.0357789
-0.00583587
0.0133638
0.0264415
0.0141132
0.0334991
0.020068
0.00995506
0.0123577
0.000992594
0.020718
0.00984742
0.0287238
0.00892522
0.0187593
-0.0131153
0.0156034
0.00842108
0.0127141
0.0370423
-0.00354779
0.0122164
0.00116998
0.0286869
0.00911749
0.0152933
0.01313
0.0156792
0.0151253
0.000814641
-0.0072261
0.0044742
0.0181544
0.0100202
-0.00702971
0.038752
0.00234622
0.0183223
-0.00909886
-0.0071377
0.00476109
0.0123014
0.00706159
0.0193205
0.00035247
0.0211799
0.0241715
-0.00626241
0.0297824
0.00716029
0.0129254
-0.00689155
0.0335917
0.00820388
0.0382988
-0.000378913
0.0135764
0.0166488
0.000515872
0.0353911
0.00831985
0.0195431
0.00937839
0.0296534
0.0160656
0.0139255
0.00935924
-0.00753533
0.00270797
0.0305279
0.00172331
0.014081
-0.000430272
0.0202877
-0.000872634
0.0123473
0.00576865
0.00127217
0.0269166
-0.0117436
0.0044294
0.0171435
0.00767418
0.0196303
0.0163428
0.00976087
0.00744006
0.00105368
0.000843085
-0.0015308
0.00639645
0.0292737
0.0145844
0.00735832
0.0118325
-0.00102082
0.00899942
0.0252255
0.00971394
0.0198121
0.0226306
0.00577975
0.0141459
0.0111551
0.0312084
0.00726226
0.0110788
0.0269352
-0.00614852
0.0180229
0.0195125
0.0260391
0.0176955
0.015117
0.000473505
0.0263133
0.0035094
0.00304856
0.0259255
-0.00700977
0.0328948
0.00240296
0.0222902
0.0228581
0.00364149
0.00526794
0.0116655
0.00447527
-0.00485501
0.0200081
-0.00303109
0.0229327
0.0147009
0.000920365
0.0150014
0.00681917
0.0271069
0.0107304
0.0153257
0.0210944
0.0146146
0.0182753
0.0297875
0.00320917
0.0203526
0.00477101
0.00114546
0.0174883
0.00399334
0.0346892
-0.0107687
0.0133302
-0.00370452
0.00269193
0.000957836
3.83834e-05
0.0461564
0.00372536
0.0259604
0.00395202
0.0214256
0.00788372
0.0199439
0.0115667
0.0173464
0.00823655
-0.00386418
0.0118404
0.0113507
0.0146776
0.018357
0.0044565
0.0302314
0.0187361
0.00601547
0.00820706
-0.0076837
0.0160456
0.00359921
0.0148605
0.0101572
0.0128268
0.013569
0.00770413
0.00235515
0.0013895
0.000991755
0.0123852
-0.0211066
0.0215667
0.00278616
-0.00206885
0.0179393
-0.000595716
0.014585
0.0137821
-0.000801415
0.00644802
-0.00223669
0.0093663
0.00459277
0.0121665
0.0100051
0.0246197
0.00413532
0.010667
0.00612426
0.00322109
0.0079921
0.00913755
0.011122
0.0151153
0.0110448
0.01578
0.0213582
0.00214979
0.0358495
0.00579955
0.0290938
0.0209866
0.0247119
-0.00359128
0.000360741
-0.00146948
0.00641424
0.0108543
-0.00858681
0.0165116
-0.00625964
0.013132
0.00946848
-0.00243666
0.00448899
0.00734207
0.00404664
0.0265261
0.0065025
0.0280218
0.00522115
0.00528938
-0.0174247
0.0326862
-0.00671687
0.0189442
0.00851517
0.00658027
0.0142844
-0.00661626
0.0180291
-0.00423501
0.0159021
-0.0129564
0.00861031
-0.0351152
-0.0139282
-0.0269967
-0.0353444
-0.0362632
-0.037985
-0.0232825
-0.0245864
-0.0113192
-0.00195294
0.00263983
0.0225583
0.0248115
0.0339273
0.0458145
0.0409777
0.0471019
0.0348192
0.0273074
0.0131891
0.00105526
-0.0303411
-0.0348001
-0.0500279
-0.0596775
-0.0420238
-0.0604379
-0.0546384
-0.0255446
0.0031939
0.012402
0.0243146
0.0866908
0.100725
0.107139
0.133498
0.101655
0.118167
0.104155
0.0862792
-0.00502755
0.000287731
0.00477672
-0.0964083
-0.115618
-0.120099
-0.121349
-0.139838
-0.119113
-0.0983201
-0.107993
-0.0287951
-0.00450421
-0.00881585
0.0539629
0.076047
0.0748276
0.0527074
0.0707365
0.0742534
0.035892
0.0306875
-0.0149657
-0.0268251
-0.0330014
-0.0522461
-0.0643347
-0.0695901
-0.0533115
-0.0533382
-0.0391649
-0.0194764
-0.00592548
0.0122182
0.0192727
0.0363322
0.0392517
0.0540585
0.0407726
0.0413629
0.0296705
0.0182182
0.00815145
-0.0140491
-0.0288863
-0.0326787
-0.0439469
-0.0493608
-0.052625
-0.0432954
-0.0436702
-0.0382071
-0.0195093
-0.00710737
0.00945525
0.0418825
0.0495844
0.0481967
0.0731672
0.0895508
0.0604305
0.0405544
0.0260584
0.0210308
-0.0251931
-0.0281683
-0.070313
-0.108411
-0.0734716
-0.101797
-0.109852
-0.081679
0.00604739
-0.00117029
0.0087943
0.143825
0.150513
0.18122
0.249515
0.19256
0.222011
0.184221
0.204211
-0.0157114
-0.0082797
0.0387701
-0.189605
-0.191599
-0.228341
-0.207405
-0.261491
-0.214027
-0.16659
-0.174747
-0.0236811
0.0014012
-0.00963639
0.0949076
0.138992
0.131732
0.0850152
0.13354
0.0896314
0.0340305
0.0367448
-0.048127
-0.0466722
-0.0678066
-0.100485
-0.121176
-0.0852658
-0.0603714
-0.0726591
-0.0465619
-0.00724961
0.0197527
0.0359011
0.0531083
0.0562311
0.0670559
0.068741
0.0566368
0.0609163
0.0438274
0.0301183
0.017417
-0.000311852
-0.017753
-0.0381693
-0.0542188
-0.0618548
-0.0810628
-0.0820846
-0.0834099
-0.0565618
-0.0582663
-0.0284288
-0.00413067
0.0234152
0.073153
0.0915824
0.0775317
0.130557
0.151018
0.118184
0.0743327
0.0818771
0.0270858
-0.0504232
-0.0384783
-0.19907
-0.148341
-0.154195
-0.198632
-0.21886
-0.106381
0.0444533
-0.0334914
0.122949
0.299359
0.254731
0.447987
0.370416
0.377912
0.356413
0.376277
0.169997
-0.142095
0.150863
-0.244646
-0.366716
-0.366426
-0.39458
-0.410078
-0.454945
-0.264039
-0.326104
-0.085292
0.0352359
-0.0606459
0.155253
0.257996
0.232028
0.161235
0.217871
0.193516
0.0435454
0.0581598
-0.0639581
-0.0797738
-0.105279
-0.166704
-0.189915
-0.150994
-0.100274
-0.120343
-0.0642184
-0.00450111
0.0302558
0.0483386
0.0674638
0.0986309
0.109768
0.100576
0.100588
0.0761058
0.0643327
0.0507339
0.0165394
0.00539326
-0.0217845
-0.0334481
-0.0641744
-0.0694455
-0.0860036
-0.092912
-0.113249
-0.0995516
-0.0741495
-0.060704
-0.0244279
-0.0100065
0.0567941
0.109975
0.116101
0.129928
0.190011
0.182083
0.124251
0.0926982
0.09789
-0.0613243
-0.0424047
-0.168811
-0.232912
-0.162375
-0.231368
-0.244453
-0.213918
0.0413733
-0.0206629
0.0455808
0.349276
0.256467
0.467951
0.428662
0.40385
0.389163
0.381129
0.261884
-0.17608
0.15531
-0.195781
-0.394083
-0.359237
-0.409617
-0.390069
-0.459335
-0.254097
-0.33382
-0.0747548
0.0330204
-0.0659278
0.148823
0.216446
0.194432
0.139968
0.186293
0.161623
0.0244057
0.0596357
-0.0711117
-0.0657184
-0.079751
-0.128703
-0.16187
-0.115036
-0.0847606
-0.0924013
-0.0428599
-0.0106285
0.0159972
0.0328126
0.0471444
0.0603937
0.0706761
0.0643721
0.0564425
0.046836
0.0508005
0.0235811
0.00829746
-0.0152834
-0.0181686
-0.0407332
-0.0521301
-0.0581504
-0.066256
-0.0735924
-0.072402
-0.0610407
-0.0424003
-0.0242828
0.00931786
0.0316428
0.0785932
0.0792462
0.0898332
0.130898
0.116143
0.0711979
0.0259704
0.055296
-0.0432651
-0.0740013
-0.09924
-0.167742
-0.100622
-0.138146
-0.125114
-0.111581
0.0606784
0.0524403
0.0241971
0.274272
0.208344
0.295151
0.294543
0.256416
0.249098
0.210585
0.186162
-0.115014
0.0996605
-0.0877303
-0.223216
-0.202192
-0.253376
-0.221447
-0.274467
-0.157678
-0.234575
-0.0913884
-0.0322495
-0.0705158
0.0320642
0.0637047
0.0930906
0.0552396
0.088604
0.0907829
0.0600996
0.0643884
-0.00505374
-0.00450821
-0.0275435
-0.0302082
-0.0554375
-0.0533041
-0.049439
-0.0536795
-0.0264966
-0.0213792
-0.00490054
0.0147147
0.0291916
0.0385094
0.0236406
0.0169625
0.00318545
0.00774729
-0.000889485
0.00672672
0.000405238
-0.00463212
-0.0113516
-0.0236089
-0.0355947
-0.0263076
-0.023507
0.00765377
0.00904266
0.0079598
-0.00284589
-0.0196868
-0.037014
-0.0283208
0.0133928
0.0434423
0.051772
0.0284856
0.0213362
0.0146204
0.00815084
0.0392737
0.0792985
0.109192
0.106733
0.0928186
0.084425
0.0636075
0.0902227
0.118081
0.115442
0.0979212
0.0452925
0.0362988
-0.0109612
0.00559914
0.0150403
-0.031404
-0.0381799
-0.0968627
-0.114607
-0.108771
-0.0908941
-0.0649401
-0.0772003
-0.0969918
-0.0961923
-0.11287
-0.0964068
-0.0528225
-0.0212306
-0.00121563
-0.0225949
-0.0274954
-0.0592923
-0.0456046
-0.0148471
0.00879348
0.0257559
0.0211895
-0.002071
-0.0107124
-0.0194896
-0.00358047
0.0305471
0.0346994
0.0420982
0.0220074
-0.00430024
-0.0123033
-0.0201534
-0.00335885
0.0123529
0.0172589
0.0208279
0.0070697
-0.029003
-0.0311141
-0.0264315
-0.0211711
0.00731446
0.0286507
0.0200152
-0.00284169
-0.0178315
-0.0238043
-0.02314
0.021577
0.0446282
0.043782
0.0298701
0.0270695
0.00561541
0.035786
0.0561878
0.109232
0.114523
0.111314
0.0936573
0.062186
0.0772936
0.101129
0.120546
0.114466
0.0909661
0.0388317
0.0204032
-0.0257893
0.0167537
-0.017423
-0.0450219
-0.0639092
-0.101228
-0.106955
-0.123674
-0.0765015
-0.0729891
-0.0857698
-0.100367
-0.107462
-0.114172
-0.0651605
-0.0439711
-0.00728237
-0.0179948
-0.0374844
-0.0410649
-0.0492774
-0.0300819
0.0120163
0.0262717
0.0297234
0.00966814
-0.00273337
-0.0215961
-0.0169951
0.00801573
0.0288436
0.0359133
0.0301661
0.00680397
-0.0196275
-0.0252948
-0.0102284
0.0106704
0.0229337
0.020092
0.00226045
-0.0215439
-0.0446839
-0.0463626
-0.0249902
0.00328788
0.0176541
0.0214678
0.00382735
-0.0224021
-0.0282298
-0.0275247
0.00947915
0.0355218
0.0594118
0.0440784
0.0283487
0.00544689
0.0174653
0.0466597
0.0988661
0.114442
0.111589
0.093552
0.079298
0.0773788
0.0943725
0.115735
0.10753
0.0858468
0.0319401
0.032958
-0.00902331
0.00598207
0.00639057
-0.0390558
-0.0602048
-0.10211
-0.115073
-0.114603
-0.0783345
-0.0770592
-0.0793644
-0.105386
-0.10446
-0.1157
-0.0816761
-0.0519527
-0.0190287
-0.0140101
-0.0278543
-0.0448494
-0.0523376
-0.023494
-0.00308449
0.0348336
0.0261337
0.0142581
-0.00328472
-0.021265
-0.0183466
0.00458707
0.024679
0.0346914
0.0286514
0.00722338
-0.0158834
-0.0176178
-0.0143299
0.00332416
0.0247919
0.0208673
0.0139691
-0.0142608
-0.0340336
-0.0400583
-0.0200403
0.000611747
0.0214343
0.0265272
-0.00678563
-0.02808
-0.0356839
-0.029841
0.00708162
0.0333997
0.0494323
0.043459
0.0355665
0.0136598
0.0208673
0.0508779
0.0979649
0.122153
0.1086
0.0995763
0.0823025
0.0809411
0.0961489
0.113463
0.104377
0.0900794
0.0529955
0.0444284
-0.009375
0.0120358
-0.00032697
-0.0427717
-0.0499443
-0.108365
-0.106054
-0.109579
-0.0925809
-0.0739236
-0.0800133
-0.109095
-0.109333
-0.112418
-0.0775842
-0.0436986
-0.0216886
-0.00171747
-0.0384864
-0.0335771
-0.0522459
-0.0275668
0.0148765
0.0280241
0.0352475
0.0116121
-0.0137576
-0.0203356
-0.0170115
2.84921e-05
0.0286477
0.0348649
0.036108
0.00982638
-0.02248
-0.0270164
-0.0186527
0.0105335
0.0215568
0.0225231
0.00994696
-0.017985
-0.0323221
-0.0407443
-0.0150966
0.0110799
0.0235311
0.0125859
-0.0125139
-0.0304063
-0.041544
-0.0210984
0.00803149
0.0468636
0.0534166
0.0426959
0.0228618
0.0104836
0.0464276
0.0577815
0.109101
0.107833
0.10575
0.088623
0.085155
0.084828
0.111824
0.108391
0.100802
0.0722675
0.0402083
0.0173949
-0.017769
0.0107448
-0.0285829
-0.0526449
-0.0797913
-0.110864
-0.115803
-0.106484
-0.0849452
-0.0846719
-0.102745
-0.123983
-0.11279
-0.0979138
-0.0466339
-0.0268904
-0.0152782
-0.0367878
-0.0338677
-0.0508791
-0.0430987
-0.00669901
0.0281659
0.041018
0.0198367
-0.0026433
-0.0296597
-0.0250566
-0.00677119
0.0225375
0.0450606
0.0317518
0.00601487
-0.0185553
-0.0282919
-0.0278846
0.0142031
0.0299822
0.0348162
0.0145503
-0.023608
-0.0341442
-0.0319868
-0.00845139
0.0151564
0.0220614
0.0104937
-0.00540414
-0.0336803
-0.0415162
-0.0147425
0.0168394
0.0471532
0.052128
0.0399758
0.0088517
0.0239122
0.0349608
0.0580806
0.0891149
0.0528552
0.100815
0.149218
0.0539297
0.0181628
0.136867
0.192749
0.213733
0.157133
0.103345
-0.158177
0.0126918
0.176082
-0.120462
-0.221189
-0.287468
-0.253599
-0.176202
0.0914815
0.00643583
-0.286166
-0.0487158
0.109707
0.105368
0.0909175
-0.0669632
-0.142224
-0.145643
0.0687676
-0.00740374
-0.133236
-0.0547354
-0.0321979
0.0981341
0.137638
0.112645
0.0165702
0.03479
0.0766729
0.0366124
-0.0341806
-0.0923877
-0.124349
-0.0781895
-0.0425662
-0.0125375
0.00226697
0.0174234
0.0549887
0.0964902
0.10659
0.0961654
0.0468973
-0.0221087
-0.0827887
-0.0433875
-0.0300192
-0.114074
-0.120727
-0.12007
-0.0153419
0.0659945
0.201621
0.0219181
-0.0400572
0.132417
0.139835
0.0804782
-0.0694767
-0.186805
-0.24439
0.0290215
0.287406
-0.0800737
0.0101375
0.232731
0.414595
0.542243
0.39431
0.109703
-0.283553
0.226533
0.000411088
-0.394282
-0.543773
-0.511585
-0.25893
-0.0827409
0.121614
-0.260921
-0.0732306
0.290111
0.228443
0.0486962
-0.106814
-0.115757
-0.110646
0.034744
-0.0541615
-0.208134
-0.0183052
0.0893755
0.141492
0.0607995
0.069187
0.00685357
0.0371912
0.0333847
-0.0489202
-0.0931648
-0.0679895
-0.0440086
-0.0327897
-0.034727
-0.0238328
0.00756059
0.0242115
0.0266941
0.0375702
0.0308067
0.0485152
0.0828274
0.0712843
-0.00607313
-0.0331019
0.00572837
-0.042121
-0.0124107
-0.1048
-0.135508
-0.0550298
0.177819
0.122797
-0.0363222
0.0934746
0.0863066
0.145768
0.062882
-0.216015
-0.398319
-0.0886345
0.251412
-0.111753
0.0543064
0.273088
0.630088
0.793946
0.614514
0.00990562
-0.19476
0.28839
-0.295423
-0.726886
-0.831124
-0.478998
-0.204043
0.0694595
-0.0140991
-0.199623
0.340894
0.375638
0.0734144
-0.188983
-0.106513
-0.0869051
-0.0616925
-0.0241488
-0.18752
-0.0178757
0.135595
0.114716
-0.0117237
0.0191425
0.0286724
-0.0153362
-0.00161425
-0.059597
-0.0369182
-0.00610183
0.00260583
-0.0327156
-0.0106493
0.00465358
0.0144091
0.00421325
-0.00977375
0.00740894
0.0285706
0.00329121
0.00768181
0.0340308
0.0687654
0.0262806
0.00225855
-0.00596895
-0.0459629
0.0184901
-0.0663299
-0.135062
-0.0900695
0.143355
0.105635
-0.00586273
0.0993012
0.0561393
0.169192
0.0917158
-0.20884
-0.408209
-0.0793795
0.186297
-0.113875
0.0557058
0.251073
0.614565
0.755896
0.560431
-0.0270939
-0.145865
0.241424
-0.315311
-0.669973
-0.739932
-0.395302
-0.1746
0.0782768
-0.0282363
-0.161653
0.311538
0.310645
0.0456059
-0.17382
-0.0924891
-0.0863004
-0.0360086
-0.0323699
-0.158736
-0.0112818
0.134391
0.0980496
-0.000884137
0.0162698
0.0343796
-0.0215918
-0.00123337
-0.0585953
-0.0519381
-0.00121322
-0.00323503
-0.0190819
-0.0137671
0.0127799
0.00495783
0.000228892
-0.000773128
-0.00550026
0.00451023
0.0217971
0.00684189
-0.00567576
0.0287695
0.0487462
0.0206922
0.00125663
-0.00163567
-0.0385062
0.0220354
-0.0536082
-0.124726
-0.0872737
0.106987
0.109631
-0.000756046
0.0847658
0.0561623
0.142876
0.107127
-0.162029
-0.336366
-0.101516
0.173716
-0.088429
0.0444674
0.202024
0.493292
0.652585
0.513097
0.028419
-0.164622
0.217994
-0.23048
-0.570105
-0.647057
-0.361141
-0.155116
0.0469688
0.00718007
-0.152859
0.241127
0.291693
0.0478533
-0.151089
-0.0917993
-0.0694277
-0.0376539
-0.0187783
-0.133393
-0.0260996
0.116856
0.103677
0.00168869
0.0139575
0.0258834
-0.0111395
0.00164034
-0.0476654
-0.0396846
-0.0172019
0.00830561
-0.01044
-0.0118987
-0.00505681
-0.00298063
0.00253308
0.00476763
-0.00554795
-0.00429133
0.00182494
0.00983041
0.000858024
-0.0139905
0.0163223
0.0453276
0.036036
-0.00161964
0.00537625
-0.0338889
0.0145215
-0.0208973
-0.107569
-0.0913038
0.0684544
0.121977
-0.014385
0.0599767
0.0579325
0.0971663
0.109838
-0.0902907
-0.274868
-0.153426
0.15482
-0.0457898
0.00279963
0.161377
0.367034
0.548529
0.455428
0.0992963
-0.172593
0.170671
-0.115333
-0.436043
-0.527725
-0.353233
-0.142707
0.012672
0.0370336
-0.152287
0.148428
0.254111
0.091897
-0.106752
-0.089559
-0.0600975
-0.049718
0.00115793
-0.105729
-0.0526191
0.0704871
0.084293
0.0150792
0.00463921
0.0159963
-0.0123163
0.000206952
-0.0360197
-0.031252
-0.0212961
-0.00233162
-0.000506681
-0.0139321
0.00242982
-0.00380878
-0.0029904
0.00357753
0.000853806
0.0069861
-0.00314152
-0.0060227
0.00849877
0.00310538
-0.00368841
0.0135349
0.0354777
0.0179199
-0.00421698
0.0014962
-0.0180907
-0.00619571
-0.012637
-0.0874238
-0.0677184
0.0579255
0.0887149
-0.0035866
0.0457247
0.0365589
0.0702591
0.083904
-0.0808227
-0.206333
-0.11536
0.117327
-0.0445185
5.82938e-05
0.123496
0.281891
0.418254
0.322399
0.0803631
-0.126188
0.130767
-0.0879899
-0.313922
-0.381914
-0.246667
-0.105214
-0.0153972
0.0245204
-0.0889604
0.0987306
0.17697
0.0597122
-0.0724955
-0.0678562
-0.0286041
-0.0409204
-0.00195376
-0.0612292
-0.0382177
0.0412614
0.0544336
0.0151673
-0.00651674
0.0269208
0.00760817
-0.0108861
-0.0228124
-0.0142067
-0.0149725
0.00514175
-0.000880946
-0.000134116
-0.00478068
-0.000717146
0.00506584
-0.00596804
-0.00355201
-1.70543e-05
0.00147914
-0.00110763
0.000448595
-0.00443647
0.00116294
0.00321202
0.0223779
0.0103175
0.0222348
0.00594395
-0.0117607
-0.00351704
-0.00488436
-0.0314435
-0.0439777
-0.012051
0.0277562
0.0142454
0.0220557
0.0215208
0.00883836
0.0549998
0.013058
-0.0616177
-0.0792784
-0.0105268
0.00225855
-0.00933824
0.0428561
0.0752589
0.163843
0.171702
0.126455
0.00648658
-0.0188138
0.010869
-0.0999615
-0.149201
-0.14729
-0.0828708
-0.0462718
-0.0017139
0.00682431
-0.00038563
0.0563796
0.0487978
0.00970149
-0.0355749
-0.0164061
-0.00104595
-0.0274359
-0.0114887
-0.0101915
-0.00190824
0.0109854
0.0178564
0.00997038
0.00518971
0.00447256
-0.00596547
-0.0119335
-0.00773359
-0.0155026
-0.0062715
-0.00737913
0.000821401
0.00413687
-0.00245213
0.000759897
-0.000118061
0.00244753
0.00142652
0.00737047
0.00336174
-0.000155298
0.00271228
-0.00547545
-0.00294155
0.000511318
0.00501169
-0.00399869
0.0025531
-0.00693387
-0.00584745
0.0026407
0.000194797
-0.00715935
0.00658549
-0.00394128
-0.00168273
-0.00326903
0.000827367
-0.00143312
0.00737136
0.000778601
-0.0045496
0.00193699
0.00637898
-0.00600785
0.00255781
0.000643521
0.000640437
0.003041
-0.00447108
0.00156696
-0.00711261
0.000253699
-0.00538217
-0.00309601
0.00660548
-0.00571365
-0.00661583
-0.00766177
-0.00408995
-7.47622e-05
-0.00251434
0.00332935
0.00656286
0.00116348
-0.00437001
-0.00693225
-0.00245969
-0.000673221
0.00289714
-0.00483645
-0.00483516
0.00439722
0.00477002
-0.00216051
-0.00577558
-0.000475772
-0.00746781
0.000166063
-0.00513834
0.00404011
0.00365864
-0.000731553
0.00686509
0.00182543
0.00410191
-0.00659158
0.00167168
-0.00106857
0.00268468
-0.00251416
-0.0016961
0.000208396
-0.00490284
0.00304389
0.00363648
0.00247004
0.0062807
-0.00315397
0.00132894
-0.00559563
0.000723193
0.000342619
-0.00663072
-0.00342838
0.00626055
0.00488759
0.00663167
0.00143754
-0.00567088
0.0027215
-0.00198944
0.00129142
-0.00489356
-0.00425423
0.0037514
0.00612118
-0.00472678
-0.00587323
-0.00383494
-0.00269883
-0.00260866
0.00105333
-0.00677337
-0.00153578
-0.00595836
-0.00714744
0.00176797
0.0051499
0.00596959
-0.00424204
0.00283668
-0.00201812
0.000897367
0.00381415
0.000459424
-0.00252249
0.00306893
0.00504529
-0.00318242
-0.0028983
0.0050197
0.00763329
0.00392147
-0.000171827
0.00684856
0.00596171
3.51946e-05
-0.00361483
-0.00245448
0.00696914
-0.00185137
-0.00691863
-0.00168086
0.00437498
-0.00316856
-0.000319465
-0.00502751
0.00636091
0.00107901
-0.000392232
0.00420574
-0.00221726
-6.09454e-05
-0.00708969
0.00100487
0.00212609
0.00644965
0.00495826
0.00209391
0.000973641
-0.00534076
-0.0032597
0.00721374
-0.00252763
0.00651572
-0.00612977
-0.00263207
-0.0066326
0.00724051
-0.0052382
-0.0033595
0.000557501
0.00561061
-0.00474999
0.00405528
0.00503384
-0.00425388
-0.0024603
-0.00185581
0.0076641
0.00506206
0.00327971
0.00678962
0.00187436
0.00760818
0.000753607
-0.00318419
0.00502718
-0.00524725
0.00557362
0.00286696
0.00743648
-0.00321376
-0.005946
-0.00606464
0.00560876
-0.002315
-0.00321838
-0.00500861
0.00277852
0.00691562
-0.00329079
-0.00407359
0.00182698
0.00266029
-0.00677251
0.00535441
-0.00556609
0.00186639
0.00459081
0.00319978
-0.00347315
0.00388656
0.000340361
0.00587504
-0.00193784
-0.00127559
0.00748121
0.00185536
0.000553069
-0.00224061
0.00760523
0.000826936
0.00323812
0.00773036
0.00719216
-0.00308741
-0.00432362
-0.00270146
0.00241841
0.00353775
0.00302632
0.00554005
-0.00557138
0.00273806
0.000596731
0.00359868
-9.79837e-05
-0.00281608
0.00068198
0.00597362
-0.00363413
-0.00372196
-0.00641184
0.00461982
0.00365749
-0.00222009
-0.00236385
0.0061417
-0.00479443
-0.00751919
-0.0050145
-0.00719283
0.00342607
0.00311061
0.00764879
-0.00604914
-0.00436185
-0.00650502
-0.00106808
0.00346547
0.0062088
0.0167393
0.00815101
0.0203641
0.000786632
0.0103656
-0.00247804
-0.0247544
0.0503674
-0.0172142
0.0234119
0.0202508
0.000194765
0.0277294
-0.00714376
0.0242044
0.00682358
0.0126377
0.0113621
0.0110914
0.0129467
0.00574785
0.00350724
-0.0121433
0.00418747
0.0229295
-0.000347923
0.0145962
0.0115088
0.00718515
-0.0497799
0.0534137
-0.00506403
0.036722
0.0190062
0.0134348
0.0161729
0.00901769
0.0203683
0.0125184
0.0252062
-0.0671351
0.0628695
-0.00278011
0.0245057
0.0103419
-0.00829409
-0.0511482
0.0163991
0.0217872
0.012425
0.0541422
-0.0231444
0.0338566
-0.0586075
0.014586
0.0176966
0.0253454
0.0348001
0.0226863
0.0316852
0.0306171
0.0263306
0.0480433
0.00276707
0.01867
0.0312822
-0.0144428
0.0191785
-0.0065553
0.0307058
-0.019702
0.00959548
0.00199965
0.00674657
0.00694133
0.00366295
0.019775
-0.00253226
0.0197952
0.016929
0.00503528
-0.00712917
0.0290734
-0.0116904
0.0383285
-0.00482262
0.0148687
0.0222943
-0.00130942
0.0287906
-0.00621222
0.000972927
0.0209605
-0.00314516
0.0150466
0.0207608
-0.00674457
0.00669027
0.0151112
0.000873095
-0.00201442
0.0337598
-0.0263054
0.0615983
-0.022819
0.00540864
0.0376663
-0.0295112
0.0319621
-0.00368221
0.00496497
0.0267522
-0.0305902
0.023552
-0.0073443
0.0187604
0.0144164
-0.00200537
0.0544509
-0.0287308
0.0293251
0.0132517
-0.00932663
0.0367944
-0.0143944
0.025897
0.00540826
0.0085744
-0.00665505
0.00990988
0.00583262
-0.000722687
0.0222312
0.0102811
0.0121247
0.00637237
0.0208709
-0.00319554
0.0314752
-0.0185173
0.033214
-0.00125434
0.0389305
0.00520607
-0.0251789
0.0736619
-0.0620595
0.0460364
0.0257099
-0.0446927
0.0473691
-0.0314597
0.0205867
0.0143745
-0.0234123
0.0440598
-0.0211008
0.0172016
-0.000797228
0.023466
0.0146523
-0.00899612
0.0383886
-0.0101374
-0.0151373
0.0438286
-0.0496119
0.0593521
-0.00500671
-0.029356
0.0341561
0.00410273
0.000420514
0.00538549
-0.00662201
0.0170513
-0.0136602
0.0177552
0.0132597
-0.0575952
0.0799343
-0.0749171
0.035887
0.0264524
-0.0223114
0.0613853
-0.0103475
0.0682814
0.00115511
0.0298192
0.0228897
-0.00702115
0.0183926
0.0164733
-0.0152571
0.00697401
0.00175124
-0.0171319
0.0202483
-0.00539249
0.0224197
0.0151352
0.0276257
0.0298319
-0.00243015
0.0287484
-0.00480522
0.00877555
-0.00283387
0.0203779
0.0199027
-0.0319068
0.0629354
-0.0137266
-0.00642661
0.0374159
-0.017977
0.0361301
0.00267055
0.0203294
0.0297791
0.013478
-0.00956767
0.0283405
0.0115924
-0.0197864
0.0243397
-0.0218054
-0.00123258
0.0266749
-0.030252
0.0190048
0.0361605
-0.00720279
0.0279077
0.0128243
0.0104579
0.0270917
-0.0101205
0.014979
0.00947833
0.0072342
0.0271584
-0.0014344
-0.00658403
0.021551
0.00149177
0.00243623
0.0173099
0.00696236
0.036484
0.0221353
0.00544283
0.0360845
0.0135595
-0.00680762
0.0329215
0.00216046
0.00138253
0.0108857
0.00150579
0.0140021
-0.0146462
0.0232774
-0.00809905
-0.0037292
0.0183508
0.00816872
0.0291652
0.00110413
0.00987969
0.0225497
-0.0113359
0.0163187
0.0231716
0.0163395
0.0336207
-0.00381364
0.0180984
0.000121385
-0.0180121
0.00791427
0.00498788
0.00375924
-0.0292744
0.0309254
0.0127542
-0.0299169
0.0510719
0.0133961
0.0148466
0.0291179
0.0170331
0.0332927
-0.00196606
0.0109386
0.0269916
0.000635764
0.00570815
-0.00708978
0.0200019
0.00988136
-0.0138994
0.00333089
0.0338209
-0.0165401
0.00528134
0.0297051
0.00474444
0.0139882
0.0319283
0.0259823
-0.00581503
0.030669
0.0217965
0.00398353
-0.00644362
0.0303716
0.0158121
0.00222195
0.0276382
-0.00198699
0.0166507
0.0181564
0.0011508
-0.00574345
0.00203006
0.0249388
-0.00204626
-0.0224551
0.0167213
0.00712681
0.000479002
0.0413664
0.00965257
-0.00168337
0.00688338
0.022303
0.0076348
0.00249584
0.00643414
0.0322845
-0.0141058
0.00664183
0.022308
-0.0114638
0.0155513
0.00953271
0.0172023
-0.00880316
0.0387993
-0.00315202
0.017996
0.0405945
-5.50411e-05
0.0324819
0.00375912
0.00179306
0.0127317
0.00871557
0.00159939
0.00730755
0.000217766
0.0279716
-0.000906723
-0.03031
0.0195325
0.00684182
0.00580562
0.0343428
0.00978427
-0.000975168
0.0440207
0.0139335
0.00890804
0.010845
0.0182581
0.00129497
-0.0102254
0.0143388
-0.00180122
-0.001493
0.00848088
0.0128633
-0.0123795
0.019775
0.0456834
0.0158264
0.0178349
0.019865
0.0292999
0.0272536
0.00479848
0.0215198
0.0131427
0.0058698
0.0162285
-0.0051267
-0.0223139
0.0155772
0.00687246
-0.000996616
0.00925116
-0.0153225
0.0557217
0.0106082
0.0094981
0.00855033
-0.00291343
0.0126379
0.0144186
0.023869
0.0150658
0.0151055
0.0197054
0.00669368
-0.0147273
0.0162254
0.0176996
0.0292107
0.0154999
0.0204796
0.0369471
0.00753875
0.0303502
-0.0159437
0.0120279
0.0188731
0.00406704
0.000343771
-0.000566347
0.0129912
-0.0146815
0.00285468
0.00187951
0.0148925
-0.00218177
0.00672628
0.0175712
0.0125736
-0.00163534
0.026899
0.0412377
0.000676838
-0.000816165
0.0154167
0.0282799
0.0159004
-0.00308424
0.0115914
0.0196659
0.00649309
-0.0124016
0.00914634
0.00539221
-0.0130651
0.0162066
0.0293493
0.00421139
-0.00281594
0.0308171
0.0317589
0.000824479
-0.0155589
-0.00105162
-0.0228082
0.000629018
0.00983911
-0.0105604
0.0221935
0.007488
0.0123265
0.0172124
0.00837524
-0.00651547
0.00855034
0.0391597
0.0278573
0.026799
0.0198237
0.0282972
0.00723712
-0.0100638
-0.0178198
-0.0128441
0.000847243
-0.00711788
0.0232323
-0.00821527
0.0115646
0.0226858
0.011249
0.0115927
0.0187783
0.000761774
0.017088
0.0354466
0.0218222
0.00570693
-0.00422677
0.0102514
-0.00318507
0.0093885
-0.0232546
0.00364439
0.00612245
0.0145512
0.0137351
0.0058959
0.00316809
0.0113166
0.0237362
0.0430796
0.000729962
0.00722305
0.0258292
0.0194717
0.00936
-0.019209
-0.00300239
-0.0046608
-0.00820134
-0.00326534
0.0120478
0.012799
0.00587155
0.0135685
0.0435246
0.0129645
-0.00191039
0.0311845
0.036128
0.0118098
0.0270498
0.0161205
0.0100771
0.00294844
0.0041849
0.00498331
0.00538329
-0.013271
0.013528
0.0255998
0.0306412
0.0301263
0.0278145
0.00224274
0.0281584
0.0135017
0.0141358
0.00636035
0.00589702
0.00195774
0.00913965
0.0203886
-0.0145303
-0.0267597
0.0360176
0.0220978
0.0187847
0.025103
-0.000197837
0.0188312
0.00582684
-0.00511016
0.00427834
0.00427956
0.000172015
0.00629446
0.00534181
-0.00417895
0.00171695
-0.00286689
-0.00705418
-0.00657378
0.00549802
-0.00152395
-0.00980478
-0.0149833
-0.0187675
-0.0171594
-0.00536068
-0.000611131
0.00248001
-0.00572133
-0.0167386
-0.0124427
0.000356301
0.0139798
0.0353002
0.0400651
0.0452777
0.0433673
0.051296
0.0564162
0.075978
0.0875239
0.0881405
0.0672098
0.0313985
0.0123276
-0.0059449
0.00719033
-0.00608071
-0.0235604
-0.0599762
-0.0913505
-0.115488
-0.0876733
-0.0776786
-0.0650241
-0.0747781
-0.0683943
-0.0620339
-0.048385
-0.0309234
0.00147211
0.0218607
0.0228343
0.0270823
0.0243402
0.0231822
0.026463
0.043814
0.0281123
0.0159358
0.0140107
-0.0143553
-0.00232504
-0.00579742
-0.0133773
-0.0225868
-0.0172449
-0.0369278
-0.0274589
-0.0225738
-0.0141241
-0.012946
-0.0151999
-0.00897191
-0.0110248
0.00499967
0.00173607
0.0155844
0.0179757
0.0251165
0.0275965
0.045131
0.0438962
0.0469574
0.0395618
0.0380377
0.0190743
0.0203798
-0.00410999
-0.00725433
-0.0179738
-0.031325
-0.0561223
-0.0771255
-0.0897603
-0.0690621
-0.0609194
-0.0408399
-0.0312809
-0.0240906
-0.00691546
0.0315396
0.0955944
0.128275
0.160074
0.165424
0.173017
0.193264
0.203757
0.236138
0.220616
0.156727
0.07154
0.0187486
0.0018496
-0.0140758
-0.041257
-0.125444
-0.195285
-0.23859
-0.210279
-0.189919
-0.173983
-0.175477
-0.166576
-0.145645
-0.0971791
-0.0485409
0.00639169
0.0356584
0.0374903
0.0255353
0.0339692
0.0586048
0.0689146
0.0614666
0.0369908
-0.00504167
-4.20007e-05
-0.0138098
-0.0137293
-0.0190094
-0.0404046
-0.0438159
-0.0451965
-0.0323081
-0.0241104
-0.0233083
-0.0162784
-0.0282118
-0.00783206
-0.00419011
0.00405944
-0.00616245
-0.0142317
0.00716544
0.00755931
0.0185742
0.0192796
0.0126237
0.0105436
0.0180224
0.0249396
0.0412799
0.0418118
0.0443829
0.0176191
0.0149025
0.0175358
0.0277619
0.0117235
-0.00932549
-0.0367533
-0.0641995
-0.0470075
-0.0374829
-0.0109824
-0.0246367
-0.0387125
-0.025706
0.0426485
0.103177
0.143658
0.142681
0.14656
0.158623
0.176945
0.204168
0.236817
0.186149
0.0988488
0.0122172
-0.0296438
0.0155984
-0.0208818
-0.103192
-0.191874
-0.239238
-0.208779
-0.171788
-0.169078
-0.130361
-0.151922
-0.142396
-0.0838858
-0.00801134
0.0566999
0.0347592
0.0102031
0.0326043
0.0403038
0.0550331
0.057829
0.0267412
0.00704717
-0.0276531
-0.0338155
-0.0170395
-0.0253779
-0.0333225
-0.045756
-0.0419803
-0.0293565
-0.011061
-0.00079059
0.00864509
0.0111653
0.0142174
0.0198406
0.0219559
0.00585058
-0.00762137
-0.00311532
-0.0146476
-0.0239731
-0.0297186
-0.0163987
-0.00914263
-0.00786588
-0.00334443
0.0107785
0.0185777
0.0471353
0.058776
0.0611783
0.0420452
0.0141831
0.0289602
0.0402966
0.00793936
-0.0282032
-0.0859599
-0.0703531
-0.0645276
-0.0600623
-0.0276905
-0.0508518
-0.0794855
-0.0276384
0.0595577
0.207916
0.185184
0.137426
0.208658
0.217832
0.259708
0.295607
0.227225
0.149447
-0.0264117
-0.0304122
0.0728142
-0.0961319
-0.203115
-0.287617
-0.291803
-0.234054
-0.242511
-0.177141
-0.172197
-0.2435
-0.0673272
0.0311333
0.0473928
0.0519242
0.0458234
0.112282
0.111491
0.0968805
0.100294
0.013736
-0.012935
0.00126896
-0.0238882
-0.0547654
-0.104392
-0.0880322
-0.0577417
-0.0564526
-0.0495955
-0.0432343
-0.0200924
0.0230748
0.0338533
0.0291752
0.0375508
0.0265594
0.0257221
0.0212557
-0.0110728
-0.0208723
-0.0348393
-0.0346519
-0.0240953
-0.0325358
-0.0253696
-0.00462583
0.0205832
0.0394043
0.0738238
0.0796097
0.0597232
0.0882732
0.110143
0.0782724
0.0296519
-0.0175041
-0.00897412
-0.0515913
-0.120325
-0.0946502
-0.177762
-0.142158
-0.0717949
-0.0299885
-0.00984133
-0.0424137
0.181598
0.285143
0.237135
0.33571
0.313608
0.327457
0.363028
0.303452
0.202803
-0.121898
0.0850652
-0.0241501
-0.314969
-0.312005
-0.385667
-0.308629
-0.372412
-0.292324
-0.267799
-0.276184
-0.00536774
0.0297748
-0.0194977
0.101055
0.184137
0.212061
0.122315
0.140983
0.109794
0.050624
0.0410395
-0.0686965
-0.111905
-0.0939344
-0.103686
-0.145767
-0.143383
-0.0774474
-0.0500838
-0.0354194
-0.00593976
0.0307062
0.0570881
0.0699194
0.062812
0.0513646
0.037951
0.0201548
-0.015603
-0.0604987
-0.0674977
-0.0766054
-0.0786056
-0.0643239
-0.0461477
-0.00368212
0.0489545
0.0882471
0.085624
0.168868
0.193143
0.144542
0.0943764
0.105431
0.064993
-0.0622127
-0.0598364
-0.203593
-0.217221
-0.187527
-0.248416
-0.285923
-0.175263
0.0648413
-0.052332
0.105567
0.390461
0.30712
0.548878
0.478791
0.473289
0.430296
0.46419
0.24952
-0.193574
0.197781
-0.267055
-0.447259
-0.428996
-0.461719
-0.460272
-0.528772
-0.299854
-0.390597
-0.0872004
0.0334531
-0.0759851
0.192422
0.255957
0.236605
0.182413
0.233104
0.189933
0.0444584
0.0674127
-0.0925535
-0.0846496
-0.114861
-0.172023
-0.172832
-0.12167
-0.083009
-0.0892442
-0.0249589
0.0379705
0.067892
0.0810875
0.0969553
0.0855212
0.0802122
0.0521802
0.0215251
-0.0189093
-0.0428206
-0.0765732
-0.0829721
-0.078316
-0.0830905
-0.0600319
-0.034597
0.00987192
0.0717207
0.0702405
0.0931427
0.148305
0.143585
0.107651
0.0708227
0.0988705
-0.0377999
-0.0485096
-0.112034
-0.214638
-0.14445
-0.187022
-0.195701
-0.194244
0.0230352
0.0192659
0.000272674
0.281696
0.255801
0.359973
0.411329
0.347673
0.357897
0.308386
0.314208
-0.117455
0.077878
-0.0475299
-0.357464
-0.291402
-0.372555
-0.325497
-0.414634
-0.261648
-0.279507
-0.17051
0.0394138
-0.0599432
0.070359
0.199852
0.178958
0.134709
0.153992
0.175544
0.0507241
0.0643526
-0.0328544
-0.083186
-0.0674322
-0.119003
-0.144342
-0.115065
-0.064207
-0.0837718
-0.036314
-0.00300701
0.0272041
0.0526407
0.0701282
0.074291
0.0764109
0.0551084
0.0245737
0.00143728
-0.0130486
-0.0477584
-0.0718905
-0.0708352
-0.064988
-0.0562763
-0.0427704
-0.0230218
0.0181539
0.0675024
0.0820303
0.0956315
0.133946
0.118222
0.0832239
0.0447369
0.0706189
-0.0456734
-0.0577936
-0.0960767
-0.167008
-0.111436
-0.151888
-0.140005
-0.117925
0.0529764
0.0442061
0.0355789
0.271308
0.216582
0.294186
0.305908
0.269066
0.268629
0.229902
0.222804
-0.100705
0.0781807
-0.078556
-0.256187
-0.222254
-0.293068
-0.249307
-0.314862
-0.203998
-0.260108
-0.110736
-0.0153772
-0.0801166
0.0546109
0.110088
0.131153
0.0861407
0.127346
0.108835
0.0352641
0.0568971
-0.0280134
-0.0234899
-0.0478542
-0.085769
-0.099955
-0.0830139
-0.0650547
-0.0663015
-0.0296649
0.000275097
0.0128065
0.0262976
0.0455428
0.0457768
0.0484269
0.0461618
0.0274169
0.00676937
-0.00657138
-0.0201328
-0.0299321
-0.0317068
-0.0386073
-0.045521
-0.0257952
-0.0133448
0.00569372
0.0182885
0.0446952
0.0519769
0.0503311
0.0490439
0.0389865
0.0435577
0.0280443
0.00431667
-0.0270788
-0.0157441
-0.0567554
-0.0671964
-0.0543491
-0.0485997
-0.040778
-0.0323647
0.0208622
0.020489
0.0695531
0.0710585
0.0620617
0.134797
0.0858379
0.0970478
0.0793354
0.079462
0.045857
-0.031315
0.0245099
-0.0458877
-0.076026
-0.072711
-0.0801548
-0.0836504
-0.0887688
-0.0470148
-0.0550009
-0.0408396
-0.00257758
0.00599453
0.0237559
0.0284686
0.0241825
0.0332773
0.0258005
0.0308551
0.0106411
0.00192026
0.00118545
-0.0124032
-0.0205049
-0.00859189
-0.0250783
-0.0083939
-0.0130228
-0.0119471
-0.0126462
0.00301001
0.0117526
0.00146125
0.00362035
0.00156213
0.0120986
0.0102822
0.00799555
0.00406312
0.00659543
0.00682227
0.00386834
0.000904881
-0.00253038
0.00139852
-0.00659362
0.00641838
-0.00651445
0.00115192
0.00681578
0.00479751
-0.00431138
-0.00670499
0.00603207
0.00581778
0.00710884
0.007155
0.00241683
0.00298337
-0.000743994
-0.00667995
0.00301462
0.00235997
-0.00569923
0.00330678
-0.00382122
0.00542406
-0.0052714
-0.0001549
-0.00628594
-0.00203152
0.0052172
-0.00327207
0.00239999
-0.00017759
-0.001935
0.00631698
0.0037778
0.00470453
-0.000777812
0.00176688
-0.00613775
0.00450331
0.00642357
-0.000142912
0.0029578
0.00570869
0.00486874
-0.00470571
-0.00534767
0.00488537
-0.00706177
-0.00420412
0.00655783
0.00280651
0.00426776
-0.00761577
-0.00605364
0.00604501
0.000823315
-0.00668501
0.00513005
0.00397354
0.00304387
-0.000839725
-0.00768678
-0.00246523
0.00668523
-0.00766033
0.00650999
0.00774748
0.00114746
0.00021131
-0.00274312
0.000697437
0.00174439
2.45248e-05
-0.00190964
-0.00255273
-0.00314967
0.00701909
0.00225053
-0.0062454
-0.00517341
0.00559314
0.000201175
0.00225388
-0.00219128
0.00173944
-0.000588442
0.0018921
-0.00601474
-0.00454874
0.00117168
-0.00136306
0.00311681
-0.00223514
0.00533921
-0.00434773
-0.00578269
0.00574705
0.00269964
-0.00583011
0.00368871
0.00530289
0.00205427
0.0007259
-0.00716895
0.00354079
0.00149754
-0.00138566
0.00166057
0.00406484
0.00119827
0.00188844
0.00543626
0.00424215
-0.000703273
-0.00418745
-0.00405128
-0.00235298
-0.0040599
0.00451535
0.00558228
0.00296039
-0.00081801
-0.00552608
0.00138614
0.00145129
0.006738
0.00567129
0.0057629
0.00452095
0.00451649
-0.00208799
0.00587526
-0.0046198
0.00382958
-0.00217797
0.00559849
-0.00406308
0.00113612
0.00573839
0.00500554
-0.000495869
0.00101067
0.00358919
0.0014304
-0.00612037
0.00388545
-0.00605776
0.00343362
-0.00490676
0.00473727
0.00647447
-0.0058262
0.00309742
-0.00601758
0.00485117
-0.0051359
-0.00754863
-0.00414442
-0.00217517
-0.00418007
0.00627151
-0.00731054
0.0041301
0.00168106
-0.00401662
0.00446122
0.00504421
0.000833059
-0.00542134
0.000944932
-0.00514644
0.00667033
0.000116661
-0.00574684
0.00744136
0.00393157
-0.00452364
-0.000959153
0.0027415
-0.00736341
-0.00367138
-0.00690797
0.00642625
0.0016347
-0.00693525
-0.00470939
0.00442868
-0.00187197
-0.0028859
-0.00496655
-0.00695559
0.00531729
0.00208184
0.00774579
0.00586912
-0.00650262
0.0050789
-0.00485101
-0.00700446
-0.0033156
0.00557246
0.0035589
0.000812506
-0.0074353
0.0013273
-0.00283544
0.00634689
-0.00752542
0.00411197
0.00580615
0.00148783
0.004333
0.00131833
4.08685e-05
0.0019666
-0.00268792
-0.000953557
-0.00385432
-0.00123829
-0.00103498
0.00257253
-0.00735458
-0.00378271
-0.00526314
-0.00482174
0.00706029
0.000989413
0.00472473
0.00143402
-0.00127371
0.00731129
-0.00586199
0.00283488
0.00544038
0.00435877
-0.00327651
-0.00127141
-0.00158199
-0.00540235
-0.00217406
0.00461873
-0.000391705
-3.18062e-06
0.00407738
0.00492135
0.00359566
-0.00252158
-0.0017049
0.00133765
-0.00198561
0.0116463
0.00876039
0.00379384
0.0123421
0.00990748
0.0119893
-0.0035207
-0.00540352
0.0113497
0.00867664
0.0115776
0.0123251
0.00125751
0.0145819
0.0181408
0.00344944
0.011518
0.0128453
0.00225793
0.000852882
0.00883134
0.00519137
0.00324558
-0.00301853
0.00906641
0.0181367
0.0104256
-0.0263675
-0.083319
0.0242546
0.0204003
-0.0118457
0.00262315
0.0439554
0.0366008
0.00956227
0.0275549
0.0382371
0.0375454
0.0075271
0.0277557
0.0524455
0.0124121
0.00421956
0.0061095
0.0166963
0.00663282
0.00323965
0.015467
0.0141956
-0.00289025
-0.0315484
0.0127892
0.00965595
-0.00623963
-0.00624282
0.0443462
0.0182598
0.00635157
0.0193339
0.0253809
0.0189666
-0.00627482
0.0208754
0.0141319
0.00242184
-0.00849186
0.00141562
-0.00209894
-0.00561964
0.00448072
0.0158304
0.00125122
0.0205807
0.0251538
0.0264113
0.0254894
0.0126224
0.0238238
0.0275899
0.00942744
0.0271893
0.00478632
0.00586572
0.0110571
0.00655074
0.00353221
0.00484669
0.00747949
0.0179051
0.0147934
0.0167458
0.0177446
0.030393
0.0262992
0.0289223
0.0186141
0.0164552
0.0105136
0.0225647
0.00653821
0.00532396
0.00509911
0.00959901
-0.00772289
0.00468925
0.00115687
0.00726637
0.000706868
-0.000412255
0.00282739
0.00279053
0.00923421
0.00634396
0.00580329
0.0185924
0.0204965
0.0142568
0.000262063
-0.00190337
0.00860448
-0.000547831
-0.00446978
0.0131592
0.00111803
0.00259515
0.000214689
0.0220985
0.00901646
0.000524601
0.00969216
0.0153452
0.00972552
0.0064543
0.0145328
0.000280094
0.0131089
0.00725497
0.0104105
0.0126441
0.00201069
0.0180826
0.0146647
0.000836318
0.0280256
0.017308
0.00766986
0.010975
0.0175258
0.0055541
-0.00510309
0.0101283
0.00477763
0.0118191
0.00530913
0.0153018
0.014687
0.0177304
0.0156449
0.0342591
0.0119546
0.00696436
0.0295291
0.00505952
-0.0051204
0.00773066
0.00957773
0.00185483
0.00654408
0.0232048
0.0227192
0.0156742
0.0230139
0.0103374
0.00537598
0.00685824
0.00545026
0.0190055
-0.00116176
0.00383082
0.0103357
0.00284582
0.00869439
0.00179499
0.016751
0.0122812
0.0176885
0.0110546
0.0136497
0.0216164
0.0127071
0.00621968
-0.00100765
0.0086845
0.000773846
0.0104994
0.00920172
0.0159825
0.0162626
0.0293715
0.0211226
0.0237812
0.0209214
0.0229321
0.0100069
0.0169196
0.0177559
0.0147737
0.00882594
0.00874386
0.0119669
0.0139888
0.011791
0.00668788
0.0168162
0.0138419
0.00240524
0.0232182
0.0230162
0.0144474
0.00892197
0.016815
0.0200663
-0.00673877
0.00797753
0.0220027
-0.00394551
-0.00131397
0.0141686
-0.0072614
0.00234537
0.00113751
0.00883846
0.00830189
0.00847219
0.00823024
0.0108157
0.0161917
0.0230499
0.0207482
0.00874597
0.0153361
0.00366309
0.00624685
-0.0064112
0.00228319
-0.0114257
-0.00242661
0.0021027
-0.0112166
0.00758995
0.0212397
0.0196002
0.00129957
0.00751925
0.0297674
0.00744416
0.008218
0.0109654
0.0124152
-0.00261
0.00590069
0.00426445
0.00988318
0.00265659
0.000322143
0.0232542
0.0100052
0.011421
0.013673
0.0129429
0.0217688
0.0150088
0.0114719
0.00995683
0.0139959
0.0206838
-0.00125971
0.0125822
0.0149874
0.00719794
0.00695831
0.00590183
0.00707187
0.00838297
0.00519346
-0.00154531
0.0141842
0.0284349
0.00123362
0.00767159
0.0140883
0.0145788
-0.00633164
-0.00519413
0.0113963
0.00419428
-0.0028374
-0.010111
0.00845659
0.00139243
0.0166904
0.0141828
0.0306807
0.0227611
0.0186722
0.00941518
0.00300398
0.00528717
0.00936535
-0.000813199
-0.0142144
0.00557681
0.0131668
0.0111506
0.015247
0.0165465
0.0163138
0.0228254
0.0147657
0.0229837
0.0106933
0.0153566
0.0127466
0.00314343
0.00740788
0.00178718
0.00444377
0.0125179
0.0125162
0.0147695
0.0106866
0.00885577
0.0140467
0.0125597
0.0120647
0.0157846
0.00248564
0.0164815
0.0216614
0.0126497
0.01748
0.00921162
0.0164096
0.00786399
0.00601388
0.0130857
0.00596484
0.00340637
-0.00589088
0.000541345
0.0134724
0.014706
0.00687374
0.0132101
0.00453307
0.00595337
0.000759245
0.00440357
0.00859785
0.0135124
-0.00435058
0.004106
0.00549843
-0.00106698
0.00536389
0.00503686
0.0045421
0.00771043
-0.0061302
-0.00312622
-0.00559098
-0.00397757
0.00296117
0.00425067
-0.00567639
-0.00026157
0.00313712
0.00288021
-0.00382907
-0.0030191
-0.00344948
0.0035643
0.00329222
0.00623362
-0.00166557
-0.00442283
-0.0012794
0.00612848
-0.00758822
-0.00314445
-0.00613047
0.00638576
0.00565141
0.000834165
0.001938
0.000480847
-0.00246329
0.00184946
-0.00562173
-0.00313609
0.00559348
0.00399906
0.00114492
-0.0046309
-0.00317122
0.0054864
-0.00215349
0.00386039
0.00144226
0.0074071
0.00306153
0.00492259
0.00546394
0.00343247
0.00263463
-0.00599551
0.00721457
-0.00375624
0.00219714
-0.00479556
-0.000391983
-0.00729801
0.00621438
-0.00588814
0.0059698
0.00371629
-0.00510262
-0.00749067
0.00529813
0.00208829
0.00204678
0.00366852
-0.00720963
-0.00504868
-0.00127431
-0.00606508
0.00593753
-0.00749081
-4.38664e-07
-0.00461526
0.00601689
-0.00556412
-0.000831281
0.00347118
-0.000716454
-0.00517618
-0.00669449
-0.000608129
0.00272098
-0.00631037
0.00757005
0.00773376
-0.00316263
-0.00154116
-0.00290734
-0.00500787
0.00357824
-0.0022357
0.00599708
-0.00421814
0.00538325
0.00751346
-0.00337456
-0.00553302
0.00621798
-0.000389043
0.00273199
0.00731271
0.00504717
-0.00485826
0.00675406
0.000444385
9.95484e-05
-0.00459086
-0.00742021
0.00579567
0.0014762
-0.00364111
-0.00188468
-0.00242205
0.00157365
-0.00398115
-0.00102476
0.00633519
0.00678912
0.00525156
0.00711536
0.00533322
0.00129758
0.00394689
0.00420816
0.00175435
-0.0039093
0.00588942
0.001806
0.00234831
0.00505157
-0.00397467
-0.00228782
-0.00410223
-0.0038411
0.0039104
0.00704708
0.00531203
0.00749985
-0.00108337
-0.00536413
0.00167136
0.00424712
0.00530457
-0.0030555
0.00741741
-0.00664489
-0.00682678
-0.00684496
-0.00225564
0.00395513
-0.00670415
-0.00396008
0.0073701
-0.00261754
-0.0043724
-0.000838601
-0.00320728
-0.00344576
0.000931618
0.00315054
0.00161658
-0.0065244
0.00395953
0.0035203
0.000815533
0.00370921
0.00271134
-0.00459622
0.00325527
0.00641635
0.00674808
0.00479181
-0.00148393
0.0026269
-0.00700972
-0.00167983
0.00764576
-0.00408732
0.00263985
0.0012231
0.000260283
-0.00224009
-0.00287667
-0.00529538
0.00375413
-5.09146e-05
-0.00359469
0.0059116
-0.00574964
-0.00761216
0.00194579
-0.00345784
-0.00615821
-0.00238094
0.00308318
0.00673288
-0.00486015
0.00680218
0.00609732
0.00365742
0.00340533
-0.00542997
-0.00304216
0.00638113
0.00287632
0.000428945
0.00512538
0.00479086
0.0058979
0.00682306
0.00773004
-0.00227754
-0.00607434
-0.00502655
-0.00123469
-0.00161653
0.00351786
0.0068974
-0.00169314
0.00285152
0.00715769
0.000337375
-0.00426402
0.0051045
0.00633204
0.00253963
-0.001692
0.00687547
0.00283274
-0.00220786
0.000947857
-0.00354881
-0.0048844
-0.00588826
0.00665548
-0.00258038
-0.00770542
-0.0069632
-0.000891098
-0.000997276
0.00266734
-0.00244475
0.00653029
-0.000961368
0.00455048
-0.00607813
-0.00362157
-0.00761938
8.16468e-05
0.00423889
0.00239855
0.00440085
0.00454063
-0.00126552
0.00302857
0.00462231
-0.00551057
0.00532454
0.00430549
0.00719727
0.00624751
0.0045929
0.000498379
-0.00384823
-0.00152627
0.00318351
0.00181271
-0.00306292
0.00511797
0.00249141
-0.000469671
-0.00232371
-0.00325258
-0.00327448
0.00219993
0.00387752
0.00660291
-0.00238373
0.00375168
-0.000482399
-0.00133694
0.00472186
-0.000178558
-0.000772802
0.00731651
-0.00469945
-0.00734689
0.00673709
0.00152478
0.00758472
0.00670825
0.00178905
0.00733312
0.000529041
0.00473217
0.0075997
-0.0060405
-0.00713695
-0.0019654
-0.00191888
-0.00113015
0.00573069
-0.00301852
0.00740075
-0.00279594
-0.00401759
0.00277298
-0.000428476
0.00124534
0.0053757
0.00550827
-0.00216203
-0.00567507
0.00447542
0.00112433
-0.00208698
0.00439943
-0.000323931
-0.00345356
-0.0012122
-0.00363959
-0.00708605
-0.00764071
0.00635874
0.0031997
-0.00405386
-0.00015015
0.00607552
0.00150709
-0.00443214
0.000256885
-0.00237709
-0.00763761
-0.000355345
0.00507289
-0.00593163
-0.00145417
-0.00700618
0.00462328
0.00347425
-0.00666142
0.0048422
-0.00339214
0.00302287
-7.20814e-06
0.00756617
-0.000958568
-0.001394
0.00165849
0.00206354
0.00104869
-0.00517846
-0.00534569
-0.00638938
0.00315161
0.00273279
-0.0044901
-0.00750987
-0.00766211
-0.00595067
-0.00533569
0.000450852
0.00628391
-0.00259818
-0.00461943
0.000113984
-0.000237203
0.0047188
-0.00705073
0.00347419
-0.00470622
0.00429105
0.00191482
-0.000328854
0.00526106
0.00733792
0.0040614
-0.00256621
0.00309875
-0.000253761
0.00717425
-0.00403125
0.00250849
0.00662083
-0.000465214
0.0229018
0.00600475
0.0247083
-0.00260135
0.0205043
-0.0896992
-0.0416805
0.0314067
0.0394156
0.0370385
-0.0248627
0.0445494
0.0418703
0.0591945
-0.00427515
0.0197264
0.0243497
0.0433278
0.0134106
-0.012755
-0.00839516
0.00237965
0.0256283
-0.0133172
-0.0142758
-0.00791783
0.0325004
0.0113081
0.00460484
-0.00057363
0.0250884
0.026451
0.0140987
-0.00642429
0.00458948
0.0203354
0.0204252
0.00672264
0.00138695
0.0018378
0.00812171
0.0132755
0.000904094
0.00101808
0.00853281
0.0132516
0.00620088
0.00967507
0.00496885
0.0170118
0.0189267
0.0108459
0.00060305
0.000189037
0.0197543
0.00943617
0.0202869
0.00452921
0.0194554
0.00767221
0.0179326
-0.0297101
0.0395921
0.0159823
0.0219871
0.000183768
-0.00241758
0.0490945
0.0214108
0.0262419
0.00338505
0.0350487
0.0100716
0.0162167
0.0142545
0.032869
0.030048
0.010269
-0.00876429
-0.0154223
0.00464967
-0.00519555
0.0130572
-0.0108418
0.00704173
0.0171661
0.0193528
-0.00267494
-0.0105928
-0.0788676
-0.00554402
0.0688283
0.0372469
0.0545834
-0.0119889
0.0176137
-0.00431445
0.0157789
-0.00264536
-0.0442356
0.0477583
-0.0283741
-0.0265363
-0.0416704
-0.0283949
0.0267727
0.0277908
0.00531586
0.0108155
0.0402722
0.0576992
0.0549162
0.0254164
0.0288391
0.039685
0.0557919
0.0172213
0.00596785
-9.98579e-05
0.020187
0.0169643
0.00541192
-0.0179236
9.00649e-06
0.0168105
0.0331468
0.0336253
0.0168527
0.0170364
0.0301227
0.0249537
0.0618683
0.0338466
0.0217278
0.0102648
0.0203365
0.0132973
-0.0112079
0.00615721
0.00519746
-0.00778938
0.00670214
0.0145356
-0.0118225
0.00623779
0.00379115
0.0162052
0.00774302
0.00940525
0.0132542
0.033835
0.0154903
0.029646
-0.0146577
-9.30528e-05
-0.00935781
-0.00128606
-0.013275
0.00433876
-0.00772763
0.000299344
0.0209098
-7.00098e-05
0.0011767
-0.0116935
0.00828181
0.0363789
0.00798391
0.0115008
0.0315397
0.0291036
0.0166633
-0.00507996
0.00610765
0.030016
0.00892078
-0.000999759
0.0154294
0.00145394
0.0186752
0.0168911
0.0012874
-0.0250372
0.00743092
0.0283467
0.0336789
0.0336879
-0.0270209
0.0061259
0.0319993
0.0255961
-0.00387907
-0.00476408
0.0279415
0.0122904
0.0151293
0.0136013
0.000610287
-0.0178129
-0.0122675
0.00753234
-0.00956626
0.00338313
0.0188496
0.0410556
0.0245834
0.012761
-0.00425705
0.0382938
0.0389951
0.0389862
-0.00587214
-0.0158738
-0.0130465
0.0101957
0.00883395
0.00192815
-0.00591684
-0.0152746
-0.00105684
-0.00657985
0.0442705
0.028791
-0.00191744
-0.00426345
0.0344262
0.0123471
0.00840553
0.0166873
0.00655456
0.00678653
0.0105354
0.0343232
0.0169151
-0.0206851
0.0129946
0.0268542
0.0103586
-0.00397642
-0.00497618
0.0104533
0.00415526
0.0228305
-0.0145419
-0.0055026
-0.00728401
0.0389066
0.0439975
0.0234128
0.0338449
0.00682396
0.00519792
0.00618942
0.000777787
0.0124026
0.0153904
0.00457227
0.00135883
-0.0610313
-0.000918363
0.00744386
0.00513481
-0.0148847
0.00815156
0.037345
-0.0057835
0.0440738
0.0463697
0.0244415
0.00619476
0.00193771
0.00147182
0.0172111
0.00968564
-0.0116904
-0.0275642
-0.0251068
-0.0149111
-0.0138291
0.0113549
0.0286938
0.0211711
0.00461042
0.0290383
0.050053
0.0400843
0.0149111
0.0339034
-0.00143778
-0.00459455
0.0193149
0.0282503
-0.0194588
-0.04368
-0.0253926
0.0011786
0.0335976
0.0284163
0.00265126
0.00624964
0.0088563
0.0513915
0.0619192
0.0336128
0.00676028
0.00633496
0.0228008
0.0483059
0.00226222
-0.0285986
-0.0388647
5.19829e-05
0.018393
0.00196115
-0.0160967
-0.00990732
0.0296302
0.0342808
0.0341674
0.0077319
0.0245946
0.0178269
0.0091566
0.0321043
-0.00152054
-0.0164052
-0.0237575
-0.0174203
5.20489e-05
-0.00238576
-0.0257835
-0.0168458
-0.00289913
0.0455502
0.0315182
0.00996956
-0.00360062
0.000212882
0.0269123
0.0483171
0.025654
-0.0346867
-0.0155799
0.0208659
0.0187812
0.0156397
-0.0250894
-0.0293
0.0107844
0.0334474
0.044095
0.0116495
0.0148069
0.0186178
0.0313642
0.0351613
0.030241
0.0126003
0.0215309
0.0241207
0.0137774
0.00092475
-0.000577553
0.000526814
0.0131586
-0.00244154
-0.0230923
0.0146757
0.0210107
0.0205556
0.0301018
0.00910826
-0.0039865
0.0114124
0.0269682
0.0298574
0.00856269
-0.0230379
-0.0174414
0.0354446
0.0464696
0.0108695
-0.0279102
-0.0188195
0.0377671
0.0314198
0.00926061
0.015492
-0.00091318
0.00633707
0.0199246
-0.0032792
-0.0134169
-0.000440702
0.0137212
0.00307016
0.00210875
-0.00513279
0.0203406
0.00898809
0.00920098
0.00510549
0.00691092
0.00930912
0.028886
0.0133061
0.0264201
0.00644158
-0.00117453
0.0202477
0.00645159
0.017236
0.0041717
-0.00599687
0.00565259
0.0204594
0.0235734
0.0161779
0.00482756
-0.0114431
0.00890918
0.0459439
0.0390569
0.00632261
-0.00825652
0.0066698
0.0227005
0.0436111
0.0179137
-0.00517863
-0.0137587
0.00725192
0.0355595
0.0191497
0.00500213
0.00101564
-0.00307588
-0.0148673
-0.000513867
0.0390566
0.0470264
0.0218331
0.010766
0.0262279
0.0448493
0.0479469
0.0368793
0.0358867
0.0285469
-0.00870415
-0.016468
0.0136266
-0.00329213
0.00112856
-0.00215065
-0.0310714
-0.0237602
-0.010039
0.0240389
0.0416516
0.013263
0.00259586
0.0348398
0.0517927
0.0568982
0.0328013
0.0188546
-0.00652294
-0.000968774
0.00219547
0.00863705
0.00746252
-0.0110495
-0.0201018
0.0048861
0.0245617
-0.00469101
-0.00679035
-0.00183478
-0.0015172
0.0146607
0.0117363
0.000293279
-0.0140534
-0.0146211
-0.00657195
0.0075026
-0.000753923
0.00591588
-0.0101433
-0.0207958
-0.018386
-0.0158127
-0.0063156
-0.00681562
-0.00226391
-0.014122
-0.0168718
-0.000352261
0.0043238
0.0127123
0.0277023
0.043503
0.0440178
0.0425951
0.0533611
0.0485812
0.0624228
0.0871138
0.0852335
0.0668566
0.033388
0.00917997
-0.00728799
0.00633863
-0.00470543
-0.0190807
-0.0522391
-0.0910625
-0.107071
-0.101606
-0.0775669
-0.0669231
-0.069164
-0.0743201
-0.0549842
-0.0574551
-0.0238127
-0.0142672
0.0200913
0.0290723
0.0203516
0.022547
0.0234322
0.0386466
0.035349
0.0385031
0.0278853
0.0136873
-0.00650762
-0.00554603
-0.00738082
-0.00889801
-0.0174931
-0.0290126
-0.0364712
-0.0350207
-0.0263859
-0.017454
-0.00995142
-0.0184573
-0.0125414
0.000571095
0.018535
0.0156528
0.0308479
0.0245323
0.0332206
0.0464605
0.0478425
0.0542265
0.0383704
0.0194383
0.00114286
-0.00216262
-0.0129231
-0.0231689
-0.0503413
-0.0667476
-0.07243
-0.0720227
-0.0546763
-0.0469622
-0.0343691
-0.0242369
-0.00730504
0.0396705
0.0847689
0.134327
0.161758
0.163782
0.173495
0.190455
0.205128
0.220585
0.223429
0.154265
0.0799451
0.017209
0.00626556
-0.00204327
-0.0395663
-0.12025
-0.191953
-0.218113
-0.21107
-0.179886
-0.164495
-0.167906
-0.168162
-0.132525
-0.095582
-0.0478261
0.00089147
0.0245184
0.0233723
0.036887
0.0311302
0.0566745
0.0759174
0.0572834
0.0320774
0.0143741
-0.0118352
-0.00887268
-0.00830159
-0.0207744
-0.0361293
-0.0595449
-0.0582684
-0.0560556
-0.0328509
-0.0315201
-0.0315571
-0.0319465
-0.028012
-0.0113653
0.00972793
0.0278125
0.0201475
0.0163179
0.0348416
0.039931
0.0531797
0.0605189
0.0445645
0.0256992
0.0169662
0.0174131
0.010572
0.0100695
-0.0106422
-0.0271789
-0.0494431
-0.0619947
-0.049834
-0.0230001
-0.0117176
-0.0208466
-0.037124
0.0118133
0.067782
0.112807
0.141772
0.133213
0.152498
0.169847
0.184292
0.221284
0.227445
0.155973
0.0810909
-0.00180014
-0.00254229
0.0259067
-0.0529271
-0.137307
-0.213564
-0.228951
-0.192064
-0.176438
-0.158523
-0.136869
-0.157105
-0.13278
-0.0796459
0.00154218
0.0469331
0.0308795
0.0178571
0.0282394
0.0539658
0.0654648
0.0481689
0.0385739
0.00705383
-0.0167514
-0.0176901
-0.00694238
-0.0105557
-0.0318355
-0.0505346
-0.038139
-0.0218212
-0.0179873
-0.0090641
-0.010148
-0.0116446
-0.0135918
-0.00339645
-0.00193417
0.0154789
0.00279505
0.0206165
0.00997428
0.021555
0.0263755
0.0263963
0.0463298
0.0388336
0.0348679
0.0140213
0.00790506
0.0274703
0.017733
-0.00124272
-0.0610214
-0.0905988
-0.0543799
-0.0550753
-0.0335736
-0.0138396
-0.0654643
-0.0490259
0.0165611
0.107784
0.198265
0.146653
0.132485
0.20448
0.215723
0.25809
0.267576
0.176409
0.0954059
-0.064719
0.010734
0.048497
-0.11642
-0.192397
-0.284999
-0.277376
-0.213007
-0.223527
-0.146305
-0.173864
-0.218718
-0.0716172
0.0207079
0.0659721
0.0327781
0.0258358
0.0927994
0.0919717
0.0879487
0.0885694
0.00473268
-0.0132547
-0.00681489
-0.00921097
-0.0286075
-0.0732071
-0.0533477
-0.039778
-0.032051
-0.029256
-0.0163914
-0.021921
-0.000365976
0.0105056
0.0058942
-0.00979153
-0.00196572
0.00189443
0.00041188
-0.0149389
-0.0107244
0.0147605
0.0367736
0.0455197
0.0246883
0.0400758
0.0470161
0.075458
0.0926261
0.0426657
0.00139172
-0.0130549
-0.00604593
-0.024835
-0.0952368
-0.0867827
-0.130364
-0.139447
-0.0441485
-0.0323865
-0.00326387
-0.0473928
0.0971905
0.270715
0.202933
0.264807
0.304968
0.268031
0.354996
0.289276
0.259547
0.0124668
-0.0683739
0.116009
-0.180415
-0.283738
-0.326293
-0.324522
-0.290935
-0.329918
-0.237947
-0.274029
-0.208715
0.0440794
0.0153208
0.00850595
0.0923182
0.156734
0.168798
0.0844427
0.122184
0.0436214
0.0376213
0.0212298
-0.0549547
-0.0940804
-0.0913267
-0.0854325
-0.0952241
-0.104942
-0.0565357
-0.032868
-0.00904715
-0.00426764
0.00274096
0.0240107
0.0307707
0.00119547
-0.00524032
0.00301607
-0.0223012
-0.0382022
-0.0420482
-0.00964871
0.000552161
0.025514
0.0471906
0.0682329
0.128737
0.14566
0.114739
0.101598
0.10022
0.0969558
-0.0279564
-0.047045
-0.0941592
-0.201304
-0.138047
-0.205172
-0.239467
-0.210052
-0.0293028
0.0364462
-0.0596141
0.251857
0.352362
0.326986
0.523868
0.406878
0.4622
0.396072
0.445999
0.0917729
-0.112488
0.167168
-0.346892
-0.432346
-0.447096
-0.440049
-0.500369
-0.48661
-0.324648
-0.365254
-0.0270594
0.0183138
-0.0457277
0.240403
0.278105
0.23329
0.178866
0.261936
0.156994
0.053947
0.0520868
-0.104247
-0.085259
-0.12903
-0.174786
-0.175023
-0.111812
-0.0782931
-0.083029
-0.0200588
0.0347622
0.0469776
0.0838405
0.0688888
0.0556431
0.0485701
0.00827588
-0.0180259
-0.0429089
-0.0522007
-0.0668813
-0.0596849
-0.0402484
-0.0371971
0.0087812
0.0696607
0.0699074
0.0868995
0.137542
0.146137
0.106628
0.0618213
0.0982675
-0.0156102
-0.042823
-0.0780581
-0.200685
-0.126429
-0.176915
-0.17208
-0.18686
-0.0199317
0.0408335
-0.0328953
0.227296
0.252497
0.285268
0.388559
0.312851
0.347365
0.263856
0.326805
-0.0306974
-0.0112451
0.0613322
-0.309977
-0.25562
-0.341856
-0.28686
-0.371561
-0.272416
-0.247204
-0.224265
0.0216204
-0.059371
0.0181607
0.152697
0.140701
0.128469
0.117431
0.147665
0.0568844
0.0600814
0.00182036
-0.075233
-0.0456561
-0.0852944
-0.122675
-0.105112
-0.0735804
-0.0683505
-0.041492
-0.000669383
0.00996871
0.0433071
0.0573222
0.0511329
0.0521621
0.0365515
0.0211877
-0.000440011
0.00531873
0.00416901
-0.00548211
0.0020756
0.00731985
-0.000538401
0.00315023
0.0026115
0.00347721
-0.00667257
0.00245849
0.000921606
0.000107666
0.00343179
-0.00224635
0.00361804
0.00610811
-0.00496032
0.00123747
0.00219967
-0.00277872
0.00350137
-0.00396033
0.00501536
-0.0024262
0.00183253
0.00114925
-0.00650201
-0.00630855
0.000672462
-0.00711825
-0.00658608
6.81651e-05
0.000926023
0.00146734
-0.000168108
-0.00527553
0.00513324
0.00279142
0.00395777
-0.0071086
0.00179552
0.00217399
0.00479482
-0.00489123
0.00468108
0.00696742
-0.00768088
-0.00770394
-0.00634745
0.00481948
-0.00674547
0.00242341
0.00744307
0.00677369
-0.00651341
0.00578594
0.00109265
-0.00203804
0.00361248
-0.0063476
0.00708812
-0.00110383
-0.00353704
-0.00711996
-0.00485013
0.00497741
0.00454532
-0.00374502
0.00715715
0.00201672
-0.00225801
-0.00117864
-0.00647209
0.00220145
-0.00544282
0.00574091
-0.00425738
0.0071126
0.00546877
-0.00724349
0.00174592
-0.00380635
0.00116687
-0.0030837
0.00070791
-0.00202866
0.00329707
-0.00262234
0.00627885
0.00752878
-0.00653171
0.00189269
0.00252639
0.00369224
-0.00399153
0.00468643
-0.00159817
0.00598566
-0.00704181
0.00584338
0.000882859
-0.0029113
-0.00226797
0.00727949
0.00170154
-0.00125558
0.00160514
-0.00146573
-0.00225024
-0.00217919
-0.00213119
-0.000726699
-0.00365916
-0.00265268
0.00752266
0.0072138
0.00623555
0.00747407
0.00550807
-0.00115122
0.00456269
0.000423229
0.00182757
0.00116375
-0.00769202
-0.00347712
-0.00284514
5.66671e-05
-0.00271786
-0.00592448
-0.00191756
-0.00251234
0.00725631
-0.00275363
0.00381967
0.00509951
-0.000450972
0.00185815
-0.000152885
0.00334167
0.00270233
0.000419165
0.000927615
-0.00507841
-0.00113281
-0.00771788
-0.00304964
0.00541021
-0.0043704
0.00667861
-0.00369566
-0.00516875
-0.0053919
-0.00417167
0.00547296
0.000247407
-0.00381229
-5.18766e-05
-0.00311738
0.00303639
0.00127011
0.00198025
7.16861e-05
-0.00679739
-0.00195676
0.00352721
0.00305476
-0.00299564
0.00350072
-0.00264608
0.00364013
-0.00636205
-0.000789295
0.00483145
-0.00364718
0.000445598
0.00554485
0.00531558
0.00477743
0.00326104
0.00298318
0.000739312
0.00734003
0.00415078
-0.00317793
0.00640158
-0.000186609
-0.000126689
0.00414813
-0.00644894
0.00135966
0.00639374
-0.00728268
-0.0014483
0.0037913
0.00329568
-0.00720989
0.00436172
0.00170929
-0.00649362
0.00311647
-0.00478836
0.00630525
0.00125565
-0.00607713
0.00260243
0.00527596
-0.00360879
-0.00357474
0.00112756
-0.00121417
0.00216737
0.00109404
0.00515032
0.00773351
-0.00541033
-0.00183007
-0.00410905
0.0038903
-0.00767393
2.6135e-05
0.00466069
-5.48569e-05
-0.00653668
0.00319551
-0.00448475
-0.0035302
0.00226498
-0.00195975
-0.00665693
-0.00190062
-0.00615184
-0.00104598
-0.00515778
-0.00376789
0.00319475
0.000274268
0.00437902
-0.00292732
-0.0051344
-0.00757076
0.00495861
0.000467713
-0.00430105
0.0041902
0.0037783
0.000177144
0.00475116
0.0034008
-0.00453775
0.0030875
-0.000516304
0.000786693
-0.00560558
0.000788157
0.00125742
0.015313
0.0113524
0.0224
0.022942
0.0195518
0.00575723
0.00701555
0.00238008
0.00534366
0.00389698
0.0129046
0.0223313
0.0171818
0.0224578
0.0266009
0.0307781
0.0241537
0.0306915
0.0251069
0.018449
0.00809547
0.00807704
0.0104186
0.0163405
0.0122315
0.00836982
0.00844783
0.00072203
0.0131347
0.00532786
0.0142951
0.00198669
0.0130058
0.00947562
0.00398866
0.00202891
0.0108759
-0.0220325
-0.0281844
0.00952935
-0.00338037
-0.0226521
0.00379843
0.0195766
0.00845172
0.0210283
0.0236458
0.023827
0.0132817
0.0215014
0.00169645
0.0136386
0.00191302
0.00209016
-0.000910622
-0.0207656
0.00570436
0.00879186
-0.0227322
-0.0219455
0.00345667
-0.00350711
0.00550225
-0.0334483
-0.014344
0.00805596
0.0232461
0.0117901
0.00204346
-0.0141968
0.0114391
0.0477905
0.0439355
0.0335843
0.0171559
0.0265858
0.0257877
0.00587697
-0.00985656
0.00654523
0.0139809
0.0235839
0.0187772
0.0036168
0.0194458
0.0376164
0.030701
0.0196767
0.0202946
0.0287424
0.0372164
0.0270952
0.0169192
0.00795846
-0.00555872
0.0074471
0.00141884
-0.0178483
-0.00806747
0.00280839
0.0195356
0.022359
0.0163844
0.020756
0.0291116
0.03291
0.0369827
0.0221787
0.0199511
0.0125892
0.0209123
-0.00456567
-0.021824
-0.0201275
-0.0142409
-0.00457592
-0.00248576
0.00435555
0.0145977
0.028054
0.0445978
0.0373695
0.00767202
0.00337675
0.0231255
0.0131238
-0.00482062
0.00409117
0.0043952
0.0198893
0.00067167
0.00271513
0.00402221
0.00770936
0.00898823
-0.00133979
0.00123674
0.0183926
0.0139706
0.0087506
0.0146276
-0.00298092
0.00356431
0.00979327
0.0101214
0.00564273
0.00925954
0.0209534
0.01981
0.0117514
0.00817228
-0.00254089
0.00294571
0.00915434
0.00524182
0.0144091
0.0223676
0.00905691
0.016504
0.0101709
7.45352e-05
0.00751094
-0.00518454
-0.0166567
-0.00980166
-0.00116916
-0.0114209
0.00993877
0.00408913
-0.0131917
0.00123502
-0.00206967
0.00276757
0.008176
0.00361033
0.0127941
0.00817044
0.0016815
0.0126095
0.00237175
-0.00102463
0.013573
0.00286732
0.0087054
0.022819
0.0227391
0.0261159
0.0182336
0.0158535
0.0187848
0.0151241
0.0117673
0.00840082
0.0168244
0.0195396
0.00805789
0.00801531
0.0092516
-0.00759207
-0.00635533
0.00428537
0.00275215
0.00375081
0.0106264
0.0231494
0.0267137
0.028755
0.0156206
0.0212633
0.0227709
0.00496463
0.00151885
0.0132703
-0.00181328
0.0111497
0.00634349
0.0154978
0.0207397
0.0273968
0.0265086
0.0200616
0.0133098
0.00797682
0.00805136
5.84261e-05
0.0103778
0.00147296
0.00717518
0.013758
0.0178409
0.0122758
0.00861301
0.00317325
0.0121602
0.0023386
0.0128581
0.0132822
0.0168925
0.0219347
0.0223532
0.0162827
0.0211403
0.0157601
0.0224874
0.0205565
0.00791998
0.0011215
0.000684722
0.00791996
0.01078
0.0212616
0.0216113
0.0171403
0.0245124
0.0207759
0.0291767
0.0227453
0.0112771
0.011583
0.0118464
0.0133461
0.0212579
0.0149026
0.00368405
0.0141881
0.00243507
0.00530957
0.0129551
0.00866104
0.0141603
0.0297809
0.0200365
0.0117997
0.00901235
-0.00497267
0.000545644
0.0064843
0.00213014
0.0162256
0.00846758
0.0137034
0.00234048
-0.00215871
-0.00535293
0.00795686
0.00818175
0.000729231
0.0085396
0.0111654
0.0126384
0.0198136
0.00256377
0.0126528
0.00167276
0.0102858
0.00570709
-0.00538851
-0.00304991
-0.00569567
-0.000165426
0.00122321
0.007654
0.00675136
0.0152822
0.0209185
0.0289267
0.0281582
0.017707
0.0101231
0.0112446
0.0119294
0.00434544
0.00737351
0.00537934
0.0114867
0.0131231
0.0143797
0.0196517
0.0100687
-0.00594571
0.00533138
0.00916248
0.00550501
0.00334721
-0.00640266
0.00074796
0.012184
0.0108682
0.0133033
0.00310898
0.000560201
0.0169732
0.000125693
0.0144027
0.0111833
0.00747913
0.000987604
0.00376687
-0.00343942
0.0107968
0.0206789
0.0136486
0.0143643
0.0125638
0.0226562
0.0204975
0.0151446
0.0153495
0.00802735
0.00100464
0.00954424
0.0129577
0.0100922
0.0221538
0.0169657
0.0296184
0.00803538
0.00281727
0.00852436
0.00313585
8.59417e-05
0.00214221
0.00972873
0.00319999
0.0186059
0.0176054
0.0251356
0.0227983
0.0207172
0.0178677
0.00456698
0.0146901
0.0104309
0.00685635
0.0112018
0.0108234
0.0162027
0.0121856
0.0175568
0.0241846
0.0205805
0.0306492
0.00919958
0.0222829
0.0159415
0.0136946
0.0015379
0.00288718
-0.0041168
-0.00743672
0.0111834
0.00898284
0.0120918
0.012652
0.00636939
-0.00125685
0.0053939
0.00107337
0.000800564
0.00954011
0.013307
0.00211561
0.0129124
0.0103355
0.00072835
0.0073407
0.0121525
0.0193048
0.00879456
0.0161872
0.0160328
0.00855625
0.00956089
0.0191051
0.00880702
0.0111473
0.0177973
0.0192591
0.0101178
0.0104013
0.0132185
0.00623901
0.00162292
0.00170886
-0.00390086
0.0135798
0.00127592
0.0121299
0.0219833
0.0161111
0.0156536
0.00536309
0.0154789
-0.00320998
-0.00402374
0.00640713
-0.00224039
0.00120946
0.0120328
0.0204836
0.00941333
0.0114662
0.0201469
0.00196769
0.0016091
0.00305674
-0.00566811
0.0102734
0.000712141
0.00225004
0.0128892
0.00102043
0.00133565
0.0125191
0.00599804
0.00258599
0.015238
0.00610353
0.0125986
0.0102406
0.011314
0.00436258
-0.00160119
-0.00379809
-0.00168248
-0.00427392
0.0060616
0.00678995
0.00637871
0.00302737
0.0145803
0.000119016
0.00855425
0.00133121
0.00213552
0.0116964
0.0230496
0.0241047
0.0119962
0.0220415
0.0102928
0.00490674
0.015308
0.0130226
0.00375778
0.0131326
0.0148415
0.0186926
0.0167685
0.0180444
0.00691854
0.00564606
0.0140053
-0.00134886
0.0117662
0.00398922
-0.0069727
0.00450744
0.00316263
0.00867418
0.0176356
0.0141645
0.0191442
0.0130537
0.00126408
0.013659
0.000122858
0.00173196
0.0047887
0.00687253
-0.0061099
0.0101061
0.0123562
0.00974145
0.0107619
0.0198495
0.00911274
0.0151108
0.00219289
-0.00582491
0.00803056
-0.00262664
0.00761394
0.011176
0.0077866
0.0216893
0.0101393
0.0162087
0.0119348
0.0102445
0.00928246
0.0001573
0.00318467
0.010013
0.010132
0.0186863
0.0200175
0.0299049
0.0105936
0.0103874
0.0112362
0.0154805
0.0142661
0.00905508
0.0139618
0.0137659
0.0112847
0.0150425
0.00491933
0.0120089
0.0151976
0.00871031
0.0190028
0.00266554
0.0083116
0.00681298
0.0132161
0.00172642
-0.0020363
-0.00125706
0.0110023
0.014165
0.00733526
0.00171502
0.000375659
0.0195199
0.00931775
0.0105818
0.00873701
0.00885986
0.0105918
0.0153805
0.00674918
0.00839122
0.0107454
0.0231016
0.0173391
0.0125972
0.00143887
0.0105516
0.0101585
0.00459947
0.0142784
0.00680512
0.0119304
0.0117924
0.0229684
0.0152511
0.0136846
0.0160719
0.00127286
0.0132077
0.00794823
0.00172682
0.00188412
0.00506878
0.0150818
0.0174618
0.0128923
0.00965396
0.00855115
0.0113928
0.0140282
0.00976059
0.00973718
0.00849945
0.00980259
0.00826054
0.00652261
0.00230345
0.00959401
0.0145133
0.0110184
0.018464
0.00391853
-0.000334472
0.00233107
-0.00486121
0.00195177
-0.000336039
-0.00636155
-0.000645916
0.00584896
0.00134741
8.48826e-06
0.00734375
-0.00644512
-0.00606946
0.00569849
-0.000487633
-0.00540968
0.00332733
-0.00331668
0.00727514
0.00715179
-0.00160291
0.00678832
-0.00572209
-0.00587634
0.00371087
-0.00694779
-0.00550892
0.00504268
-0.000302682
-0.00345515
-0.00468059
0.00212453
-0.00144892
0.00259158
0.00230416
-0.00570054
0.000232099
-0.00695182
-0.00567896
0.00752869
-2.69606e-05
0.00169986
0.00358397
-0.00685112
0.000478717
-0.00531525
-0.000174888
0.00172714
0.00252634
0.00616721
-0.00306037
-0.00105172
0.000933523
0.00168103
-0.00402026
0.00424028
-0.00474099
-0.00243754
-0.000595468
0.00616593
-0.00607153
0.00464057
0.000807157
-0.00727925
0.00280375
0.00569448
-0.000105686
0.00731021
-0.00680328
0.000302743
-0.00160023
0.00749912
-0.000244334
-0.000652527
0.000654296
0.00233678
0.000283331
0.00754764
-0.00561398
0.00546529
-0.00560334
-0.00608014
-0.00668029
-0.000531256
-0.00149488
0.000534965
0.00241056
-0.00163051
-0.000826365
0.00141665
-0.0012926
0.00615665
-0.00505044
-0.00197909
-0.0076065
-0.00130348
-0.00646384
0.00359226
0.00564365
-0.00187619
-0.00107607
0.000996904
0.000773653
-0.00700525
0.00244655
-0.00172142
-0.0008206
0.00741005
-0.00565713
0.00191992
-0.00410488
0.0061734
0.00458867
-0.00622364
0.00047658
-0.00634184
0.00309113
0.00682282
0.00331116
0.00632211
-0.00386736
0.00328911
0.0017031
0.00338351
0.000272142
-0.00667264
-0.00619995
0.00435574
0.00229828
-0.00555935
-0.00600107
-0.00505241
0.00300227
-0.0063499
-0.00660272
0.00090488
-0.00749958
0.00090665
-0.00450851
0.00352676
0.00332246
0.00546042
0.00317376
0.00532237
0.00699417
-0.00743806
-0.000217375
0.00603968
-0.00117729
-0.00651866
-0.000397234
0.00652834
0.000193051
0.00665238
0.0050571
-0.00774528
-0.00197244
-0.001827
0.00462146
0.00590956
0.00174988
-0.000358406
0.00551734
-0.00331067
0.00543818
-0.00154011
-0.000793415
-0.0060988
-6.82825e-05
0.00686306
0.00652117
-0.0068879
0.00278396
0.00643101
0.00485247
0.0016892
0.0032175
-0.00405786
-0.00264775
-0.00730856
0.0072662
0.00282542
0.00139559
0.00528017
0.000817338
-0.0052315
0.00590395
-0.00157585
-0.000496548
0.00105544
-0.00234077
0.00770945
-0.00560183
-0.00385097
-0.00115144
-0.00590112
-0.00449908
-0.00334986
0.00530695
0.00555931
-0.00128598
0.00195745
-0.00226773
-0.00669721
0.00651514
0.00193697
-0.000492606
-0.00125038
-0.000936496
0.00659807
0.00488581
-0.00404341
-0.00281014
0.00454457
0.00332097
-0.00423792
-0.00533747
0.00747156
0.00747822
-0.00224615
0.00367879
0.000548313
-0.00129406
-0.00729612
9.74126e-05
-0.00213718
0.00230409
-9.67018e-06
0.00620216
-0.00234319
-0.000690058
0.0069936
0.00610471
0.00487395
0.00573799
0.000770006
-0.000550921
-0.00345039
0.00599075
0.00145632
0.0051504
-0.0052493
-0.00480592
-0.00529166
0.0052857
-0.00107065
-0.00354242
0.00502686
0.0075473
0.00569931
-0.00362848
0.00362692
-0.00306959
0.00234159
0.0022991
0.0044492
-0.00715371
-0.000553212
0.00129761
0.00455047
-0.00655133
0.00650756
0.00431493
-0.00472299
0.00498639
-0.00503327
-0.00397855
-0.00521535
0.00447356
-0.00377099
0.00273057
-0.00595786
-0.00711173
0.00552602
-0.00626933
-0.00132753
-0.0045349
0.006538
-0.00545186
-0.00303739
-0.00331777
-0.00359148
0.0019143
-0.00215885
0.0061414
-0.0029046
-0.00244878
0.00540057
-0.00448855
0.00556748
-0.00219413
-0.0037439
0.00166484
-0.00677715
-0.00753549
0.00632116
0.00344317
0.00142922
-0.00555271
0.0016483
0.00594985
0.00418867
-0.00210695
-0.00470849
-0.00220585
0.000740171
0.00320045
0.000734211
0.0074155
-0.00387885
-0.00660393
-0.00680857
0.00664267
-0.00473774
0.00664111
-0.00418041
0.00591311
0.000460272
-0.00284247
-0.00224423
0.00495449
-0.00149984
-0.0047013
-0.0035007
-0.00474508
0.00732179
-0.00515314
0.00758519
-0.00520002
-0.00142663
0.00110996
-0.00216842
0.00181253
-0.00320883
-0.00141476
-0.000774549
-0.00300047
-0.00151786
0.00490655
-0.00738029
0.00690965
-0.00629415
-0.0015796
0.00285457
0.00701503
0.0011774
0.00677049
0.00515995
-0.00549658
-0.000193419
-0.00254478
0.000718609
-0.00146585
0.00409197
-0.00740388
0.0020129
0.00298769
0.00320413
0.00177335
-0.00253542
0.00664574
-0.00665892
0.00274133
0.000939241
-0.00262403
0.00302096
0.0060644
-0.00389338
0.00459872
4.72379e-05
-0.00697049
-0.00730693
-0.00343384
-0.00228583
-0.00134247
-0.00245173
0.000562467
-0.000548357
0.00302317
0.00118434
-0.00610732
-0.00119785
0.00430985
0.00151241
-0.00773936
-0.00468873
-0.00043749
0.00256937
0.00213922
0.00473802
0.0123232
0.00712319
0.0134485
-0.0164493
-0.00311385
0.0374584
-0.0122621
0.0250828
-0.00669946
0.0135559
0.00428609
0.0169446
0.00956429
0.0164739
0.0101798
0.000848258
0.0114548
0.0107179
0.00414332
-0.00459007
0.000569883
-0.0281825
0.0181357
-0.0076649
0.0318134
0.00709174
-0.0120721
0.0425395
0.0135447
0.00878042
0.0274884
0.0215098
-0.0197853
-0.0208915
0.0189612
0.0139506
0.0226418
-0.01099
0.0230387
0.00584734
0.00195395
0.0220566
0.00659991
-0.000370575
7.44376e-05
0.0121445
-0.00564524
0.0162681
0.0138164
0.0143788
0.00607855
-0.00640216
0.00253413
-0.0035732
0.0184848
0.0227946
0.00105122
0.0165677
0.0118789
0.0191934
-0.0169969
0.00064616
0.02864
0.00220351
0.0170786
0.0150232
0.0140778
-0.00453991
-0.00584123
0.0051525
0.0147315
0.000280067
0.00608402
-0.00513376
0.0118108
-0.0018807
0.0145932
0.00151722
0.0101174
0.00606831
0.00128229
0.00542561
0.00858748
0.00915736
0.0197345
0.0146144
-0.000802409
3.24002e-06
0.0148469
0.0105267
-0.0011973
0.0123474
0.00562392
0.00985654
-0.00739331
0.00382918
0.00619353
0.00189896
0.00034572
0.00748366
0.00424563
0.00402856
0.0098759
0.0118299
0.00287865
-0.00602531
0.0168599
-0.00632145
0.013575
0.000177789
0.00869396
-0.000745475
0.0213853
-0.00354389
-0.00219411
0.000340011
-0.00323319
0.00749964
-0.000713486
0.0158416
0.00140152
0.0132805
0.01697
0.00772497
0.0161231
0.00600337
0.00820688
0.00202969
0.009301
0.00787494
0.011087
0.0207496
-0.00510563
0.00187389
0.00215396
0.00823798
0.0108562
0.014915
0.00528239
0.0121237
0.00588897
-0.00724943
0.0143227
0.0078531
0.0132787
-0.00138962
1.5799e-05
0.0119984
0.00335701
0.00255461
0.0103098
0.0174048
0.0046757
0.0034784
0.0158258
-0.00180611
0.00805042
-0.00709482
0.0199902
-0.00482405
0.0125788
0.0129245
0.00490429
0.00139798
-0.00232539
0.0153024
-0.00387546
0.0145071
-0.00702212
0.0253417
0.00351636
0.0170913
0.00951717
0.00270726
0.00196178
-0.00766066
-0.0112046
0.025361
0.00244521
0.0302198
0.0144636
0.00599819
-0.00141602
-1.44979e-05
0.0210179
0.022484
0.00695315
0.0230762
0.0135757
-0.0169771
0.000556471
0.00210553
0.00998047
0.00556356
0.0185612
-0.00980021
0.0230814
0.0174835
0.0102176
-0.0021821
0.0204849
0.0102634
0.0146351
0.0205241
-0.00998114
0.0120935
-0.0110611
0.00996954
-0.00692396
0.00859571
0.0205941
-0.0225605
0.00324992
0.0135597
-0.00779522
0.0201363
0.00811082
0.000680781
0.0298824
0.022429
0.0153341
0.0120685
0.00724445
-0.0189365
0.00173999
-0.00110766
0.00804226
-0.00203507
0.0210193
-0.00611197
0.000643163
-0.00637896
0.0112108
0.00697521
-0.00694123
0.0103279
0.0052832
0.0227489
0.0228401
0.00388363
0.0137408
0.00843405
0.02315
0.00660581
0.00485206
0.011188
0.0189254
0.0166875
-0.00734013
0.00736496
0.0149373
-0.0179986
-0.00396794
0.0198443
0.0219499
-0.00682934
-0.00126578
0.00954352
0.0152472
0.0228247
0.00930045
0.019518
0.0173359
0.014565
0.00157253
0.0317115
0.013476
0.0112468
-0.00766746
0.00452724
-0.00875903
0.0153248
-0.00708729
0.00575489
0.0064502
0.00194818
0.0232598
-3.92736e-05
0.027849
0.00495202
0.0133847
0.00450747
-0.00407132
-0.0197449
0.0155794
-0.0159358
-0.0193684
-0.0098765
0.0200236
-0.0029419
0.0105269
0.0237943
0.0331862
0.0183255
0.00419457
0.0231573
0.0378844
0.0231913
-0.0129925
0.0232985
-0.00046429
0.00687196
-0.0125002
-0.00651138
-0.0135812
0.00181681
0.00842262
0.0132747
0.00895879
-0.00312355
0.0213159
0.0139758
-0.00191508
-0.00248164
0.00277558
0.0220635
0.00314812
0.00184218
0.00276477
0.00925093
0.00329057
0.0107858
0.0181067
0.0119033
0.00816546
-0.00550639
-0.0064453
-0.0126247
-0.00416898
-0.0061969
0.00504985
0.00513433
0.00966157
0.0241583
0.0394831
0.0168919
-0.00836093
-0.0329185
-0.06973
-0.0309663
2.19878e-06
0.0278512
0.048307
0.038436
0.0196876
0.0388721
0.050135
0.0347066
-0.012237
-0.0471093
-0.0724897
-0.0369622
0.0531191
0.133413
0.133952
0.0973707
0.0846884
-0.0118922
0.00351312
0.00263787
-0.0904499
-0.103442
-0.149911
-0.150376
-0.0504804
0.0532984
0.0855467
0.0719655
0.0195188
-0.049578
-0.0595591
-0.0506003
-0.0227161
-0.0401599
-0.0339361
-0.0280992
-0.015077
0.0342102
0.0717776
0.0516699
0.0147524
-0.0212426
-0.0585033
-0.0319569
-0.0134191
-0.00306437
0.00108696
0.00925243
-0.0040059
0.00505267
-0.00757204
0.00376285
0.00531789
-0.00513614
-1.81155e-06
-0.0135961
-0.00494158
0.00353377
0.0126738
0.0120648
0.00240212
-0.00531236
-0.0130228
-0.00526869
0.00707859
0.00112208
-0.0147055
-0.0105218
-0.00265739
0.0242218
0.0589284
0.0544433
0.0150859
-0.026396
-0.0478543
-0.0645026
-0.0396162
0.0168163
0.0134118
0.0128289
0.0319444
0.0354575
0.0768551
0.102684
0.0612573
-0.0343904
-0.130503
-0.134471
-0.0734209
0.0508855
0.20037
0.212137
0.139304
0.110752
-0.00186366
-0.0323317
0.0592914
-0.067668
-0.111271
-0.165108
-0.239425
-0.152143
0.00030187
0.115829
0.156602
0.121355
-0.00362522
-0.0868118
-0.136388
-0.0887892
-0.0407771
-0.0215272
0.0222852
-0.00854264
-0.00477979
0.0392978
0.0419136
0.0651676
0.0360677
-0.0231375
-0.0583634
-0.0611935
-0.0568807
-0.000214995
0.0254804
0.0357134
0.0304447
0.00651555
-0.00786626
-0.0225718
-0.00208578
-0.00474317
0.00397471
0.000887566
0.00106729
-0.0148545
-0.00249082
0.00391843
-0.00632061
0.0160786
0.0173911
0.015299
-0.0183837
-0.032951
-0.0285012
-0.0136616
0.034759
0.0495048
0.053874
0.0163948
-0.00954941
-0.0519626
-0.0398368
-0.010009
-0.0304298
-0.0229093
-0.0206842
-0.0458037
0.0303917
0.105187
0.146046
0.158806
0.0712177
-0.0751836
-0.211823
-0.203769
-0.0956917
0.0531588
0.205521
0.287168
0.169348
0.11048
0.0604501
-0.0733502
0.0524095
0.028183
-0.104391
-0.116922
-0.255919
-0.283773
-0.11783
0.0422685
0.17417
0.247589
0.170892
0.00548405
-0.142018
-0.194057
-0.166095
-0.0968909
0.0414076
0.0645491
0.0574812
0.0631474
0.00414063
0.000363403
0.0167548
0.00231826
-0.00478432
-0.0150271
-0.0343645
-0.0406851
-0.0323584
-0.0149673
0.00808369
0.0284596
0.0265164
0.00576714
-0.00789449
-0.0196471
-0.016654
-0.00929158
-0.000648766
0.0053057
0.00760669
-0.00122231
0.0120245
0.0203544
0.020701
0.00776869
-0.0225311
-0.038651
-0.0264873
-0.0122242
0.014799
0.0240012
0.0263369
0.0238163
0.00609368
0.0111772
0.0410802
0.0372993
0.00663732
-0.0178131
-0.139892
-0.180217
-0.114032
-0.0461188
0.160359
0.327286
0.318891
0.210259
-0.0192509
-0.261112
-0.40489
-0.331496
-0.107162
0.117993
0.340532
0.446576
0.260271
0.125184
0.0980601
-0.116346
0.0334741
0.0754514
-0.140471
-0.128578
-0.345269
-0.452545
-0.295188
-0.0829185
0.16562
0.418078
0.431656
0.252011
-0.0265222
-0.274253
-0.400832
-0.397571
-0.159246
0.0189063
0.185306
0.300435
0.190368
0.081192
-0.0220294
-0.12295
-0.11642
-0.0578841
-0.0220258
0.029683
0.0529555
0.0381763
0.00727723
-0.0114582
-0.0159304
-0.0243872
-0.0158899
0.00269512
0.00325561
0.00934929
0.0205265
0.00734309
0.00588265
0.00476803
-0.00529317
-0.0211539
-0.0153241
-0.0130771
0.00281958
0.0158916
0.0253482
0.0496654
0.0351177
-0.015141
-0.0514469
-0.0687401
-0.0746543
-0.0190258
0.0679597
0.137174
0.165145
0.12309
-0.0307961
-0.165294
-0.258385
-0.325686
-0.157211
0.0511552
0.232654
0.445525
0.411584
0.217171
-0.0440424
-0.312531
-0.460344
-0.424037
-0.164274
0.103777
0.286889
0.451949
0.372207
0.135442
0.1621
-0.0246871
-0.0963455
0.140534
-0.0883515
-0.125885
-0.202323
-0.450526
-0.415387
-0.228111
-0.020133
0.273133
0.466348
0.411609
0.229609
-0.0731434
-0.314585
-0.47001
-0.382043
-0.161733
0.0259105
0.263491
0.317346
0.222453
0.110942
-0.0416376
-0.148063
-0.147883
-0.114449
-0.0341096
0.0360456
0.0613938
0.0567956
0.0376497
0.00700482
-0.0289382
-0.0356628
-0.0250458
-0.0285677
0.000632365
0.00602293
0.0161289
0.02294
0.0231517
0.0128963
-0.0129303
-0.0207865
-0.0307107
-0.0183152
-0.0104671
0.000949
0.017184
0.0328042
0.0352734
0.0250684
0.0065844
-0.0376079
-0.0623473
-0.0748494
-0.0515264
0.0360812
0.121467
0.156133
0.170947
0.0919962
-0.0973726
-0.228156
-0.316508
-0.326114
-0.109832
0.145068
0.334332
0.54033
0.419422
0.173175
-0.143423
-0.421736
-0.548717
-0.42031
-0.0992356
0.198197
0.397549
0.538141
0.370253
0.0988606
0.137137
-0.113278
-0.0565991
0.165329
-0.0990126
-0.0841049
-0.252817
-0.527237
-0.460183
-0.28251
-0.0164126
0.331315
0.53987
0.487676
0.250463
-0.0846606
-0.353538
-0.531201
-0.432154
-0.206723
0.0177671
0.288981
0.340637
0.250187
0.151881
-0.0416202
-0.160711
-0.155674
-0.139221
-0.0677734
0.0115425
0.0545678
0.0563804
0.047461
0.017605
0.00176934
-0.0188165
-0.0315831
-0.0342616
-0.029074
-0.0202273
0.0111846
0.0411653
0.0523199
0.0412178
0.0192836
-0.0122563
-0.036817
-0.0312837
-0.0302847
0.00616963
0.0302429
0.0251233
0.036739
0.0336075
0.0197746
-0.00518616
-0.0191505
-0.0457601
-0.0513121
-0.040303
-0.00338326
0.0567176
0.116335
0.13484
0.117001
0.0342678
-0.12676
-0.210865
-0.277636
-0.269989
-0.0324976
0.15786
0.335246
0.472762
0.330461
0.097207
-0.17171
-0.395906
-0.478126
-0.327156
-0.0306287
0.212261
0.385066
0.472497
0.286002
0.0400649
0.083419
-0.136496
-0.0336405
0.151771
-0.0649693
-0.0474713
-0.221975
-0.469733
-0.413353
-0.257365
-0.0227053
0.28139
0.471876
0.43254
0.227736
-0.0571517
-0.294433
-0.469295
-0.350611
-0.189764
-0.00125891
0.235079
0.277086
0.232517
0.14697
-0.0228496
-0.101951
-0.11822
-0.1086
-0.0718615
-0.0149981
0.0280323
0.03835
0.0424554
0.0432069
0.0229026
0.0136074
-0.0207836
-0.0493373
-0.0492813
-0.0462242
-0.0144949
0.0275248
0.0480512
0.0697441
0.0479223
0.0104917
-0.0375098
-0.0579442
-0.0715354
-0.0483856
0.00300601
0.0459494
0.0602858
0.0597289
0.0389669
-0.00136779
-0.0242445
-0.0445421
-0.0548245
-0.0551959
-0.03276
-0.00819896
0.0364604
0.101515
0.137642
0.11887
0.0849088
-0.0245781
-0.19229
-0.243418
-0.29243
-0.200957
0.0631592
0.243774
0.413324
0.466019
0.259647
-0.0145592
-0.301241
-0.460458
-0.469984
-0.248894
0.098684
0.295003
0.45581
0.494529
0.215143
0.0372542
0.0670859
-0.175165
0.0495678
0.132745
-0.0915554
-0.0247634
-0.288739
-0.486594
-0.404627
-0.257693
-0.0270318
0.301022
0.445483
0.403954
0.210442
-0.0366106
-0.280404
-0.433903
-0.325399
-0.230965
-0.0111711
0.191629
0.211204
0.217188
0.153299
0.0090181
-0.0613115
-0.0862971
-0.104088
-0.0728726
-0.0277288
-0.0209656
0.0197636
0.0269546
0.0337742
0.02427
0.023823
0.00601976
-0.0242482
-0.041645
-0.0468057
-0.0316644
-0.00197891
0.0150336
0.0351812
0.0450769
0.0379181
0.000302081
-0.0194901
-0.0325231
-0.0316203
-0.0200355
-0.00358702
0.0207537
0.0331637
0.0282964
0.0274641
0.00986895
-0.00520537
-0.0222633
-0.0238582
-0.0257699
-0.0195234
-0.014453
0.0196844
0.0304925
0.0547105
0.0794342
0.0469189
0.0217459
-0.0307392
-0.117537
-0.150424
-0.130944
-0.0934881
0.0419173
0.182305
0.222205
0.286369
0.168756
0.0061714
-0.171941
-0.271123
-0.259038
-0.19144
0.0585241
0.205945
0.250717
0.352758
0.244935
0.00359923
0.0778062
-0.0570819
-0.100315
0.150038
-0.039501
-0.0435542
-0.0562917
-0.303339
-0.310524
-0.226985
-0.173714
0.0404549
0.218455
0.233303
0.223572
0.0990704
-0.0595469
-0.200517
-0.216862
-0.201056
-0.127523
0.0182485
0.0796515
0.121631
0.125796
0.0767826
0.00917111
-0.0012922
-0.0513475
-0.0492305
-0.0234281
-0.0301875
-0.023038
-0.00229623
0.00143618
0.010239
0.0144195
0.0216562
0.00659928
-0.00698975
-0.0143344
-0.0235963
-0.0155758
-0.0168334
-0.00446665
0.00412418
0.0114112
0.0300727
0.0108272
0.000473853
-0.00773046
-0.00951672
-0.0110973
-0.0202473
0.00320335
0.0232349
0.0255934
0.022102
0.0264967
0.0136477
-0.013439
-0.0243179
-0.0284706
-0.0126799
5.61586e-06
0.0159701
0.0342248
0.0334834
0.020937
-0.0120989
-0.0208647
-0.0213115
-0.0312423
-0.00340594
0.00604123
-0.0235654
0.000434868
-0.00855152
-0.0335121
0.0232201
0.0475098
0.0632059
0.110212
0.0834641
0.0164413
-0.0666979
-0.115609
-0.144852
-0.114581
0.0573813
0.118105
0.206292
0.281092
0.149137
0.0259264
0.0881598
-0.0769272
-0.0522352
0.120795
-0.0508324
-0.0446801
-0.0768405
-0.262125
-0.229948
-0.129513
-0.0908251
0.0318764
0.135937
0.0780456
0.0506971
-0.0122534
-0.0401859
-0.039712
-0.0164347
0.0128082
-0.0215448
-0.0340402
-0.0463408
-0.0696175
-0.0362722
0.00908562
0.0355823
0.04923
0.043543
0.0114731
-0.00924551
-0.0219254
-0.0219198
-0.0137016
-0.00273269
-0.000257019
-0.00257586
-0.0146747
-0.0122836
0.00516458
0.0126819
0.00927598
0.00756527
0.00725569
0.00769056
-0.0086129
-0.00336531
-0.011153
-0.0101548
-0.00121244
-0.00727962
0.00641707
0.00735453
0.0104241
0.00334211
0.0135294
0.00747598
0.00284178
0.00466732
0.00165697
0.00367968
-0.00222186
-0.00730318
-0.0121667
-0.0038225
0.0137098
0.00272141
0.0139045
0.00798408
0.00091103
-0.00539984
-0.0105412
-0.000519191
0.00167901
0.00254767
-0.00105033
-0.00827608
-0.0118425
0.0069118
0.0132375
0.0200371
0.0423621
0.0241626
-0.00513418
-0.0159186
-0.0234997
-0.0233497
-0.0131103
0.00372727
0.00830184
0.0032683
-0.00745231
0.0272766
0.0257831
0.0503693
0.090465
0.0612595
0.035271
0.0427659
0.00918232
-0.0287482
0.0209836
-0.0203634
-0.0541931
-0.0216613
-0.0451038
-0.053352
-0.0611653
-0.0465224
-0.0498877
-0.0455368
-0.0324358
-0.0336482
-0.0331759
-0.0267588
-0.0194043
-0.0244841
-0.021142
-0.0153646
-0.00788858
-0.0127987
-0.00813142
-0.0142264
-0.00279477
-0.00501663
-0.0123198
-0.0089826
-0.00505316
-0.00684725
-0.00412585
-0.00572524
-0.013245
-0.00458207
-0.00998191
-0.00501926
-0.0132904
-0.00385943
-0.00906371
-0.0023621
-0.0106382
-0.00697683
0.00768691
-0.00233136
0.00220191
-0.00194762
-0.00104084
0.00157691
-0.00658976
0.000918307
-0.00692755
-0.00453395
-0.000806682
-0.000256778
-0.00474041
-0.00444078
0.00733199
-0.00564463
-0.00178694
0.00340679
-0.00510113
0.00691407
0.00316838
0.00459877
0.0068583
0.0123381
0.0152305
0.0153009
0.00914349
0.0105513
0.0114629
0.0123131
0.0045504
0.00892626
0.00214915
0.000721132
0.0135845
0.0114164
0.00791339
0.00401297
0.0105366
0.0126505
0.0205417
0.0204051
0.0231102
0.0304827
0.0240082
0.0367174
0.0317007
0.0426367
0.041406
0.0518568
0.0450095
0.0408837
0.0506623
0.0451692
0.0328352
0.0383572
0.017834
0.00454364
0.000684204
-0.0083795
-0.0262455
-0.0368837
-0.0438605
-0.0516774
-0.0462569
-0.0518069
-0.0460026
-0.0392915
-0.0377146
-0.0288005
-0.0356341
-0.0348097
-0.0238398
-0.0168945
-0.0171513
-0.0141398
-0.0108286
-0.0112486
-0.0013893
-0.0109282
-0.0152733
-0.0126225
-0.0134604
-0.010292
-0.00569325
-0.0143388
-0.00200076
-0.00227416
-0.00247711
-0.00883749
-0.01379
-0.00232713
-0.0055179
-0.000967504
-0.00754512
-0.00539597
0.0030771
0.00115777
-0.0029297
0.00498369
-0.00650722
0.00402943
-0.0065759
0.0062139
0.00336318
-0.00453433
-0.00505939
-0.00430696
-0.0063493
0.00209561
-0.00177931
0.000867052
-0.00153975
0.00471006
0.00683403
0.00323276
0.00189032
0.00371775
0.00331522
0.0133973
0.010189
0.00312127
0.00249371
0.0150079
0.00138008
0.00403124
0.00661736
0.0146241
0.00157685
0.00983784
0.00930606
0.00259924
0.0125585
0.000180207
0.00413021
0.0190501
0.0176595
0.00826014
0.0251281
0.0220515
0.0185548
0.0249175
0.0294932
0.0374757
0.040357
0.0501524
0.0398604
0.049671
0.0508361
0.0410834
0.0310573
0.0285802
0.0274946
0.0137046
0.00362552
-0.00964432
-0.0261157
-0.0259089
-0.0313049
-0.0437316
-0.0425739
-0.0532555
-0.0405199
-0.0392752
-0.0352457
-0.0340697
-0.0278558
-0.0322446
-0.021275
-0.0185825
-0.0306414
-0.0214868
-0.0116392
-0.0211705
-0.00479955
-0.0140912
-0.00162924
-0.00254714
-0.00706632
-0.0129279
-0.00921019
-0.00589497
-0.00800154
-0.0133164
-0.0101951
-0.00770143
-0.00819738
-0.0068173
-0.00278607
-0.0116726
-0.0125524
-0.00322361
0.00661424
0.000416416
0.00301566
7.02559e-05
0.000250463
0.00438067
0.000174981
-0.00542134
-0.00491314
0.00471111
-0.00424519
-0.00119422
0.000467442
0.0067048
-0.00233117
0.00701808
0.00290694
0.00400766
-0.000584863
-0.00401234
0.00606329
-0.00163911
0.00368526
0.00792407
0.00612478
0.00199836
0.00785792
0.01275
0.0100969
0.00204784
0.00482783
0.00101365
0.00202171
0.000261516
0.0152499
0.0110119
0.00794999
0.00335
0.00986513
0.0118459
0.00876734
0.00913373
0.0109028
0.0302713
0.0168528
0.035309
0.0367217
0.0350924
0.0402972
0.0409828
0.0435588
0.0498525
0.0439575
0.0514598
0.0458954
0.0279483
0.0357507
0.0120495
0.00523217
0.0024461
-0.00922648
-0.0372828
-0.0327544
-0.0416441
-0.0412276
-0.0459639
-0.0536456
-0.0456432
-0.0490145
-0.0333356
-0.038757
-0.0359182
-0.0234551
-0.0277003
-0.0211426
-0.0284271
-0.0217223
-0.00854959
-0.0247873
0.0401351
0.013135
-0.0339615
-0.00696605
-0.000902758
-0.0102938
-0.0298644
0.00131552
-0.00806357
-0.0138171
-0.0137112
0.00679073
-0.00636819
-0.0198242
-0.0227483
-0.0217347
-0.0274649
-0.0194515
0.050062
0.0300662
-0.0239993
0.0336143
0.0279755
-0.0144421
-0.0211787
0.0344667
0.00660978
-0.0251344
-0.000529733
0.00377154
-0.0137704
-0.0251896
0.00735571
-0.00592502
-0.00887788
-0.00553705
0.0151646
0.0201128
0.00399269
0.00868516
0.0211801
0.00997373
-0.000297978
0.00214813
-0.00707835
-0.00560142
-0.0151
0.00527141
0.00280345
-0.0044008
-0.0115348
0.0125894
0.00233465
-0.00774516
0.00776143
0.0183549
0.0104036
0.0137111
0.0235762
0.0184049
0.0199385
0.0268927
0.0331132
0.0189847
0.0321198
0.036918
0.0454558
0.052305
0.0265073
0.0586584
0.052222
0.0209026
0.0380932
0.0166301
0.0389247
0.00930073
-0.00277156
0.0209917
-0.00849488
-0.0204559
-0.0166516
-0.028605
-0.0528024
-0.0457939
-0.0431874
-0.0462197
-0.0451579
-0.0430808
-0.0396218
-0.0252601
-0.0426426
-0.0354204
-0.016145
-0.0299153
-0.0318491
-0.00123754
-0.0149145
-0.0082885
-0.0138256
-0.0141648
-0.0173078
-0.021067
-0.0278858
0.00104625
0.01102
-0.00478187
0.00511819
0.0135437
0.00794229
-0.0304136
-0.00963827
-0.0145868
-0.0112356
-0.0150185
-0.010181
-0.0233502
-0.0233434
-0.00783004
-0.0282348
0.0364324
0.00363179
0.0039522
0.0223571
0.0345437
0.00717283
0.00152631
0.0360149
0.00611916
-0.0112264
-0.0122822
-0.0219928
-0.0109893
-0.0220983
-0.0318918
0.0200186
0.0116002
0.0127265
0.0128915
0.0299442
0.0271726
-0.0060992
0.0164137
0.00370968
-0.00518994
-0.00278722
-0.00907798
-0.000608345
-0.02054
0.00300783
0.00436154
0.00779242
0.0224342
0.0204299
0.024299
0.0276383
0.0347491
0.0280896
0.0272483
0.0182588
0.0266001
0.0260636
0.012238
0.021329
0.0272771
0.0217139
0.0325878
0.0336341
0.0446541
0.0476241
0.0837501
0.105046
0.105236
0.0980783
0.0729362
0.0273417
-0.00714978
0.00108756
-0.00134147
-0.0479475
-0.102299
-0.15664
-0.184875
-0.140691
-0.113803
-0.0788433
-0.0409823
-0.0451983
-0.0380255
-0.0132434
0.00726766
0.0443946
0.0641759
0.0518936
0.014397
-0.0198481
-0.0186906
-0.0118228
-0.00730806
0.00429214
-0.0139892
-0.0321054
-0.025417
-0.0137483
0.0111603
0.019822
0.0235317
0.0183417
5.06318e-05
-0.00127541
0.00586818
0.00858404
0.00383993
0.000449541
0.000490018
-0.00808356
-0.00315753
-0.00986633
-0.0132358
-0.0017425
-0.0124126
-0.00842007
-0.00566512
-0.00232079
-0.00726497
0.00497305
-0.00470568
0.00706751
-0.00222635
0.0148576
0.00198005
0.00787442
0.00898692
0.00746567
0.00398425
0.000693193
0.00574827
-0.00658687
-0.00250102
-0.0096508
-0.0163152
-0.0176566
-0.0113406
-0.00511206
-0.0144655
-0.0210461
-0.0144502
-0.00422241
0.0177095
0.0387427
0.040056
0.0330383
0.0352988
0.0115587
0.00944162
0.011602
0.0092321
0.0158772
-0.0117229
-0.0459174
-0.0732441
-0.0728002
-0.0375003
0.00277412
0.0481881
0.0537788
0.0477825
0.0744466
0.102021
0.172064
0.213661
0.24472
0.243444
0.156289
0.0718501
0.00592258
-0.00137982
0.0146141
-0.0167253
-0.105154
-0.215796
-0.267791
-0.25403
-0.219931
-0.143079
-0.0867291
-0.0425383
-0.0342994
-0.0448302
-0.0185281
0.042803
0.0870882
0.109698
0.0806701
0.0420329
-0.0109957
-0.0345378
-0.0615613
-0.0608681
-0.0473679
-0.0539548
-0.0797116
-0.0893624
-0.0746698
-0.0535668
-0.00289185
0.0230038
0.039546
0.0417557
0.0428094
0.046339
0.0407926
0.0407756
0.03432
0.0208467
0.00188186
-0.00981527
-0.0158775
-0.0352833
-0.0338031
-0.0256779
-0.0296488
-0.0290546
-0.0170274
-0.0123082
-0.0110488
-0.000522718
0.00115376
0.0161729
0.0251957
0.0221229
0.0311202
0.0248895
0.0292486
0.0259063
0.0212887
0.0147873
-0.00638586
-0.0159672
-0.0250989
-0.0492445
-0.0504659
-0.0315891
-0.0458344
-0.0500597
-0.0482755
-0.0278961
-0.000432985
0.0446209
0.079602
0.122822
0.116752
0.0827196
0.063507
0.057572
0.0975023
0.0929011
0.0264068
-0.0388524
-0.135406
-0.158207
-0.172564
-0.0726449
0.0284391
0.0650065
0.0221557
0.00950139
0.103221
0.286376
0.355892
0.410941
0.367426
0.185429
0.0612255
-0.0917804
0.0730263
0.0143231
-0.158629
-0.319538
-0.43788
-0.368486
-0.318498
-0.127495
0.00186587
-0.020031
-0.0800934
-0.0196014
0.0998734
0.212856
0.150317
0.0972076
-0.0184025
-0.12499
-0.102867
-0.0794985
-0.0391052
-0.118384
-0.138989
-0.109948
-0.0564014
0.0147321
0.0452766
0.0356816
0.0174448
0.0134905
0.036165
0.0445942
0.0177903
-0.00722934
-0.0273735
-0.0278065
-0.0219453
-0.0121108
-0.0133198
-0.0205992
-0.0153991
-0.00615561
0.00490477
0.00163192
0.00926171
0.0124127
0.00456805
0.00869719
0.00552859
-0.00424455
-0.014874
-0.00969073
-0.0144517
0.00770408
0.00170159
-0.00360414
0.00370217
0.0107565
0.0108452
0.01393
0.0133126
0.00477066
0.00601356
0.0170244
0.0390994
0.0355094
0.00279355
-0.0164818
-0.0283788
-0.0135436
0.0217521
0.000362178
-0.0351727
-0.0532506
0.00466736
0.0580291
0.162358
0.157636
0.130813
0.019387
0.049436
0.163623
0.076373
-0.00149184
-0.174139
-0.227857
-0.175014
0.03215
0.186417
0.0378952
-0.0504542
0.230557
0.321566
0.543778
0.394574
0.218566
-0.0367258
-0.149371
0.233675
-0.121603
-0.226737
-0.503623
-0.454455
-0.291559
-0.11942
0.079283
-0.120635
-0.157885
0.0560777
0.192429
0.21663
0.121383
-0.053404
-0.11479
-0.147736
0.0161068
-0.0769643
-0.152782
-0.156386
-0.113924
0.00535922
0.0239564
0.0533903
-0.00306448
-0.0293016
0.0154717
0.032496
0.00182795
-0.00917428
-0.0451404
-0.0383664
-0.00472965
0.00498261
-0.012025
-0.0116628
-0.00032388
0.000689063
0.00535642
-0.00638191
-0.014567
-0.00421759
0.00256417
0.00644732
0.0016198
0.00245258
-0.00644573
0.0075663
0.00396981
-0.00683273
-0.00355263
-0.00241033
0.00571217
0.00484773
0.000905172
0.00665549
0.0026405
0.00378273
0.0107595
0.0122707
0.00655266
-0.0110351
0.00558615
0.0157659
0.0448426
0.0295918
-0.00625821
-0.0264996
-0.0296407
0.0108826
0.02203
-0.0273282
-0.0487699
-0.0191318
0.0424592
0.132835
0.11819
0.111928
-0.00480051
0.0655698
0.135892
0.0683815
-0.0259892
-0.170921
-0.181066
-0.11835
0.0668233
0.14903
-0.00430242
-0.00433462
0.214208
0.278051
0.454924
0.254744
0.169866
-0.113933
-0.0469349
0.165846
-0.14039
-0.202729
-0.434599
-0.312963
-0.210818
-0.0315863
0.0417155
-0.126263
-0.081056
0.0833545
0.147823
0.156881
0.048168
-0.0408855
-0.0942298
-0.0977825
0.00833435
-0.0789767
-0.112889
-0.127487
-0.0510645
0.0058396
0.0328781
0.0436376
-0.0138591
-0.0228103
0.0126662
0.0182524
-0.0047414
-0.0219143
-0.0310821
-0.0140845
-0.0018244
0.0150465
-0.00507869
-0.0140564
-0.00262496
0.00286873
0.00699269
-0.0125636
-0.0115119
-0.00960067
0.001552
-0.00324851
0.000305829
-0.00333672
-0.00472264
0.000295886
0.00766908
-0.00285433
0.00282674
-0.00011738
-0.00612598
0.0128274
0.0084928
0.00564646
-0.00312387
0.00218735
0.00111783
0.00819357
0.00278773
-0.00538745
0.0131721
0.0200689
0.0266417
0.0106479
-0.0077415
-0.0170089
-0.00983555
0.000872174
0.00639213
-0.0359042
-0.0223171
0.0014745
0.065332
0.0979961
0.0881184
0.0481521
-0.00311873
0.0904869
0.0657738
0.0304045
-0.0660752
-0.101636
-0.0957962
-0.0241583
0.058239
0.0598837
-0.040446
0.0652435
0.145511
0.210537
0.227383
0.0877736
0.0736891
-0.0986779
0.0714073
0.019817
-0.0950146
-0.144151
-0.21105
-0.126538
-0.115846
0.00442536
0.0180805
-0.042383
-0.0223757
0.0321937
0.0521128
0.0783979
0.0166783
-0.0144123
-0.0560263
-0.0687035
-0.0145573
-0.0284352
-0.0233597
-0.0458747
-0.0169724
-0.0123443
0.00534688
0.0219686
0.0146583
-0.00580981
-0.0111973
-0.013529
0.00653984
0.00217383
0.00506978
-0.00267172
-0.00417676
-0.0140123
-0.00538819
0.00100394
0.00385946
-0.00295375
0.00627268
0.00183722
-0.000941895
-0.0058468
0.00354561
0.000426876
-0.00210945
-0.00610312
-0.00670642
0.00473777
0.0116291
0.00885618
0.00795365
0.011929
0.00979726
0.00811099
0.011339
0.0173155
0.0107987
0.0211273
0.0081257
0.0197993
0.00639265
0.000280582
0.0045937
0.0181062
0.0134899
0.0117423
0.00923549
0.0174208
0.0140943
0.00891896
0.0207995
0.0139277
0.0151137
0.0207148
0.0215934
0.0150158
0.0161074
0.0143446
0.0154086
0.0241071
0.00342383
0.0110718
0.0117088
0.0102402
0.0211517
0.00324278
0.00970749
0.00110996
0.00305209
0.0151106
0.00933356
0.00812145
0.0102953
0.023117
0.0126933
0.00851659
0.0177601
0.0123719
0.0133758
0.0249873
0.0142816
0.0205542
0.00688759
0.0136976
0.00785084
0.0113965
0.00407139
0.0174658
0.0113627
0.0124082
0.00164211
0.00551928
0.0221274
0.00682524
0.0032504
0.00529572
0.00565477
0.0169938
0.00330152
0.00634827
0.0119717
0.0123454
0.00888891
0.0152816
0.0155621
0.0201558
0.00725431
0.0129923
0.00147878
0.0107143
0.0048793
0.0034697
0.0123887
0.00218043
0.000604257
0.00796598
0.00542499
0.0115145
0.0110264
0.0116299
0.0182226
0.0181273
-0.00427723
0.0146505
0.0102184
0.0141753
0.0166636
0.00680758
0.00229842
0.0120059
0.0131159
0.000664087
0.0080228
0.00185248
0.00997393
0.0125173
0.00462653
0.001816
0.00258066
0.00483688
0.00945686
0.00732883
0.00906027
8.60184e-05
0.0206403
0.012024
0.0102177
0.0103167
0.0217131
0.00252868
0.0122426
0.0158533
0.00500572
0.00664783
0.0121671
0.0110387
0.010112
0.00561046
0.00315424
0.008809
0.00254695
0.0136004
0.0121967
0.000912614
0.00550612
0.014395
0.0219247
0.014231
0.011131
0.0183853
0.00812178
0.00960056
0.0125629
0.00193832
0.00540801
0.00229279
0.0122252
0.0128294
-0.00246042
0.0107165
0.00672709
0.0100016
0.00612763
0.00109441
0.0192217
0.0226964
0.00633914
0.0165576
0.0229809
0.00863681
0.0154444
0.0177428
0.00649291
0.00410491
0.00476899
0.0127918
0.0146443
0.00136238
0.00612773
-0.00474962
0.00481832
0.00739898
0.00448393
0.0139408
0.0135177
0.014826
0.022664
0.0200484
0.00881659
0.00353046
0.0138471
0.0123044
0.00708114
0.00381983
0.00416927
-0.00632888
0.00807089
0.00473412
0.000268949
0.0103809
0.00823947
0.00364177
0.00469883
0.00724578
0.0208462
0.00978713
0.0106997
0.000701986
0.015097
0.0137659
0.012493
0.0081201
0.0187535
0.0113714
0.01322
0.010279
0.0122173
0.00987342
-0.00333767
0.00113555
0.013965
0.0037526
0.022221
0.00569232
0.000190022
0.00631765
0.00741206
0.00337796
0.00281857
0.0091577
0.00245948
0.00993655
0.0108214
0.0107619
0.0130009
0.00398989
0.0158467
0.0206157
0.0179036
0.0092921
0.0184064
0.0167822
0.0120326
0.00909898
0.00874602
0.01323
0.0116669
0.00192873
0.00900281
0.000659028
0.00520357
0.00626823
0.00204675
0.000389992
-0.0105614
0.00427166
0.00809149
0.0122608
0.0214358
0.00625084
0.0187369
0.0190058
0.0138829
0.0221224
0.0102603
0.030463
0.00670101
0.0197953
0.0140785
0.0170263
0.0177283
0.00181758
0.00783149
0.00482058
0.0129407
0.000686403
0.0198097
0.00202198
0.00454907
0.00901447
0.00338401
0.00779829
0.00893384
-0.000357014
0.0111475
0.00236082
0.000301199
0.000491222
-0.000943066
0.0142209
0.00984696
0.00491359
0.0218232
0.00877883
0.0109634
0.0217849
0.0247948
0.0300438
0.0185298
0.0188726
0.0162326
0.0186323
0.0124206
0.0153231
-0.00665438
0.0131302
0.0144772
-3.25963e-05
0.0131974
-0.00614353
-0.0119667
0.0125399
-0.0023049
0.0106506
0.00141497
0.0189656
0.0193556
0.00104223
0.0208178
0.0134054
0.0101623
0.00834222
-0.000910817
0.0023222
0.0135761
0.00420322
0.0108217
0.0133301
0.00503335
0.0272382
0.00827381
0.0146004
0.0238748
0.0183473
0.0124129
0.0279964
0.00180918
0.0147499
0.0154363
0.00423823
0.0140121
-0.0046946
0.00431987
-4.80506e-05
0.00775024
0.0166841
-0.0146807
0.00421877
0.0143315
-0.000871155
0.00737201
0.0219328
0.0128979
0.014993
0.0199065
0.010722
0.0117489
0.0304643
0.00573752
0.0150285
0.0140645
0.00158653
0.0049553
-0.0098199
0.0010605
-0.0175267
0.0288042
0.0299017
0.00427218
0.0187494
0.0032129
0.0164103
0.0257706
0.0293077
0.0185919
0.016287
0.0269376
0.0206006
0.00855846
0.00465823
0.00570046
0.00326242
-0.00658801
0.00357427
-0.0113393
0.00325374
0.00557594
-0.00410376
9.94561e-05
0.0109212
0.00874736
0.0137807
0.0177631
0.00278113
0.00962959
0.00249663
0.013092
0.017753
0.0302454
0.00104687
0.00804479
0.000225232
0.00446346
0.0107237
0.00602908
0.00259701
-0.0129549
0.0180511
-0.00402448
-0.0032013
0.00876941
0.00759705
0.0067259
0.0296018
0.0205268
0.00241703
0.0251619
0.0218127
0.00927887
0.0210278
0.0127324
0.0184699
0.0179945
-0.00670066
-0.00511412
0.00759311
0.00552515
0.0143376
-0.00318911
0.00235923
0.00900513
0.0132773
0.0165228
0.0119838
0.0206421
0.0154049
-0.00179896
0.00128903
0.00982407
0.0057539
0.0108506
0.00390522
-0.00694042
0.00651197
-0.00572948
-0.00456556
0.00676065
0.0109252
-0.00907687
0.00425101
0.031155
0.0235025
0.00341595
0.0121633
0.0181921
0.0204513
0.0387363
0.00185431
0.0276068
0.0174429
0.0119401
0.0189297
0.0122246
-0.0107383
-0.00276116
0.00945424
0.00467404
0.00295118
0.0055482
-0.00740672
0.0106444
0.0221238
0.00341863
0.012188
0.0120332
0.0110071
0.00960114
0.0146241
0.0092892
0.00344337
0.0175041
0.026783
0.00905105
0.0140315
0.0325014
0.0117362
0.0127875
0.0231773
0.0152665
0.00528778
0.0118734
-0.00681955
-0.0122123
-0.0109591
-0.0519453
-0.0199187
0.00756899
0.0204591
0.0203602
0.0185612
0.0198502
0.0529301
0.0431802
0.030775
0.0269283
0.0354917
0.0420037
0.0130184
0.0239567
0.00746155
0.0106348
-0.00619399
0.0135609
-0.00179574
0.0062029
0.00961885
0.00627828
0.0167184
0.00616201
-0.00161327
0.00799298
0.0123439
0.014283
0.0184711
0.00639306
0.00311382
0.000127435
0.0128702
0.00682052
0.0114946
0.00669381
-0.00326187
0.00483529
0.0154797
0.0143477
0.00226246
0.00669857
0.00322785
0.00648302
0.000580291
-0.000299477
0.00898972
-0.0108227
0.0144333
0.0102085
0.00375569
-0.00546863
0.0115289
-0.0154946
0.0050449
0.0282222
-0.00302295
0.0255207
0.0218902
0.00731872
0.0106103
0.030659
0.0174734
0.0130586
0.0206276
0.010079
0.0226872
0.0102407
0.00683509
0.00550165
0.00217018
0.0174413
-0.00214208
0.0100938
0.0133378
-0.00465154
0.0038013
-0.00424103
0.00639379
-0.00755214
0.0215126
0.00421301
0.0104159
0.00453088
0.0108092
0.0120237
0.0104338
0.0165724
0.00130962
0.0136535
0.0124326
0.0231518
0.00628905
0.0171548
0.00177837
0.0224005
0.0214691
0.0097078
0.00864968
0.00538781
0.017975
0.0101989
0.0245466
0.0268091
0.00249992
0.0212316
0.0277147
0.00503915
0.0124916
0.0137294
0.00290667
0.01734
0.0197966
0.00029643
0.00257974
0.0141086
0.00636602
0.0114109
0.000873406
0.0211063
0.0156192
0.0297574
0.0215723
0.0166787
0.00857808
-0.0049563
-0.0151535
-0.0177817
-0.0232066
-0.0315272
-0.0367904
-0.0377073
-0.0244537
-0.0222835
-0.00484222
-0.0069843
0.0186134
0.0397032
0.0583074
0.0388529
0.0578677
0.0565096
0.0489574
0.0162065
0.00491561
-0.000172363
-0.0344012
-0.0468478
-0.0890877
-0.06315
-0.0465776
-0.0840277
-0.0548702
0.00407402
0.0349778
0.0102591
0.104933
0.122215
0.136864
0.166085
0.121529
0.145683
0.120063
0.122534
-0.0455616
0.0254967
-0.0019578
-0.138993
-0.125513
-0.14431
-0.131519
-0.181043
-0.136306
-0.117895
-0.0928032
-0.00323923
-0.0261986
0.0151408
0.0757611
0.097631
0.0625303
0.0634037
0.107766
0.0536175
0.0291114
0.0196759
-0.0179089
-0.0170828
-0.0607988
-0.0759523
-0.0704782
-0.0549252
-0.0554446
-0.0612273
-0.0214152
0.000642777
0.00936702
0.0200287
0.0363002
0.0394097
0.0481051
0.0366451
0.0367383
0.0248386
0.0038288
-0.00147735
-0.00852669
-0.0268669
-0.0347912
-0.0304327
-0.0385208
-0.0268333
-0.00471203
0.00297395
0.0197215
0.0191148
0.0386927
0.0349108
0.0374179
0.0260721
0.0165046
-0.00167013
-0.0138797
-0.0318853
-0.0412413
-0.0452094
-0.0544584
-0.0535083
-0.0512675
-0.0299695
-0.0139235
9.83157e-05
0.0263309
0.0576027
0.0703583
0.0580836
0.0952272
0.0954473
0.0767042
0.0350017
0.0268867
-0.00587938
-0.0555352
-0.0550205
-0.154408
-0.100905
-0.101551
-0.126704
-0.138035
-0.0319134
0.0517791
0.00648416
0.108826
0.216643
0.192725
0.307823
0.22334
0.248437
0.225824
0.242943
0.069173
-0.0805733
0.113875
-0.186857
-0.227731
-0.26076
-0.243674
-0.286356
-0.295586
-0.187833
-0.222452
-0.0401891
-0.00860632
-0.0393752
0.112086
0.161638
0.141356
0.114566
0.156936
0.125861
0.0522451
0.0586552
-0.0393038
-0.046055
-0.0787328
-0.115868
-0.13225
-0.0959717
-0.0869176
-0.0871124
-0.0553494
-0.0135937
0.00294843
0.0200327
0.0511387
0.0697177
0.0653049
0.0581439
0.054212
0.0409121
0.0278322
0.0115131
-0.0155007
-0.0273737
-0.0255012
-0.0422767
-0.0352817
-0.0424024
-0.0347806
-0.012301
0.00053028
0.0020297
0.016628
0.0373993
0.0438834
0.0441828
0.0437713
0.0271945
0.0249404
0.000218797
-0.0149102
-0.0293965
-0.0345158
-0.058366
-0.0691719
-0.0638239
-0.0646343
-0.0520555
-0.0259941
-0.0138538
0.00986722
0.0476148
0.100091
0.0791896
0.0932641
0.146673
0.130554
0.0953531
0.0399364
0.0572611
-0.0607315
-0.0433302
-0.142275
-0.206309
-0.13215
-0.179206
-0.209757
-0.17221
0.0297507
0.00602798
0.00307949
0.280503
0.247654
0.362847
0.419021
0.336698
0.372235
0.322598
0.338052
-0.131526
0.0661524
-0.0191705
-0.381359
-0.322519
-0.404029
-0.349763
-0.47016
-0.301862
-0.297628
-0.201126
0.043293
-0.061255
0.0814828
0.237052
0.223578
0.17819
0.17683
0.236217
0.0633455
0.076109
-0.0129756
-0.0810584
-0.0730877
-0.13451
-0.171658
-0.167414
-0.101749
-0.116657
-0.0952099
-0.0203094
0.0206584
0.0334239
0.0583298
0.068197
0.092556
0.0841203
0.0547828
0.0395198
0.0389062
0.00666933
-0.0142567
-0.0285838
-0.0333382
-0.0398061
-0.0366247
-0.0316128
-0.0363714
-0.0289864
-0.0143935
-0.0148478
0.00674017
0.020987
0.019263
0.0300944
0.0315276
0.0466236
0.0373779
0.0455462
0.0334072
0.025797
0.00730997
-0.0267306
-0.0419779
-0.0533448
-0.0802673
-0.0895335
-0.0942233
-0.0718961
-0.0650697
-0.0313534
-0.0153863
0.0358233
0.121519
0.126052
0.119061
0.200543
0.197285
0.149545
0.079673
0.109216
-0.0266602
-0.0718419
-0.119764
-0.29553
-0.198294
-0.232622
-0.274108
-0.290727
-0.0395368
0.0525126
-0.0641447
0.329017
0.339716
0.406886
0.579845
0.436624
0.497069
0.395827
0.479947
-0.0931772
0.01611
0.0550162
-0.488702
-0.38668
-0.500535
-0.433098
-0.565927
-0.39325
-0.355095
-0.298443
0.0679194
-0.0550013
0.0696858
0.285728
0.267956
0.209699
0.193282
0.271321
0.0853866
0.0762529
-0.00223189
-0.116112
-0.0670587
-0.160524
-0.187255
-0.182721
-0.104283
-0.114783
-0.0957889
-0.0272215
0.0171614
0.045115
0.0680252
0.0681427
0.0884622
0.08595
0.0569633
0.044241
0.0277302
0.00796105
-0.0130367
-0.018635
-0.0256982
-0.0446065
-0.038929
-0.02691
-0.0356184
-0.02461
-0.0169218
-0.0119603
-0.000362077
0.0143647
0.0126138
0.0104846
0.0294245
0.028055
0.03184
0.0302892
0.0173008
0.0182459
0.0187237
-0.00520535
-0.0208631
-0.0357609
-0.0505121
-0.058594
-0.0809325
-0.0543356
-0.0688287
-0.0378568
-0.0202536
0.0122483
0.0471385
0.099554
0.0833124
0.12199
0.159657
0.14079
0.0869236
0.0709032
0.0631546
-0.076265
-0.0465237
-0.172787
-0.195875
-0.154406
-0.214155
-0.238619
-0.157774
0.0557728
-0.028002
0.0700075
0.345112
0.245994
0.446148
0.397894
0.396269
0.352948
0.384635
0.216792
-0.142068
0.149228
-0.230408
-0.375227
-0.362855
-0.380801
-0.402152
-0.433329
-0.250936
-0.333066
-0.0631027
0.0207506
-0.0532251
0.155715
0.224343
0.205949
0.154418
0.207099
0.149882
0.0421875
0.0569728
-0.0730132
-0.0625193
-0.0903072
-0.142024
-0.147383
-0.113377
-0.0786177
-0.0984519
-0.0476015
-0.00116189
0.0230326
0.0316875
0.0579455
0.0624418
0.0708206
0.0618475
0.0366328
0.0268402
0.0159542
-0.00604609
-0.0198976
-0.0187619
-0.0176227
-0.0241203
-0.0241323
-0.0263763
-0.0207008
-0.00456464
-0.00941756
-0.00772659
-0.00270989
0.00655125
0.00180504
0.00979705
0.0293272
0.0195072
0.0237944
0.0263393
0.0195076
0.0236187
0.00515261
-0.0106137
-0.0286507
-0.0344613
-0.0478148
-0.0587011
-0.0649665
-0.0504185
-0.0494692
-0.0331855
-0.012804
0.0107189
0.0561433
0.0923978
0.0701805
0.12512
0.140161
0.129057
0.0664209
0.0797212
0.0358052
-0.0692941
-0.051081
-0.18611
-0.163358
-0.15289
-0.186387
-0.194235
-0.082806
0.0788865
-0.0428213
0.157639
0.311516
0.249277
0.4205
0.346662
0.370344
0.30163
0.363478
0.074529
-0.100181
0.117323
-0.291823
-0.303969
-0.353739
-0.340354
-0.379978
-0.349847
-0.236688
-0.288397
-0.0138916
-0.0155572
-0.0387876
0.160053
0.174356
0.160657
0.131695
0.184278
0.10301
0.0570365
0.0523681
-0.0754111
-0.0362886
-0.0698956
-0.127021
-0.140168
-0.0816059
-0.090661
-0.0718427
-0.0360339
-0.00893302
0.0113652
0.0324433
0.0351432
0.053614
0.0554937
0.0393644
0.0320255
0.017611
0.0104856
-0.00774455
-0.00333917
-0.0166412
-0.0195957
-0.0191224
-0.0236917
-0.0237549
-0.0088179
-0.0144207
-0.00700893
-0.00744576
0.00277153
0.0041386
7.69804e-05
0.00267739
0.0196198
0.0208351
0.0304821
0.0283072
0.0110547
0.0103592
0.00174385
-0.00124653
-0.0161564
-0.022864
-0.0278658
-0.0450133
-0.0499148
-0.0491833
-0.0338124
-0.02707
-0.0156961
0.00598472
0.0386048
0.0618073
0.0772832
0.0590415
0.101615
0.107233
0.0761369
0.0356083
0.0378427
0.00960791
-0.0775589
-0.0521948
-0.134995
-0.127371
-0.0993535
-0.130994
-0.111825
-0.0319432
0.0900126
-0.000284884
0.145821
0.242457
0.197381
0.317796
0.239627
0.256361
0.19495
0.250231
0.0352841
-0.0627574
0.0922887
-0.213376
-0.199009
-0.234109
-0.229976
-0.284675
-0.238663
-0.200969
-0.230893
-0.0130962
-0.0748055
-0.0332743
0.0793915
0.102724
0.0976497
0.0785098
0.138105
0.0755635
0.072863
0.0451579
-0.045258
-0.0125064
-0.0447607
-0.0841729
-0.091533
-0.0651352
-0.0713888
-0.0592881
-0.046456
-0.0260048
-0.00656321
0.0165004
0.0224851
0.0378341
0.0531298
0.0373897
0.0344157
0.0275032
0.0184572
0.0170747
0.00617144
-0.00249748
-0.00839344
-0.0161849
-0.0218681
-0.0173282
-0.0284204
-0.0192467
-0.010706
-0.00625171
-0.00718713
-0.00244583
0.00502122
0.00355525
0.00570252
0.00153337
0.00149963
-0.00693563
-0.00638882
-0.0052373
-0.00306806
0.00120829
-0.00728556
-0.000268137
0.00341012
-0.00180091
-0.00335185
0.00698257
-0.00637476
0.00302465
-0.00414576
-0.00248106
0.00767859
-0.0051114
-0.00737792
-0.00550585
-0.00355679
0.00106966
0.00206009
0.000629834
-0.00132603
-0.00598246
-0.00733614
-0.00608252
-0.00308505
0.00641783
0.00751625
0.00125454
0.00588675
-0.00348654
0.00699278
0.00704844
-0.00345253
-0.00226379
0.00648464
0.00571392
0.00478831
0.0036545
-0.00546741
0.00569251
-0.00556398
-0.00261067
0.00671213
-0.00262031
-0.00511779
0.00199264
0.00131163
-0.00505257
-0.00687687
-0.00428947
0.00747158
0.00451757
-0.00173414
0.00658261
-0.00361516
-0.00634588
0.00496131
0.0029119
-0.00330667
0.0059449
0.0067612
-0.00737955
-0.00486491
-0.000181027
-0.00672468
-0.0062583
0.0012255
-0.00311632
0.0028347
0.00723479
0.00646542
-0.00766128
0.00311531
0.00672149
-0.00351151
-0.00358485
-0.000944314
-0.000570296
0.0016758
0.00587094
-0.000811334
-0.00650318
0.00187859
-0.00719938
-0.0054299
-0.0050141
-0.00334468
0.00132221
-1.19073e-05
-0.000247595
-0.00674499
0.0068937
-0.00434477
-0.00510393
-0.00580743
-0.00150801
0.00398013
0.00271283
0.000674812
-0.00228882
-0.00638626
-0.00410173
-0.00616116
-0.0039732
0.00116807
0.000128259
0.00525989
-0.00760984
0.00213473
-0.00430557
-0.0016062
-0.000731138
0.00273133
0.00245097
-0.000783399
0.0052344
0.00406507
-0.00730203
-0.00589597
0.00681728
0.00197724
0.0064225
0.00461546
0.00362472
0.00399711
0.00688414
-0.00104883
-2.15697e-05
0.00147207
-0.00505437
-0.000418755
-0.00533599
-0.00585314
-0.00713965
-0.007049
0.00381826
0.00278781
0.00702824
-0.00430855
0.00249907
-0.00582316
0.00360457
0.00172358
-0.0068397
-0.00559094
0.00403959
0.00459215
0.00691419
-0.00585185
-0.00144459
0.00762955
-0.000134291
0.00737005
-0.00712688
0.00751876
-0.00457795
-0.00192994
1.45734e-05
0.0062585
0.00248669
-0.00255242
0.00587433
-0.00416642
-0.00280074
0.000849468
0.00244025
0.00621899
-0.000364882
0.00751532
0.00502326
0.00516536
-0.000451848
0.00299451
-0.00636363
0.000657174
-0.00436344
0.00583947
-0.00269587
-0.0052134
0.00660361
0.00705352
-0.00659439
-0.00752905
0.00220013
0.000870696
-0.00226578
-0.00639299
0.00535605
0.00448825
-0.00431251
0.00341786
-0.00286202
-0.000164448
0.00716873
-0.00591919
-0.00402039
-0.00340811
-0.00270517
-0.00663885
0.0039009
0.0031772
0.00662058
0.00136771
0.00329649
-0.000850881
-0.00687924
-0.005967
-0.00380601
-0.00751836
0.00482573
0.00398798
0.00588807
-0.00330846
-0.00343084
0.00418681
0.00380492
0.00442998
0.00419681
0.0073708
-0.00231107
0.00545544
0.003962
-0.00130325
0.00389627
0.00201866
0.00560417
-0.00494851
0.0036529
-0.00165879
-0.00319174
0.00419532
0.0039587
0.00123002
-0.00135656
0.00594353
0.0011861
0.00257442
-0.00452035
-0.00113185
-0.00304431
0.00201176
0.00455029
0.00340196
0.00270354
0.00386109
0.00408398
-0.00146783
0.00715481
-0.00286291
-0.00150397
-0.00389985
-0.00716354
-0.00372411
0.00744568
-0.00316827
0.00441922
0.00383601
0.00566876
-0.00610357
-0.00175974
0.00328703
0.00440012
0.000549082
-0.00402566
-0.00515701
0.00396264
-0.000492808
0.00640825
0.00728094
-0.006438
-0.00249206
-0.00225848
-0.00518469
0.00655522
0.00469136
-0.00636904
-0.00204794
-0.00561307
0.00594379
0.00262183
-0.000933293
-0.00131443
0.00412644
0.00182994
-0.00196
0.00448868
0.000633012
-0.00510027
-0.00724803
-0.0044446
0.00696024
-0.00245049
0.00210971
-0.00144691
-0.00524015
0.00374181
-0.00536669
-0.0071751
0.00176294
-0.00341458
-0.000182992
0.0064371
-0.00435915
0.00540454
0.0022029
-0.00214708
-0.00719548
0.00441755
0.000749594
0.0070337
0.00643657
-0.00417828
0.00206969
0.00592178
0.00651018
-0.00496588
-0.00527213
-0.000688468
-0.00402119
0.00756676
0.00548358
0.00713195
-0.00237974
-0.00684464
0.00530741
-0.00189544
0.00183084
0.00442577
0.00063647
-0.00760828
0.00655191
0.00608092
0.00739486
-0.00284915
0.00264431
0.00521156
0.00401484
0.00095426
0.00233716
-0.00746272
-0.00532385
-0.007132
0.00324177
-0.00544346
0.00099405
-0.00263145
0.00695042
-0.00276152
-0.00602478
0.00236017
0.00501185
0.00551576
-0.00668078
-0.00747248
-0.00217102
0.00769063
-0.00150822
0.00100357
-0.00300656
-0.00062131
-4.44742e-05
-0.00603347
-0.00169612
0.00587283
0.00455799
-0.0075531
0.00560338
5.43335e-05
0.00565919
0.00621565
0.00288127
-0.00412107
-0.00483931
-0.00615467
-0.00258101
0.00724061
0.00541045
0.00416869
0.00695475
-0.00606932
0.000994151
0.0047249
0.00453972
0.00227136
0.00165137
0.00702357
-0.00757301
0.00548634
-0.00416104
0.00542174
0.00209557
-0.0050199
-0.00487624
-0.00607626
-0.00774729
0.00739951
-0.00320157
0.00719467
0.00465429
0.000917196
-0.00588048
0.00420862
0.00449784
0.00692592
0.00754586
0.00303569
0.00534417
-0.00141372
0.00370677
0.00290525
-0.0076082
-0.00588104
0.00423107
0.00149098
-0.000745199
0.000325961
0.000605424
0.00618634
0.00612503
-0.00313513
0.00562038
-0.00513811
0.00199252
-0.0058039
-0.00408543
0.00197039
9.12819e-05
-0.00310267
-0.00290383
-0.0050524
0.00275388
0.00066113
-0.000875154
-0.00574582
-0.00211496
0.000797671
0.00239493
0.00756586
0.00705453
0.00471305
0.0011298
0.000332611
0.00201523
-0.00474256
0.00773428
0.00452206
-0.00095851
-0.00705908
0.00771643
-0.00760851
0.00562977
-0.00628321
0.00689047
0.0012341
0.00396614
0.00684184
-0.00698636
-0.00698171
-0.00733413
-0.00278377
-0.00334103
-0.00643868
0.00223045
0.00410191
0.000558588
-0.00269551
-0.00352153
-0.00372761
0.00706002
0.00465225
-0.0045134
0.0069453
0.00209862
0.00224235
0.00411325
0.00059238
-0.00566858
0.00133816
-0.00608781
0.00226955
0.000703947
-0.000922964
0.00369385
0.00156229
0.00417612
-0.0015833
0.000364739
0.00403125
-0.0017503
0.00609292
-0.00476169
8.64187e-05
0.00278596
-0.0022121
0.00620097
-0.00242613
-0.000420011
0.00521697
-0.0017373
-0.0070943
-0.00728038
0.00752609
0.0044872
-0.00213495
0.0059496
0.000212895
0.00322228
0.00320462
-2.5258e-05
0.00676817
0.00746103
0.00742553
0.00756895
0.00544678
0.00691552
0.00605405
-0.000463785
-0.00424958
-0.00515967
-0.00439409
-0.00362386
-0.00320606
0.00176211
0.00617301
0.00748627
0.00196479
-0.00168524
0.00662528
-0.00382217
0.000408239
0.00443257
0.00374065
0.000640964
0.0038795
0.00307286
-0.00258046
0.00741383
0.00377514
-0.00338442
-0.00130106
-0.00771483
-0.00605071
0.00397078
-0.00307721
0.00375176
-0.000306331
-0.00649598
0.00543208
-0.00390316
0.00421351
0.000492821
0.00649446
0.00483544
-0.00767818
0.000160173
-0.0048058
0.000734031
-0.000816941
0.00450887
-0.00366308
-0.00619805
-0.000183409
0.000474226
0.000945781
0.000719931
-0.00254481
0.00307218
0.00126985
-0.0062692
0.00470502
0.000157695
-0.0076195
0.00690061
0.0066097
0.00628329
0.00610031
0.00379515
0.00295873
0.00126084
-0.00695488
-0.00345253
-0.000860263
0.00249758
0.00662566
-0.00433234
0.00518171
0.00360278
0.00333712
-0.00245004
0.00361666
0.00249001
0.00641977
-0.000923925
-0.0042433
0.00724929
0.000138317
-0.00373412
0.00709068
-0.00324171
-0.00357982
-0.00755662
-0.0031891
0.00326179
0.00329889
0.00500012
0.00121897
0.00589369
0.00189351
-0.00616476
-0.0049088
-0.00722866
-0.00337988
-0.00691831
0.00132645
6.8974e-05
-0.00284752
-0.00277377
0.00513834
-0.0074194
0.00106657
-0.00750231
0.0047585
-0.00665652
-0.00510263
0.0024659
-0.00481181
0.00388591
-0.0031461
0.00206103
-0.00261873
0.00640306
-0.00761808
0.00483888
-0.00275537
-0.00262293
-0.00347426
-0.0046165
-0.00608515
-0.00773678
0.00381031
-0.000982898
-0.007474
-0.00667694
-0.00237753
0.00451415
-0.000740211
-0.00186649
0.00155311
-0.00101713
-0.00516628
0.00592277
-0.0042792
0.0070894
0.00182746
0.000495299
0.00732331
-0.00467192
-0.00517457
0.00271569
0.0067335
0.00607225
-0.00492141
-0.000749289
-0.000553968
0.00400887
-0.000481276
-0.00493432
-0.00768613
0.00128477
-0.000573478
-0.0064319
-0.00484472
-0.00200158
-0.00147829
0.00289376
0.00372739
-0.00269809
0.00512282
-0.00547664
-0.000498471
-0.00311207
-0.00277953
0.00603898
0.0062886
0.00329516
0.00439058
0.00703989
0.00175386
0.00469399
0.000827956
0.0054338
-0.000257114
0.0048761
0.00352721
0.00366107
0.000748012
0.00574458
-0.00463028
-0.000352604
0.00278284
0.00444963
0.00446479
0.000523162
0.0072922
0.00757014
-0.00685874
-0.00148433
-0.00472212
0.00228961
-0.00732882
0.00197622
-0.00679284
-0.00420718
-0.00603635
-0.00256361
-0.00322616
0.00635324
-0.000903394
-0.00133202
0.001748
0.00432537
-0.000710883
-0.00172932
-0.00340901
-0.000578479
0.00642417
-0.00188174
-0.0056248
0.00164586
0.00446348
0.00452929
-0.00193788
0.00524058
0.00656061
-0.00603604
-0.000285683
0.00598796
0.00112979
-0.00289476
0.00215909
-0.000470025
0.00180527
-0.00644514
-0.00180527
0.00316714
0.00145418
-9.15706e-06
-0.00446593
0.00767659
0.00696454
0.000966464
-0.00209149
0.00648841
0.00417026
-0.00383879
-0.00671463
0.00456452
0.000473658
-0.00653027
0.00696625
-0.00541597
0.00198337
-0.00298573
-0.00628804
0.00592869
-0.00130009
-0.00175983
-0.00194162
-0.00104842
0.00521919
-0.00725486
0.00278668
0.0032098
-0.00256592
-0.00160682
0.00193793
0.00365352
-0.00666204
-0.00213625
-0.00353495
0.0033136
-0.00577036
0.00372958
0.000303005
0.00734406
-0.0021372
0.00220573
-0.00612468
-0.00745245
-0.00158225
0.000544889
-0.00556119
0.00665423
0.00343158
-0.00625824
0.00673428
0.00554295
0.00725885
-0.000778775
-0.00254275
0.00633897
-0.00430772
0.0056033
-0.00261866
0.00693855
-0.00725852
-0.00131185
-0.00589665
0.00330947
-0.00445162
-0.00116562
-0.00124097
-0.00202836
0.00669004
-0.00315339
-0.00441692
0.00750528
-0.00408545
-0.00304814
-0.00623555
0.00199004
0.00321171
0.00242603
0.004762
-0.00100657
0.00375964
0.00522353
0.00340028
-0.00565175
0.000340363
0.00615068
-0.00264968
-0.00518242
-0.00468535
0.00585327
0.00131113
0.00649715
-0.00286161
0.00682826
0.00272983
0.00381974
-0.00606845
-0.00185146
-0.0062898
-0.00430823
0.00717329
-0.000275647
-0.000683525
0.00493122
-0.000614988
0.00101227
0.00131175
0.00748144
0.000274392
0.00246514
0.00136744
-0.00295292
-0.00145922
-0.00247688
-0.00468587
-0.00517896
0.0017942
0.00700339
0.00559042
-0.00646924
0.006886
-0.0034846
-0.00429798
-0.00380457
0.00263552
0.00449081
4.83447e-05
0.00334866
-0.0055689
0.00094207
0.00666565
0.00560375
-0.00530158
-0.00196656
-0.00221322
0.00145327
0.00615707
0.00767346
0.00191156
-0.00262867
0.0075493
0.00455936
-0.00419915
0.00731242
0.00478402
0.000432359
0.00253255
-0.00487903
-0.00648029
-0.00137802
0.00119149
0.00425808
0.00235942
-0.00408139
-0.00533617
-0.000445848
-0.00136953
-0.00639163
0.00518004
0.00686352
-0.00273988
-0.00127775
0.00216597
0.00158731
-0.00644027
0.000628142
-0.00219258
0.00494437
-0.0017953
0.00726839
0.00699789
-0.000479652
-0.00576645
0.00335293
-0.00735193
-0.00105922
0.00421584
0.0072819
-0.005649
0.00389714
0.00314859
0.000987069
0.00226976
0.00140382
0.00567116
-0.00637876
-0.00243139
-0.00754781
0.00469494
-0.00300865
-0.00741193
-0.00522889
0.00346511
0.00237882
0.000230632
0.00268099
-0.00703751
-0.00149879
0.00770642
0.00611155
0.00603307
0.00019269
0.00531596
0.00511332
0.00192074
0.00547353
0.00503401
0.00206609
-0.00525349
0.005031
-0.00759997
-0.00632832
4.55985e-05
-0.00651485
0.00549517
0.000102653
0.0037732
0.00618897
-0.00200882
0.00437359
0.00573389
0.003162
0.00227358
0.00728564
-0.00174404
-0.00733002
0.00200924
0.0033209
-0.00380289
0.00175647
-0.0010511
0.00490554
0.00442199
0.00366795
-0.00456364
-0.00257815
-0.00697716
-0.00657715
0.000115568
-0.00342053
-0.00389057
-0.00178762
-0.00564242
0.00525811
-0.00150676
-0.00698894
0.00216682
8.6047e-05
0.00145922
0.00677977
0.0069839
0.0039269
-0.00683369
-0.00649368
-0.00397064
0.00724641
0.0018733
-0.00564801
0.00478492
0.00549935
-0.00375138
-0.0037969
-0.00543728
-0.00715615
0.000788476
-0.0016475
-0.00428612
0.00538655
0.00310814
0.000390213
-0.00529563
-0.00279719
-0.00551813
-0.00536616
-0.00394253
0.003855
0.00509209
0.00283533
-0.00481396
0.00671119
0.00514822
-0.00461254
0.00751299
0.00549494
0.000904998
-0.00457336
-0.00503966
0.000968238
0.00139016
-0.00435254
0.0067203
-0.00483453
0.00467387
-0.00412917
-0.00697557
0.00519836
0.00111437
0.00430266
-0.00602743
-0.00525265
-0.00407787
0.00378964
-0.00738283
-0.00352146
0.00244285
0.00455237
0.00205854
-0.00720016
-0.00643716
0.0034816
-0.00418429
0.00502687
0.0040547
0.00328666
-0.000538372
0.000379877
0.00163813
0.00541943
0.00491391
-0.000964731
0.0011392
-0.00182782
-0.0040804
-7.98462e-05
0.00387519
0.00618985
0.00678563
-0.000177827
0.00592661
-0.00611145
0.00702704
0.00238324
-0.00497849
-0.00252218
0.00243257
0.00466638
0.00705217
-0.00464231
0.00696463
0.00430479
-0.000611818
0.00232616
0.00128541
-0.00131831
0.00182109
0.00158213
-0.000674864
-0.0075218
-0.00434323
-0.00163095
0.00708923
0.000727453
0.00412685
0.00309521
0.00601262
0.00293455
0.00655733
0.0073337
0.00478012
-0.00185745
-0.00530672
-0.00358221
-0.00108293
0.00259114
-0.00137116
-0.00100206
0.00322842
-0.00208067
-0.00528023
0.00453024
0.00508202
0.0063968
0.00212646
0.00569411
0.00296904
-0.000728189
-0.00519346
0.0020201
-0.00535196
0.00403811
0.00170561
-0.00113242
0.00565478
-0.000957955
0.00496617
-0.00686618
0.000805915
-0.00307083
-0.00463292
-0.00559922
0.00197489
0.000149558
0.00179004
0.00106514
-0.00430356
-0.0015301
0.00369965
-0.00161972
-0.00470527
-0.00540504
-0.00229541
-0.00308272
-0.00652986
0.000610257
-0.00481552
0.00422183
-0.00484842
0.00472461
-0.0014452
0.00563188
0.00586201
-0.00623315
-0.000112161
-0.000774869
0.00770452
0.00407943
-0.000577294
-0.00231661
-0.007134
0.00717526
0.00675702
0.00378521
-0.00582418
-0.00337896
0.000790762
0.00745977
0.00229898
-0.00682412
-7.42362e-05
-0.00459775
0.00107352
0.00354522
0.000323526
-0.00234639
-0.00370153
0.00617687
0.00411904
-0.000663854
0.0063599
-0.00658551
0.00318654
0.00558652
0.00187269
-0.00417364
0.00244588
0.000348722
0.00714271
0.00435693
0.00524269
-0.00170333
0.00297778
0.0060968
-0.00725436
0.00247247
-0.00512991
0.00441207
-0.00227473
0.00117365
0.00739548
0.0033432
-0.00602846
-0.00298179
-0.000634894
0.00482163
-0.00601302
-0.00479095
0.00357125
0.00650767
0.00297757
0.00588109
0.00285376
-0.00634337
0.00704044
0.00515051
0.0066693
-0.0011948
0.00578227
0.00573485
0.00206235
-0.00626689
-0.000831562
-0.000213624
-0.000790299
-0.00178522
-0.00575195
-0.00382419
0.000548784
-0.00641239
-0.00670456
0.00334636
0.00427418
-0.00355199
-0.000397811
-0.00707623
0.00422093
-0.00320748
0.00219806
0.00624847
0.0046734
0.0010405
-0.00737529
0.00673654
-0.0076009
0.00333757
0.00117215
-0.00470709
-0.00112879
-0.00643485
0.00166581
0.00105657
-0.00233843
-0.00484768
0.00120093
-0.00357322
-0.00522836
-0.00473079
0.00549362
-0.00738823
0.00477577
-0.0052509
0.00367469
0.00331824
-0.0010905
0.000632979
0.00540313
-0.0029837
-0.00591401
-0.00417509
-0.0012141
-0.00539479
-0.00663905
0.00409045
0.0022196
-0.00267857
-0.00127001
-0.00198151
-0.00458293
-0.00566557
0.000891563
-0.00107811
-0.00309519
0.00671909
-0.00729973
-0.000379358
0.00715896
-0.00138328
0.00458344
0.00658343
-0.0049927
0.00330802
0.00464757
0.00569495
0.00128938
-0.00218838
0.00201156
-0.00613819
-0.00546248
0.00651038
-0.00444904
0.00550096
0.00399749
0.000918952
-0.00579249
-0.00541584
-0.00643124
-0.00628021
0.0048093
-0.00177049
0.00127436
-0.00760638
-0.00628929
0.00312845
-0.00356691
0.00184659
0.00475085
-0.00180015
0.00237856
0.00490214
-0.00758058
0.00566497
0.00602868
0.00305251
0.00555355
0.0014763
-0.0029574
0.00370404
-0.00341492
-0.00576373
-0.000995498
0.000842431
0.00441928
-0.00454676
-0.00218961
-0.00107672
-0.00473821
0.00523333
-0.00519718
0.00128475
0.00705518
-0.0052797
-0.00319333
0.00545017
-0.00337987
0.00127687
0.000244021
0.000696226
-0.00743507
0.00747582
-0.0016594
-0.00482789
-0.0059964
-0.00323716
-0.00768107
0.00471844
0.00266145
-0.00380111
0.00176244
-0.00397794
-0.00236419
-7.47312e-05
-0.00131628
0.00198662
-0.000264357
-0.0040188
0.00465209
0.00661154
-0.00655625
-0.00523555
-0.00376382
-0.00670646
-0.000725013
-0.00720259
-0.00705703
-0.00559439
0.005286
-0.00603285
0.00356568
0.000564594
0.00651638
0.00114301
-0.00170679
-0.00153543
-0.0036224
-0.00534566
0.00545879
0.0032604
-0.00301524
0.0017793
-0.0022686
0.00206841
0.00405662
-0.00469082
0.00390355
0.000570892
0.00377607
-0.00616548
0.000509739
0.00352347
0.00100486
0.00355962
-0.00290758
-0.00360434
-0.00113209
0.00342651
0.00112474
0.00549681
-0.000978261
0.0070177
-3.80139e-05
0.000278854
2.73935e-06
0.00609528
-0.00648455
-0.00472901
-0.000214236
-0.000143371
-0.00317687
0.00723652
-0.00431653
0.00519785
-0.00653203
-0.00114428
0.00653293
-0.00253529
0.00720326
-0.000813033
0.0029201
-0.000179746
-0.00132015
-0.000124453
0.00239193
0.00638005
0.00742552
-0.00105143
-0.000502083
0.000192823
0.00235037
-0.000115562
0.00160353
-0.00258273
0.0057338
0.00449824
-0.00211069
0.00393446
-0.00535291
-0.00122337
0.0011829
-0.00111025
-0.00560178
-0.000865083
-0.00683772
-0.00135438
-0.00703791
0.00477065
-0.0076721
0.00398339
-0.00319766
-0.00717353
-0.00558706
0.00267461
-0.00155386
0.00720294
0.00301062
-0.00764889
-0.00350129
0.00311855
-0.00120688
0.00766981
0.00541468
-0.00331552
-0.00404976
0.00366416
-0.00380892
0.00394576
0.0022891
0.00355649
0.00657941
-0.00138676
0.0062218
-0.00470701
-0.00522243
-0.00178703
-0.00434112
-0.00312121
0.00348645
0.00226744
0.00748409
0.00693541
-0.00162956
-0.00646139
0.0011108
0.00754259
-0.000333801
-0.0056938
-0.00706569
-0.00739211
-0.000691595
0.00655826
-0.00100085
-0.00640242
0.00123396
-0.00491445
0.000254749
-0.00176339
-0.00501709
0.000624158
-0.00319332
-0.000794298
0.00573427
-0.000834769
0.00580692
-0.0075468
-0.000659943
0.000254275
0.00665183
0.00736586
0.00438458
0.00446441
0.00069586
0.00525014
0.00582855
-0.00751045
0.0029161
-0.00638969
-0.00693869
0.00382387
0.00392691
-0.00732632
0.00354416
-0.00541465
-0.00549678
0.00766983
-0.00339763
0.00030455
-0.00378323
0.000159789
-0.00364639
0.00639464
0.00219919
0.00102666
0.00739184
0.0058617
-0.00659724
-0.00406773
0.00189718
0.005308
-0.00556515
0.00567324
0.000188742
-7.91098e-05
-0.000895638
0.00522674
0.00651728
-0.000123857
-0.000333206
0.00708493
-0.00636081
-0.00567457
-0.00531474
0.00174561
0.00055193
0.00730301
-0.00685134
0.00213455
0.00497204
-0.00252515
0.00346339
0.00619824
-0.00092954
0.00362908
-0.00491716
-0.00693483
-1.76644e-05
-0.00196268
-0.00175754
0.00533446
-0.00216321
-0.00326331
-0.00364939
-0.00701675
0.0051996
-0.00185648
-0.00435828
-0.00628166
-0.00604018
0.00462786
0.00599011
0.00680335
0.00287528
-0.00094975
-0.000524134
-0.00473191
-0.00239462
-0.000139461
-0.000221565
0.00413275
-0.00331464
0.00065407
-0.00693808
-0.00283253
-0.00418983
0.0057613
-0.000963977
-0.00132408
-0.00321431
-0.00205962
0.00162458
-0.00423018
-0.00667412
-0.00448733
-0.00656603
0.00137465
-0.0064564
0.000399901
-0.0021253
-0.00335995
0.00426813
-0.00381702
-0.00448402
-0.0030929
-0.00101552
0.00142168
-0.00458465
0.00371922
0.00327029
0.00417089
-0.0014465
-0.0042264
0.00100038
-0.00328816
-0.00484186
0.00198054
-0.00214232
0.000692452
0.00150956
-0.00626005
-0.000470786
0.00552361
0.00310613
-0.00680901
-0.00232039
0.00178216
0.00251735
-3.49913e-05
0.00586047
-0.00624975
-0.00477948
-0.00306772
-0.00619179
0.00755025
0.00660167
0.00172501
-0.00697668
0.000251124
0.00327115
-0.0068754
0.000737075
-0.00723643
0.00464826
-0.00641832
0.00198768
0.00280154
0.00772095
-0.00422082
-0.00621146
0.0005765
0.00700436
-0.00396189
0.00173043
-0.00439693
-0.000875169
0.00020265
0.00346726
0.00465316
-0.00172413
-0.000428589
0.00772325
-0.00215399
0.002238
-0.00124581
0.00268911
0.00595703
-0.0048878
0.00184861
-0.00448165
-0.00131437
-0.00534709
0.00567514
0.00209409
-0.00710435
-0.00357881
0.00517351
-0.00586659
-0.00295651
0.00677597
-0.0031183
0.00532609
-0.000916289
0.000575603
-0.00764712
0.00562843
0.000982623
0.00192555
0.0073571
0.00138732
-0.00384727
0.00386968
0.00197821
0.00348039
0.00645286
-0.0043668
-0.00280665
-0.00300833
-0.00415861
0.00531834
0.0060936
-0.00140722
-0.005888
-0.00501146
0.00347755
0.00399306
0.000889377
0.00222299
-0.00354126
0.00701222
0.00698123
-0.00499153
-0.00345106
0.00487738
0.0041298
-0.00758403
0.00189834
0.00525334
-0.00337376
0.00458083
0.000296144
-0.00280263
0.00322518
-0.00495535
-0.00498404
0.000613916
-0.00490002
0.0016061
-0.00345672
-0.00525163
-0.0023875
0.00721305
-0.00502054
0.00141703
0.00382188
0.00174509
-0.00391276
-0.00326517
0.000907953
-0.00167047
0.000214874
0.0050103
0.00403433
-0.00683591
0.00624212
-0.0024261
0.00590144
0.00600626
0.00388275
-0.00288657
0.00679092
0.00639608
3.14605e-05
0.00393613
5.38676e-05
-0.00571986
0.00551247
0.00421339
0.00759853
-0.00296006
0.00178354
0.00537687
0.00294328
0.00128494
0.00762966
-0.00601028
-0.0032698
-0.00754419
0.00420081
-0.00266175
0.00731318
-0.00398003
-0.00471975
-0.00549046
-0.00273006
0.00157083
-0.00130373
-0.00492587
-0.00475796
0.00489232
0.00239372
0.0067719
0.00360079
-0.00385501
0.0010943
-0.00343246
-0.00063587
0.00213203
-0.00500599
-0.00215408
0.00720397
-0.00400469
-0.00150438
0.00386006
0.00332117
0.00605257
-0.000282336
-0.00421239
0.00528464
-0.00638006
-0.0018933
0.00676659
-0.00265582
0.00531099
0.00256936
-0.00114825
-0.000232221
-0.00174203
0.0035838
0.0017333
-1.23773e-05
-0.00388157
0.000983805
2.27871e-05
-0.00133307
0.00645033
0.00263452
-0.00506355
-0.00303148
-0.00527095
0.00669437
0.00654096
-0.00417104
0.00536444
0.00298938
-0.00181928
0.00721759
0.00709532
-0.0066669
-0.00218476
-0.00197701
-0.00552814
-0.000437961
-0.000876723
0.00289519
0.00592738
-0.00731502
-0.00229313
0.00702963
-0.00202604
0.000800035
0.00379402
0.000934397
-0.00442382
-0.00540386
0.00594887
-0.00565808
0.00318816
0.00750764
-0.000880172
-0.00650008
-0.00375413
0.00184373
0.00129576
0.00504301
-0.00421331
0.00739868
0.00296791
0.00126854
-0.00676573
-0.00322618
-0.00569349
-0.00432161
0.00153703
0.000551681
0.0056478
0.00320685
-0.00197573
0.00462796
-0.0033562
0.0026537
-0.00151443
-0.00753307
0.000206493
0.00407686
-0.00269127
0.00508346
-0.00400155
-0.00530317
0.00508329
-0.0077322
-0.00301174
-0.000530756
-0.00158832
-0.0027993
0.000781601
-0.0016059
-0.00636846
-0.0004358
-0.000970145
-0.00162677
-0.000541727
0.00502545
-0.0047035
-0.00247971
0.00483427
-0.00379439
0.00685273
0.00502817
0.0054651
-0.00457998
-0.00530228
0.000423615
-0.00652829
0.00501767
-0.00179987
0.00152825
0.00387633
0.00207326
0.00416712
-0.000396664
-0.000640966
0.0062308
0.00748266
-0.00402341
0.00557226
-0.000883919
-0.00359285
-5.4226e-05
-0.000407484
-0.00519151
0.00382897
0.00481517
-0.00616295
-0.0041045
-0.000674171
-0.00688908
0.00141454
-0.000689603
-0.00523469
0.00054152
-0.00258246
0.00181327
-0.00328496
0.00295254
0.00317141
-0.00437404
0.00745477
-0.00298844
-0.00565692
-0.00190654
0.000542234
-0.00212641
-0.00210668
0.00263352
-0.00564918
0.000514439
0.00546708
-0.00150326
0.00464278
0.00602627
-0.00216147
0.00462032
-0.00475838
0.00245183
-0.000274661
0.00277377
-0.00745787
0.00512833
-0.006418
-0.00731721
0.00546291
0.00317606
0.00634803
-0.0067062
0.00146936
0.00269301
-4.12636e-05
0.0059108
-0.000312891
-0.0041885
0.00563669
0.00205187
-0.00609673
0.00101424
-0.000506896
-0.000776174
0.00295235
0.000772674
0.00764069
-0.00370409
0.00399362
-0.0041658
-0.00160538
-0.00552835
0.00703877
-0.00687612
-0.00322868
0.00384909
0.00471194
-0.00162546
0.00543688
-0.00754975
0.000743709
0.00591318
-2.54818e-05
0.00444149
-0.000357907
-0.00493844
-0.00156053
-0.00185771
0.00290579
0.00500081
-0.00465767
0.0036365
-0.00624185
-0.000596589
-0.00571501
-0.00361225
0.00465413
0.00236927
-0.00688593
0.00550879
0.00378312
-0.00613029
0.00624197
-0.00626835
0.00393542
-0.00409118
0.00643454
0.0067286
0.00410499
0.00543893
0.00587366
0.00358463
-0.000991241
-0.00239515
-0.00134941
-0.00763199
0.00281295
-0.00498025
-0.00682139
0.000617661
0.0041811
0.00206585
-0.00363421
-0.001979
0.00678718
-0.00147166
0.00550411
0.000704523
-0.00627474
-0.00638599
-0.00233814
-0.00609646
-0.00251033
0.00363624
0.00585983
0.00514666
0.00602247
-0.00495814
0.00664288
0.00360289
-0.00577451
0.00741431
0.0076165
0.00060827
-0.00123048
0.00649597
0.00318553
-0.00492432
-0.00211082
0.00408059
-0.00552906
0.00512867
0.00237754
0.00547181
0.00135637
0.00286646
-0.00548207
-0.00344514
0.000694548
-0.00240326
0.00771794
-0.00691993
0.0063408
0.00237199
0.00399364
0.00248368
0.00396727
0.000150754
0.00381151
0.00249411
0.00147077
-0.00217617
-0.00448918
-0.00636745
0.00496912
-0.00377406
0.00158273
-0.00751862
-0.00739868
0.00316621
0.0059379
0.00686845
-0.000265824
-0.00383666
0.00598113
-0.00540502
0.000367913
-0.000596848
0.00568343
0.0034356
-0.00361181
-0.00213462
-0.000768662
0.00464514
0.00630061
-0.00396165
0.00742652
0.00553441
0.00292913
0.00119967
0.00399346
0.00288441
|
fc50d814550139ccecb288f0b8823e20efbae936
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1658/CH22/EX22.14/Ex22_14.sce
|
24c91586cc087c0506f328fe6d19282924630296
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 185
|
sce
|
Ex22_14.sce
|
clc;
//e.g 22.14;
gm=4*10**-3;
RD=1.5*10**3;
RG=10*10**6;
rs=500;
rl=RD;
AV=-(gm*rl)/(1+gm*rs);
disp(AV);
RL=100*10^3;
rL=(RD*RL)/(RD+RL);
AV=-(gm*rL)/(1+gm*rs);
disp(AV);
|
6944ee493df5626437e7a0f7fc14eba385a682a5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1379/CH1/EX1.1.1/example1_1.sce
|
6f54b6da832ff0b29efc9acb3188b1d31aab8bca
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 867
|
sce
|
example1_1.sce
|
//exapple 1.1
clc; funcprot(0);
// Initialization of Variable
//part1
mu=6.3/100;//viscosity
rho=1170;//density
d=.3;//diameter of pipe
b=0.142;//conversion factor
pi=3.14;
//calculation
Q=150000*b/24/3600//flow rate
u=Q/pi/d^2*4//flow speed
Re=rho*u*d/mu
if Re>4000 then
disp(Re,"the system is in turbulent motion as reynolds no is greater than 4000:");
elseif Re<2100 then
disp(Re,"the system is in laminar motion" );
else
disp(Re, "the system is in transition motion");
end
//part 2
mu=5.29/1000;
d=0.06;
G=0.32;//mass flow rate
Re= 4*G/pi/d/mu;
if Re>4000 then
disp(Re,"the system is in turbulent motion as reynolds no is greater than 4000:");
elseif Re<2100 then
disp(Re,"the system is in laminar motion as Re is less than 2100" );
else
disp(Re, "the system is in transition motion");
end
|
af05fecef84ee50cf8d2f67f5e28b8d8ee85738f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/213/CH13/EX13.6/13_6.sce
|
761ebd50c1522631b7e002958a5cca5a3bb5626b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 499
|
sce
|
13_6.sce
|
//To find speed of gears B and C
clc
//Given:
TA=72, TC=32
NEF=18 //Speed of arm EF, rpm
//Solution:
//Refer Table 13.5
//Speed of gear C:
y=18 //rpm
x=y*(TA/TC)
NC=x+y //Speed of gear C, rpm
//Speed of gear B:
//Calculating the number of teeth on gear B
TB=(TA-TC)/2
//Calculating the speed of gear B
NB=y-x*(TC/TB) //Speed of gear B, rpm
//Solution:
printf("\n\n Speed of gear C = %.1f rpm.\n\n",NC)
printf(" Speed of gear B = %.1f rpm in the opposite direction of arm.\n\n",-NB)
|
3febbfb07b3e1c2adff57f3fd7429432e47db3d8
|
ad618ca6b5ed579648f418556d871a22f9a21aaf
|
/sci_scripts/training.sci
|
7a1af5957cd7ad2ad32c0955fd514be540a7c45e
|
[] |
no_license
|
manojgudi/sci_ocr
|
6de17d33475b7f2429a3dbe39fd0711138e3e14a
|
d18e7bc7a244d73f59830dd914f7aa9059726696
|
refs/heads/master
| 2020-05-20T10:05:31.612844
| 2013-03-15T05:16:45
| 2013-03-15T05:16:45
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,858
|
sci
|
training.sci
|
// Functions for getting feature vectors of training characters in ./training folder
exec preprocessing.sci
exec feature_extract.sci
exec rm_ws.sci
// Dictionary
dic = ['a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' 'k' 'm' 'n' 'o' 'p' 'q' 'r' 's' 't' 'u' 'v' 'w' 'x' 'y' 'z'];
dic_size = size(dic)
path = "./training/"
////
// Write function to generate character image from lines of character for training
////
// Accepts feature vector struct, path and its name, writes three files name.row_vector, name.content and name.col_vector
function [] = write_feature(feature_struct, path, name)
fprintfMat(path+name+".content", feature_struct.content);
fprintfMat(path+name+".row_vector", feature_struct.row_vector);
fprintfMat(path+name+".col_vector", feature_struct.col_vector);
endfunction
// Read features from given path, "./training/training_feature_data"
function [content_vector,list_rowsum, list_colsum] = read_feature(path, dic)
dic_size = size(dic); // row dictionary
// defining variables
content_vector = [];
// list data type is awesome
list_rowsum = list();
list_colsum = list();
for i = 1 : dic_size(2)
content_vector($+1) = fscanfMat(path+dic(i)+".content");
list_rowsum($+1) = fscanfMat(path+dic(i)+".row_vector");
list_colsum($+1) = fscanfMat(path+dic(i)+".col_vector");
end
endfunction
write_path = path + "training_feature_data/"
// Extrtact features from all alphabets from ./training and save it in ./training/training_feature_data
// Make this A FUCTION
for i = 1 : dic_size(2)
// ReadImage
char_image = ReadImage(path+dic(i)+".png");
char_image = RGB2Gray(char_image);
char_bin_image = gray2inv_bin(char_image); // inverted binary image
char_image = rm_ws(char_bin_image,"cols");
char_feature = extract_feature(char_image);
// Write feature
write_feature(char_feature, write_path, dic(i));
end
|
fcb2fe2889319107b7e1d76ddbabd8bb95487065
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3775/CH2/EX2.1/Ex2_1.sce
|
994b2525e53d8a3c15dde588a201b84f246fcbda
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 210
|
sce
|
Ex2_1.sce
|
//Ex 2.1 page 67
clc;
clear;
close;
V1=1;//V across SCR
IG=0;//A
Ih=2;//mA holding current
R=50;//ohm
// Applying kirchoff law
//VA-(IAK*R)-V1=0
VA=(Ih*10**-3*R)+V1;//V (let IAK=Ih)
printf('VA = %.2f V',VA)
|
d667043a99dd599d805c46f6f0978c021d391ee3
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1466/CH24/EX24.6/24_6.sce
|
5455766c438f120d4309fa239c480ee48395bcb7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 641
|
sce
|
24_6.sce
|
clc
//initialisation of variables
dv=360//ft/sec
v1=1564//ft/sec
H1=1188//B th u
g=32.2//ft/sec^2
J=778
cf=0.005
p=0.12//ft
A=8.75*10^-4//ft^2
p1=67//lb/in^2
dx=0.0234//ft
A1=8.5*10^-4//ft^2
W=0.203//lb/sec
g=32.2//ft/sec^2
q2=0.989
Vs2=8.902//ft^3/lb
A2=9*10^-4//ft^2
//CALCULATIONS
v2=v1+dv
H2=H1-((v2^2-v1^2)/(2*g*J))
p2=p1-(W*(dv+(cf*p*dv*dx/(2*A))))/(144*A1*g)
W=(A2*v2)/(q2*Vs2)
nv2=1866//ft/sec
np2=51.2//lb/in^2
nT2=742.2//R
nVs2=8.331//ft^3/lb
nq2=0.99
nH2=1167.5//b th u
vs2=72.5*sqrt(np2*nq2*nVs2)
Ma2=v2/vs2
//RESULTS
printf ('velocity = %.2f ft/sec',nVs2 )
printf ('\n Ma2 = %.2f ',Ma2-0.04)
|
bc3ba2a9b2de0332bfd5a86b06fcbb07edddbf94
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2681/CH6/EX6.16/Ex6_16.sce
|
97b07e83ad9e08329639ba2e2c1797de47d898e4
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 225
|
sce
|
Ex6_16.sce
|
//reflection coefficent
//given
clc
S=2//voltage standing wave ratio(VSWR)
Zo=50//ohm
row=((S-1)/(S+1))
row=round(row*1000)/1000///rounding off decimals
disp(row,'the value of reflection coefficent as modulus row')
|
d1375b43255f20fb8afbf2b2803403606dbbabea
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/824/CH5/EX5.1/5_1.sce
|
1ac0741b9d7afc6ef4d664825411cd7a83460edd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 114
|
sce
|
5_1.sce
|
//clear//
p = [ 1.44 .95 .74]';
dt = 2.5
t = [0 2.5 5]';
dp(1) =( 3*p(1)+4*p(2)-p(3))/(2*dt);
for i=2:n1
dp p(i+3
|
1076608383aeb46eda5f4906235b8a2b040e1b60
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/446/CH2/EX2.6/2_6.sce
|
25dc4d6a55a8681b612f047916224712482b32f5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 959
|
sce
|
2_6.sce
|
clear
clc
disp('Exa-2.6(a)');
L=65; c=3*10^8;u=0.8*c;
t=L/u ; //The value of time taken as measured by the observer
printf('The time for rocket to pass a point as measured by O is %.2e.\n',t); //The value of time taken as measured by the observer
disp('Exa-2.6(b)');
Do=65; //given length
Lo= L/sqrt(1-(u/c)^2); //contracted length of rocket
printf('Actual length according to O is %.2f.\n',Lo);
disp('Exa-2.6(c)');
D=Do*(sqrt(1-(u/c)^2)); //contracted length of platform.
printf('Contracted length according to O'' is %.2e.\n',D);
disp('Exa-2.6(d)');
t1=Lo/u; //time needed to pass according to O'.
printf('Time taken according to O is %.2e.\n',t1);
disp('Exa-2.6(e)');
t2=(Lo-D)/u; //time intervals between the two instancs
printf('Time taken according to O'' is %.2e.\n',t2);
disp('The value of t1 and t2 did not match');
|
d37608dc20241d537b9a445cc77dba1b0c979ba5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/405/CH7/EX7.1/7_1.sce
|
8fbee0108acecc80e933ec3125bab456774b1afb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,216
|
sce
|
7_1.sce
|
clear;
clc;
printf("\t\t\tExample Number 7.1\n\n\n");
// constant heat flux from vertical plate
// Example 7.1 (page no.-330-331)
// solution
q_w = 800;// [W/square meter] radiant energy flux
H = 3.5;// [m] height of metal plate surface
W = 2;// [m] width of metal plate
Ta = 30;// [degree celsius] surrounding air temperature
// we treat this problem as one with constant heat flux on the surface since we do not know the surface temperature, we must make an estimate for determining Tf and the air properties.
// an approximate value of h for free convection problems is
h = 10;// [W/square meter degree celsius]
dT = q_w/h;// [degree celsius]
// then
Tf = (dT/2)+Ta;// [degree celsius] approximately
// at Tf the properties of air are
v = 2.005*10^(-5);// [square meter/s]
k = 0.0295;// [W/m degree celsius]
Pr = 0.7;// prandtl number
Beta = 1/(Tf+273);// [K^(-1)]
// from equation (7-30), with
x = 3.5;// [m]
g = 9.8;// [square meter/s] acceleration due to gravity
Gr_x = (g*Beta*q_w*x^(4))/(k*v^(2));
// we may therefore use equation (7-32) to evaluate h_x
h_x = (k*0.17*(Gr_x*Pr)^(1/4))/x;// [W/square meter degree celsius]
// in the turbulent heat transfer governed by equation (7-32), we note that
// Nu_x = h*x/k ~ (Gr_x)^(1/4) ~ x
// or h_x doest noy vary with x, and we may take this as the average value. the value of h
h = 5.41;// [W/square meter degree celsius]
// is less than the approximate value we used to estimate Tf, recalculating dT, we obtain
dT1 = q_w/h_x;// [degree celsius]
// our new film temperature would be
Tf1 = Ta+dT1/2;// [degree celsius]
// at Tf the properties of air are
v1 = 2.354*10^(-5);// [square meter/s]
k1 = 0.0320;// [W/m degree celsius]
Pr1 = 0.695;// prandtl number
Beta1 = 1/(Tf1+273);// [K^(-1)]
// then
Gr_x1 = (g*Beta1*q_w*x^(4))/(k1*v1^(2));
// and h_x is caalculated from
h_x1 = (k1*0.17*(Gr_x1*Pr1)^(1/4))/x;// [W/square meter degree celsius]
// our new temperature difference is calculated as
dT2 = q_w/h_x1;// [degree celsius]
// the average wall temperature is therefore
T_w_avg = dT2+Ta;// [degree celsius]
printf("the average wall temperature is therefore %f degree celsius",T_w_avg);
|
772ad6d1347f0c805f9c6465aee8aaa2b3f26494
|
4a1effb7ec08302914dbd9c5e560c61936c1bb99
|
/Project 2/Experiments/Ripper-C/results/Ripper-C.led7digit-10-1tra/result1s0.tst
|
fc4719a93390841a339651241749378c56e1047c
|
[] |
no_license
|
nickgreenquist/Intro_To_Intelligent_Systems
|
964cad20de7099b8e5808ddee199e3e3343cf7d5
|
7ad43577b3cbbc0b620740205a14c406d96a2517
|
refs/heads/master
| 2021-01-20T13:23:23.931062
| 2017-05-04T20:08:05
| 2017-05-04T20:08:05
| 90,484,366
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 535
|
tst
|
result1s0.tst
|
@relation led7digit
@attribute Led1 real[0.0,1.0]
@attribute Led2 real[0.0,1.0]
@attribute Led3 real[0.0,1.0]
@attribute Led4 real[0.0,1.0]
@attribute Led5 real[0.0,1.0]
@attribute Led6 real[0.0,1.0]
@attribute Led7 real[0.0,1.0]
@attribute number{0,1,2,3,4,5,6,7,8,9}
@inputs Led1,Led2,Led3,Led4,Led5,Led6,Led7
@outputs number
@data
0 0
4 4
0 0
1 1
2 5
2 7
2 2
3 1
3 5
6 6
8 8
3 3
4 4
5 5
7 1
8 6
3 9
7 1
8 0
0 6
3 2
7 1
8 0
9 9
9 9
0 6
0 0
1 1
8 0
9 9
2 1
3 9
6 5
6 9
5 5
6 6
6 6
7 1
1 1
4 4
4 9
5 6
6 6
7 1
8 8
9 9
1 0
4 4
5 5
8 0
|
1c4daf155644e4d8cfd5a29d08179e1771ca4708
|
df924acfdd5b043da9336a2276726dbfb655735a
|
/test_suite/templerr.tst
|
eac0205a3cd21ef0a99c6a1d8e21463c8c70bb54
|
[] |
no_license
|
noxdafox/clips
|
b8fb280223b5aae615e427bf1f31c03cb932b09d
|
a2c548b69394f0e2cf7c6d583810b6a29a662ae1
|
refs/heads/master
| 2023-09-01T18:52:07.614807
| 2021-12-14T20:10:21
| 2021-12-14T20:10:21
| 95,596,886
| 11
| 10
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 378
|
tst
|
templerr.tst
|
(unwatch all)
; templerr.clp test
(clear)
(open "Results//templerr.rsl" templerr "w")
(load "compline.clp")
(dribble-on "Actual//templerr.out")
(load "templerr.clp")
(list-deftemplates)
(dribble-off)
(printout templerr "templerr.clp differences are as follows:" crlf)
(compare-files "Expected//templerr.out" "Actual//templerr.out" templerr)
; close result file
(close templerr)
|
ac2b2899e484ae459a807ad12a4fb21b78fe751e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/23/CH10/EX10.3/Example_10_3.sce
|
d903f87e87bff13f8d08c833d81da3e96c785aeb
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,882
|
sce
|
Example_10_3.sce
|
clear;
clc;
//To find Approx Value
function[A]=approx(V,n)
A=round(V*10^n)/10^n;//V-Value n-To what place
funcprot(0)
endfunction
//Example 10.3
//Caption : Program to Find Pressure,Temperature and Composition for a system
//Equations to be Used
// ln v1=A*(x2^2) ln v2=A*(x1^2) Where A=2.771-0.00523T
//Antoine Equations
//ln P1_sat = 16.59158-(3643.31/(T-33.424))
//ln P2_sat = 14.25326-(2665.54/(T-53.424))
//P = E(xi * Vi * Pi_sat) E--Summation Eqn 10.6
//P = 1/E(yi / (vi * Pi_sat)) E--Summation Eqn 10.7
//(a) Calculate P and (yi) , for T=318.15K and x1=0.25
//BULB P Calculation
T=318.15;//[K] Given
x1=0.25; //Given
x2=1-x1;
P1_sat = approx(exp(16.59158-(3643.31/(T-33.424))),2);//[KPa]
P2_sat = approx(exp(14.25326-(2665.54/(T-53.424))),2);//[KPa]
A=approx(2.771-(0.00523*T),3);
v1=approx(exp(A*(x2^2)),3);
v2=approx(exp(A*(x1^2)),3);
//Form Eqn(10.6)
P_a=approx((x1*v1*P1_sat)+(x2*v2*P2_sat),2);//[KPa]
y1_a=approx((x1*v1*P1_sat)/P_a,3);
y2_a=approx((x2*v2*P2_sat)/P_a,3);
disp('(a)P and [yi] for T=318.15K and x1=0.25')
disp('BUBL P calculations')
disp('KPa',P_a,'P = ')
disp(y1_a,'y1 = ')
disp(y2_a,'y2 = ')
//(b) Calculate P and (xi) , for T=318.15K and y1=0.60
//DEW P calculation
y1=0.6;
y2=1-y1;
T=318.15;//[K]
P1_sat = approx(exp(16.59158-(3643.31/(T-33.424))),2);//[KPa]
P2_sat = approx(exp(14.25326-(2665.54/(T-53.424))),2);//[KPa]
A=approx(2.771-(0.00523*T),3);
v1=0.1;//Assumed
v2=0.1;//Assumed
a1=v1;
a2=v2;
i=-1;
while(i==-1)
P=approx(1/((y1/(a1*P1_sat))+(y2/(a2*P2_sat))),2);
x1=approx(y1*P/(a1*P1_sat),4);
x2=1-x1;
b1=approx(exp(A*(x2^2)),4);
b2=approx(exp(A*(x1^2)),4);
dt=abs(b1-a1);
if(dt==0)
i=0;
v1=b1;
v2=b2;
break;
end
a1=b1;
a2=b2;
end
x1_b=x1;
x2_b=1-x1_b;
P_b=P;
v1_b=v1;
v2_b=v2;
disp('(b)P and [xi] for T=318.15K and y1=0.60')
disp('DEW P calculations')
disp('kPa',P_b,'P = ')
disp(x1_b,'x1 = ')
disp(x2_b,'x2 = ')
//(c) Calculate T and (yi) for P = 101.33 KPa and x1=0.85
//BUBL T calculation
P=101.33;
x1=0.85;
x2=1-x1;
T1_sat=approx((3643.31/(16.59158-log(P)))+33.424,2);
T2_sat=approx((2665.54/(14.25326-log(P)))+53.424,2);
T=(x1*T1_sat)+(x2*T2_sat);
a=T;//Initial
i=-1;
while(i==-1)
A=approx(2.771-(0.00523*a),4);
v1=approx(exp(A*(x2^2)),4);
v2=approx(exp(A*(x1^2)),4);
P1_sat = approx(exp(16.59158-(3643.31/(a-33.424))),2);//[KPa]
P2_sat = approx(exp(14.25326-(2665.54/(a-53.424))),2);//[KPa]
alpha=P1_sat/P2_sat;
P1_sat=approx(P/((x1*v1)+(x2*v2/alpha)),2);
b=approx((3643.31/(16.59158-log(P1_sat)))+33.424,2);
dt=abs(b-a);
if(dt==0)
i=0;
T=b;
break;
end
a=b;
end
T_c=T;
y1_c=approx(x1*v1*P1_sat/P,3);
y2_c=1-y1_c;
disp('(c)T and [yi] for P=101.33kPa and x1=0.')
disp('BUBL T calculations')
disp('K',T_c,'Temperature = ')
disp(y1_c,'y1 = ')
disp(y2_c,'y2 = ')
//(d) Calculate T and (xi) for P = 101.3 KPa and y1=0.4
P=101.3;
y1=0.4;
y2=1-y1;
T1_sat=approx((3643.31/(16.59158-log(P)))+33.424,2);
T2_sat=approx((2665.54/(14.25326-log(P)))+53.424,2);
T=(y1*T1_sat)+(y2*T2_sat);
v1=1; //Initially
v2=1; //Initially
a=T;//Initial
i=-1;
while(i==-1)
A=approx(2.771-(0.00523*a),4);
P1_sat = approx(exp(16.59158-(3643.31/(a-33.424))),2);//[KPa]
P2_sat = approx(exp(14.25326-(2665.54/(a-53.424))),2);//[KPa]
alpha=P1_sat/P2_sat;
x1=approx((y1*P)/(v1*P1_sat),4);
x2=1-x1;
v1=approx(exp(A*(x2^2)),4);
v2=approx(exp(A*(x1^2)),4);
P1_sat=P*((y1/v1)+(y2*alpha/v2));
b=approx((3643.31/(16.59158-log(P1_sat)))+33.424,2);
dt=abs(a-b);
if(dt==0)
T=a;
i=0;
break;
end
a=b;
end
T_d=T;
x1_d=x1;
x2_d=x2;
disp('(d)T and [xi] for P=101.33kPa and y1=0.40')
disp('DEW T calculations')
disp('K',T,'T = ')
disp(x1_d,'x1 = ')
disp(x2_d,'x2 = ')
//(e) Taz , (xi_az) and (yi_az) for T = 318.15K
T = 318.15;
// Relative Volatility alpha_12=(y1/x1)/(y2/x2)
//At Azeotrope y1=x1 and y2=x2 and alpha_12=1
P1_sat = approx(exp(16.59158-(3643.31/(T-33.424))),2);//[KPa]
P2_sat = approx(exp(14.25326-(2665.54/(T-53.424))),2);//[KPa]
//From eqn (10.5) alpha_12=(v1*P1_sat)/(v2*P2_sat)
A=approx(2.771-(0.00523*T),4);
//When x1=0 v2=1 and v1=exp(A)
alpha_12_x10=P1_sat*exp(A)/P2_sat;
//When x1=1 v1=1 and v2=exp(A)
alpha_12_x11=P1_sat/(P2_sat*exp(A));
//But this is not Azeotrope (at Azeotrope alpha_12=1)
//v1_az/v2_az=(P2_sat/P1_sat)=K
K=P2_sat/P1_sat;
//ln(v1/v2)=ln(K)=A(1-(2*x1))
x1_az=approx((A-log(K))/(2*A),3);
x2_az=1-x1_az;
y1_az=x1_az;
y2_az=x2_az;
v1_az=approx(exp(A*(x2_az^2)),3);
v2_az=approx(exp(A*(x1_az^2)),3);
P_az=approx(v1_az*P1_sat,2);
disp('Azeotropic Pressure and Azeotropic Composition for T = 318.15K')
disp('KPa',P_az,'Azeotropic Pressure = ')
disp(x1_az,'x1_az')
disp(y1_az,'y1_az')
//End
|
36a3440fcfa1d3f27ecc2410c4108fa304ed1b85
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1760/CH5/EX5.41/EX5_41.sce
|
dc5501b57ada6ef64ab367ef25c9bbf0915babd3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 288
|
sce
|
EX5_41.sce
|
//EXAMPLE 5-41 PG NO-332-333
VTH=10;
V=10;
R1=10;
R2=10;
R3=16.67;
R4=50;
R5=5.56;
R6=3.33;
RTH=V+R5+(((R1+R3)*(R4+R6))/(R1+R3+R4+R6));
I=(V/RTH)-0.4;
disp('i) Resistance (RTH) is = '+string (RTH) +' ohm ');
disp('i) Currrent (I) is = '+string (I) +' A ');
|
e1efec171a621083e7fc1fa2f72661d63ed8382d
|
e4381b32d21150427f93b058541bb3343752bb0f
|
/sablona_berliner/zapisnik/graf.sce
|
fd4ded6bdf846994836f6d1e47ba79edc523d3fd
|
[] |
no_license
|
pirati-cz/plisty
|
c095da00bfa89792f8eb676fd5b756fc1454659d
|
815dbc58f7a47f1b2740ffa068a2ff5f909ecba8
|
refs/heads/master
| 2020-12-24T19:04:07.572707
| 2016-05-16T20:52:51
| 2016-05-16T20:52:51
| 58,966,482
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 46,755
|
sce
|
graf.sce
|
<SCRIBUSELEMUTF8 W="382.67716535" H="274.96062989" previewData="iVBORw0KGgoAAAANSUhEUgAAADIAAAAyCAYAAAAeP4ixAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAOxAAADsQBlSsOGwAABh5JREFUaIHtWM9vnFcVPee+b8YzHtuNM7Gduk0aqBrV/BBEKhRKS4VYdJNFNwiJwrqLgkQXleAvgEVWSCyKolBBWLCBDUVUFUIBUhqloaFVK0gaosRpSoydsT3+Nf7m3cPi+2bGYxuntgtJYY40Gt25c+575/26710Gs49KWiBZkVSn2ViM8S1sA+VS6WmXz4dg47Hpf3fphgEjMKPcl0AWjRwzstx0vwpg2YzjkNxdN1fT9MXttLcZiNGDnwQDACVoLNdsbmrOpdqteCTLBPoFiEAiqW4hVCWlAFISFXfNmtlBuU+a2UF3v2IhHJTHOQnzFqwqYTXG+C4AmXEfQHP3qe0L+f7pGsqDewAAb/3+Rfzom0dvRSoWCk+EYAck1F1eN4EiiwLMspmtAeijcQiACBZdPgMggRABRAGWmI2mzeZfQhIOy7VsIYw0m81zaZq+sl0hyXYJALCapi8h3QlzXZz8O202T+82lu02wJ2CnpA7DT0hdxp6Qu40/M8I2TIhmtl+Mw67q2ZmVUmrkuZ2coX4T2NLIX7oU4d9//0fAyAHiFd/+QLcG/+lvm0LW19RHjr6NXzhK0+37XO/PonG0kqLa2bjABoAQLLf3a9Lui1Cd3TXakOaVRajISlKan4w3do+dr7Zxx+Y8GNnp3Ts7HUdOzujx5/6OoD4wXVte9j5jNAMSbGvbVuyu9ndJf4/jt/dIAQ7ALCPQAlE9OgzLk0BgJFVGsukDUFySM2m+zsdbjhg5KhL8wTYjPHCbRMSo08B8PwjAKHlc6mGqBrg7yFbFezmxusReC8326uGZElSBJASKIK0/GkdkwDl7WT/hVlHHGFrfIBZ0vYbQ5ePsC5uZ+Mz/wibD5y28CEfiESSgxwOZlUAJmgJWbGhACBNxtiwdoyCl3DX4Hg7RBH9wHIn5NDA3VgNiwCAgfJIl6+UDHVxP3P0Gxg5dBgAkK4s4eXj3/s3HX1fWGw06guNtAQiBVgh0CehHmP8GwAkN1hmRH/Wt2Ix3LsvVlrkf5QKhdncBwCHq7Hf0mygG3tQvrzGN1oJxb1ruJOf+OITi/d9/jEACI35uQdef/4HuxES57Q6txSvAUgBlAGskKwgn+1kYDAZnMurAI89Mvz4L77z6Nst8rfO7sfxS51gp19+5LWBJEvcb8yO4+HfdHzPPnPouW8/+OhzLfvJU3vxUr7KhwaTu17/Yyfun6YP4ceXPtvhTpzCxNCNLYUc/8nk889+968/BLgKoCxphVLTiVl3Td+Ws/9SvYqfXn6obX/1vvNdQhaafVC+/QrBUbKsZOOumhH9AlYJwIFFd00DQDKxcuZCA6UCABSvXZ4+cXLyfCvgEt988Ah5b8v+2c+v/q6g1QgAN7kycIRnPtfyXTn39oUTr01ebdl9dv7TRzC7DwBKjeX0xMnJUy3fRQ7cfYRnPt6yX/ntxT9f0eTNlv2CPfOlJgoBAD6id6a+rF+9cfrV2h/c/ZrvdPQ+LGAIdr+iT4mkpPm1TiP3kkwEEFITZCJpXtIyyRLJfZBSl/6J7JjscM2GAYU8RUjSQutmTLJiZL9LDiASoKRF5TU7M9uPjLhMcqBVUt1KiEmYhdkeACLZt9YpoAkyAZDQrAQgIdA6mSSpnp8ctp4LIAFYyDqOCoBiV7tAMLNhksM0VkGGNf4CgbIZR5Al0i1FANmbYoxUCbB73DUTY7zYGVXuBVQEsBRjvLZhFMzGgnHUglXddSPG2N4jBAaNHBLQdPdpSfW2jxw0cgDkgAGI0pSk5TX+xMiqgDqg0q1EAFn6DxIX5apBWlznJ8lSCOEANmbeMgC5UHfXLNy7qsECXGSRZJHG4jpuqiwjRweiGStZJb49CBUAjewe5nW8DzCbkewOQ3Ioz5Tr3xUJgK5HE4GihXBA0qy7z6wPnO+vioAGyb784bWwfh8iv2J0cc3uARBJDuSvzqVbCUmQrXVXtmFTbL4eN3/5SSub/g4AJJFt3iKyZZOiU4Bfi83q+qmyRLKQ93GD2A3NbeXckkj2JyFMCFiClDRjfHOnsdajkCQPC1gwYji6Zggwul/RxqXfQw899NBDDz300EMPPXx48S+YI9bLEd73ywAAAABJRU5ErkJggg==" YP="433.7007874" XP="439.3700787" COUNT="23" Version="1.4.6">
<FONT NAME="Fira Sans Bold"/>
<FONT NAME="Fira Sans Book"/>
<FONT NAME="Fira Sans ExtraBold"/>
<FONT NAME="Fira Sans Light"/>
<FONT NAME="Fira Sans Medium"/>
<FONT NAME="Fira Sans Regular"/>
<FONT NAME="Lato Light"/>
<FONT NAME="PermianSerifTypeface Bold"/>
<FONT NAME="PermianSerifTypeface Regular"/>
<COLOR Spot="0" Register="0" NAME="Black" CMYK="#000000ff"/>
<COLOR Spot="0" Register="0" NAME="Cervena" CMYK="#2effe814"/>
<COLOR Spot="0" Register="0" NAME="Cervena2" CMYK="#00e2c600"/>
<COLOR Spot="0" Register="0" NAME="Fialova" CMYK="#78871700"/>
<COLOR Spot="0" Register="0" NAME="Modra" CMYK="#ff14000d"/>
<COLOR Spot="0" Register="0" NAME="Oranzova" CMYK="#007fff00"/>
<COLOR Spot="0" Register="0" NAME="Tyrkysova" CMYK="#ff006633"/>
<COLOR Spot="0" Register="0" NAME="White" CMYK="#00000000"/>
<COLOR Spot="0" Register="0" NAME="Zelana" CMYK="#5700d900"/>
<COLOR Spot="0" Register="0" NAME="Zelena2" CMYK="#b300d500"/>
<COLOR Spot="0" Register="0" NAME="Zluta" CMYK="#1400c700"/>
<STYLE SCALEV="100" SCOLOR="Black" ALIGN="0" TXTSTP="-0.1" TXTSHX="5" TXTSHY="-5" FSHADE="100" INDENT="0" TXTSTW="-0.1" EFFECT="0" VOR="0" NACH="0" LINESPMode="0" FCOLOR="Black" DROP="0" TXTULP="-0.1" SCALEH="100" TXTULW="-0.1" KERN="0" DROPLIN="2" NAME="Graf-popisek" FONT="Fira Sans Regular" LINESP="10.0000000000000" SSHADE="100" FIRST="0" BASE="0" FONTSIZE="8" DROPDIST="0" TXTOUT="1" BASEO="0"/>
<STYLE SCALEV="100" SCOLOR="Black" ALIGN="1" TXTSTP="-0.1" TXTSHX="5" TXTSHY="-5" FSHADE="100" INDENT="0" TXTSTW="-0.1" EFFECT="0" VOR="0" NACH="0" LINESPMode="0" FCOLOR="Black" DROP="0" TXTULP="-0.1" SCALEH="100" TXTULW="-0.1" KERN="0" DROPLIN="2" NAME="Graf-nadpis" FONT="Fira Sans ExtraBold" LINESP="12.0000000000000" SSHADE="100" FIRST="0" BASE="0" FONTSIZE="10" DROPDIST="0" TXTOUT="1" BASEO="0"/>
<MultiLine Name="Teckovana">
<SubLine LineEnd="0" Dash="3" Width="1.5" LineJoin="0" Shade="100" Color="Black"/>
</MultiLine>
<MultiLine Name="Tenka">
<SubLine LineEnd="0" Dash="1" Width="0.5" LineJoin="0" Shade="100" Color="Black"/>
</MultiLine>
<MultiLine Name="Tenka teckovana">
<SubLine LineEnd="0" Dash="3" Width="0.5" LineJoin="0" Shade="100" Color="Black"/>
</MultiLine>
<MultiLine Name="Tlusta">
<SubLine LineEnd="0" Dash="1" Width="1.5" LineJoin="0" Shade="100" Color="Black"/>
</MultiLine>
<MultiLine Name="Velmi tlusta">
<SubLine LineEnd="0" Dash="1" Width="2.5" LineJoin="0" Shade="100" Color="Black"/>
</MultiLine>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 325.984 0 325.984 0 325.984 0 325.984 0 325.984 21.129 325.984 21.129 325.984 21.129 325.984 21.129 0 21.129 0 21.129 0 21.129 0 21.129 0 0 0 0 " ANNAME="graf" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="Zluta" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="325.984252" XPOS="439.3700787" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="21.12899997" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="PermianSerifTypeface Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="616.1662756" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="10" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="6" LINESP="15" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 325.984 0 325.984 0 325.984 0 325.984 0 325.984 21.129 325.984 21.129 325.984 21.129 325.984 21.129 0 21.129 0 21.129 0 21.129 0 21.129 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16"/>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 325.984 0 325.984 0 325.984 0 325.984 0 325.984 42.5197 325.984 42.5197 325.984 42.5197 325.984 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="1" BACKITEM="-1" WIDTH="325.984252" XPOS="467.7165354" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="42.51968504" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans ExtraBold" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="433.7007874" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="10" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="12" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 325.984 0 325.984 0 325.984 0 325.984 0 325.984 42.5197 325.984 42.5197 325.984 42.5197 325.984 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="Kolik berou pražští politici"/>
<ITEXT Unicode="28"/>
<ITEXT PSTYLE="" CH="a jaké jsou jejich průměrné hrubé mzdy?"/>
<PARA PARENT="Graf-nadpis"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 190 27.8465 190 27.8465 190 27.8465 190 0 190 0 190 0 190 0 190 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="Modra" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="27.84645669" XPOS="439.8700787" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="190" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="PermianSerifTypeface Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="447.7952756" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="10" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="6" LINESP="15" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 190 27.8465 190 27.8465 190 27.8465 190 0 190 0 190 0 190 0 190 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16"/>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 100 27.8465 100 27.8465 100 27.8465 100 0 100 0 100 0 100 0 100 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="Modra" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="27.84645669" XPOS="496.0629921" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="100" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="PermianSerifTypeface Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="537.7952756" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="10" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="6" LINESP="15" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 100 27.8465 100 27.8465 100 27.8465 100 0 100 0 100 0 100 0 100 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16"/>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 81.4 27.8465 81.4 27.8465 81.4 27.8465 81.4 0 81.4 0 81.4 0 81.4 0 81.4 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="Modra" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="27.84645669" XPOS="552.7559055" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="81.4" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="PermianSerifTypeface Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="556.3952756" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="10" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="6" LINESP="15" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 81.4 27.8465 81.4 27.8465 81.4 27.8465 81.4 0 81.4 0 81.4 0 81.4 0 81.4 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16"/>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 32.486 27.8465 32.486 27.8465 32.486 27.8465 32.486 0 32.486 0 32.486 0 32.486 0 32.486 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="Modra" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="27.84645669" XPOS="609.9488189" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="32.486" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="PermianSerifTypeface Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="605.3092756" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="10" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="6" LINESP="15" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 32.486 27.8465 32.486 27.8465 32.486 27.8465 32.486 0 32.486 0 32.486 0 32.486 0 32.486 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16"/>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 17.495 27.8465 17.495 27.8465 17.495 27.8465 17.495 0 17.495 0 17.495 0 17.495 0 17.495 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="Modra" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="27.84645669" XPOS="666.1417323" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="17.495" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="PermianSerifTypeface Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="620.3002756" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="10" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="6" LINESP="15" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 17.495 27.8465 17.495 27.8465 17.495 27.8465 17.495 0 17.495 0 17.495 0 17.495 0 17.495 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16"/>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 5.486 27.8465 5.486 27.8465 5.486 27.8465 5.486 0 5.486 0 5.486 0 5.486 0 5.486 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="Modra" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="27.84645669" XPOS="722.8346457" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="5.486" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="PermianSerifTypeface Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="632.3092756" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="10" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="6" LINESP="15" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 27.8465 0 27.8465 0 27.8465 0 27.8465 0 27.8465 5.486 27.8465 5.486 27.8465 5.486 27.8465 5.486 0 5.486 0 5.486 0 5.486 0 5.486 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16"/>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 51.0236 0 51.0236 0 51.0236 0 51.0236 0 51.0236 25.5118 51.0236 25.5118 51.0236 25.5118 51.0236 25.5118 0 25.5118 0 25.5118 0 25.5118 0 25.5118 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="51.02362205" XPOS="771.023622" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="25.51181102" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="615.1181102" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 51.0236 0 51.0236 0 51.0236 0 51.0236 0 51.0236 25.5118 51.0236 25.5118 51.0236 25.5118 51.0236 25.5118 0 25.5118 0 25.5118 0 25.5118 0 25.5118 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="Medián ČR"/>
<ITEXT Unicode="28"/>
<ITEXT PSTYLE="" CH="21 629 Kč"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 51.0236 0 51.0236 0 51.0236 0 51.0236 0 51.0236 22.6772 51.0236 22.6772 51.0236 22.6772 51.0236 22.6772 0 22.6772 0 22.6772 0 22.6772 0 22.6772 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="51.02362205" XPOS="771.023622" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="22.67716535" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="592.4409449" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 51.0236 0 51.0236 0 51.0236 0 51.0236 0 51.0236 22.6772 51.0236 22.6772 51.0236 22.6772 51.0236 22.6772 0 22.6772 0 22.6772 0 22.6772 0 22.6772 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="Průměr Praha"/>
<ITEXT Unicode="28"/>
<ITEXT PSTYLE="" CH="35 835 Kč"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="722.8346457" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="56.69291339" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="651.9685039" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="Základní odměna neuvolněného zastupitele"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="666.1417323" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="56.69291339" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="651.9685039" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="Průměrný pirátský zastupitel"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="609.4488189" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="56.69291339" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="651.9685039" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="Limit pro neuvolněného zastupitele"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="552.7559055" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="56.69291339" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="651.9685039" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="Před-sedkyně kontrolního výboru"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="496.0629921" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="56.69291339" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="651.9685039" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="Primátorka"/>
<ITEXT Unicode="28"/>
<ITEXT PSTYLE="" CH="hl.m."/>
<ITEXT Unicode="28"/>
<ITEXT PSTYLE="" CH="Prahy"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="439.3700787" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="56.69291339" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="651.9685039" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="Před-sedkyně dozorčí rady PRE"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="439.3700787" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="56.69291339" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="436.5354331" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 42.5197 56.6929 0 56.6929 0 56.6929 0 56.6929 0 56.6929 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="190 000 Kč"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 25.5118 42.5197 25.5118 42.5197 25.5118 42.5197 25.5118 0 25.5118 0 25.5118 0 25.5118 0 25.5118 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="496.0629921" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="25.51181103" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="527.2440945" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 25.5118 42.5197 25.5118 42.5197 25.5118 42.5197 25.5118 0 25.5118 0 25.5118 0 25.5118 0 25.5118 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="100 000 Kč"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 0 14.1732 0 14.1732 0 14.1732 0 14.1732 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="552.7559055" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="14.17322835" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="544.2519685" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 0 14.1732 0 14.1732 0 14.1732 0 14.1732 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="81 400 Kč"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 0 14.1732 0 14.1732 0 14.1732 0 14.1732 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="609.4488189" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="14.17322835" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="581.1023622" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 0 14.1732 0 14.1732 0 14.1732 0 14.1732 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="32 486 Kč"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 0 14.1732 0 14.1732 0 14.1732 0 14.1732 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="666.1417323" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="14.17322835" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="581.1023622" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 0 14.1732 0 14.1732 0 14.1732 0 14.1732 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="17 495 Kč"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 0 14.1732 0 14.1732 0 14.1732 0 14.1732 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="None" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="42.51968504" XPOS="722.8346457" relativePaths="1" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="14.17322835" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="Fira Sans Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="581.1023622" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="8" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="4" LINESP="10" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 42.5197 0 42.5197 0 42.5197 0 42.5197 0 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 42.5197 14.1732 0 14.1732 0 14.1732 0 14.1732 0 14.1732 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="100" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16">
<ITEXT PSTYLE="" CH="5 486 Kč"/>
<PARA PARENT="Graf-popisek"/>
</ITEM>
<ITEM TXTULW="-0.1" POCOOR="0 0 0 0 325.984 0 325.984 0 325.984 0 325.984 0 325.984 1.00063 325.984 1.00063 325.984 1.00063 325.984 1.00063 0 1.00063 0 1.00063 0 1.00063 0 1.00063 0 0 0 0 " ANNAME="" RADRECT="0" TXTSTP="-0.1" GRTYP="0" PCOLOR="Cervena" TXTSTW="-0.1" ALIGN="0" BACKITEM="-1" WIDTH="325.984252" XPOS="439.3700788" EXTRA="0" TopLine="0" NEXTITEM="-1" PRINTABLE="1" HEIGHT="1.000629921" BASEOF="0" isTableItem="0" LANGUAGE="Czech" BACKPAGE="-1" TEXTFLOWMODE="0" TransBlendS="0" IFONT="PermianSerifTypeface Regular" TXTSCALEV="100" textPathFlipped="0" BottomLine="0" PLINEEND="0" BEXTRA="0" GROUPS="" TransBlend="0" NAMEDLST="" TXTOUT="1" AUTOTEXT="0" startArrowIndex="0" PICART="1" YPOS="601.9602756" NEXTPAGE="-1" isGroupControl="0" NUMCO="16" ISIZE="10" LOCALSCX="1" TXTSCALE="100" LOCK="0" LOCALSCY="1" PRFILE="" TransValueS="0" doOverprint="0" TXTBASE="0" IRENDER="1" fillRule="1" TEXTRA="0" FLOP="0" LINESPMode="0" ROT="0" textPathType="0" RATIO="1" PLINEART="1" TXTSTYLE="0" PCOLOR2="None" COLUMNS="1" TXTSHX="5" TXTKERN="0" TXTSHY="-5" PTYPE="6" LINESP="15" TXTSTROKE="Black" ANNOTATION="0" PLTSHOW="0" DASHS="" BOOKMARK="0" REXTRA="0" LOCKR="0" DASHOFF="0" LOCALX="0" CLIPEDIT="0" ImageClip="" LOCALY="0" EPROF="" FLIPPEDH="0" SHADE2="100" LeftLine="0" PLINEJOIN="0" NUMDASH="0" PFILE2="" PFILE3="" TXTFILLSH="100" TXTFILL="Black" TXTSTRSH="100" PWIDTH="1" COCOOR="0 0 0 0 325.984 0 325.984 0 325.984 0 325.984 0 325.984 1.00063 325.984 1.00063 325.984 1.00063 325.984 1.00063 0 1.00063 0 1.00063 0 1.00063 0 1.00063 0 0 0 0 " FLIPPEDV="0" RightLine="0" TEXTFLOW="0" SHADE="50" NUMGROUP="0" endArrowIndex="0" COLGAP="0" SCALETYPE="1" EMBEDDED="1" TEXTFLOW2="0" TEXTFLOW3="0" TransValue="0" TXTULP="-0.1" REVERS="0" FRTYPE="0" NUMPO="16"/>
</SCRIBUSELEMUTF8>
|
7e75e51409e906da88f964636e962a842bbaebf5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3543/CH8/EX8.47/EX8_47.sce
|
8956f359670a3a84fcf135d91c4747ff15ed3395
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 586
|
sce
|
EX8_47.sce
|
// Example 8.47
// Calculation of incident optical power.
// Page no 499
clc;
clear;
close;
//Given data
h=6.62*10^-34; // Planck constant
c=3*10^8; // velocity of light
lambda=1.55*10^-6; // Wavelength
B=400*10^6; // Speed of communication
// Maximum repeater spacing
P=(36*h*c*B)/lambda;
P=10*log10(P/10^-3);
//Displaying results in the command window
printf("\n Incident optical power(in nW) = %0.3f ",P);
// The answers vary due to round off error
|
2ddb0a4ea207c8f15e12f5dd185e834dd5a38796
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/199/CH9/EX9.8/Example_9_8.sce
|
e6d9f9f3e704c70c0faf7e748806f0bea766d722
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 420
|
sce
|
Example_9_8.sce
|
// Chapter9
// Page.No-412, Figure.No-9.24(a)
// Example_9_8
// Freq of free running ramp generator
// Given
clear;clc;
R=10*10^3; // Resistance in ohm
Vcc=5 // Supply voltage in volt
Vbe=0.7 // Base to emitter voltage in volt
C=0.05*10^-6; // Capacitance in farad
Ic=(Vcc-Vbe)/R; // Collector current in ampere
fo=(3*Ic)/(Vcc*C);
printf("\n Freq of free running ramp generator is = %.1f Hz \n",fo) // Result
|
ef8d6a3c6f7128dc923de2b0433ef383547dfc13
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1511/CH1/EX1.12/ex1_12.sce
|
e88ffeb580ff56f3580c29ce668fc11f46740964
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 415
|
sce
|
ex1_12.sce
|
// Example 1.12 page no-34
clear
clc
l=2 //cm
D=24 //cm
s=0.5 //cm
Vd=30 //Volts
Va=1000 //Volts
//(a)
d=Vd*l*D/(2*s*Va)
printf("\n(a)\nDeflection Produce, d=%.2f cm\n",d)
//(b)
theta=(atan(d/D))*(180/%pi)
printf("\n(b)\nTheta=%.2f°",theta)
//(c)
e=1.6*10^-19//C
m=9.1*10^-31//kg
v=sqrt(2*e*Va/m)
vr=v/cos(theta*%pi/180)
printf("\n\n(c)\nResultant Velocity, Vr=%.2f *10^6 m/sec",vr/10^6)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.