blob_id
stringlengths 40
40
| directory_id
stringlengths 40
40
| path
stringlengths 4
214
| content_id
stringlengths 40
40
| detected_licenses
listlengths 0
50
| license_type
stringclasses 2
values | repo_name
stringlengths 6
115
| snapshot_id
stringlengths 40
40
| revision_id
stringlengths 40
40
| branch_name
stringclasses 21
values | visit_date
timestamp[us] | revision_date
timestamp[us] | committer_date
timestamp[us] | github_id
int64 141k
586M
⌀ | star_events_count
int64 0
30.4k
| fork_events_count
int64 0
9.67k
| gha_license_id
stringclasses 8
values | gha_event_created_at
timestamp[us] | gha_created_at
timestamp[us] | gha_language
stringclasses 50
values | src_encoding
stringclasses 23
values | language
stringclasses 1
value | is_vendor
bool 1
class | is_generated
bool 1
class | length_bytes
int64 5
10.4M
| extension
stringclasses 29
values | filename
stringlengths 2
96
| content
stringlengths 5
10.4M
|
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0e932aee5429823b579f254fcf633f9f62376f70
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2384/CH6/EX6.7/ex6_7.sce
|
610262bfab0ea7079d83045dae2a1e6e427d7fea
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 261
|
sce
|
ex6_7.sce
|
// Exa 6.7
clc;
clear;
close;
format('v',9)
// Given data
Im = 20;// in mA
Im = Im * 10^-3;// in A
Vm = 50;// in mV
Vm = Vm * 10^-3;// in V
V = 500;// in V
Rm = Vm/Im;// in ohm
Rs = (V/Im)-Rm;// in ohm
disp(Rs,"The series resistance in ohm is");
|
9485d1cdc2949adfeb24893369a0a8cd8613ef5e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2495/CH8/EX8.9.7/Ex8_9_7.sce
|
6f27882249a04ce40f8202c26ce90345c923b4ef
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,160
|
sce
|
Ex8_9_7.sce
|
clear
clc
E_RHE=(0.5335-(-2.363));//reduction reaction at RHE in V
RT_F=0.05915;//
E_LHE=((RT_F/2)*log10(0.1*0.2^2));//reduction reaction at LHE in V
Ecell=E_RHE-E_LHE;//cell reaction in V
printf('Ecell=%.4f V',Ecell)
E_RHE=(0.0-0.0713);//reduction reaction at RHE in V
RT_F=0.05915;//
E_LHE=((RT_F)*log10((0.5^(1/2))/(0.02*0.02)));//reduction reaction at LHE in V
Ecell=E_RHE-E_LHE;//cell reaction in V
printf('\nEcell=%.4f V',Ecell)
E_RHE=(0.337-(-0.441));//reduction reaction at RHE in V
RT_F=0.05915;//
E_LHE=((RT_F/2)*log10(0.05/0.01));//reduction reaction at LHE in V
Ecell=E_RHE-E_LHE;//cell reaction in V
printf('\nEcell=%.4f V',Ecell)
E_RHE=(0.0-0.0);//reduction reaction at RHE in V
RT_F=0.05915;//
E_LHE=((RT_F/2)*log10(6.43/0.127));//reduction reaction at LHE in V
Ecell=E_RHE-E_LHE;//cell reaction in V
printf('\nEcell=%.4f V',Ecell)
E_RHE=(-0.763-0.337);//reduction reaction at RHE in V
RT_F=0.05915;//
E_LHE=((RT_F/2)*log10((0.1^2)*0.732));//reduction reaction at LHE in V
Ecell=E_RHE+E_LHE;//cell reaction in V
printf('\nEcell=%.3f V',Ecell)
//There are some errors in the solution given in textbook
//page 455
|
50b8e81185a160a3db25aa4732a2c649cc183ac1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2175/CH1/EX1.1/1_1.sce
|
9782b6edfdb6d7b6199ce75249365efef8ec8e0a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 242
|
sce
|
1_1.sce
|
clc;
p=3;//bar
v=0.18;//m^2/kg
p2=0.6;//bar
c=p*v^2;
v2=(c/p2)^0.5;
W=-c*(10^5)*[(1/v)-(1/v2)];
disp("Work done by the fluid is:");
disp("N m/kg",-W);
//Answers vary more than than +/-5 :
//Answers in the textbook is wrong
|
d00725a1bc47b250a1e7906c1e8b3fda0b6279fa
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1484/CH6/EX6.14/6_14.sce
|
0a3d83bd8f21d766553d24fa2a6b359fa35f33e6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 264
|
sce
|
6_14.sce
|
clc
//initialisation of variables
h= 10 //ft
l= 50 //ft
d= 1 //in
lm= 5 //in
f= 0.01
sm= 13.6
g=32.2
//CALCULATIONS
ps= sm*lm/12
v= sqrt((ps+h)*2*g*(d/12)/(4*f*l))
Q= v*%pi*(d/12)^2/4
//RESULTS
printf ('Discharge through the pipe= %.3f cuses',Q)
|
1bd21d63136f620922272abfd16311b9e4a499ff
|
cb85e23a93890cfe63382a9e043a178c7058cd4d
|
/simulator_properties.sce
|
4ad3c6dc98ba56a1a003f95b79040c73f375208a
|
[] |
no_license
|
FINESCE/INP-SCILAB
|
ae06d33a4e159c6bc154700f5c7b88759caf6004
|
0006a42b67e269d7ce28729dba870306d564bcf5
|
refs/heads/master
| 2016-08-06T21:46:16.111774
| 2015-07-15T10:39:06
| 2015-07-15T10:39:06
| 37,849,688
| 1
| 1
| null | 2015-07-15T10:39:07
| 2015-06-22T10:35:26
|
Scilab
|
UTF-8
|
Scilab
| false
| false
| 267
|
sce
|
simulator_properties.sce
|
function [simulator_filepath, input_filepath,output_filepath]=simulator_properties()
simulator_filepath='/Users/mcfly/Desktop/INP-SCILAB/'
input_filepath='/Users/mcfly/Desktop/INP-SCILAB/input/'
output_filepath='/Users/mcfly/Desktop/INP-SCILAB/output/'
endfunction
|
aa4dc310d238f2b18e6acdbcb832cfddc42b8df1
|
1485852dd59aafc286600126cf832a32e10f117f
|
/tests/localMaximaFinder/test2.sce
|
507bcc7728d9902d3509c8915f1b409f34ee58ce
|
[] |
no_license
|
rg77/Scilab-Image-Processing-And-Computer-Vision-Toolbox
|
dec9fbbce32cfd1eab3c45ccb29c89aaa1384758
|
8adb116da3a9c29a32e5e0727105aff571e5b374
|
refs/heads/master
| 2020-12-02T16:14:45.282650
| 2017-07-07T10:12:04
| 2017-07-07T10:12:04
| 96,524,257
| 0
| 0
| null | 2017-07-07T09:43:50
| 2017-07-07T09:43:50
| null |
UTF-8
|
Scilab
| false
| false
| 146
|
sce
|
test2.sce
|
//for a matrix - increasing the neighbourhood
mat = [0 0 0 0 0 0;0 0 0 1 0 0;0 0 7 0 0 0 ;0 0 0 0 0 0];
loc=localMaximaFinder(mat,[3 3],4,1);
loc
|
4ed83117d3e458dbf4ae215d58c18b3c386101fb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2399/CH4/EX4.17.1/Example_4_17_1.sce
|
eeb29bd703ac7b9f3ea82b089f23ddf4eab6e8f1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 826
|
sce
|
Example_4_17_1.sce
|
// Example 4.17.1
clc;
clear;
L=10; //length of optical link
n1=1.49 //refractive index
c=3d8; //speed of light
delta=1/100; //relative refractive index
delTS=L*n1*delta/c; //computing delay difference
delTS=delTS*10^12;
sigmaS=L*n1*delta/(2*sqrt(3)*c); //computing rms pulse broadning
sigmaS=sigmaS*10^12;
B=1/(2*delTS); //computing maximum bit rate
B=B*10^3;
B_acc=0.2/(sigmaS); //computing accurate bit rate
B_acc=B_acc*10^3;
BLP=B_acc*L; //computing Bandwidth length product
printf("\nDelay difference is %d ns.\nRMS pulse broadning is %.1f ns.\nBit rate is %.1f Mbit/s.\nAccurate bit rate is %.3f Mbits/s.\nBandwidth length product is %.1f MHz.km",delTS,sigmaS,B,B_acc,BLP);
//answer for maximum bit rate is given as 1.008 Mb/s, deviation of 0.008 Mb/s.
|
4c4903219b3dae54f17fa613926914848e34986d
|
29778da8b2321b9b111665ee097446f393795813
|
/automatique/Td/td1/test_sur_h.sce
|
5d617ca8dc00f61298c1588cf48698eefa2a1dc1
|
[] |
no_license
|
RomainCocogne/Elec3
|
947fe8590fcc084f496e0934c2bda195adb4d33f
|
47833a7112d50c6278898ee388044d5364fb482c
|
refs/heads/master
| 2020-04-27T02:23:00.159518
| 2019-08-26T22:29:00
| 2019-08-26T22:29:00
| 173,992,180
| 2
| 0
| null | 2019-05-16T14:59:40
| 2019-03-05T17:37:22
|
Jupyter Notebook
|
UTF-8
|
Scilab
| false
| false
| 194
|
sce
|
test_sur_h.sce
|
t=linspace (0,10,1000);
p=poly(0,'p');
a=95/13
S=%pi*(2.5^2)
Ts=100 //tps de simulation en min
Qs=40
G=1
Tau=S/(a*G);
G=syslin('c',10/(1+Tau*p))
h=csim('step',t,G);
plot2d(t,h);
|
bfeec53191b7319201bf05b22dc8f614500d3782
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2084/CH12/EX12.6/12_6.sce
|
97950d475a9193ac15625d7d8d7e588d14c19e4f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 645
|
sce
|
12_6.sce
|
//developed in windows XP operating system 32bit
//platform Scilab 5.4.1
clc;clear;
//example 12.6
//writing the equation giving angular displacement as a function of time
//given data
theta0=%pi/10//amplitude(in rad) of motion
theta=%pi/10//displacement(in rad) at t=0 s
T=.05//time period(in s)
//calculation
//required equation is ......theta = theta0*sind((w*t) + delta)
w=(2*%pi)/T//value of w in above equation
delta=asind(theta/theta0)//value of delta in above equation...i.e at t=0
printf('equation giving angular displacement as a function of time is \n theta = (%3.2f rad)*sin[(%3.2f s^-1)t + %d]',theta0,w,delta)
|
992a27760995c130e61c81bcb45b240df0d47035
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/686/CH16/EX16.2/Ex16_2.sci
|
f95f7b70e6193a80aa32a73a3d65be16daa9a5c6
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,268
|
sci
|
Ex16_2.sci
|
clc();
clear;
// To calculatevthe amount of water evaporated per hour per square feet from the water surface
u = 10; // Flow of air stream in fps
r = 33.3; // Relative humidity
T = 519; // Temperature in Rankine
p = 0.1130; // Partial pressure of water vapour
x = 4/12; // Water surface in the wind direction
n = 15.99*10^-5; // Kinematic viscosity
k = 0.0149; // Thermal conductivity in Btu/hr-ft-F
Re = u*x/n; // reynolds number
D = 1.127; // Diffusion coefficient in ft^2/sec
R = 85.74; // Gas constant in Imperial in Imperial units
hd =0.664*Re^0.5*(n*3600/D)^(1/3)*D/x; // Heat transfer coefficient
Pr = 0.710; // Prandtls number
Nu = 0.664*sqrt(Re)*Pr^(1/3); // Nusselt number
h = Nu*k/x; // Heat transfer coefficient
ps = 0.2473; // Saturation pressure of water vapour
m = hd*(ps-p)*144/(R*T); // Water vapour formation rate in lb/hr-ft^2
printf("The rate of amount of water evaporated per sq. foot is %.3f lb/hr-ft^2",m);
|
71b45e390c31c7202d2826ed254bc3bbee07efc1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/371/CH16/EX16.3/16_3.sci
|
4263d10ee190960a785882adfc6a5a87217432b5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 249
|
sci
|
16_3.sci
|
//Faults and Protection//
//Example 16.3//
P=100;//input power in KVA//
Xt=0.04;//limiting ac reactance value//
Fov=2;//current ovarload factor//
Pc=Xt*P*Fov;//choke power of the converter in KVA//
printf('choke power of the converter=Pc=%fKVA',Pc);
|
8e78362857c750ae7d946fe203aad684d1a730c5
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3472/CH14/EX14.11/Example14_11.sce
|
22ebce0361a95a0a155ebebcae04096da1b0c48f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,213
|
sce
|
Example14_11.sce
|
// A Texbook on POWER SYSTEM ENGINEERING
// A.Chakrabarti, M.L.Soni, P.V.Gupta, U.S.Bhatnagar
// DHANPAT RAI & Co.
// SECOND EDITION
// PART II : TRANSMISSION AND DISTRIBUTION
// CHAPTER 7: UNDERGROUND CABLES
// EXAMPLE : 7.11 :
// Page number 216-217
clear ; clc ; close ; // Clear the work space and console
// Given data
V = 85.0 // Line Voltage(kV)
g_max = 55.0 // Maximum stress(kV/cm)
// Calculations
V_1 = 0.632*V // Intersheath potential(kV)
d = 0.736*V/g_max // Core diameter(cm)
d_1 = 2*V/g_max // Intersheath diameter(cm)
D = 3.76*V/g_max // Overall diameter(cm)
d_un = 2*V/g_max // Core diameter of ungraded cable(cm)
D_un = 2.718*d_1 // Overall diameter of ungraded cable(cm)
// Results
disp("PART II - EXAMPLE : 7.11 : SOLUTION :-")
printf("\nDiameter of intersheath, d_1 = %.2f cm", d_1)
printf("\nVoltage of intersheath, V_1 = %.2f kV, to neutral", V_1)
printf("\nConductor diameter of graded cable, d = %.2f cm", d)
printf("\nOutside diameter of graded cable, D = %.2f cm", D)
printf("\nConductor diameter of ungraded cable, d = %.2f cm", d_un)
printf("\nOutside diameter of ungraded cable, D = %.2f cm", D_un)
|
d7a991ba12c8234f936198cf77f85031b2e25aac
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3014/CH2/EX2.10/Ex2_10.sce
|
3cf24dcc989d8ffd8465dc2da2efd5f4be677597
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 604
|
sce
|
Ex2_10.sce
|
clc
//given that
r = 0.53 // radius of hydrogen atom in angstrom
m_e = 9.1e-31 // mass of electron in kg
h = 6.63e-34 // Plank constant
printf("Example 2.10")
h_bar = h / (2*%pi) // constant
del_x = 2*r // calculation of uncertainty in position
del_p = h_bar/(2*del_x*1e-10) // calculation of uncertainty in momentum
p = del_p
E = p^2/(2*m_e*1.6e-19)// Calculation of energy in eV
printf("\n Kinetic energy needed by an electron to be \n confined in electron is %f eV.\n\n\n",E)
// When problem is solved by del_x*del_p = h_bar, then minimum value of kinetic energy will become 13.6eV
|
e3a8bf7b72946ea8b7bb31d09f60f6f4238c58b0
|
3b9a879e67cbab4a5a4a5081e2e9c38b3e27a8cc
|
/Pack/Área 2/M12/códigos_respostas/passo_multiplo_q5q6.sci
|
9099f67c63fff7581489f9624b482ed900880486
|
[
"MIT"
] |
permissive
|
JPedroSilveira/numerical-calculus-with-scilab
|
32e04e9b1234a0a82275f86aa2d6416198fa6c81
|
190bc816dfaa73ec2efe289c34baf21191944a53
|
refs/heads/master
| 2023-05-10T22:39:02.550321
| 2021-05-11T17:17:09
| 2021-05-11T17:17:09
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 770
|
sci
|
passo_multiplo_q5q6.sci
|
x(1)=1 // c(1)fn +1
x(2)=-0 // c(2)fn +0
x(3)=-1 // c(3)fn -1
b(1)=1
b(2)=0
b(3)=1/3
for i=1:3
M(1,i)=1
M(2,i)=x(i)
M(3,i)=x(i)^2
end
c=inv(M)*b
S=c(1)^2+c(2)^2+c(3)^2 //solução
//disp(S)
disp('Coeficientes:')
disp(c) //resp.: C = coeficientes
/*
Resposta está em C, são os coeficientes
Ex (1):
Un+1 = Un + h (C1fn<+0> + C2fn<-1> + C3fn<-2>) //valores em <>
1:
x(1)=0
x(2)=-1
x(3)=-2
b(1)=1
b(2)=1/2
b(3)=1/3
//se tiver b(4) é 1/4
2:
x(1)=1
x(2)=-1
x(3)=-2
b(1)=1
b(2)=1/2
b(3)=1/3
3: igual à 2
4: igual à 2/3, mas pega a norma
5: acho que essa merda tá errada, tomar no cu
x(1)=1
x(2)=0
x(3)=-1
b(1)=1
b(2)=0
b(3)=1/3
6: igual à 5, mas usa max
Teste: 57 (questão em print)
x(1)=1
x(2)=0
x(3)=-1
b(1)=1
b(2)=0
b(3)=1/3
|
286ba23e500b0ec22d15de74b072a92fb55857c9
|
f81f2aca21a9a22746300d097acd62205d34fb61
|
/archive.sce
|
9359eb670519547658216e30a5c5c9aacefdb7ed
|
[] |
no_license
|
br3688/SunPosition
|
e695d9f69e6ab8a6b1394ffe0e8c24b42f849d17
|
5169ba7e5374f617487c95c34e0c2410b08d2573
|
refs/heads/master
| 2020-07-01T04:57:25.732520
| 2016-11-22T18:51:29
| 2016-11-22T18:51:29
| 74,095,307
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,440
|
sce
|
archive.sce
|
//function [] = sunPosition()
clc
clear
exec('NumberDays.sce');
exec('ConvertTime.sce');
exec('getDepthDiffuse.sce');
//latitudeSign is +1 if N of equator, -1 if S of equator
latitudeSign = 1;
degreesLat = 29;
minutesLat = 39;
secondsLat = 7.19;
longitudeSign = 1;
degreesLong = 82;
minutesLong = 19;
secondsLong = 29.97;
standardTimeMeridian = 75;
month = 2; // number e.g. 01 for January, 02 for February
day = 1;
//solarHourAngle = -10.7; // in degrees
solarHourAngle = 79;
panelTiltAngle = 30;
panelAzimuthAngle = 10;
groundReflectance = 0.2;
daysPassed = numberDays(month,day);
latitude = latitudeSign*(degreesLat + minutesLat/60 + secondsLat/3600);
longitude = longitudeSign*(degreesLong + minutesLong/60 + secondsLong/3600);
solarDec = 23.45*sind(360*(284+daysPassed)/365);
solarAltitudeAngle = asind(sind(latitude)*sind(solarDec)+cosd(latitude)*cosd(solarDec)*cosd(solarHourAngle));
solarAzimuthAngle = asind(cosd(solarDec)*sind(solarHourAngle)/cosd(solarAltitudeAngle));
i = acosd(cosd(solarAltitudeAngle)*cosd(solarAzimuthAngle-panelAzimuthAngle)*sind(panelTiltAngle)+sind(solarAltitudeAngle)*cosd(panelTiltAngle))
[opticalDepth, diffuseFactor] = getDepthDiffuse(month);
insolationExtra =1353*(1+.034*cosd(360*daysPassed/365.25))
instantRadiation = insolationExtra*exp(-opticalDepth/sind(solarAltitudeAngle))// Cn omitted (assume Cn = 1)
beamRadiation = instantRadiation*cosd(i);
diffuseRadiation = diffuseFactor*instantRadiation*cosd(panelTiltAngle/2)^2;
groundRadiation = groundReflectance*instantRadiation*(sind(solarAltitudeAngle)+diffuseFactor)*sind(panelTiltAngle/2)^2;
insolationTotal = beamRadiation + diffuseRadiation +groundRadiation;
hourAngleSunriseDif = acosd(-tand(latitude)*tand(solarDec)); //sunset is with +coef.
timeDifNoon = hourAngleSunriseDif*4/60; // unit in hours (float)
solarRiseTime = 12-timeDifNoon;
solarSetTime = 12+timeDifNoon;
solarRiseTimeFormatted = convertTime(solarRiseTime);
solarSetTimeFormatted = convertTime(solarSetTime);
n=daysPassed;
b=360/364*(n-81);
et =9.87*sind(2*b)-7.53*cosd(b)-1.5*sind(b);
localSunriseTime = solarRiseTime+(-et-4*(standardTimeMeridian-longitude))/60; //divid ed by 60 to match units in hours
localSunsetTime = solarSetTime+(-et-4*(standardTimeMeridian-longitude))/60;
localRiseTimeFormatted = convertTime(localSunriseTime);
localSetTimeFormatted = convertTime(localSunsetTime);
//endfunction
|
b30120f50f8f15efccae28190b91ffe7a93aeb34
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.3_17.tst
|
46dea0ce262d17bda15c90489e43bfaec08f3257
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 31,419
|
tst
|
bow.3_17.tst
|
3 15:0.06666666666666667 17:0.25 23:0.18181818181818182 37:0.3333333333333333 82:0.16666666666666666 95:1.0 96:0.16666666666666666 97:1.0 114:0.5 115:1.0 116:2.0 128:0.5 145:1.0 171:0.5 272:1.0 350:0.14285714285714285 531:0.5 561:1.0 622:1.0 641:1.0 809:1.0 892:1.0 938:1.0 1168:1.0 1430:1.0 1618:1.0 1742:1.0 1947:0.5 1959:1.0 1992:1.0 2297:1.0 2550:1.0 2721:1.0 3667:1.0 4220:1.0 4227:1.0
3 5:0.2 23:0.2727272727272727 42:0.2222222222222222 96:0.16666666666666666 97:2.0 100:0.25 105:0.5 143:0.3333333333333333 147:0.5 165:0.08333333333333333 171:0.5 177:0.5 219:0.3333333333333333 368:1.0 373:0.5 622:2.0 644:1.0 897:1.0 1058:1.0 1163:1.0 1618:1.0 1742:1.0 1780:0.5 1867:1.0 1869:1.0 1947:0.5 2188:1.0 2194:1.0 2550:1.0 2886:1.0 2942:1.0 3121:1.0 3183:1.0 3667:1.0
3 1:0.08333333333333333 4:1.0 5:0.2 6:0.04 23:0.09090909090909091 34:0.125 37:0.3333333333333333 40:1.0 42:0.2222222222222222 116:1.0 146:1.0 147:0.5 150:0.04 258:1.0 373:0.5 399:0.5 441:1.0 517:1.0 667:1.0 1109:1.0 1377:1.0 1438:1.0 1644:0.3333333333333333 2573:1.0 5019:1.0
3 6:0.24 15:0.13333333333333333 17:0.25 34:0.25 42:0.1111111111111111 56:0.3333333333333333 63:0.5 73:1.0 75:0.16666666666666666 82:0.16666666666666666 105:0.5 114:0.5 145:1.0 190:1.0 215:0.14285714285714285 219:0.3333333333333333 249:0.5 350:0.14285714285714285 477:1.0 534:0.25 1154:1.0 1568:0.5 1993:1.0 2276:0.5 2515:1.0 2599:1.0 2970:1.0 2987:1.0 4003:1.0 4112:2.0 5019:1.0 5058:1.0 6141:1.0
3 5:0.2 23:0.18181818181818182 42:0.1111111111111111 97:1.0 116:2.0 157:1.0 275:0.5 311:1.0 312:1.0 373:0.5 397:1.0 423:0.5 1657:2.0 1698:1.0 1740:1.0 2547:1.0 3000:1.0 3391:1.0 4451:1.0 5182:1.0
3 6:0.04 17:0.25 23:0.09090909090909091 34:0.125 42:0.1111111111111111 56:0.3333333333333333 97:0.5 114:1.5 143:0.3333333333333333 146:1.0 165:0.08333333333333333 169:1.0 190:1.0 191:0.2 215:0.14285714285714285 219:0.3333333333333333 261:0.045454545454545456 409:1.0 644:1.0 1132:1.0 1176:1.0 1319:1.0 1492:1.0 1867:1.0 1993:1.0 2187:1.0 2974:1.0 3171:1.0 5081:1.0 8380:1.0
3 5:0.2 6:0.08 15:0.06666666666666667 34:0.25 37:0.3333333333333333 56:0.3333333333333333 94:1.0 96:0.16666666666666666 97:1.0 107:0.5 116:1.0 128:0.5 157:1.0 165:0.08333333333333333 167:1.0 190:2.0 191:0.4 235:1.0 461:1.0 561:1.0 1064:1.0 2524:1.0 3375:1.0 4146:1.0
3 4:1.0 6:0.16 15:0.2 34:0.125 37:0.6666666666666666 42:0.1111111111111111 63:0.5 75:0.25 82:0.16666666666666666 98:0.5 150:0.04 158:1.0 165:0.08333333333333333 185:0.5 189:1.0 191:0.2 206:1.0 281:1.0 295:1.0 311:1.0 319:0.1 340:1.0 367:0.3333333333333333 443:1.0 660:1.0 693:1.0 1030:1.0 1033:1.0 1298:1.0 1424:1.0 1719:1.0 2017:1.0 2462:1.0 3605:1.0 4006:1.0 4102:1.0 5095:1.0 6849:1.0
3 6:0.04 17:0.25 34:0.125 37:0.3333333333333333 94:0.5 95:1.0 96:0.16666666666666666 114:1.0 139:1.0 150:0.12 165:0.08333333333333333 206:1.0 238:0.1111111111111111 295:1.0 320:0.5 409:1.0 443:1.0 654:0.14285714285714285 982:1.0 1424:1.0 1947:0.5 2033:1.0 2211:1.0 2320:2.0 3855:1.0
3 1:0.08333333333333333 34:0.125 35:1.0 36:0.3333333333333333 42:0.1111111111111111 44:1.0 63:0.5 89:1.0 177:0.5 197:0.5 215:0.14285714285714285 311:1.0 314:1.0 417:1.0 496:1.0 654:0.14285714285714285 800:0.5 1671:1.0 2688:1.0 4185:1.0 4370:2.0
3 1:0.08333333333333333 4:1.0 6:0.12 23:0.09090909090909091 33:1.0 34:0.125 35:1.0 36:0.3333333333333333 42:0.1111111111111111 56:0.3333333333333333 146:1.0 181:0.25 307:1.0 550:1.0 647:1.0 1266:1.0 1616:1.0 1671:1.0 2231:1.0 2444:1.0 2462:1.0 2609:1.0 7043:1.0 8809:1.0
3 6:0.04 17:0.25 34:0.375 37:0.6666666666666666 42:0.2222222222222222 56:0.3333333333333333 63:0.5 96:0.16666666666666666 107:0.5 146:1.0 150:0.04 191:0.4 201:0.5 206:1.0 219:0.3333333333333333 231:1.0 388:1.0 424:1.0 443:1.0 461:1.0 473:0.6666666666666666 563:1.0 728:1.0 892:1.0 1139:0.5 1147:1.0 1161:1.0 1267:1.0 1404:1.0 1422:1.0 1438:1.0 1538:1.0 2041:1.0 2331:1.0 2376:1.0 2409:1.0 2695:1.0 3567:1.0 3661:1.0 5187:1.0 7045:1.0
3 6:0.04 14:0.07692307692307693 15:0.13333333333333333 56:0.3333333333333333 63:0.5 82:0.16666666666666666 97:0.5 100:0.25 191:0.2 219:0.3333333333333333 261:0.045454545454545456 287:1.0 320:0.5 373:0.5 399:0.5 477:1.0 507:1.0 728:1.0 817:1.0 872:1.0 1399:1.0 1693:1.0 1790:0.5 2695:1.0 3128:1.0 3216:1.0 3255:1.0 3659:1.0 3661:1.0
3 1:0.08333333333333333 5:0.2 6:0.08 17:0.5 23:0.09090909090909091 33:1.0 34:0.125 35:1.0 36:0.3333333333333333 37:0.3333333333333333 115:1.0 140:0.5 191:0.2 204:1.0 416:0.25 417:1.0 443:1.0 473:0.3333333333333333 646:1.0 1126:1.0 1181:1.0 2557:1.0 2801:1.0 3515:1.0 3870:1.0 4049:1.0 4651:1.0
3 6:0.04 17:0.25 34:0.125 37:0.3333333333333333 96:0.16666666666666666 106:1.0 128:0.5 201:0.5 223:2.0 327:0.16666666666666666 441:1.0 442:1.0 443:1.0 531:1.0 561:1.0 654:0.14285714285714285 689:1.0 850:1.0 1075:1.0 1217:1.0 1275:1.0 1426:1.0 1428:1.0 1438:1.0 1936:1.0 2294:1.0 3686:1.0 3981:1.0 4109:1.0 4341:1.0 4532:1.0 4911:1.0
3 5:0.4 34:0.125 51:0.3333333333333333 56:0.3333333333333333 63:0.5 88:1.0 94:0.5 98:0.5 102:0.5 107:0.5 127:1.0 167:1.0 173:1.0 185:0.5 191:0.4 215:0.14285714285714285 222:0.3333333333333333 223:1.0 226:2.0 353:1.0 373:0.5 438:0.3333333333333333 480:1.0 482:1.0 598:1.0 646:1.0 689:1.0 737:1.0 829:1.0 1693:1.0 1716:1.0 1867:1.0 3175:1.0 3770:0.3333333333333333 3828:1.0 4497:1.0 6421:1.0 6504:0.5
3 5:0.2 6:0.08 17:0.25 34:0.125 42:0.1111111111111111 56:0.3333333333333333 82:0.16666666666666666 96:0.16666666666666666 97:0.5 102:0.5 108:0.3333333333333333 129:1.0 150:0.04 165:0.08333333333333333 191:0.2 210:1.0 339:1.0 350:0.14285714285714285 454:1.0 488:2.0 561:1.0 595:1.0 597:1.0 689:1.0 816:0.5 1295:1.0 1404:1.0 1669:1.0 1867:1.0 1885:0.5 2123:1.0 2538:1.0 3197:1.0 3593:1.0 3671:1.0 3686:1.0 4497:1.0 6504:0.5
3 6:0.08 94:0.5 147:1.0 311:1.0 425:1.0 511:0.3333333333333333 1127:1.0 1571:1.0 2856:1.0 3259:1.0
3 6:0.04 16:0.2 56:0.3333333333333333 60:1.0 82:0.16666666666666666 97:0.5 128:0.5 150:0.04 155:0.09090909090909091 163:1.0 226:1.0 281:1.0 327:0.16666666666666666 336:0.5 399:0.5 473:0.3333333333333333 1904:1.0 2055:1.0 2607:1.0 2721:1.0 2973:0.5 3663:1.0 4237:1.0 4246:1.0 4404:1.0
3 1:0.08333333333333333 5:0.4 6:0.08 34:0.125 42:0.1111111111111111 45:1.0 75:0.08333333333333333 89:1.0 120:1.0 150:0.08 275:0.5 327:0.16666666666666666 353:1.0 367:0.3333333333333333 441:1.0 448:1.0 929:1.0 1127:1.0 1241:0.5 1382:0.5 1671:2.0 2015:1.0 2158:1.0 2313:1.0 2370:1.0 2530:1.0 2770:1.0 3392:1.0 3817:2.0 4051:1.0 4523:1.0
3 5:0.6 6:0.04 14:0.07692307692307693 51:0.16666666666666666 56:0.3333333333333333 73:1.0 94:0.5 114:0.5 135:0.3333333333333333 138:0.14285714285714285 146:1.0 147:0.5 150:0.04 169:1.0 185:0.5 275:0.5 359:0.5 367:0.3333333333333333 379:1.0 427:0.5 483:1.0 531:0.5 536:1.0 549:1.0 583:2.0 609:1.0 661:1.0 747:0.5 846:1.0 897:1.0 1035:1.0 1295:1.0 1397:1.0 1412:1.0 1426:1.0 1671:1.0 2082:1.0 2721:1.0 2789:1.0 2819:1.0 3794:1.0 4054:1.0 4261:1.0 4463:1.0 4465:1.0 4480:1.0 4635:1.0 6937:1.0
3 1:0.08333333333333333 5:0.8 15:0.26666666666666666 34:0.125 37:0.3333333333333333 42:0.2222222222222222 56:0.3333333333333333 73:1.0 82:0.5 123:1.0 128:0.5 180:1.0 191:0.2 261:0.045454545454545456 286:1.0 287:1.0 350:0.14285714285714285 373:0.5 405:1.0 411:1.0 461:1.0 473:0.6666666666666666 477:1.0 483:1.0 878:1.0 1095:1.0 1753:1.0 1910:1.0 2078:1.0 2295:1.0 2313:1.0 2941:1.0 2980:1.0 4723:1.0 5070:1.0 5467:1.0 8564:1.0
3 5:0.2 6:0.04 15:0.26666666666666666 17:0.25 23:0.09090909090909091 35:1.0 42:0.7777777777777778 53:1.0 82:0.3333333333333333 96:0.16666666666666666 97:0.5 135:0.3333333333333333 155:0.09090909090909091 181:0.25 249:0.5 251:0.5 270:1.0 272:0.5 289:1.0 441:1.0 443:1.0 534:0.75 560:1.0 561:1.0 577:1.0 615:1.0 644:1.0 717:0.5 735:1.0 1035:1.0 1160:1.0 1445:0.5 1473:1.0 1474:1.0 1538:1.0 1655:1.0 1719:1.0 1868:1.0 1992:1.0 2263:0.5 2582:1.0 2751:1.0 2752:1.0 2776:1.0 2821:1.0 3096:1.0 3144:1.0 3146:1.0 3628:2.0 3832:1.0 6864:1.0 7577:1.0
3 5:0.6 6:0.04 15:0.06666666666666667 23:0.18181818181818182 34:0.375 56:0.3333333333333333 63:0.5 64:0.5 71:1.0 73:1.0 82:0.16666666666666666 96:0.16666666666666666 97:0.5 116:1.0 143:0.3333333333333333 147:0.5 169:1.0 176:0.5 185:0.5 191:0.4 201:0.5 245:1.0 281:1.0 319:0.1 410:1.0 443:1.0 499:1.0 587:1.0 613:1.0 644:1.0 763:1.0 840:1.0 1102:1.0 1219:0.5 1690:1.0 1710:1.0 1910:1.0 2015:1.0 2045:1.0 2721:1.0 3064:1.0 3552:1.0 3584:1.0 3636:1.0 4306:1.0 5573:1.0 6276:1.0 8449:1.0
3 5:0.2 6:0.12 14:0.07692307692307693 23:0.09090909090909091 97:0.5 165:0.08333333333333333 169:1.0 191:0.2 220:1.0 241:1.0 328:1.0 397:1.0 424:1.0 473:0.3333333333333333 533:0.2 1275:1.0 1700:1.0 2018:1.0 2235:1.0 3639:1.0 3840:1.0 3842:1.0 4385:1.0
3 5:0.4 6:0.2 15:0.13333333333333333 17:0.25 23:0.09090909090909091 34:0.25 42:0.1111111111111111 45:1.0 82:0.16666666666666666 89:1.0 96:0.16666666666666666 97:1.0 140:1.0 150:0.04 327:0.16666666666666666 339:1.0 410:1.0 430:1.0 443:1.0 473:0.3333333333333333 623:1.0 927:1.0 1397:1.0 1399:1.0 1655:1.0 2716:1.0 2992:1.0 5841:1.0 8245:1.0 9136:1.0
3 5:0.2 23:0.09090909090909091 42:0.2222222222222222 89:1.0 97:0.5 135:0.3333333333333333 143:0.3333333333333333 147:1.0 150:0.12 155:0.09090909090909091 165:0.08333333333333333 215:0.14285714285714285 327:0.16666666666666666 350:0.14285714285714285 359:0.5 367:0.3333333333333333 379:1.0 473:0.3333333333333333 583:1.0 717:0.5 747:0.5 857:1.0 879:1.0 1180:1.0 1436:1.0 1637:1.0 2518:1.0 2672:1.0 4492:1.0 5573:1.0
3 1:0.25 5:0.2 23:0.18181818181818182 34:0.125 36:0.3333333333333333 96:0.16666666666666666 97:1.5 150:0.08 215:0.14285714285714285 409:1.0 423:0.5 617:1.0 695:1.0 941:1.0 1293:1.0 1295:1.0 1568:0.5 2183:1.0 3123:1.0 3405:1.0 3543:1.0
3 1:0.16666666666666666 4:2.0 6:0.04 17:0.5 33:1.0 56:0.6666666666666666 75:0.08333333333333333 81:1.0 97:0.5 105:0.5 114:1.5 169:1.0 180:1.0 190:1.0 223:1.0 289:1.0 300:1.0 327:0.16666666666666666 399:0.5 473:0.6666666666666666 482:1.0 491:1.0 511:0.3333333333333333 587:1.0 615:1.0 790:1.0 1123:1.0 1154:1.0 1241:0.5 1275:1.0 1389:1.0 1959:2.0 2178:1.0 3437:1.0 3947:1.0 6702:1.0 8474:1.0 8946:1.0
3 1:0.08333333333333333 5:0.2 15:0.06666666666666667 17:0.25 23:0.09090909090909091 34:0.125 35:1.0 36:0.3333333333333333 37:0.3333333333333333 42:0.1111111111111111 60:1.0 73:1.0 82:0.3333333333333333 190:1.0 215:0.14285714285714285 228:0.5 235:1.0 340:1.0 423:0.5 496:1.0 664:1.0 714:1.0 769:1.0 1423:1.0 1538:1.0 1655:1.0
3 15:0.06666666666666667 25:0.5 42:0.2222222222222222 56:0.3333333333333333 95:1.0 145:1.0 223:1.0 319:0.1 443:1.0 531:0.5 534:0.25 566:1.0 595:1.0 618:1.0 622:1.0 623:1.0 671:1.0 795:1.0 1295:1.0 1407:1.0 1853:1.0 1998:1.0 2532:1.0 4616:1.0 4877:1.0 5253:0.5
3 1:0.08333333333333333 5:0.2 6:0.04 15:0.13333333333333333 16:0.2 34:0.125 56:0.3333333333333333 82:0.16666666666666666 88:1.0 114:0.5 123:1.0 138:0.14285714285714285 243:1.0 261:0.045454545454545456 275:0.5 386:0.5 511:0.3333333333333333 857:1.0 1009:1.0 1032:2.0 1155:1.0 1244:1.0 1295:1.0 1433:1.0 1998:1.0 2353:1.0 2609:1.0 3800:1.0 4540:1.0 6985:1.0
3 1:0.08333333333333333 5:0.4 6:0.04 11:1.0 42:0.1111111111111111 51:0.16666666666666666 56:0.3333333333333333 128:1.0 146:1.0 147:0.5 150:0.04 155:0.09090909090909091 181:0.5 185:0.5 226:2.0 284:1.0 327:0.16666666666666666 350:0.14285714285714285 409:1.0 443:1.0 473:0.3333333333333333 588:1.0 714:1.0 1105:1.0 1109:1.0 1202:1.0 1225:1.0 1349:1.0 1538:1.0 1655:1.0 1768:1.0 1939:1.0 2059:1.0 2409:1.0 2553:1.0 2910:1.0 2930:1.0 3085:1.0
3 37:0.3333333333333333 56:0.3333333333333333 97:1.0 147:1.0 235:1.0 261:0.045454545454545456 266:1.0 272:0.5 287:1.0 340:1.0 375:0.5 785:1.0 1109:2.0 2716:1.0 3270:1.0 3976:1.0 5124:1.0
3 6:0.04 15:0.13333333333333333 17:0.5 37:0.6666666666666666 42:0.1111111111111111 73:1.0 114:0.5 147:0.5 169:1.0 206:1.0 261:0.045454545454545456 295:1.0 542:0.5 615:1.0 911:1.0 1109:1.0 1354:0.5 1448:1.0 1538:1.0 1572:1.0 1655:1.0 1826:1.0 2378:0.3333333333333333 2524:1.0 3539:1.0 8853:1.0
3 4:1.0 5:0.2 15:0.13333333333333333 23:0.09090909090909091 42:0.2222222222222222 73:1.0 97:1.0 150:0.08 164:1.0 169:1.0 171:1.0 190:1.0 204:1.0 215:0.14285714285714285 226:1.0 261:0.045454545454545456 484:1.0 681:0.14285714285714285 785:1.0 794:1.0 911:1.0 1126:1.0 1261:1.0 1785:1.0 1947:0.5 2723:1.0 3332:1.0 3473:1.0 4782:1.0
3 4:1.0 5:0.2 6:0.12 34:0.125 42:0.2222222222222222 56:0.3333333333333333 63:0.5 82:0.16666666666666666 95:1.0 105:0.5 107:0.5 135:0.3333333333333333 192:1.0 261:0.045454545454545456 327:0.16666666666666666 376:1.0 473:0.6666666666666666 488:1.0 531:1.0 534:0.75 542:0.5 561:2.0 785:1.0 1241:0.5 1261:1.0 1780:0.5 2614:1.0 3790:1.0 3838:1.0 4182:1.0 7399:1.0
3 6:0.08 34:0.125 42:0.1111111111111111 69:0.5 114:0.5 117:0.058823529411764705 143:0.3333333333333333 146:1.0 147:0.5 165:0.08333333333333333 170:1.0 253:1.0 261:0.045454545454545456 279:1.0 336:0.5 350:0.14285714285714285 484:1.0 587:1.0 892:1.0 908:1.0 1351:1.0 1382:0.5 1487:1.0 2221:1.0 2263:0.5 5030:1.0
3 1:0.08333333333333333 5:0.2 15:0.13333333333333333 30:0.5 37:0.6666666666666666 64:0.5 69:0.5 88:1.0 116:1.0 128:0.5 146:1.0 147:0.5 165:0.08333333333333333 228:0.5 284:1.0 299:1.0 350:0.14285714285714285 373:1.0 452:1.0 484:1.0 488:1.0 561:1.0 587:1.0 747:0.5 1003:1.0 1091:1.0 1326:1.0 1327:1.0 1885:0.5 1936:1.0 2243:1.0 2403:1.0 2626:1.0 3584:1.0
3 1:0.08333333333333333 6:0.04 23:0.09090909090909091 34:0.125 42:0.1111111111111111 49:1.0 56:0.3333333333333333 82:0.5 96:0.16666666666666666 106:3.0 139:1.0 145:1.0 146:1.0 162:1.0 165:0.16666666666666666 169:1.0 188:1.0 189:1.0 328:1.0 353:1.0 393:0.5 443:1.0 488:1.0 524:1.0 618:1.0 644:1.0 671:1.0 892:1.0 1075:1.0 1103:0.5 1241:0.5 1275:1.0 1681:1.0 1780:0.5 1885:0.5 1923:1.0 2591:0.3333333333333333 2807:1.0 4462:1.0 7725:1.0
3 5:0.2 6:0.04 14:0.07692307692307693 34:0.125 42:0.1111111111111111 82:0.3333333333333333 96:0.16666666666666666 102:0.5 201:0.5 204:1.0 223:1.0 373:0.5 441:1.0 461:1.0 1003:1.0 1220:1.0 1278:1.0 1572:1.0 1596:1.0 2068:1.0 2441:1.0 2591:0.3333333333333333 4965:1.0 6237:1.0
3 4:1.0 14:0.07692307692307693 69:0.5 82:0.16666666666666666 138:0.14285714285714285 169:1.0 170:1.0 204:1.0 206:1.0 219:0.3333333333333333 255:1.0 367:0.3333333333333333 756:1.0 1936:1.0 2539:1.0
3 6:0.04 14:0.07692307692307693 15:0.06666666666666667 37:0.3333333333333333 49:1.0 97:0.5 105:0.5 138:0.14285714285714285 177:0.5 215:0.14285714285714285 224:1.0 424:1.0 443:1.0 542:0.5 858:1.0 930:1.0 2474:1.0 2591:0.3333333333333333 7538:1.0 9065:1.0
3 5:0.2 6:0.04 14:0.07692307692307693 42:0.1111111111111111 82:0.16666666666666666 146:1.0 228:0.5 505:1.0 573:1.0 1091:1.0 1199:1.0 1538:1.0 1847:1.0 3605:1.0 6713:1.0
3 5:0.4 6:0.04 69:0.5 95:1.0 106:1.0 114:0.5 135:0.3333333333333333 147:0.5 261:0.045454545454545456 336:0.5 353:1.0 534:0.25 955:1.0 1057:0.5 1087:1.0 1104:1.0 1430:1.0 2030:1.0 3550:1.0 3584:1.0 3849:1.0
3 15:0.06666666666666667 17:0.25 23:0.09090909090909091 42:0.1111111111111111 82:0.3333333333333333 97:0.5 108:0.3333333333333333 134:1.0 139:1.0 154:1.0 155:0.2727272727272727 201:0.5 215:0.42857142857142855 272:0.5 338:1.0 359:0.5 440:1.0 482:1.0 560:1.0 1040:1.0 1219:0.5 1241:0.5
3 6:0.12 15:0.06666666666666667 17:0.25 63:0.5 73:1.0 105:1.0 108:0.3333333333333333 167:1.0 215:0.14285714285714285 253:1.0 295:1.0 305:1.0 328:1.0 359:0.5 407:0.5 441:1.0 461:1.0 522:1.0 615:1.0 958:1.0 959:1.0 960:1.0 1045:1.0 1275:1.0 1423:1.0 1445:0.5 1464:1.0 1569:0.3333333333333333 1621:1.0 1671:1.0 2175:0.5 2282:1.0 3013:1.0 3535:1.0 4774:1.0 8632:1.0
3 5:0.4 6:0.04 26:1.0 34:0.125 37:0.3333333333333333 42:0.2222222222222222 56:0.3333333333333333 63:0.5 64:0.5 69:0.5 108:0.3333333333333333 146:1.0 150:0.08 169:1.0 181:0.25 215:0.14285714285714285 359:1.5 443:1.0 558:1.0 681:0.14285714285714285 696:1.0 768:0.5 1006:1.0 1215:1.0 1521:1.0 1651:0.5 1923:1.0 1929:1.0 1939:1.0 2683:0.5 2770:1.0 2942:1.0 3151:1.0 3379:1.0 4076:1.0 4104:1.0 5726:1.0 9072:1.0
3 34:0.125 37:0.3333333333333333 42:0.2222222222222222 54:1.0 56:0.3333333333333333 63:0.5 64:1.0 75:0.08333333333333333 82:0.16666666666666666 108:0.3333333333333333 150:0.08 169:1.0 181:0.25 201:0.5 250:1.0 251:0.5 350:0.14285714285714285 359:1.0 373:0.5 399:0.5 443:1.0 447:1.0 511:0.3333333333333333 681:0.14285714285714285 768:0.5 795:1.0 1058:1.0 1192:1.0 1332:1.0 1582:1.0 1923:1.0 1929:1.0 2016:1.0 2770:1.0 2942:1.0 4076:1.0 4242:1.0 5726:1.0
3 34:0.125 82:0.16666666666666666 97:0.5 143:0.3333333333333333 145:1.0 150:0.08 238:0.1111111111111111 328:1.0 329:0.5 367:0.3333333333333333 370:1.0 664:1.0 1097:1.0 1296:1.0 1669:1.0 1929:1.0 2370:2.0 3663:1.0 8632:1.0 9343:1.0
3 5:0.6 6:0.08 15:0.13333333333333333 23:0.09090909090909091 34:0.125 37:0.6666666666666666 42:0.1111111111111111 44:1.0 56:0.3333333333333333 64:1.0 97:0.5 106:2.0 147:0.5 226:1.0 253:1.0 350:0.14285714285714285 367:0.3333333333333333 373:0.5 424:1.0 441:1.0 449:1.0 473:0.6666666666666666 488:2.0 545:1.0 561:1.0 989:1.0 1143:1.0 1260:0.5 1263:1.0 1452:1.0 1511:1.0 1569:0.3333333333333333 1707:1.0 1867:1.0 2013:1.0 2248:1.0 2288:1.0 2485:1.0 3582:1.0 3745:1.0 6044:1.0
3 5:0.4 6:0.04 42:0.2222222222222222 69:0.5 73:1.0 97:0.5 106:1.0 108:0.3333333333333333 146:1.0 165:0.08333333333333333 204:1.0 250:1.0 368:1.0 402:1.0 445:1.0 450:1.0 483:1.0 735:1.0 1066:1.0 1161:1.0 1266:1.0 1281:1.0 1386:1.0 1445:0.5 1651:0.5 1847:1.0 1867:2.0 2297:1.0 3121:1.0 3567:1.0 4335:1.0
3 1:0.08333333333333333 3:1.0 5:0.2 6:0.12 15:0.06666666666666667 17:0.25 34:0.125 56:0.3333333333333333 69:0.5 82:0.16666666666666666 98:0.5 106:1.0 114:0.5 123:1.0 139:1.0 146:1.0 162:1.0 165:0.08333333333333333 226:1.0 353:1.0 388:1.0 587:1.0 641:1.0 717:0.5 1057:0.5 1109:1.0 1522:0.3333333333333333 1743:1.0 2332:1.0 3098:1.0 3661:1.0 4262:1.0 4555:1.0 4853:1.0 4889:1.0
3 1:0.08333333333333333 5:0.2 6:0.04 15:0.2 17:0.25 23:0.09090909090909091 34:0.125 54:1.0 56:0.3333333333333333 74:1.0 75:0.08333333333333333 82:0.16666666666666666 105:0.5 123:1.0 135:0.3333333333333333 147:0.5 169:1.0 219:0.3333333333333333 238:0.1111111111111111 260:1.0 326:1.0 394:1.0 418:1.0 460:0.5 509:1.0 553:1.0 566:1.0 573:1.0 695:1.0 1083:1.0 1109:1.0 1221:1.0 1317:1.0 1332:1.0 1333:1.0 1692:1.0 1716:1.0 1717:1.0 2564:1.0 2721:1.0 3330:1.0 4275:1.0 4669:1.0 4703:1.0 5093:1.0 6278:1.0 7318:1.0 7361:0.5 8960:1.0
3 17:0.25 25:0.5 138:0.14285714285714285 284:1.0 1332:1.0 4274:1.0 4275:1.0
3 5:0.4 6:0.04 42:0.2222222222222222 82:0.16666666666666666 98:0.5 102:0.5 150:0.04 169:1.0 175:1.0 177:0.5 228:0.5 350:0.14285714285714285 366:1.0 409:1.0 411:1.0 443:1.0 648:1.0 768:0.5 1421:1.0 1434:1.0 1671:1.0 1719:1.0 1752:1.0 2694:1.0 6711:1.0
3 5:0.2 6:0.04 23:0.09090909090909091 37:0.3333333333333333 42:0.1111111111111111 146:1.0 150:0.04 165:0.08333333333333333 169:1.0 191:0.4 347:1.0 350:0.14285714285714285 393:0.5 473:0.6666666666666666 484:1.0 534:0.25 609:1.0 716:1.0 776:1.0 908:1.0 2532:1.0 2614:1.0 2678:1.0 3663:1.0 4571:1.0
3 5:0.4 23:0.09090909090909091 42:0.2222222222222222 49:1.0 56:0.3333333333333333 82:0.3333333333333333 94:1.0 98:0.5 128:0.5 131:0.5 165:0.08333333333333333 176:0.5 249:0.5 263:1.0 292:0.5 350:0.14285714285714285 366:1.0 367:0.3333333333333333 373:0.5 411:1.0 441:1.0 457:1.0 460:0.5 473:0.6666666666666666 477:1.0 767:1.0 776:1.0 829:1.0 911:1.0 1580:1.0 1614:1.0 2054:1.0 2729:1.0 3030:1.0 4599:1.0
3 1:0.16666666666666666 15:0.06666666666666667 17:0.5 34:0.25 35:1.0 37:0.3333333333333333 56:0.3333333333333333 63:0.5 71:1.0 96:0.3333333333333333 97:0.5 143:0.3333333333333333 150:0.08 226:1.0 284:1.0 300:1.0 331:1.0 402:1.0 416:0.25 417:1.0 418:1.0 561:1.0 595:1.0 3241:1.0 3998:1.0 4238:1.0 4562:1.0
3 5:0.2 6:0.08 17:0.25 117:0.058823529411764705 138:0.14285714285714285 146:1.0 595:1.0 1920:1.0 2138:1.0 2384:0.5 4425:1.0 4789:1.0 5055:1.0
3 6:0.08 15:0.06666666666666667 17:0.25 23:0.09090909090909091 30:0.5 34:0.25 37:0.3333333333333333 42:0.2222222222222222 82:0.16666666666666666 97:0.5 98:0.5 105:0.5 135:0.3333333333333333 145:1.0 169:1.0 175:1.0 180:1.0 191:0.2 211:1.0 286:1.0 328:1.0 340:1.0 367:0.6666666666666666 385:1.0 389:0.5 411:1.0 511:0.3333333333333333 542:0.5 617:1.0 620:1.0 622:1.0 624:1.0 671:1.0 695:2.0 747:0.5 811:1.0 1123:1.0 1280:1.0 2158:1.0 2219:1.0 2534:1.0 2970:1.0 3072:1.0 3330:1.0 3331:1.0 3671:1.0 3742:1.0
3 5:0.2 6:0.04 14:0.07692307692307693 15:0.06666666666666667 16:0.2 34:0.125 44:1.0 56:0.3333333333333333 96:0.16666666666666666 275:0.5 320:0.5 587:1.0 595:1.0 681:0.14285714285714285 866:1.0 1387:1.0 1403:1.0 2101:1.0 2478:0.3333333333333333 2504:1.0 3330:1.0 3353:1.0 3410:1.0 3653:0.5 4498:1.0 9134:1.0
3 5:0.2 6:0.04 15:0.06666666666666667 25:0.5 42:0.1111111111111111 54:1.0 56:0.3333333333333333 73:1.0 75:0.08333333333333333 98:0.5 185:0.5 245:1.0 320:0.5 367:0.3333333333333333 399:0.5 423:0.5 543:0.5 717:0.5 813:1.0 866:1.0 999:1.0 1139:0.5 1373:1.0 1445:0.5 1675:1.0 1785:1.0 2688:1.0 3450:1.0 4376:1.0 4498:1.0 4612:1.0
3 5:0.4 6:0.04 14:0.07692307692307693 42:0.1111111111111111 73:1.0 95:1.0 97:0.5 191:0.4 251:0.5 305:2.0 328:1.0 350:0.2857142857142857 353:1.0 494:1.0 506:1.0 531:0.5 585:1.0 586:1.0 618:1.0 1017:1.0 1018:1.0 1066:1.0 1389:1.0 1496:1.0 1535:2.5 2786:1.0 4483:1.0 4893:1.0 9051:1.0
3 6:0.08 31:1.0 35:1.0 36:0.3333333333333333 91:1.0 92:1.0 150:0.04 190:2.0 261:0.045454545454545456 275:0.5 359:0.5 496:1.0 785:1.0 911:1.0 1436:1.0 1810:1.0 2059:1.0 3031:1.0 5352:1.0 7564:1.0
3 6:0.04 14:0.07692307692307693 15:0.06666666666666667 56:0.3333333333333333 73:1.0 150:0.04 261:0.045454545454545456 263:1.0 359:0.5 445:1.0 644:1.0 785:1.0 3870:1.0 9073:1.0
3 5:0.2 14:0.07692307692307693 34:0.125 42:0.1111111111111111 97:0.5 147:0.5 155:0.09090909090909091 158:1.0 201:0.5 219:0.3333333333333333 220:1.0 261:0.045454545454545456 367:0.3333333333333333 373:0.5 375:0.5 441:1.0 563:1.0 785:1.0 1241:0.5 1479:1.0 1564:0.5 1896:1.0 1941:1.0 2342:1.0
3 5:0.2 6:0.08 34:0.125 56:0.3333333333333333 73:1.0 82:0.3333333333333333 114:0.5 128:0.5 146:1.0 155:0.09090909090909091 216:1.0 308:1.0 473:0.3333333333333333 648:1.0 1298:1.0 1430:1.0 1611:1.0 1654:1.0 3006:1.0 3267:1.0 8014:1.0
3 14:0.07692307692307693 37:0.3333333333333333 56:0.3333333333333333 319:0.1 375:0.5 566:1.0 587:1.0 1432:0.5 1921:1.0 2330:2.0 2649:1.0
3 5:0.2 6:0.04 7:0.5 15:0.06666666666666667 17:0.25 34:0.125 37:0.3333333333333333 64:0.5 82:0.16666666666666666 97:0.5 128:0.5 135:0.3333333333333333 165:0.08333333333333333 181:0.25 220:1.0 223:1.0 275:0.5 300:1.0 347:1.0 373:0.5 440:1.0 441:1.0 587:1.0 654:0.14285714285714285 1423:1.0 1471:1.0 1695:1.0 1779:1.0 2519:1.0 2675:1.0 2959:1.0 3391:1.0 5095:1.0 8780:1.0
3 5:0.2 6:0.04 14:0.07692307692307693 17:0.25 45:2.0 56:0.3333333333333333 128:0.5 138:0.14285714285714285 240:1.0 319:0.1 399:0.5 417:1.0 511:0.3333333333333333 549:1.0 561:1.0 587:1.0 647:1.0 4185:1.0 4237:1.0 7392:1.0
3 1:0.08333333333333333 6:0.04 42:0.2222222222222222 56:0.3333333333333333 96:0.16666666666666666 97:0.5 98:0.5 101:1.0 135:0.3333333333333333 165:0.08333333333333333 191:0.2 223:1.0 319:0.1 443:1.0 671:1.0 717:0.5 1332:1.0 1333:1.0 1403:1.0 1564:0.5 1926:1.0 2686:1.0 3774:1.0 6504:0.5 6957:1.0 8003:1.0
3 23:0.09090909090909091 34:0.25 97:0.5 117:0.058823529411764705 138:0.14285714285714285 165:0.08333333333333333 181:0.25 190:1.0 531:0.5 1105:1.0 1155:1.0 1667:1.0 1740:1.0 2609:1.0 2610:1.0 2611:1.0 2776:1.0 4059:1.0 4707:1.0 8668:1.0
3 6:0.08 7:0.5 14:0.07692307692307693 15:0.06666666666666667 34:0.125 42:0.1111111111111111 56:0.3333333333333333 97:0.5 190:1.0 191:0.2 215:0.2857142857142857 275:0.5 384:1.0 711:1.0 1256:1.0 2688:1.0 3212:1.0 3353:1.0 4006:1.0 4707:1.0 8668:1.0
3 5:0.2 6:0.04 15:0.06666666666666667 31:1.0 34:0.125 42:0.5555555555555556 101:1.0 105:0.5 109:1.0 115:1.0 128:0.5 147:0.5 150:0.04 180:1.0 194:1.0 204:1.0 206:1.0 215:0.14285714285714285 240:1.0 241:1.0 251:0.5 373:0.5 441:1.0 473:1.3333333333333333 511:0.3333333333333333 564:1.0 1332:1.0 1569:0.3333333333333333 1670:0.5 1717:1.0 2297:1.0 2691:1.0 2941:1.0 4238:1.0 4241:1.0 4924:1.0 4980:1.0 6470:1.0
3 5:0.2 6:0.12 7:0.5 17:0.25 31:1.0 42:0.1111111111111111 56:0.3333333333333333 63:0.5 75:0.08333333333333333 82:0.16666666666666666 106:1.0 115:1.0 117:0.058823529411764705 146:1.0 147:0.5 149:1.0 150:0.04 176:0.5 207:1.0 232:1.0 281:1.0 300:1.0 350:0.14285714285714285 539:1.0 561:1.0 615:1.0 1161:1.0 1421:1.0 1423:1.0 1448:1.0 1719:1.0 2229:0.5 2559:1.0 2803:1.0 3584:1.0 3800:1.0 4311:1.0 7330:1.0
3 5:0.2 6:0.04 10:1.0 11:1.0 12:1.0 15:0.06666666666666667 31:1.0 34:0.125 42:0.2222222222222222 64:1.0 75:0.08333333333333333 97:0.5 150:0.08 201:0.5 235:1.0 261:0.045454545454545456 319:0.1 327:0.16666666666666666 380:1.0 488:1.0 587:1.0 785:1.0 1003:1.0 1104:0.5 1281:1.0 1355:1.0 1440:1.0 1661:1.0 2064:0.5 3448:1.0 4370:1.0 4707:1.0
3 5:0.8 7:0.5 30:0.5 31:1.0 42:0.1111111111111111 88:1.0 97:0.5 106:1.0 108:0.3333333333333333 131:0.5 143:0.3333333333333333 146:2.0 147:0.5 191:0.2 454:1.0 473:0.3333333333333333 878:1.0 1085:1.0 1268:1.0 1535:0.5 1661:1.0 1667:1.0 2515:1.0 2591:0.3333333333333333 3416:1.0 3556:2.0 4324:1.0 4406:1.0 7771:1.0
3 6:0.16 15:0.06666666666666667 23:0.09090909090909091 31:1.0 56:0.3333333333333333 75:0.08333333333333333 82:0.5 97:0.5 106:1.0 143:0.3333333333333333 146:1.0 147:0.5 191:0.4 220:1.0 222:0.3333333333333333 254:1.0 261:0.045454545454545456 300:1.0 367:0.3333333333333333 386:0.5 409:1.0 488:1.0 534:0.25 561:1.0 622:1.0 672:1.0 713:1.0 1332:1.0 1333:1.0 1426:1.0 1546:1.0 1865:1.0 1998:1.0 2317:1.0 2683:0.5 3344:1.0 3870:1.0 4407:1.0 9064:1.0
3 5:0.4 6:0.08 17:0.25 29:1.0 31:1.0 42:0.2222222222222222 82:0.16666666666666666 97:1.0 106:1.0 115:1.0 150:0.04 165:0.08333333333333333 215:0.14285714285714285 238:0.1111111111111111 254:0.5 273:0.25 300:1.0 319:0.1 339:1.0 373:0.5 410:1.0 488:1.0 541:1.0 870:1.0 1596:1.0 1667:1.0 2351:1.0 2378:0.3333333333333333 2694:1.0 3182:1.0 3231:1.0 3770:0.3333333333333333 3884:1.0 5076:1.0
3 1:0.08333333333333333 6:0.04 24:1.0 34:0.25 42:0.1111111111111111 56:0.3333333333333333 73:1.0 82:0.16666666666666666 97:0.5 114:0.5 146:1.0 181:0.25 221:1.0 223:1.0 225:1.0 226:1.0 251:0.5 261:0.045454545454545456 272:0.5 300:1.0 320:0.5 399:0.5 405:1.0 406:1.0 543:0.5 654:0.14285714285714285 995:1.0 1032:1.0 1410:1.0 1667:4.0 1910:1.0 1992:1.0 2876:1.0 2923:1.0 2966:1.0 3087:1.0 3106:1.0 6778:2.0
3 5:0.2 6:0.04 7:0.5 17:0.25 23:0.09090909090909091 31:1.0 34:0.5 54:1.0 56:0.6666666666666666 128:0.5 222:0.3333333333333333 261:0.045454545454545456 281:1.0 300:1.0 477:1.0 798:1.0 1177:1.0 1332:1.0 1333:1.0 1465:1.0 2113:1.0 2119:2.0 2609:1.0 2876:1.0
3 5:0.4 6:0.12 15:0.13333333333333333 17:0.25 42:0.1111111111111111 82:0.16666666666666666 146:1.0 147:0.5 190:2.0 191:0.2 204:1.0 290:1.0 441:1.0 577:1.0 1123:1.0 1569:0.3333333333333333 1904:1.0 2462:1.0 2776:1.0 3208:1.0 3332:1.0 3892:1.0 4155:1.0 4236:1.0 4880:1.0 4980:1.0 5361:1.0
3 5:0.2 6:0.12 14:0.07692307692307693 34:0.125 51:0.16666666666666666 56:0.3333333333333333 145:1.0 201:0.5 204:1.0 255:1.0 367:0.3333333333333333 1780:0.5 2538:1.0 3183:1.0 3416:1.0
3 5:0.2 6:0.08 14:0.07692307692307693 15:0.06666666666666667 23:0.18181818181818182 56:0.3333333333333333 82:0.16666666666666666 106:2.0 146:1.0 147:1.0 155:0.09090909090909091 165:0.16666666666666666 241:1.0 278:1.0 457:1.0 908:1.0 1248:1.0 1298:1.0 1830:1.0 1923:1.0 1992:2.0 2721:1.0 2722:1.0 3910:1.0 4054:1.0 4490:1.0
3 5:0.2 6:0.04 14:0.07692307692307693 17:0.25 97:1.0 114:0.5 138:0.14285714285714285 165:0.08333333333333333 232:1.0 275:0.5 290:1.0 491:1.0 647:1.0 724:1.0 927:1.0 988:0.5 1481:1.0 1671:1.0 1888:1.0 2435:1.0 2547:1.0 2626:1.0 4344:1.0 4576:1.0
3 5:0.4 15:0.06666666666666667 25:0.5 34:0.25 177:0.5 290:1.0 407:0.5 510:1.0 747:0.5 1064:1.0 1191:1.0 1332:1.0 1333:1.0 1578:1.0 1932:1.0 1994:1.0 2959:1.0 3101:1.0 3567:1.0 4567:1.0
3 1:0.08333333333333333 6:0.04 15:0.2 17:0.25 30:0.5 34:0.25 35:1.0 36:0.3333333333333333 42:0.2222222222222222 56:0.3333333333333333 96:0.16666666666666666 98:0.5 131:0.5 155:0.09090909090909091 175:1.0 185:0.5 188:1.0 302:1.0 320:0.5 368:1.0 393:0.5 443:1.0 496:1.0 526:1.0 800:0.5 857:1.0 1120:1.0 1345:0.5 1349:1.0 1671:1.0 1672:1.0 1708:2.0 1709:2.0 2282:1.0 2828:1.0 4250:1.0 4324:1.0
3 15:0.06666666666666667 30:0.5 34:0.125 42:0.1111111111111111 44:1.0 82:0.16666666666666666 97:0.5 261:0.045454545454545456 281:1.0 373:0.5 743:1.0 1389:1.0 1992:1.0 2539:1.0 2721:1.0 4250:1.0 5279:1.0
3 6:0.16 14:0.07692307692307693 15:0.06666666666666667 17:0.25 94:1.0 97:1.0 149:1.0 169:1.0 171:1.0 204:1.0 226:1.0 331:1.0 531:0.5 537:1.0 546:1.0 561:1.0 828:0.5 850:1.0 1154:1.0 1183:0.5 1672:1.0 1681:1.0 1780:0.5 2278:1.0 2468:1.0 2968:1.0 3260:1.0 4327:1.0
3 6:0.08 34:0.25 42:0.1111111111111111 82:0.16666666666666666 150:0.04 245:1.0 473:0.3333333333333333 543:0.5 918:1.0 919:1.0 1044:1.0 1256:1.0 1361:1.0 1446:1.0 1569:0.3333333333333333 2041:1.0 2263:0.5 3049:1.0 3410:1.0 3700:1.0
3 5:0.2 6:0.08 14:0.07692307692307693 23:0.09090909090909091 26:1.0 42:0.2222222222222222 54:1.0 97:1.0 101:1.0 191:0.2 219:0.3333333333333333 226:1.0 238:0.1111111111111111 255:1.0 272:0.5 329:0.5 371:1.0 441:1.0 1426:1.0 1637:1.0 1992:1.0 2996:1.0 3823:1.0 7333:1.0
3 4:1.0 5:0.4 6:0.08 17:0.25 37:0.6666666666666666 56:0.3333333333333333 75:0.08333333333333333 98:0.5 138:0.14285714285714285 143:0.3333333333333333 150:0.04 246:1.0 307:1.0 327:0.16666666666666666 350:0.14285714285714285 394:1.0 896:1.0 981:1.0 1143:1.0 1166:2.0 1332:1.0 1333:1.0 1664:1.0 2478:0.3333333333333333 2500:1.0 2567:1.0 3672:1.0 4141:1.0 4979:1.0
3 5:0.2 56:0.3333333333333333 117:0.058823529411764705 138:0.14285714285714285 215:0.14285714285714285 443:1.0 461:1.0 1295:1.0 1332:1.0 1333:1.0 2680:1.0 2927:1.0 3101:1.0 3241:1.0 3737:1.0 5027:1.0
3 1:0.08333333333333333 5:0.6 6:0.12 15:0.06666666666666667 34:0.125 42:0.1111111111111111 44:1.0 56:0.3333333333333333 73:1.0 75:0.08333333333333333 82:0.16666666666666666 97:0.5 98:0.5 132:1.0 165:0.08333333333333333 190:1.0 197:0.5 204:1.0 206:1.0 211:1.0 215:0.2857142857142857 367:0.3333333333333333 399:0.5 412:1.0 478:1.0 563:1.0 1116:1.0 1160:1.0 1177:1.0 1222:1.0 1522:0.3333333333333333 1596:1.0 1661:1.0 1693:1.0 2688:1.0 2843:1.0 3175:1.0 4177:1.0 4317:1.0 4523:1.0 9136:1.0
3 1:0.08333333333333333 4:1.0 6:0.08 16:0.2 25:0.5 34:0.125 56:0.3333333333333333 138:0.14285714285714285 164:1.0 386:0.5 654:0.14285714285714285 716:1.0 717:0.5 1222:1.0 2929:1.0
3 5:0.2 34:0.125 42:0.1111111111111111 56:0.3333333333333333 97:1.0 101:1.0 128:0.5 191:0.2 261:0.045454545454545456 272:0.5 353:1.0 367:0.6666666666666666 595:1.0 597:1.0 599:1.0 785:1.0 1241:0.5 1332:1.0 1333:1.0 1389:1.0 1410:1.0 2973:0.5 3832:1.0 4158:1.0 4497:1.0
3 6:0.12 15:0.06666666666666667 34:0.125 42:0.3333333333333333 56:0.3333333333333333 82:0.16666666666666666 169:1.0 201:0.5 245:1.0 350:0.14285714285714285 439:1.0 441:1.0 496:1.0 511:0.3333333333333333 693:1.0 843:1.0 892:1.0 927:1.0 1046:1.0 1116:1.0 1174:1.0 1307:1.0 1332:1.0 1333:1.0 1363:1.0 1569:0.3333333333333333 1719:1.0 2018:1.0 2188:1.0 3208:1.0
3 5:0.2 6:0.16 17:0.75 34:0.125 42:0.2222222222222222 44:1.0 56:0.3333333333333333 82:0.5 114:0.5 138:0.14285714285714285 139:1.0 147:0.5 275:0.5 300:1.0 318:1.0 343:1.0 488:1.0 650:1.0 1028:0.3333333333333333 1044:1.0 1104:1.0 2017:1.0 2141:1.0 2158:1.0 2161:1.0 2162:1.0 2182:1.0
3 14:0.07692307692307693 15:0.06666666666666667 34:0.125 37:0.3333333333333333 73:1.0 165:0.08333333333333333 240:1.0 290:1.0 297:1.0 298:1.0 399:0.5 418:1.0 449:1.0 473:0.3333333333333333 635:1.0 1332:1.0 1333:1.0 1596:1.0 1719:1.0 1883:1.0 1992:1.0 2071:1.0 2941:1.0 3031:3.0 3829:1.0 4221:1.0 4924:1.0
|
9ee16397e91831576967989dc101f75f38733b78
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3871/CH10/EX10.15/Ex10_15.sce
|
0b11902f35fb372e6e16f293b57f64c04fa3c7f9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 782
|
sce
|
Ex10_15.sce
|
//===========================================================================
//chapter 10 example 15
clc;clear all;
//variable declaration
P = 200; //resistance in arm in Ω
Q = 200; //resistance in arm in Ω
S = 200; //resistance in arm in Ω
R = 200; //resistance in arm in Ω
p = 0.5; //power in W
r = 2; //r is internal resistance of battery in Ω
E = 24; //voltage in V
//calculations
//P = (I^2)*R; power disiipation in W
I = sqrt(p/R);
V = I*2*R; //the maximum voltage ,that can be appliedto the bridge in V
I1 = 2*I; //current through series resistor in A
//E = V+(2*I*(r+R) battery emf E
R1 = ((E-V)/I1)-r; //series resistance in Ω
//result
mprintf("current = %3.2f A",I);
mprintf("\nseries resistance = %3.2f Ω",R1);
|
08a32ac259e503aaccb4db2a850f699d32c24c5d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/52/CH9/EX9.7.b/Example9_7_b.sce
|
12e034cd8cfd57f90b64f119d95664ae29205608
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 458
|
sce
|
Example9_7_b.sce
|
//Example 9.7 (b)
//Program To Determine Record Length of Bartlett,
//Welch(50% Overlap) and Blackmann-Tukey Methods
clear;
clc;
close;
//Data
Q=10;//Quality Factor
N=1000;//Samples
//RECORD LENGTH CALCULATION
lb=N/Q;
lw=16*N/(9*Q);
lbt=3*N/(2*Q);
//Display the result in command window
disp(lb,"Record Length of Bartlett Method");
disp(lw,"Record Length of Welch(50% overlap) Method");
disp(lbt,"Record Length of Blackmann-Tukey Method");
|
90867591a5be67a04590a984dd91fd5348994944
|
2abc0ac2745749ba8e8004d0b6e85f769175d540
|
/Vtol_Parameters.sce
|
61eb23bb076d0d0f679c2cb0f698ab47f309d5a3
|
[] |
no_license
|
jfloreshu/Vtol_scilab_LQR_deterministic
|
9d17da342635539e6b9f3a6b6d128dc694be5656
|
6008f2ecd39c92095881f8f759c5b0a85e71bc6e
|
refs/heads/master
| 2022-12-01T22:32:35.709043
| 2020-08-16T03:43:36
| 2020-08-16T03:43:36
| 287,854,224
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 215
|
sce
|
Vtol_Parameters.sce
|
//Parameters of the Plane
m=4; //mass of the plane Kg
J=0.05; //Inertia Kgm2
r=0.3; //distance at which the plane operates m
g= 9.81; //Gravity m/s2
c=0.07; //Damping constant Ns/m
|
e18689a380f2e7476d6ffb99b99c48ef5b47a720
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3401/CH4/EX4.5/Ex4_5.sce
|
54a4893bb4a78fb79dbc83bf745c07c0c72e7bc7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 228
|
sce
|
Ex4_5.sce
|
clc
T=300 //K
Nn=2.8*10^19 //cm^-3
Np=1.04*10^19 //cm^-3
//a=Ef-Ev
an=0.25 //eV
ap=0.87 //eV
k=8.617*10^-5 //eV/K
n0=Nn*exp(-an/(k*T))
disp(n0,"n0 in cm^-3 is=")
p0=Np*exp(-ap/(k*T))
disp(p0,"p0 in cm^-3 is=")
|
1ab3d6caf9dfebaf734c87811b4784d11a896af1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1076/CH13/EX13.13/13_13.sce
|
f4b7a71199a4f7156ff54f67feca74a9a34bf2a9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 211
|
sce
|
13_13.sce
|
clear
clc
Pi=1
Pma=1.75
Pmb=.4
Pmc=1.25
d0=asin(Pi/Pma)
dm=%pi - asin(Pi/Pmc)
dcc=acosd(((Pi*(dm-d0))- (Pmb*cos(d0))+ (Pmc*cos(dm)))/(Pmc-Pmb))
mprintf("Critical Clearing angle = %.1f deg", dcc)
|
ed7473cc702492027ac0766d145f316d8cc1c3e9
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/476/CH9/EX9.13/Example_9_13.sce
|
dd595f740240a69b685dc443e714dd372bae2566
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 994
|
sce
|
Example_9_13.sce
|
//A Textbook of Chemical Engineering Thermodynamics
//Chapter 9
//Chemical Reaction Equilibria
//Example 13
clear;
clc;
//Given:
//Reaction: N2 + 3H2 --> 2NH3
K = 2*10^-4; //equilibrium constant of reaction
//To determine the percent conversion:
//Basis:
//1 mole nitrogen and 3 moles of hydrogen in the reactant mixture
//Let e be the extent of reaction
//Using eq. 9.3 (Page no. 400)
//mol fraction of nitrogen is (1-e)/(4-2e)
//mol fraction of hydrogen is (3-3e)/(4-2e)
//mol fraction of ammonia is 2e/(4-2e)
//so, ([2e/(4-2e)]^2)/[(1-e)/(4-2e)][3(1-e)/(4-2e)]^3 = K*P^2
//(a)
P = 20; //(bar)
//e(4-2e)/(1-e)^2 = 0.73485
e = poly(0,'e');
f = 2.73845*e^2 - 5.4697*e + 0.73485;
x = roots(f);
mprintf('(a) Percentage conversion is %f percent',x(2)*100);
//(b)
P = 200; //(bar)
//e(4-2e)/(1-e)^2 = 7.3485
e = poly(0,'e');
f = 9.3485*e^2 - 18.697*e + 7.3485;
x = roots(f);
mprintf('\n\n (b) Percentage conversion is %f percent',x(2)*100);
//end
|
fd7fad14708bd33967c5e58ed14fdf2a81fe9737
|
0812f3bb6f3cc038b570df68ccee4275da04b11f
|
/models/complexity_1000/Applied_Thermodynamics_and_Engineering/CH4/EX4.4/4_4.sce
|
dcb829b7becfa059337e345a353eb42ac1f74016
|
[] |
no_license
|
apelttom/20-semester_PhD_thesis
|
edc0b55580bae9d364599932cd73cf32509f4b7a
|
ff28b115fcf5e121525e08021fa0c02b54a8e143
|
refs/heads/master
| 2018-12-26T22:03:38.510422
| 2018-12-14T20:04:11
| 2018-12-14T20:04:11
| 106,552,276
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 287
|
sce
|
4_4.sce
|
clc;
s1=5.615;//kJ/kg K
t1=311;//C
t2=300;//C
t3=350;//C
s2=7.124+(t1-t2)/(t3-t2)*(7.301-7.124);
T=t1+273;//K
Q=T*(s2-s1);
disp("heat supplied is:");
disp("kJ/kg",Q)
u1=2545;//kJ/kg
u2=2794+(t1-t2)/(t3-t2)*(2875-2794);
W=(u2-u1)-Q
disp("work done by the steam is:");
disp("kJ/kg",-W)
|
de72526e619dc62683fc3fda26e4789a4f5c164e
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/browsable_source/2.3/Unix-Windows/scilab-2.3/macros/scicos/check_mac.sci
|
4f978e6487852248960383dbdb26c66ec6951999
|
[
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain",
"MIT"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 237
|
sci
|
check_mac.sci
|
function ok=check_mac(txt)
//ok=%t,return
//errcatch doesnt work poperly
ok=%t
errcatch(-1,'continue')
comp(mac)
errcatch(-1)
if iserror(-1)==1 then
errclear(-1)
message('Incorrect syntax: see message in Scilab window')
ok=%f
end
|
25e838fb5cb51727dea02fc16e9739f5c5e3a1ff
|
1d7cb1dbfad2558a4145c06cbe3f5fa3fc6d2c08
|
/Scilab/Redundant Receivers/RR_Plot2_v1.sci
|
d9e056a915d078de56f74aae14fe80d7bfb3a95a
|
[] |
no_license
|
lrayzman/SI-Scripts
|
5b5f6a8e4ae19ccff53b8dab7b5773e0acde710d
|
9ab161c6deff2a27c9da906e37aa68964fabb036
|
refs/heads/master
| 2020-09-25T16:23:23.389526
| 2020-02-09T02:13:46
| 2020-02-09T02:13:46
| 66,975,754
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,458
|
sci
|
RR_Plot2_v1.sci
|
// Coding gain plot for n-1 redundant receivers
//
// (c)2011 L. Rayzman
// Created : 10/18/2011
// Last Modified: 10/18/2011
//
// TODO:
//
clear;
getd("inc"); // Include Q-function definition
//////////////////////////////////////SPECIFY//////////////////////////////////////
n=[2:1:10]; // Vector representing number of receivers
x=[5, 7, 10, 12, 15]; // Vector representing SNR(dB)
///////////////////////////////////////////////////////////////////////////////////
Pe=Qfunc(sqrt(2)*sqrt(10^(x/10)));
leg_string=emptystr();
for i=1:length(x),
plot2d(n-1, Pe(i).^(1-n), style=i+1, logflag='nl'); //, rect=[n(1)-1, 1e-100 , n($)-1, 1]
a=gca();
a.grid=[4 4 -1]; // Prettify
a.children(1).children.line_mode="on";
a.children(1).children.mark_mode="on";
a.children(1).children.mark_size=1;
a.children(1).children.mark_foreground=(i+1);
a.box='on'
a.tight_limits='off'
leg_string(i)=strcat(["SNR=" sci2exp(x(i)) " dB"]);
end
legend(leg_string, 2, %t);
xtitle("Probability of Error Gain for n-1 Redundant Receivers", "Number of redundant receivers", "Probability of Error Gain ");
a.title.font_size=4; // Prettify
|
bb10e6a31d480ce34e1ccc80c42fc3a81158124f
|
fa428f297a915e9a041597642bfe29627ab69c42
|
/app/views/static/contactinfo.sce
|
e7d137e96e19d720f82b21e871014b714e55a50f
|
[] |
no_license
|
TheBrenny/Web-Dev-and-Security
|
dff903be92838b14f7126dd1f7092922b86bf2cc
|
e4abb96dc24e606704b09f5acdd2684d6d5d577d
|
refs/heads/main
| 2023-06-17T08:33:35.176024
| 2021-06-15T05:07:20
| 2021-06-15T05:07:20
| 343,603,444
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 551
|
sce
|
contactinfo.sce
|
[[i= partials/header ]]
[[i= partials/navbar ]]
<div class="container" style="width: 100%;flex-flow:row;">
[[i= static/sidebar ]]
<div class="container center" style="width:78%;">
<h1>Contact Info</h1>
<p>You can contact us at the details below:</p>
<ul>
<li>Mobile - 0412 356 789</li>
<li>Email - <a href="mailto:admin@quickmark.net">admin@quickmark.net</a></li>
<li>Author - Jarod Brennfleck (z5217759)</li>
</ul>
</div>
</div>
[[i= partials/footer ]]
|
2f676e12c9565fe2f61e47bb4928835b27326b41
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3769/CH5/EX5.22/Ex5_22.sce
|
d76ab3b178fba41673688cd80958afe3d1468799
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 224
|
sce
|
Ex5_22.sce
|
clear
//Given
R0=5 //ohm
R100=5.23 //ohm
Rt=5.795 //ohm
//Calculation
t=((Rt-R0)/(R100-R0))*100
//Result
printf("\n The temperature of the bath is %0.2f degree C",t)
|
2bc9d003523cecf36c8d0cbe481820cc3f7cc6a8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3131/CH2/EX2.12/2_12.sce
|
127f8a1d93ef99208a8342914f5f6b8de8646c94
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 381
|
sce
|
2_12.sce
|
clear all; clc;
disp("Ex 2_12")
disp(" Vector r = (-3i + 2j +6k) m")
r=sqrt((-3)^2+2^2+6^2)
printf('\n\nthe magnitude of r is: r = %.0f m',r)
disp(" ")
disp("u = (-3/7)i + (2/7)j + (6/7)k")
a1=acos((-3)/7)
a=a1*180/%pi
printf('\n\nalpha = %.0f degrees',a)
b1=acos(2/7)
b=b1*180/%pi
printf('\n\nbeta = %.1f degrees',b)
c1=acos(6/7)
c=c1*180/%pi
printf('\n\ngamma = %.0f degrees',c)
|
8a9af9cda846f324855776129767c711eeecdd0a
|
ebfed86dee276110294a4e93fa80377908bbd317
|
/macros/imageSet.sci
|
5bb6b599d53bb6cbeaf117fee8ef7eeded9aa817
|
[] |
no_license
|
gursimarsingh/FOSSEE-Image-Processing-Toolbox
|
a9d46b698c98566fec867eb2ce3cfeb427058d5c
|
165f6d7d1f20262a1637a923c6aad6e663ad1538
|
refs/heads/master
| 2021-08-16T19:18:59.591175
| 2017-11-08T17:55:04
| 2017-11-08T17:55:04
| 96,531,802
| 0
| 0
| null | 2017-07-07T11:21:10
| 2017-07-07T11:21:10
| null |
UTF-8
|
Scilab
| false
| false
| 1,937
|
sci
|
imageSet.sci
|
// Copyright (C) 2015 - IIT Bombay - FOSSEE
//
// This file must be used under the terms of the CeCILL.
// This source file is licensed as described in the file COPYING, which
// you should have received as part of this distribution. The terms
// are also available at
// http://www.cecill.info/licences/Licence_CeCILL_V2-en.txt
// Author:Rohit Suri
// Organization: FOSSEE, IIT Bombay
// Email: toolbox@scilab.in
function [imgSet]=imageSet(imageFolder,varargin)
// This function is used to create a collection of images.
//
// Calling Sequence
// imgSet = imageSet(location)
// imgSet = imageSet(location, 'recursive')
//
// Parameters
// imgSet: Structure containing collection of images
// location: Address of the folder from which collection is to be created
//
// Description
// This function creates an imageSet structure with the following attributes- Description, ImageLocation, and Count.
//
// Examples
// imgSet = imageSet(directory);
//
// imgSet = imageSet(directory,'recursive');
//
// Authors
// Rohit Suri
[lhs rhs]=argn(0);
if lhs>1
error(msprintf(" Too many output arguments"));
elseif rhs<1
error(msprintf(" Not enough input arguments"));
elseif rhs>2
error(msprintf(" Too many input arguments"));
end
if rhs==1 then
imgSetList=raw_imageSet(imageFolder);
for i=1:imgSetList(3)
imgLocations(i)=imgSetList(4)(1)(1,i);
end
imgSet=struct('Description',imgSetList(2),'ImageLocation',imgLocations,'Count',double(imgSetList(3)));
else
imgSetList=raw_imageSet(imageFolder,varargin(1));
for i=1:length(imgSetList(3))
for j=1:imgSetList(3)(i)
imgLocations(j)=imgSetList(4)(i)(1,j);
end
imgSet(1,i)=struct('Description',imgSetList(2)(i),'ImageLocation',imgLocations,'Count',int32(imgSetList(3)(i)));
imgLocations=[];
end
end
endfunction
|
af1523483e59aeca28fb947e1d420c7c9c17bf70
|
61da6be21995bc4b23f268b03fc13d0a33d818f3
|
/test/strip.tst
|
c2aa87952e01a318426fe6451c552cf3f178897a
|
[
"BSD-3-Clause",
"BSD-2-Clause"
] |
permissive
|
warmchang/reposurgeon
|
657fe5f63fdd0db560b46ccff11478c73c69b150
|
43e553d9ff0ad4a9c39f4c94b58856f2e5c99297
|
refs/heads/master
| 2020-12-08T19:41:16.920673
| 2020-01-10T14:58:55
| 2020-01-10T14:58:55
| 233,076,382
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 71
|
tst
|
strip.tst
|
## Test of strip command
set echo
read <simple.fi
strip blobs
write -
|
925d1974d4302e2bdde31f560ef5de766f16d74d
|
e8dbcf469ba8a31d6926ba791ebc5dcccd50282b
|
/Scripts/DML/Consultas/Test/consulta_por_educacion.tst
|
366aa1a06aa2b5156d4fd23142f2cba5ed5dd0f5
|
[] |
no_license
|
bryanjimenezchacon/bryanjimenezchacon.github.io
|
5f2a0f1dbfbc584a65dece48f98b1c13d755512f
|
7062d1860934808265c05491007c83f69da1112a
|
refs/heads/master
| 2021-01-23T17:20:11.542585
| 2015-10-10T05:52:52
| 2015-10-10T05:52:52
| 41,244,377
| 2
| 0
| null | 2015-08-26T15:46:04
| 2015-08-23T09:52:06
|
JavaScript
|
UTF-8
|
Scilab
| false
| false
| 245
|
tst
|
consulta_por_educacion.tst
|
PL/SQL Developer Test script 3.0
5
begin
-- Call the procedure
personas_por_educacion(peducacion => :peducacion,
p_recordset => :p_recordset);
end;
2
peducacion
1
Tercer ciclo completo
5
p_recordset
1
<Cursor>
116
0
|
4a2a2ea5ba69964875906534c268b39c5b6c861f
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1898/CH8/EX8.2/Ex8_2.sce
|
4da7b432db9ef1ae923fc920130550ad24833480
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 759
|
sce
|
Ex8_2.sce
|
clear all; clc;
disp("Scilab Code Ex 8.2 : ")
//Given:
P = 15000; //N
a = 40; //mm
b = 100; //mm
//Stress Components:
//Normal Force:
A = a*b;
sigma = P/A;
//Bending Moment:
I = (a*b^3)/12; //I = (1/12)*bh^3
M = P*(b/2);(b/2);
c = b/2;
sigma_max =(M*c)/I;
//Superposition:
x = ((sigma_max-sigma)*b)/((sigma_max+sigma)+(sigma_max-sigma));
sigma_b = (sigma_max-sigma);
sigma_c = (sigma_max + sigma);
//Display:
printf("\n\nThe state of stress at B = %1.1f MPa (tensile)',sigma_b);
printf('\nThe state of stress at C = %1.1f MPa (compressive)',sigma_c);
//----------------------------------------------------------------------END--------------------------------------------------------------------------------
|
217418a85700598e6707bb4685304e421416374c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/800/CH10/EX1.7/1_7.sce
|
64e819762c6b33efc99ef1b71648339dc04bdf7c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
WINDOWS-1250
|
Scilab
| false
| false
| 651
|
sce
|
1_7.sce
|
//clear//
clc
clear
//exec("9.8data.sci");
t = 0:.01:.5;
function w=f(t,Y)
w =zeros(2,1);
d(X)/d(z}=-ra/U/Ca0
Ka=0.05;
Kb=.15;
Pao=12;
eps=1;
A=7.6;
R=0.082;
T=400+273;
Kc=.1;
rho=80;
kprime=0.0014;
D=1.5;
Uo=2.5
U:Uo*(l+eps*X)
Pa=PBo*(l-X)/(ltepstX)
Pb=Pao*X/(l+eps*X)
vo=Uo*3.1416*D*D/4
Ca0=PBo/R/T
Kca=Ka*R*T
Pc=Pb
a=l/(l+At(z/U)**O.S)
raprime=at (-kprirne*Pa/(l t Kat Pa+Kb:l:Pb+Kct Pc»
ra:rhotraprime
endfunction
x=ode([1;.8],t0,t,f);
Ca0=.8;
Ct0=1
ya0=Ca0/Ct0;
for i=1:length(t)
X(i)=1-(1+ya0)/(1+x(2,i)/Ct0)*x(2,i)/Ca0;
end
plot2d(t,x(1,:));
plot2d(t,x(2,:));
plot2d(t,X);
|
c347ee7a9b2d5a9ce09e3f23b238c11b3f293fee
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3526/CH3/EX3.11/EX3_11.sce
|
77fb17232e3926b7f94725e458f261cd0542f482
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 349
|
sce
|
EX3_11.sce
|
//page 70
clc;funcprot(0);//EXAMPLE 3.11
// Initialisation of Variables
E=12;......//No. of Edges in the octahedral sites of the unit cell
S=1/4;.......//so only 1/4 of each site belongs uniquelyto each unit cell
N=E*S+1;.....//No.of site belongs uniquely to each unit cell
disp(N,"No.of octahedral site belongs uniquely to each unit cell:")
|
b739489ecc1fcf0237ee21e447b4faf81c2c9f32
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2201/CH2/EX2.23/ex2_23.sce
|
730b81a04d659f1fa8be653239441b97ac3d20ec
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 245
|
sce
|
ex2_23.sce
|
// Exa 2.23
clc;
clear;
close;
// Given data
e = 1.6*10^-19;// in C
R_H = 0.0145;// in m^3/coulomb
Miu_e = 0.36;// m^2/v-s
E = 100;// V/m
n = 1/(e*R_H);// in /m^3
J= n*e*Miu_e*E;// in A/m^2
disp(J,"The current density in A/m^2 is");
|
8c3d8bdcc0fc53a0f9e76be1ddf6eb535518fef9
|
48b28720abdd652b3faddcdd82d77b841fce24a9
|
/scilab/plot_linear2dmap.sci
|
deac8a06f731bb0162bec1ed956758f8657392a5
|
[] |
no_license
|
mcodevb/math-modelling-book
|
4aceba280b0405848781023a2e899bbf7e0643ab
|
59b310d5d2072b4fd2637914757221071aad0c9e
|
refs/heads/master
| 2022-04-06T07:25:22.683663
| 2019-06-21T01:01:11
| 2019-06-21T01:01:11
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 239
|
sci
|
plot_linear2dmap.sci
|
//
// plot_linear2dmap.sci
//
// Plots n iterations of the linear map with matrix A.
//
function x = plot_linear2dmap(x0,A,n)
x = x0;
for i = 1:n,
plot(x(1),x(2),'diamondred')
x = A*x;
end
endfunction
|
4951b8352896dd8ac5c4ca089a86a6b18f3a85fd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3311/CH3/EX3.5/Ex3_5.sce
|
00a6c7e3572c5db0e1d0a87a96c1196f15fe0e71
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,243
|
sce
|
Ex3_5.sce
|
// chapter 3
// example 3.5
// Design free-running UJT relaxation oscillator
// page-105-106
clear;
clc;
// given
fmin=5; // in Hz (minimum frequency)
fmax=50; // in Hz (maximum frequency)
E_dc=12; // in V (DC supply)
I_P=80; // in mA (peak current)
T=8; // in us (trigger time)
V_drop=1; // in V (voltage drop across PUT)
Rs=39; // in ohm (Assumption as done in the book)
Ig=1; // in mA (assumption as done in the book
// calculate
// since T=Rs*C
C=T/Rs; // calculation of capacitance (in uF)
printf("\nThe value of capacitance is \t\t C=%.2f uF",C);
I_P=I_P*1E-3; // changing unit from mA to A
V_P=(I_P*Rs)+V_drop; // calculation of peak point voltage
// since V_P=neta*E_dc+V_D, neglecting V_D, we get
neta=V_P/E_dc; // calculation of intrinsic stand-off ratio
Tmax=1/fmin; // calculation of maximum time period
Tmin=1/fmax; // calculation of maximum time period
C=C*1E-6; // changing unit from uF to F
Rmax=Tmax/(C*log(E_dc/(E_dc-V_P))); // calculation of maximum value of R
Rmin=Tmin/(C*log(E_dc/(E_dc-V_P))); // calculation of minimum value of R
I_V_max=E_dc/Rmin; // calculation of maximum anode current
I_V_min=E_dc/Rmax; // calculation of minimum anode current
// since Ig=2*neta*E_dc/Rg , therefore
Rg=2*neta*E_dc/Ig; // calculation of gate resistance in k-ohm
R1=Rg/neta; // calculation of R1 resistance
R2=Rg/(1-neta); // calculation of R1 resistance
Rmax=Rmax*1E-6; // changing unit from ohm to M-ohm
Rmin=Rmin*1E-6; // changing unit from ohm to M-ohm
I_V_max=I_V_max*1E6; // changing unit from A to uA
I_V_min=I_V_min*1E6; // changing unit from A to uA
printf("\nThe peak point voltage is \t\t V_P=%.2f V",V_P);
printf("\nThe intrinsic stand-off ratio is \t neta=%.2f",neta);
printf("\nThe maximum value of R is \t\t Rmax=%.2f M-ohm",Rmax);
printf("\nThe minimum value of R is \t\t Rmin=%.2f M-ohm",Rmin);
printf("\nThe maximum value of anode current is \t I_V_max=%.2f uA",I_V_max);
printf("\nThe minimum value of anode current is \t I_V_min=%.f uA",I_V_min);
printf("\nThe value of gate resistance is \t Rg=%.2f k-ohm",Rg);
printf("\nThe value of R1 is \t\t\t R1=%.f k-ohm",R1);
printf("\nThe value of R2 is \t\t\t Rg=%.2f k-ohm",R2);
// Note : the answee of Rmax, I_V_max, Rg and R2 varies slightly due to exact calculation
|
021f5fd832aed9c22b843c0797c8b66eaad26658
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1418/CH27/EX27.2/EX27_2.sce
|
2bf8e47d9cfed78b317358eb90b962b4d44cc308
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 854
|
sce
|
EX27_2.sce
|
//EXAMPLE 27.2
//8-POLE GENERATOR
clc;
funcprot(0);
//Variable Initialisation
P=8;......//Total number of poles
Z=722;.....//Total number of conductors
V=500;.......//Termiinal voltage in Volts
Ia=200;........//Armature current in Amperes
Z=1280;......//Total number of conductors
as=160;........//Total number of armature segments
ba=4;..........//Advancement in brushes from no-load neutral axis
Al=P;...........//Number of parallel paths in a
I=Ia/P;.....//Current per path in Amperes
b=ba*360/as;......//Brush lead in degrees
ATdpole=Z*I*b/360;.....//Armatuue demagnetizing ampere-turns per pole
disp(ATdpole,"Armatuue demagnetizing ampere-turns per pole:");
ATepole=Z*I*((1/(2*P))-(b/360));.......//Armature cross-magnetizing ampere-turns per pole
disp(ATepole,"Armature cross-magnetizing ampere-turns per pole:");
|
cf061c8d26bb84dac47d392f14623babd82059f9
|
6813325b126713766d9778d7665c10b5ba67227b
|
/Chapter6/Ch_6_Eg_6.18.sce
|
0a156288e0e4298a5c478d07961ff175a7179c14
|
[] |
no_license
|
arvindrachna/Introduction_to_Scilab
|
955b2063b3faa33a855d18ac41ed7e0e3ab6bd1f
|
9ca5d6be99e0536ba1c08a7a1bf4ba64620ec140
|
refs/heads/master
| 2020-03-15T19:26:52.964755
| 2018-05-31T04:49:57
| 2018-05-31T04:49:57
| 132,308,878
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 440
|
sce
|
Ch_6_Eg_6.18.sce
|
//A program to read formatted data from files.
fd=mopen("sine.dat","r");
s=mfscanf (fd, "%s %s"); // Reads two words. The %s reads up to the first white space.
[n, x1, y1] =mfscanf (4, fd, "%d,%f"); // Reads the next four data set.
mclose(fd)
disp (y1, x1, n, s);
//Reading embedded data
fd=mopen("test.dat","r");
A=mfscanf(-1,fd,"Name:%3s,Age:%d,Weight:%f\n");
mclose(fd)
disp("The data from the test.dat file")
disp(A);
|
9c742a0c9cd17ad277e8b4fa418881aa9bee2557
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/830/CH4/EX4.4.4/DTFT_2.sce
|
2d2bc330e4ddc5ac32b6a7b73c1840dc23b56c2d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 742
|
sce
|
DTFT_2.sce
|
//Graphical//
//Example 4.4.4
//Frequency Response of First Order Difference Equation
//a = 0.9 and b = 1-a
//Impulse Response h(n) = b.(a^n).u(n)
clear;
clc;
close;
a = input('Enter the constant value of Ist order Difference Equation');
b= 1-a;
//Calculation of Impulse Response
n =0:50;
h =b*(a.^n) ;
//Discrete-time Fourier transform
K = 500;
k = 0:1:K;
w = %pi*k/K;
H = h * exp(-sqrt(-1)*n'*w);
//phasemag used to calculate phase and magnitude in dB
[Phase_H,m] = phasemag(H);
H = real(H);
subplot(2,1,1)
plot2d(w/%pi,H)
xlabel('Frequency in Radians')
ylabel('abs(H)')
title('Magnitude Response')
subplot(2,1,2)
plot2d(w/%pi,Phase_H)
xlabel('Frequency in Radians')
ylabel('<(H)')
title('Phase Response')
|
f9b756d93d83b37507869acce55597aff0162c9c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3871/CH8/EX8.11/Ex8_11.sce
|
9dab573f3cc7c6feab701e2718486c1fec86a7b3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 904
|
sce
|
Ex8_11.sce
|
//===========================================================================
//chapter 8 example 11
clc;clear all;
//variable declaration
V = 230; //voltage in volts
I = 4; //current in A
I1 = 5; //current in A
cosphi = 1; //power factor
h = 6; //hours
R = 2208; //revolutios made by meter
R1 = 1472; //revolutios made by meter
E1 = 400; //energy consumption
h1 =4;
//calculations
E = (V*I*cosphi*h)/(1000); //energy consumption in kWh
M = R/(E); //meter constant in rev/kWh
cosphi2 = (R1/(E1)*(1000/(V*I1*h1))); //power factor of the load is cosphi2 for second measuremnet
//result
mprintf("meter constant = %3.2f revolutions/kWhr",M);
mprintf("\npower factor of the load is cosphi2 for second measuremnet = %3.2f",cosphi2);
|
cd7ef92786f2d2ec54ffd0b91dc67284c85b373a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1754/CH8/EX8.5/Exa8_5.sce
|
77a6867285d84edd9b77f7f9ca2c7d05e70627d1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 260
|
sce
|
Exa8_5.sce
|
//Exa 8.5
clc;
clear;
close;
//Given data
disp("Put alfa=sqrt(6) to find the gain");
alfa=sqrt(6);//unitless
Beta=1/(1-5*alfa^2);
//Barkhausen critera : A*|Beta|>=1
Beta=-Beta;//
A=1/Beta;//unitless
disp(A,"Minimum Gain of Amplifier must be : ");
|
3a3ec5cade065555eb5df5129fc2a8e3efb8392b
|
dec840088df00af3b1f0641ad264ca7532bf5dfc
|
/Road Concept Backend/Road Concept Core/src/test/maths/roadpositions.sce
|
ef271d905c847c349a4edbba807b7ddecfb2ebc4
|
[] |
no_license
|
romaincaronfr/Road-Concept
|
631f379415c87f718c82b2cfa40d385cbc87f34c
|
d4bb5b5501f74a2825110f86acb8da41c706c80a
|
refs/heads/master
| 2021-06-14T08:42:12.442659
| 2017-02-01T10:14:22
| 2017-02-01T10:14:22
| 68,044,070
| 1
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,693
|
sce
|
roadpositions.sce
|
function traceRoad()
clf;
isoview(-3,-3,3,3)
plot2d(0,0,rect=[-3,-3,3,3]);
n=0;
x=0;
y=0;
bt=0;
for n=1:2
[bt,x(n),y(n)]=xclick()
plot(x(n),y(n),"ro");
if n>1
//plot([x(n-1),x(n)],[y(n-1),y(n)],3,'LineWidth', 2)
end
end
plot(x,y)
z=calcZ(x,y)
fXYz(x,y,z)
endfunction
function roadInter()
clf;
isoview(-3,-3,3,3)
plot2d(0,0,rect=[-3,-3,3,3]);
n=0;
x1=0;
y1=0;
bt=0;
for n=1:2
[bt,x1(n),y1(n)]=xclick()
plot(x1(n),y1(n),"ro");
end
z1=calcZ(x1,y1)
[fX1,fY1]=fXYz(x1,y1,z1)
tracefXYzw(fX1,fY1,z1,0.5,"b")
x2=0;
y2=0;
bt=0;
for n=1:2
[bt,x2(n),y2(n)]=xclick()
plot(x2(n),y2(n),"go");
end
z2=calcZ(x1,y1)
[fX2,fY2]=fXYz(x2,y2,z2)
tracefXYzw(fX2,fY2,z2,0,"m")
[p1,p2]=findInter(fX1,fY1,fX2,fY2,0.5,0)
tracefXYzwPoint(fX1,fY1,p1,0.5)
tracefXYzwPoint(fX2,fY2,p2,0)
endfunction
function findSide()
clf;
isoview(-3,-3,3,3)
plot2d(0,0,rect=[-3,-3,3,3]);
n=0;
x1=0;
y1=0;
bt=0;
for n=1:2
[bt,x1(n),y1(n)]=xclick()
plot(x1(n),y1(n),"ro");
end
z1=calcZ(x1,y1)
[fX1,fY1]=fXYz(x1,y1,z1)
tracefXYzw(fX1,fY1,z1,0,"b")
x2=0;
y2=0;
bt=0;
for n=1:2
[bt,x2(n),y2(n)]=xclick()
plot(x2(n),y2(n),"go");
end
z2=calcZ(x1,y1)
[fX2,fY2]=fXYz(x2,y2,z2)
tracefXYzw(fX2,fY2,z2,0,"m")
disp(deter(fX1,fY1,fX2,fY2))
endfunction
function v=deter(fX1,fY1,fX2,fY2)
v=(fX1(2)*fY2(2))-(fX2(2)*fY1(1))
endfunction
function [z]=calcZ(x,y)
z(1)=0;
z(2)=sqrt((x(1)-x(2))^2+(y(1)-y(2))^2);
endfunction
function [fXz,fYz]=fXYz(x,y,z)
fXz(1)=x(1)
fXz(2)=(x(2)-x(1))/z(2)
fYz(1)=y(1)
fYz(2)=(y(2)-y(1))/z(2)
fXz(3)=fYz(2)
fYz(3)=-fXz(2)
endfunction
function tracefXYzw(fX,fY,z,w,c)
k=1
for n=0:0.01:z(2)
Xz(k)=fX(1)+n*fX(2)+w*fX(3)
Yz(k)=fY(1)+n*fY(2)+w*fY(3)
k=k+1
end
plot(Xz,Yz,c);
endfunction
function tracefXYzwPoint(fX,fY,z,w)
Xz=fX(1)+z*fX(2)+w*fX(3)
Yz=fY(1)+z*fY(2)+w*fY(3)
plot(Xz,Yz,"Ro");
endfunction
function [p1,p2]=findInter(fX1,fY1,fX2,fY2,w1,w2)
M1=[fX1(2),-fX2(2);fY1(2),-fY2(2)]
R1=[fX2(1)-fX1(1)+fX2(3)*w2-fX1(3)*w1;
fY2(1)-fY1(1)+fY2(3)*w2-fY1(3)*w1]
disp(M1)
disp(R1)
k=M1(1,1)/M1(2,1)
M1(1,:)=M1(1,:)-M1(2,:)*k
disp(M1)
R1(1)=R1(1)-R1(2)*k
disp(R1)
p2=R1(1)/M1(1,2);
p1=(R1(2)-p2*M1(2,2))/M1(2,1)
endfunction
//traceRoad();
//roadInter();
findSide()
|
adff2918af333b2164c5b22b81e29b841a3a2577
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3750/CH1/EX1.4/Ex1_4.sce
|
753cc321bd04f43b0fb1eb792ecad2e6877037f9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,018
|
sce
|
Ex1_4.sce
|
//Strength Of Material By G.H.Ryder
//Chapter 1
//Example 4
// To Calulate Stress & Extension
g=9.8; //Acceleration due to Gravity, Unit in m/sec^2
m=100; //Falling Mass , Unit in Kg
W=m*g; //Falling weight , Unit in N
D1=1; // diameter of first part of bar, Unit in cm
l1=1.5; //Lenght fo first part of bar, Unit in m
D2=2; // diameter of second part of bar, Unit in cm
l2=1.5; //Lenght fo second part of bar, Unit in m
A1=%pi*(D1^2)/4*100; //Area of first part of bar, Unit in mm^2
A2=%pi*(D2^2)/4*100; //A;rea of Second part of bar, Unit in mm^2
E=205,000; //Young's Modulus of the bar, Unit in N/mm^2
h=4; //height from which weight is falling, Unit in cm
P=W*(1+(1+2*h*10*E/((l1*1000/A1)+(l2*1000/A2)))^(1/2)); //Formula for Equivalent load, from energy equation, Unit in N
x=P*l1/A1*E+P*l2/(A2*E); //Extension in rod, unit in mm
//The maximum stress will occur in smallest section. so,
maxstress=P/A1;
printf("maximum stress=%f N/mm^2",maxstress)
printf("Extension =%f mm",x)
|
1d5b1d69ef58e385bc8ae437897e9c21b05edc65
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2333/CH2/EX2.10/10.sce
|
a9c68c7c0643f7373a37e28e0ec9f9ff47c5a4f5
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 501
|
sce
|
10.sce
|
clc
// Given that
n = 4 // order of bright fringe
x_n = 10 // Separation of 4th bright fringe from center in mm
D = 1// Separation between source and screen in meter
d = 0.2 // Separation between coherent sources in mm
// Sample Problem 10 on page no. 97
printf("\n # PROBLEM 10 # \n")
printf("\n Standard formula used \n x = D*n*lambda/d \n")
lambda = x_n*1e-3*d*1e-3/(n*D) // Calculation of wavelength of sauce in meter
printf("\n Wavelength of sauce is %d Angstrom.",lambda*1e10)
|
714c02da30021c5ee2f729601af6f2a756bfe452
|
727092dff86e9d034d021bbc56565d9336b988aa
|
/Códigos CN/jacobi.sci
|
ce6f7ad927eaa6c6b2feb47f84536f407d951138
|
[] |
no_license
|
lucasdksan/Numerical-computing
|
c54b855bd50f2a06b1970086f2da63c28883f287
|
a5a5863499bdf46003437140e3fa3123fc4960f8
|
refs/heads/master
| 2023-06-24T16:13:01.094230
| 2021-07-29T15:57:00
| 2021-07-29T15:57:00
| 278,514,165
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 484
|
sci
|
jacobi.sci
|
function [x,iter] = jacobiL(A,b,x0,e,it)
[l,c] = size(A);
erro = 1;
x = x0, iter = 0;
while erro > e & iter < it
xa = x;
iter = iter + 1;
for i = 1:l
soma= 0;
for j = 1:l
if j ~= i then
soma = soma + A(i,j)*xa(j);
end
end
x(i) = (b(i)-soma)/A(i,i);
end
erro = max(abs(x-xa))/max(abs(x));
end
endfunction
|
782078a6fa17c9171bb6b86a59b5d16c283ada59
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/24/CH33/EX33.7/Example33_7.sce
|
745bbc617ff67b01ba7840755433d530f4e7c51b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 484
|
sce
|
Example33_7.sce
|
//Given that
R = 200 //in ohm
C = 15*10^-6 //in F
L = 230*10^-3 //in H
Em = 36.0 //in volts
fd = 60.0 //in Hz
//Sample Problem 33-7a
printf("**Sample Problem 33-7a**\n")
w = 2*%pi*fd
Xl = w*L
Xc = 1/(w*C)
Z = sqrt(R^2 + (Xl - Xc)^2)
Imax = Em/Z
printf("The amplitude of current in the circuit is %1.2fA, Imax\n", Imax)
//Sample Problem 33-7b
printf("\n**Sample Problem 33-7a**\n")
phi = atan((Xl-Xc)/R)
printf("The phase constant is equal to %fdegrees", phi)
|
a4bd7ceeaf0203ec65701b359dae36ccec5bc2b8
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1328/CH12/EX12.2/12_2.sce
|
5a5f9b178506423d10861e8ff6c4acd7bd3255cf
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 4,532
|
sce
|
12_2.sce
|
printf("\t example 12.2 \n");
printf("\t approximate values are mentioned in the book \n");
T1=244; // inlet hot fluid,F
T2=244; // outlet hot fluid,F
t1=85; // inlet cold fluid,F
t2=120; // outlet cold fluid,F
W=60000; // lb/hr
w=488000; // lb/hr
printf("\t 1.for heat balance \n");
printf("\t for propanol \n");
l=285; // Btu/(lb)
Q=((W)*(l)); // Btu/hr
printf("\t total heat required for propanol is : %.2e Btu/hr \n",Q);
printf("\t for water \n");
c=1; // Btu/(lb)*(F)
Q=((w)*(c)*(t2-t1)); // Btu/hr
printf("\t total heat required for water is : %.2e Btu/hr \n",Q);
delt1=T2-t1; //F
delt2=T1-t2; // F
printf("\t delt1 is : %.0f F \n",delt1);
printf("\t delt2 is : %.0f F \n",delt2);
LMTD=((delt2-delt1)/((2.3)*(log10(delt2/delt1))));
printf("\t LMTD is :%.0f F \n",LMTD);
Tc=((T2)+(T1))/(2); // caloric temperature of hot fluid,F
printf("\t caloric temperature of hot fluid is : %.0f F \n",Tc);
tc=((t1)+(t2))/(2); // caloric temperature of cold fluid,F
printf("\t caloric temperature of cold fluid is : %.1f F \n",tc);
UD1=70; // assume, from table 8
A1=((Q)/((UD1)*(LMTD)));
printf("\t A1 is : %.2e ft^2 \n",A1);
N2=766; // assuming 4 tube passes, from table 9
a1=0.1963; // ft^2/lin ft
L=(A1/(N2*a1));
printf("\t L is : %.1f ft \n",L);
A2=(N2*12*a1); // ft^2
printf("\t total surface area is : %.0f ft^2 \n",A2);
UD=((Q)/((A2)*(LMTD)));
printf("\t correct design overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",UD);
printf("\t hot fluid:shell side,propanol \n");
Do=0.0625; // ft
G1=(W/(3.14*N2*Do)); // from eq.12.36
printf("\t G1 is : %.0f lb/(hr)*(lin ft) \n",G1);
printf("\t cold fluid:inner tube side,water \n");
Nt=766;
n=4; // number of passes
L=12; //ft
at1=0.302; // flow area, in^2
at=((Nt*at1)/(144*n)); // total area,ft^2,from eq.7.48
printf("\t flow area is : %.3f ft^2 \n",at);
Gt=(w/(at)); // mass velocity,lb/(hr)*(ft^2)
printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gt);
V=(Gt/(3600*62.5));
printf("\t V is : %.2f fps \n",V);
mu2=1.74; // at 102.5F,lb/(ft)*(hr)
D=0.0517; // ft
Ret=((D)*(Gt)/mu2); // reynolds number
printf("\t reynolds number is : %.2e \n",Ret);
hi=1300; //Btu/(hr)*(ft^2)*(F)
printf("\t hi is : %.0f Btu/(hr)*(ft^2)*(F) \n",hi);
ID=0.62; // ft
OD=0.75; //ft
hio=((hi)*(ID/OD)); // using eq.6.5
printf("\t Correct hi0 to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",hio);
ho=100; // assumption
tw=(tc)+(((ho)/(hio+ho))*(Tc-tc)); // from eq.5.31
printf("\t tw is : %.1f F \n",tw);
tf=(Tc+tw)/(2); // from eq 12.19
printf("\t tf is : %.0f F \n",tf);
kf=0.0945; // Btu/(hr)*(ft^2)*(F/ft), from table 4
sf=0.76; // from table 6
muf=0.65; // cp, from fig 14
ho=102; // Btu/(hr)*(ft^2)*(F), from fig 12.9
printf("\t Correct ho to the surface at the OD is : %.0f Btu/(hr)*(ft^2)*(F) \n",ho);
printf("\t pressure drop for annulus \n");
ID=31; // in
C=0.1875; // clearance
B=29; // baffle spacing,in
PT=0.937;
as=((ID*C*B)/(144*PT)); // flow area,from eq 7.1,ft^2
printf("\t flow area is : %.2f ft^2 \n",as);
Gs=(W/as); // mass velocity,from eq 7.2,lb/(hr)*(ft^2)
printf("\t mass velocity is : %.2e lb/(hr)*(ft^2) \n",Gs);
mu1=0.0242; // lb/(ft)*(hr), fig 15
De=0.0458; // fig 28
Res=((De)*(Gs)/mu1); // reynolds number
printf("\t reynolds number is : %.1e \n",Res);
f=0.0014; // friction factor for reynolds number 91000, using fig.29
s=0.00381; // for reynolds number 91000,using fig.6
Ds=31/12; // ft
phys=1;
N=(5); // number of crosses,using eq.7.43
printf("\t number of crosses are : %.0f \n",N);
delPs=((f*(Gs^2)*(Ds)*(N))/(5.22*(10^10)*(De)*(s)*(phys)))/(2); // using eq.12.47,psi
printf("\t delPs is : %.1f psi \n",delPs);
printf("\t allowable delPa is 2 psi \n");
printf("\t pressure drop for inner pipe \n");
f=0.00019; // friction factor for reynolds number 36200, using fig.26
s=1;
phyt=1;
delPt=((f*(Gt^2)*(L)*(n))/(5.22*(10^10)*(D)*(s)*(phyt))); // using eq.7.45,psi
printf("\t delPt is : %.1f psi \n",delPt);
X1=0.2; // X1=((V^2)/(2*g)),using fig.27
delPr=((4*n*X1)/(s)); // using eq.7.46,psi
printf("\t delPr is : %.1f psi \n",delPr);
delPT=delPt+delPr; // using eq.7.47,psi
printf("\t delPT is : %.1f psi \n",delPT);
printf("\t allowable delPT is 10 psi \n");
Uc=((hio)*(ho)/(hio+ho)); // clean overall coefficient,eq 6.38,Btu/(hr)*(ft^2)*(F)
printf("\t clean overall coefficient is : %.1f Btu/(hr)*(ft^2)*(F) \n",Uc);
Rd=((Uc-UD)/((UD)*(Uc))); // eq 6.13,(hr)*(ft^2)*(F)/Btu
printf("\t actual Rd is : %.5f (hr)*(ft^2)*(F)/Btu \n",Rd);
// end
|
183cb12d7d8c40b241b172f3d50c9c66b08e7449
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2135/CH1/EX1.23/Exa_1_23.sce
|
b6b87bab80cbe4c47092614399755beb0dd3652c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 586
|
sce
|
Exa_1_23.sce
|
//Exa 1.23
clc;
clear;
close;
format('v',8);
//Given Data :
Rdegree=8314.3;//Universal Gas Constant
r=12;//meter
Patm=75;//cm of Hg
Patm=Patm/76*1.01325*10^5;//N/m^2
V=4/3*%pi*r^3;//m^3
M_air=28.97;
M_H2=2
Tair=18+273;//K
g=9.81;//gravity constant
Rair=Rdegree/M_air;//Nm/KgK
RH2=Rdegree/M_H2;//Nm/KgK
//p*V=m*R*T
m_air=Patm*V/Rair/Tair;//Kg
disp(m_air,"Mass of air in kg : ");
n_air=m_air/M_air;//moles
disp(n_air,"No. of moles : ");
m_H2=n_air*M_H2;//Kg
disp(m_H2,"Mass of H2 in kg : ");
Load=g*(m_air-m_H2);//N
disp(Load,"Load balloon can lift in N ; ");
|
b45654e4dd00c365b9a5c45d652536f6731b1991
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2045/CH2/EX2.18/Ex2_18.sce
|
a6fa4a49e0f3a8cc919797312a3d9b73e8e6c93b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 435
|
sce
|
Ex2_18.sce
|
//pagenumber 113 example 18
clear
resacu=0.1*10^-12;//ampere
u=20+273;//kelvin
voltaf=0.55;//volt
w=1.38*10^-23;
q=1.6*10^-19;
for z=1:2
if z==2 then
u=100+273;
disp("current at 100celsius rise");
end
voltag=w*u/q;
i1=(10^-13)*(exp((voltaf/voltag))-1);
if z==2 then
i1=(256*10^-13)*((exp(voltaf/voltag)-1));
end
disp("current = "+string((i1))+"ampere");
end
|
06205d3a1a9820e834626bbb28b715b8b9bd2839
|
df924acfdd5b043da9336a2276726dbfb655735a
|
/test_suite/tceplace.tst
|
f0c3e51c35c6b5d830a7a64766329efe8eeaf180
|
[] |
no_license
|
noxdafox/clips
|
b8fb280223b5aae615e427bf1f31c03cb932b09d
|
a2c548b69394f0e2cf7c6d583810b6a29a662ae1
|
refs/heads/master
| 2023-09-01T18:52:07.614807
| 2021-12-14T20:10:21
| 2021-12-14T20:10:21
| 95,596,886
| 11
| 10
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 380
|
tst
|
tceplace.tst
|
(set-strategy depth)
(unwatch all)
; tceplace.bat test
(clear)
(open "Results//tceplace.rsl" tceplace "w")
(load "compline.clp")
(dribble-on "Actual//tceplace.out")
(batch "tceplace.bat")
(dribble-off)
(printout tceplace "tceplace.bat differences are as follows:" crlf)
(compare-files "Expected//tceplace.out" "Actual//tceplace.out" tceplace)
; close result file
(close tceplace)
|
5aff989827be427e8a824a4003b167c5e0405291
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3655/CH3/EX3.1/Ex3_1.sce
|
eb032a13187913d385e121d29d4632e67511d128
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 832
|
sce
|
Ex3_1.sce
|
// Example 3.1
// Computation for mobility of the free electrons in aluminium//
// Page no.61
clc;
clear;
close;
//Given data ;
d=2.70*10^3//2.70*10^3 kg/m3
v=3;//3 electrons/atom
A=26.98;
M=1.660*10^-27;//1.660*10^-27 kg/atom
e=1.60*10^-19;
R=3.44*10^-8;//R=resistivity
//...................................(B)....................................//
//Calculation for concentration of the free electrons in aluminium//
n=(d*v)/(A*M);
//Calculation for mobility of the free electrons in aluminium//
mu=10^4/(n*e*R);//mu=mobility of the free electrons
//Displaying the result in command window
printf('\n Concentration of the free electrons in aluminium = %0.3f x 10^29 electron/m3',n*10^-29);
printf('\n \n Mobility of the free electrons in aluminium = %0.2f cm2/V sec',mu);
//Answers are varying due to round off error//
|
9e6e28c71264a79a79afa7ea134516d4af4025b6
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2837/CH5/EX5.4/Ex5_4.sce
|
6b6927685d903b4c81338a6113d337b020fd917f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 353
|
sce
|
Ex5_4.sce
|
clc
clear
//Initialization of variables
Rj=1.985
N=1
T1=540+460 //R
T2=3540+460 //R
//calculations
Q=N*(14.215*(T2-T1)-6.53*10^3 *log(T2/T1) -1.41*10^6 *(1/T2-1/T1))
Tm=(T1+T2)/2
Cv=14.215-6.53*10^3 /Tm +1.41*10^6 /Tm^2
Q2=N*Cv*(T2-T1)
//results
printf("Heat added in case 1 = %.1f Btu",Q)
printf("\n Heat added in case 2 = %.1f Btu",Q2)
|
a0adf755e73e065c511a794a101b943ae284f075
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2657/CH3/EX3.1/Ex3_1.sce
|
7613d8f6561ff1e455e79cf686ec60ad7ea4c29f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 879
|
sce
|
Ex3_1.sce
|
//Effect of variable specific heat on efficiency
clc,clear
//Given:
r=7 //Compression ratio
g=1.4 //Specific heat ratio(gamma)
cv=0.718 //(Assume)Specific heat at constant volume in kJ/kgK
dcv=1*cv/100 //Change in specific heat in kJ/kgK
//Solution:
R=cv*(g-1) //Specific gas constant in kJ/kgK
eta=round(100*(1-1/r^(g-1)))/100 //Efficiency when there is no change in specific heat
function [eta]=Otto(cv) //Defining efficiency as a function of specific heat
eta=1-1/r^(R/cv)
endfunction
funcprot(0)
detaBydcv=derivative(Otto,cv) //Derivative of efficiency wrt to specific heat at initial value of specific heat
detaByeta=detaBydcv*dcv/eta //Change in efficiency wrt to initial value of efficiency
//Results:
printf("\n The percentage change in the efficiency of Otto cycle = %.3f percent",detaByeta*100)
if (detaByeta < 0) then
disp("decrease")
end
|
44030bee43f146e24a0078af45b9b453d42e0d5c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2417/CH7/EX7.3/Ex7_3.sce
|
e5b5b56e4fb1de0a820c02d7d6da44bf8d5f331c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 2,373
|
sce
|
Ex7_3.sce
|
//scilab 5.4.1
clear;
clc;
printf("\t\t\tProblem Number 7.3\n\n\n");
// Chapter 7 : Mixtures Of Ideal Gases
// Problem 7.3 (page no. 323)
// Solution
//Ten pounds of air,1 lb of carbon dioxide,and 5 lb of nitrogen are mixed at constant temperature until the mixture pressure is constant
nair=10/29; //no of moles of air=ratio of mass and molecular weight //10 lb of nitrogen per pound //molecular weight of air=29
printf("The moles of air is %f mole/lbm of mixture\n",nair);
nCO2=1/44; //no of moles of carbon dioxide=ratio of mass and molecular weight //1 lb of per pound //molecular weight of CO2=44
printf("The moles of carbon dioxide is %f mole/lbm of mixture\n",nCO2);
nN2=5/28; //no of moles of nitrogen=ratio of mass and molecular weight //5 lb of nitrogen per pound //molecular weight of N2=28
printf("The moles of nitrogen is %f mole/lbm of mixture\n",nN2);
nm=nair+nCO2+nN2; //Unit:Mole/lbm //number of moles of gas mixture is sum of the moles of its constituent gases
printf("The total number of moles is %f mole/lbm\n\n",nm);
xair=nair/nm //mole fraction of air=ratio of no of moles of air and total moles in mixture
xCO2=nCO2/nm; //mole fraction of carbon dioxide=ratio of no of moles of carbon dioxide and total moles in mixture
xN2=nN2/nm; //mole fraction of nitrogen=ratio of no of moles of oxygen and total moles in mixture
printf("The mole fraction of air is %f \n",xair);
printf("The mole fraction of carbon dioxide is %f\n",xCO2)
printf("The mole fraction of nitrogen is %f\n\n",xN2);
//final pressure of is 100 psia
pair=xair*100; //the partial pressure of air= final pressure * the mole fraction of air //psia
printf("The partial pressure of air is %f psia\n",pair);
pCO2=xCO2*100; //the partial pressure of carbon dioxide= final pressure * the mole fraction of CO2 //psia
printf("The partial pressure of carbon dioxide is %f psia\n",pCO2);
pN2=xN2*100; //the partial pressure of nitrogen=final pressure * the mole fraction of nitrogen //psia
printf("The partial pressure of nitrogen is %f psia\n\n",pN2);
//the molecular weight of mixture=sum of products of mole fraction of each gas component
MWm=(xair*29) + (xCO2*44) + (xN2*28); //The molecular weight of air
printf("The molecular weight of air is %f\n\n",MWm);
Rm=1545/MWm; //the gas constant of air
printf("The gas constant of air is %f\n\n",Rm);
|
0c2ee6e78be846f645ccb857b590265f0ccf1627
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/839/CH9/EX9.6/Example_9_6.sce
|
ae7b7837fe830221a4bc69722bb2f3711bb91894
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,260
|
sce
|
Example_9_6.sce
|
//clear//
clear;
clc;
//Example 9.6
//Given
Dt = 2; //[m]
Da = 0.667; //[m]
n = 180/60; //[rps]
T = 20; //[C]
qg = 100; //[m^3/h]
rho = 1000; //[kg/m^3]
mu = 10^-3; //[kg/m-s]
ut = 0.2; //[m/s]
//(a)
//The power input is calculated and followed by correction of gas effect
Nre = n*Da^2*rho/mu;
//For a flat blade turbine, from Table 9.3
KT = 5.75;
//Using Eq.(9.24)
Po = KT*n^3*Da^5*rho/1000; //[kW]
At = %pi/4*Dt^2; //[m^2]
//Superficial gas velocity
Vs_bar = At*qg/3600/10 //[m/s]
//From Fig. 9.20 Pg/Po = 0.60
Pg = Po*0.6; //[kW]
//From Fig.9.7, depth of liquid is equal to diameter of the tank
//Hence, liquid volume
V = %pi/4*Dt^2*Dt; //[m^3]
//The input power per unit volume
PgbyV = Pg/V ; //[kW/m^3]
//(b)
sigma = 72.75; //[g/s^2]
rho_L = 10^-3; //[g/mm]
PgbyV = PgbyV*10^3 ; //[g/mm-s^2]
//Using Eq.(9.46)
//Let x = shi^(0.5)
//solving the equation as quadratic equation
a = 1;
b = -(Vs_bar/ut)^0.5;
c = -0.216*((PgbyV)^0.4)*(rho_L^0.2)/(sigma^0.6)*(Vs_bar/ut)^(0.5);
x = (-b+sqrt(b^2-4*a*c))/(2*a);
shi = x^2;
//(c)
//To find out mean bubble diameter
//Using Eq.(9.44)
Ds_bar = 4.15*sigma^0.6/(PgbyV^0.4*rho_L^0.2)*shi^0.5+0.9 // [mm]
//(d)
//From Eq.(9.40)
aprime = 6*shi/Ds_bar //[mm^-1]
|
6c7a948be68e1be2643a88fbe0315f89432d4efd
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2231/CH2/EX2.14/Ex_2_14.sce
|
9e238c5e6f467baaa9bd5489ce7464690113fdfe
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,041
|
sce
|
Ex_2_14.sce
|
//Example 2_14
clc;
clear;close;
//Given data:
Vs=230;//V
f=50;//Hz
alfa=30*%pi/180;//radian
I=4;//A
//Solution :
disp("part (a)");
Vm=Vs*sqrt(2);//V
Vdc=2*Vm/%pi*cos(alfa)//V
RL=Vdc/I;//ohm
IL=I*2*sqrt(2)/%pi;//A
Pin_active=Vs*IL*cos(alfa);//W
Pin_reactive=Vs*IL*sin(alfa);//vars
Pin_appearent=Vs*IL;//VA
disp(Vdc,"dc output voltage(V)");
disp(Pin_active,"Active power input(W)");
disp(Pin_reactive,"Reactive power input(vars)");
disp(Pin_appearent,"Appearent power input(VA)");
disp("part (b)");
Vdc=Vm/%pi*(1+cos(alfa))//V
IL=Vdc/RL;//A
I_fund=2*sqrt(2)/%pi*IL*cos(alfa/2);//A
Pin_active=Vs*I_fund*cos(alfa/2);//W
Pin_reactive=Vs*I_fund*sin(alfa/2);//vars
Pin_appearent=Vs*I_fund;//VA
disp(Vdc,"dc output voltage(V)");
disp(Pin_active,"Active power input(W)");
disp(Pin_reactive,"Reactive power input(vars)");
disp(Pin_appearent,"Appearent power input(VA)");
disp("part (c)");
Vdc=Vs/sqrt(2)/%pi*(1+cos(alfa))//V
Idc=Vdc/RL;//A
disp(Vdc,"dc output voltage(V)");
disp(Idc,"dc output current(A)");
|
bc023d6589d988957f3a4d9163cf26faa18f0739
|
3c9b59cb858e16c5e742b46ee6a0ec578cd52145
|
/Problema3.sci
|
fa81abeb394dbb410aa06cb29d33003066541347
|
[] |
no_license
|
Gervaes/calcNum
|
f4e66468789d2276e53f4966c9165f957d3007ae
|
c9df67bdf19943f7d40fe5c89983f3a7355126c7
|
refs/heads/master
| 2020-04-07T13:34:31.215928
| 2018-11-21T01:18:00
| 2018-11-21T01:18:00
| 158,412,613
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,350
|
sci
|
Problema3.sci
|
function [y]=f(t)
y = 4*sin(t) - 3*t
endfunction
function [y]=fp(t)
y = 4*cos(t) - 3
endfunction
function [raiz, x, iter, ea]=newtonraphson(x0,f,fp,tol,imax)
iter = 0; // inicializa numero de iteracoes
xr = x0; // inicializa raiz aproximada com a inicial
x(iter+1)=x0; // insere raiz inicial no vetor de raizes
while (1)
xrold = xr;
xr = xrold - f(xrold)/fp(xrold); // aplica formula de Newton
iter = iter+1; // incrementa numero de iteracoes
x(iter+1) = xr; // insere raiz aproximada no respectivo vetor
if(xr ~= 0) then // calcula erro relativo
ea(iter)=abs((xr-xrold)/xr);
end;
if(ea(iter) <= tol) then // se erro relativo menor que tol, FIM
raiz = xr;
return;
end;
if(iter >= imax) then // se excedeu num. maximo de iteracoes, FIM
error('Número Máximo de Iterações Alcançado');
end;
end
end
function [h]=altura(t)
r = 4/t;
x = r*cos(t);
h = r - x;
endfunction
x0 = 4;
tol = 0.0001;
imax = 100;
mprintf("i Gráfico plotado\n");
interv = [-2*%pi:%pi/8:2*%pi];
plot(interv,f);
xgrid;
[raiz, x, iter, ea] = newtonraphson(x0,f,fp,tol,imax);
mprintf("ii Raiz utilizando método de Newton: %f\n",raiz);
h = altura(raiz);
mprintf("iii Altura máxima da peça: %f\n",h);
|
be7b4366a5c24c551b2737b0cc71f73927e3a7a6
|
cb412970af67cd342235f1ad29668c7ac9a2dfed
|
/mt_tutorial41/mta_1.sci
|
d87c0fb0fed143658cdb3249dc69b6166a3b98c2
|
[] |
no_license
|
dowaiko/mt_tutorial41
|
cdab43af761897afc940ae64deb7df423bdd5776
|
d21788c424e2c1df2ecc46ca6ae270e393433e85
|
refs/heads/master
| 2020-04-10T13:25:27.584350
| 2019-05-31T13:37:08
| 2019-05-31T13:37:08
| 161,050,504
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,481
|
sci
|
mta_1.sci
|
clear;
printf('************** mta_1.sci Start! ****************');
printf('\n');
printf('Enter a File Name of UNIT SPACE Material');
UnitSpaceFile = input('File Name(.xls)?: ',"string");
//scanf('%s',UnitSpaceFile);
printf('./' +UnitSpaceFile+'.xls\n');
//f=findfiles(SCI,UnitSpaceFile+'.xls');
//MT_Mat_Sheets = readxls('./mt_mat.xls'); // EXELファイルの読み出し
MTA_Mat_Sheets = readxls('./' + UnitSpaceFile + '.xls'); // EXELファイルの読み出し
Sheet = MTA_Mat_Sheets(1); // Sheetの抜き出し
MTAMate = Sheet.value; // 数値の取り出し
SampleCount = size( MTAMate, 1);
ItemCount = size( MTAMate, 2);
//
printf('SampleCount =');
disp(string(SampleCount));
printf('ItemCount =');
disp(string(ItemCount));
printf('\n');
// 予備計算
for j = 1: ItemCount,
x1( 1, j) = 0, //行列の初期化
x2( 1, j) = 0, //行列の初期化
for i = 1: SampleCount,
x1( 1, j) = x1( 1, j) + MTAMate( i, j), // 1乗の総和を求める
x2( 1, j) = x2( 1, j) + MTAMate( i, j)^2; // 2乗の総和を求める
end,
end
// 算術平均
for j = 1: ItemCount,
Ave( 1, j) = x1( 1, j) / SampleCount;
end
// 標準偏差(MT法)
for j = 1: ItemCount,
StDevM( 1, j) = (( x2( 1, j) - (x1( 1, j)^2)/SampleCount) /SampleCount)^0.5;
end
// 正規化
for j = 1: ItemCount,
for i = 1: SampleCount,
u( i, j) = MTAMate( i, j) - Ave( 1, j);
end;
end
//分散共分散行列
for i = 1: ItemCount,
ui = (u(:,i))',
for j = 1: ItemCount,
uj = u(:,j),
S( i, j) = ui*uj/SampleCount,
end;
end
//disp(S);
//printf('\n');
//余因子行列
m=1;
n=1;
for i = 1: ItemCount,
for j = 1: ItemCount,
for k = 1: ItemCount,
for l = 1: ItemCount,
if (k~=i && l~=j)
then
A(m,n) = S(k,l),
n=n+1,
if(n>ItemCount-1)
then
n=1,
m=m+1,
if(m>ItemCount-1)
then
m=1,
AJMt(i,j) = det(A)*((-1)^(i+j)),
//disp(A);
//printf('\n');
end;
end;
end;
end;
end;
end;
end
AJM = AJMt';
printf('AJM =');
disp(AJM);
printf('\n');
for i=1:SampleCount,
Ut = u( i, :),
U = Ut',
D2(i,1) = Ut * AJM * U / ItemCount;
end
/* 信号空間の検証 */
printf('Enter a File Name of MT Signal Material');
MTSigFile = input('File Name(.xls)?: ',"string");
printf('./' +MTSigFile+'.xls\n');
MTSig_Sheets = readxls('./' + MTSigFile + '.xls'); // EXELファイルの読み出し
SigSheet = MTSig_Sheets(1); // Sheetの抜き出し
MTSig = SigSheet.value; // 数値の取り出し
SampleCount = size( MTSig, 1);
ItemCount = size( MTSig, 2);
printf('SampleCount =');
disp(string(SampleCount));
printf('ItemCount =');
disp(string(ItemCount));
printf('\n');
// 正規化
for j = 1: ItemCount,
for i = 1: SampleCount,
v( i, j) = MTSig( i, j) - Ave( 1, j);
end;
end
for i=1:SampleCount,
Vt = v( i, :),
V = Vt',
SD2(i,1) = Vt * AJM * V / ItemCount;
end
//clf; // clear
scf; // add
subplot(2,2,1);
plot2d(D2);
subplot(2,2,2);
histplot( 30, D2(:,1)');
subplot(2,2,3);
plot2d(SD2);
subplot(2,2,4);
histplot( 30, SD2(:,1)');
|
b63b88b9e72422f610bcba887be62e53cd03e980
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2213/CH4/EX4.28/ex_4_28.sce
|
03d8e385ce4289e0a756880e6cf9b1657aeafab2
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 531
|
sce
|
ex_4_28.sce
|
//Example 4.28//number ,spacing,mounting height and total wattafe
clc;
clear;
close;
format('v',6)
h=5;// in meters
el=120;//in lux
ef=40;//efficiency in lumens/watt
tw=80;//in watts
df=1.4;//depreciation factor
uf=0.5;//utiliazation factor
l=30;// in meters
b=15;// in meters
a=l*b;//arean in m^2
glr=(a*el*df)/(uf);//gross lumens required
twr=glr/ef;//total wattage required
nt=twr/tw;//no. of tubes required
disp(twr,"total wattage required in watts")
disp(" number of tubes required is "+string(nt)+" equivalent to 48 tubes")
|
b225b27819a5c10c7a155d0766726923b6f3cc48
|
353fabaf48c4a9c15219c01751b2eab7fdeecf15
|
/Teste 1.sce
|
fddb13452d99f93707d5f0905aa1f3be78f79aba
|
[] |
no_license
|
enieber/cargas
|
3a80a5fd2f96374a819d5b49affd45fb8d0549a5
|
bbea7b9c657bed402848e8f9549a04f76c988d91
|
refs/heads/master
| 2021-05-04T11:47:25.444285
| 2017-05-19T03:20:49
| 2017-05-19T03:20:49
| 46,600,031
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 326
|
sce
|
Teste 1.sce
|
function [ fieldE, rvector ,rnorm ] = Efield(q0,P0,P);
Efield calcula o campo elétrico estático no ponto P, devido a uma carga q0
localizada no ponto P0
Uso: [ fieldE, rvector ,rnorm ] = Efield(q0,P0,P);
eps0 = 8.854187817e-12;
rvector = P-P0;
rnorm = norm(rvector);
fieldE = 1/(4*pi*eps0)*q0*(P-P0)./(norm(P-P0).^3);
end
|
6d27d2449f82047721013938fd37f4e54239d459
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/23/CH14/EX14.10/Example_14_10.sce
|
eb07da7ff59d642ee7443545585ea1a876e8e914
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 713
|
sce
|
Example_14_10.sce
|
clear;
clc;
//Example 14.10
//Caption : Program to illustrate the Concepts of Pue Gas Adsorption
subplot(2,1,1)
m=4.7087;
b=2.1941;
t=0.3984;
P=linspace(0,40,10);
N=(m.*P)./((b+(P.^t)).^(1/t));
plot(P,N)
m=0.6206;
b=1.5454;
t=1;
n=(m.*P)./((b+(P.^t)).^(1/t));
plot(P,n,'b--')
legend('Toth Equation','Langmuir Equation')
xtitle('Adsorption Isotherm(n vs P)','P(kPa)','n(mol/kg)')
subplot(2,1,2)
C0=0.4016;
C1=-0.6471;
C2=0.4567;
C3=-0.12;
n=linspace(0,1.6,20);
K=C0+(C1*n)+(C2*(n^2))+(C3*(n^3));
plot(n,K)
n=linspace(0,0.5,20);
K=C0+(C1*n);
plot(n,K,'b--')
legend('Cubic Polynomial fit','Langmuir Equation')
xtitle('n/P vs n for Ethylene','n(mol/kg)','n/P(mol/kg/kPa)')
//End
|
436bc124ef1f51931e201e71d4f0d3b2e04e9cbb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3835/CH1/EX1.9/Ex1_9.sce
|
894c0d9268f06fa0a49ef4505092bde2c26d7afa
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 254
|
sce
|
Ex1_9.sce
|
clear
//
lal=7.5
lcu=6
rcu=0.017*(10**-6)
ral=0.028*(10**-6)
d=(10**-6)
a=((3.14*d))/(4)
Ral=(lal*ral)/(a)
printf("\n R= %0.1f ohm",Ral)
ial=3
pv=Ral*ial
Rcu=pv/(2)
printf("\n Rcu")
a=(rcu*lcu)/(Rcu)
dcu=(((a*4)/3.14)**0.5)
printf("\n dcu= %e nm",dcu)
|
124c589dc24f1adcf69f8c96a41f1ef1b9200cac
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2216/CH9/EX9.3/ex_9_3.sce
|
6ff3343f7a422a652f229ff50922c97275256608
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 489
|
sce
|
ex_9_3.sce
|
//Example 9.3:change in refractive index ,net phase shiftand Vpi
clc;
clear;
close;
format('v',6)
v=5;//kV
l=1;//cm
ez=(v*10^3)/(l*10^-2);//in V/m
no=1.51;//
r63=10.5*10^-12;//m/V
dn=((1/2)*no^3*r63*ez);//
h=550;//nm
dfi=((2*%pi*dn*l*10^-2)/(h*10^-9));//
fi=2*dfi;//
vpi=((h*10^-9)/(2*no^3*r63))*10^-3;//kV
disp(dfi,"change in refrative index is")
disp(fi,"net phase shift is")
format('v',4)
disp(vpi,"Vpi in kV is")
//refractive index and phase shift is in the form of pi in the textbook
|
0c860ccb4b750a8f67984b1522991674eb92ed99
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3745/CH1/EX1.43/Ex1_43.sce
|
131518a4cc1918748f7ee811417fd4e52283a648
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 531
|
sce
|
Ex1_43.sce
|
// Ex 43 Page 387
clc;clear;close;
// Given
R2=0.03;//ohm
X2=0.18;//ohm
Ns=100;//rpm
s1=3;//%
Nfl=(100-s1);//rpm (full load speed)
N2=Nfl/2;//rpm
s2=(Ns-N2)/Ns*100;//%
V1BYV2=sqrt(s2/s1*(R2**2+(s1/100*X2)**2)/(R2**2+(s2/100*X2)**2));//from torque equation
//let V1=V12BYV1 V2=1
V1=V1BYV2;//V
V2=1;//V
V12BYV1=(V1-1)/V1*100;// % reduction in the stator (V12=V1-V2)
printf("Percentage reduction in stator voltage = %.f percent",V12BYV1)
fi=atan(s2/100*X2/R2);//radian
pf=cos(fi);//power factor
printf("\n power factor = %.1f",pf)
|
faac78cce76c4e7a8a4fe333cdbab1f93ae0bcda
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.5/macros/m2sci/sci_erf.sci
|
8c3bca9036db39b2d0784d71c4342c2b578f1f07
|
[
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 134
|
sci
|
sci_erf.sci
|
function [stk,txt,top]=sci_erf()
// Copyright INRIA
txt=[]
stk=list('erf('+stk(top)(1)+')','0',stk(top)(3),stk(top)(4),stk(top)(5))
|
5d6c9cf5d768df34b41a401e85706915951224fe
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.0/macros/robust/leqe.sci
|
6ac4594134fb6343654f98ca7b1310190eee6bcc
|
[
"MIT",
"LicenseRef-scancode-public-domain",
"LicenseRef-scancode-warranty-disclaimer"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 118
|
sci
|
leqe.sci
|
function [K,Y,err]=leqe(P21,Qx)
[A,B1,C2,D21,xo,dom]=P21(2:7)
[KT,Y,err]=leqr(syslin(dom,A',C2',B1',D21'),Qx);
K=KT';
|
8c50da7210405cfb1a4aeff185b5279949f47c4e
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/52/CH9/EX9.7.a/Example9_7_a.sce
|
fa6b75eab19914f4a0abebc23c1d16eef71dcae7
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 506
|
sce
|
Example9_7_a.sce
|
//Example 9.7 (a)
//Program To Determine Frequency Resolution of Bartlett,
//Welch(50% Overlap) and Blackmann-Tukey Methods
clear;
clc;
close;
//Data
Q=10;//Quality Factor
N=1000;//Samples
//FREQUENCY RESOLUTION CALCULATION
K=Q;
rb=0.89*(2*%pi*K/N);
rw=1.28*(2*%pi*9*Q)/(16*N);
rbt=0.64*(2*%pi*2*Q)/(3*N);
//Display the result in command window
disp(rb,"Resolution of Bartlett Method");
disp(rw,"Resolution of Welch(50% overlap) Method");
disp(rbt,"Resolution of Blackmann-Tukey Method");
|
440e2ee4e4a69bff2092f6f500b183b572534210
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1826/CH18/EX18.1/ex18_1.sce
|
1ba8016ecda4d2a19cc91431acfe75825c8d0053
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 405
|
sce
|
ex18_1.sce
|
// Example 18.1, page no-460
clear
clc
atom=4
kci=0.629*10^-9//m
alfk=1.264*10^-40//m^2
alfCl=3.408*10^-40//m^2
eps0=8.854*10^-12
pol=alfk+alfCl
N=atom/kci^3
epsr=(N*pol/eps0)+1
printf("\nThe electronic polarisability for KCL = %.3f *10^-40 F m^2\n",pol*10^40)
printf("\nThe no of Dipoles per m^3 = %.3f * 10^28 atoms m^-3\n",N/10^28)
printf("\nThe dielectric constant of KCL is %.3f",epsr)
|
5291cc414d30249c306e767258699a7933dd2312
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1436/CH2/EX2.7/ex2_7.sce
|
4b7ecb36c3b9d0f5718764c801d1182454e7c98f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 355
|
sce
|
ex2_7.sce
|
// Example 2.7, page no-119
clear
clc
printf("1 kg/cm^2 = 10 mWG\n")
//(a)
press=10+2
printf("\n(a)Bourdon Gauge is mounted 20 meters below water line:\nPressure read by the Gauge = %d kg/cm^2",press)
//(b)
press2=10-3
printf("\n\n(b)Bourdon Gauge is located 30 meters above the water line:\nPressure read by the Gauge = %d kg/cm^2",press2)
|
77fb8b0d38c91547371e42b2dc9de512c31be93a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1271/CH11/EX11.33/example11_33.sce
|
c22e0954bb895d91a537e5a2fd553c2a09111ed1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 382
|
sce
|
example11_33.sce
|
clc
// Given that
d = 4 // distance of star from the earth in light years
v = 3e8 * sqrt(0.9999) // speed of rocket in meter/sec
// Sample Problem 33 on page no. 11.31
printf("\n # PROBLEM 33 # \n")
printf(" Standard formula used \n")
printf(" t = t_0/((1-v^2/c^2)^1/2) \n")
t = (2 * d * 3e8) / v
T_ = t * sqrt(1 - (v / 3e8)^2)
printf("\n Time taken by the rocket is %f year.",T_)
|
25ccebd8f9d43d0b4d56a283710304ad8b9511a0
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2672/CH1/EX1.40/Ex1_40.sce
|
03325f7901301b35840bd079fff58320fe074ab3
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 399
|
sce
|
Ex1_40.sce
|
//Example 1_40
clc;
clear;
close;
format('v',5);
//given data :
V=24;//V
R1=7;//ohm
R2=7;//ohm
R3=7;//ohm
R4=7;//ohm
R5=8;//ohm
R6=10;//ohm
RAB=(R5*R6/(R5+R6)+R4)*(R2+R3)/(R5*R6/(R5+R6)+R4+R2+R3)+R1;//ohm
I=V/RAB;//A
I2=I*(R2+R3)/(R2+R3+R5*R6/(R5+R6)+R4);//A
VPQ=I2*(R5*R6/(R5+R6));//V
disp(VPQ,"Voltage drop across the 10 ohm resistor(V)");
//Answer in the book is not accurate.
|
e9b9189510ef4a00abc2d43f3794f70a150a942c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/51/CH11/EX11.18/11_18.sce
|
2aa3f5de2c319ddcb362e45d293a72199b6bcb79
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 423
|
sce
|
11_18.sce
|
clc;
clear;
p=60;//psia
T=1000;//degree R
px=12;//psia
k=1.4;
R=53.3;//ft*lb/(lbm*degree R)
pratio=p/px;
//for this value of pratio, Max is calculated as
Max=1.9;
//using this value of Max, Tx/T0,x is found as
Tratio=0.59;
//T=T0,x=T0,y
Tx=Tratio*T;//degree R
cx=(R*Tx*k)^0.5;//ft/sec
Vx=1.87*cx*(32.2^0.5);//ft/sec
disp(Max,"The Mach number for the flow=")
disp("ft/sec",Vx,"The velocity of the flow=")
|
e87ec73b9bec5d7d173a960db9f848ac800e29b2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2741/CH3/EX3.3/Chapter3_Example3.sce
|
c3003722f2668dc2999faa3a1d96db061f079c6b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 589
|
sce
|
Chapter3_Example3.sce
|
clc
clear
//Input data
t=5;//Time taken for a body to cool from 60 to 40 degree centigrade in minutes
t11=60;//The initial temperature of the body in degree centigrade
t12=40;//The final temperature of the body in degree centigrade
ts=10;//The temperature of the surrounding in degree centigrade
//Calculations
K=log((t12-ts)/(t11-ts));//The constant value for the first case at ts
x=((exp(K))*(t12-ts))+ts;//The temperature after the next 5 minutes in degree centigrade
//Output
printf('The temperature after the next 5 minutes is x = %3.0f degree centigrade ',x)
|
47708fdd3c4a8a71e69020e8aea7ffdacc4e2a1a
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/608/CH2/EX2.09/2_09.sce
|
edceb587eff83677305df919ece6e79cb4ebcf89
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 281
|
sce
|
2_09.sce
|
//Problem 2.09: Calculate the power dissipated when a current of 4 mA flows through a resistance of 5 k
//initializing the variables:
I = 0.004; // in ampere
R = 5000; // in ohms
//calculation:
P = I*I*R
printf("\n\nResult\n\n")
printf("\nPower(P): %.2f Watt(W)\n",P)
|
b4b266d2b420575379ec767dff497b438167718f
|
80fc9b7a10b546c9071b974c5328180e74ee1c5d
|
/TP1/Exercise3.sce
|
661fdde74b733058c2c996d05f897c0d916df750
|
[] |
no_license
|
ASokem/TP_MAP101
|
a443ddbd656d63918dd5caad3ce89418d02c0123
|
b87d45faea6bc793161bae2238bd6489e5d9ede5
|
refs/heads/main
| 2023-08-10T20:42:07.377878
| 2021-09-29T09:15:34
| 2021-09-29T09:15:34
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 327
|
sce
|
Exercise3.sce
|
// Copyright (C) 2021 - UGA - JIANG Yilun
//
// Date of creation: 2021-9-15
//
deff("y = f3(x)", "y = log(x + sqrt((x) .^ 2 - 1))")
deff("y = f4(x)", "y = log(x + sqrt((x) .^ 2 + 1))")
deff("y = f5(x)", "y = 1/2 * log((1 + x) ./ (1 - x))")
t = 0:0.2:5
u = f3(cosh(t))
v = f4(sinh(t))
w = f5(tanh(t))
M = [t;u;v;w]'
disp(M)
|
e712d07260d846f9d03463a08028bb730776db06
|
089894a36ef33cb3d0f697541716c9b6cd8dcc43
|
/NLP_Project/test/tweet/bow/bow.12_8.tst
|
1369a6b7205f70cc555c123530d022d83aacf51b
|
[] |
no_license
|
mandar15/NLP_Project
|
3142cda82d49ba0ea30b580c46bdd0e0348fe3ec
|
1dcb70a199a0f7ab8c72825bfd5b8146e75b7ec2
|
refs/heads/master
| 2020-05-20T13:36:05.842840
| 2013-07-31T06:53:59
| 2013-07-31T06:53:59
| 6,534,406
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 22,592
|
tst
|
bow.12_8.tst
|
12 13:0.25 24:0.5 25:0.03125 31:0.14285714285714285 123:0.015625 167:0.1111111111111111 645:0.3333333333333333 731:0.3333333333333333 980:0.5 1014:1.0 3225:1.0 4752:1.0 4777:1.0 6808:1.0
12 25:0.03125 32:0.3333333333333333 68:0.25 79:1.0 115:1.0 123:0.015625 203:0.3333333333333333 226:1.0 259:0.25 298:1.0 460:0.3333333333333333 492:0.058823529411764705 645:0.3333333333333333 1061:1.0 1082:1.0 1186:1.0 1406:1.0 1511:1.0 3370:1.0 4434:1.0 4695:1.0 4696:1.0 5252:1.0 5503:1.0 6905:1.0 7080:1.0 7443:1.0 7448:1.0
12 259:0.25 513:1.0 1061:2.0 1943:1.0 2337:0.5 2609:1.0 4655:1.0
12 23:1.0 25:0.03125 73:1.0 88:0.16666666666666666 90:0.14285714285714285 139:1.0 259:0.25 459:0.1 473:1.0 576:1.0 636:0.5 697:1.0 742:1.0 771:1.0 861:1.0 882:1.0 1043:1.0 1061:1.0 1374:1.0 1889:1.0 2191:1.0 2286:0.5 5537:1.0 5760:1.0 7264:1.0
12 25:0.03125 32:0.6666666666666666 51:1.0 492:0.058823529411764705 608:1.0 720:1.0 1061:1.0 1210:1.0 2286:0.5 4088:1.0 4232:1.0 4236:1.0 4588:1.0 4813:1.0
12 7:0.125 14:0.2 20:0.14285714285714285 24:0.5 25:0.0625 49:2.0 123:0.015625 175:1.0 225:0.25 259:0.25 318:1.0 396:1.0 426:0.5 492:0.058823529411764705 525:1.0 531:0.25 593:1.0 700:0.5 1061:1.0 1082:1.0 1406:1.0 2080:0.5 3834:1.0 4231:1.0 4813:1.0 5255:1.0 6927:1.0 6954:1.0
12 32:0.3333333333333333 49:1.0 51:1.0 88:0.16666666666666666 123:0.015625 179:0.3333333333333333 217:0.5 259:0.25 351:1.0 692:0.25 1487:1.0 1714:1.0 2018:1.0 2298:1.0 5210:1.0
12 7:0.25 24:0.5 49:2.0 73:1.0 159:0.3333333333333333 167:0.1111111111111111 447:0.3333333333333333 518:1.0 552:1.0 608:1.0 645:0.3333333333333333 1303:1.0 1394:2.0 1898:1.0 4512:1.0 4791:1.0 4793:1.0 4983:1.0 5629:1.0 5820:1.0 6939:1.0 7324:1.0
12 15:0.5 24:0.5 88:0.16666666666666666 90:0.14285714285714285 103:0.5 167:0.1111111111111111 234:0.07142857142857142 259:0.25 310:1.0 328:0.5 692:0.25 1505:1.0 1525:1.0 2036:1.0 3819:1.0 4777:1.0 5203:0.5
12 25:0.09375 107:0.5 124:1.0 179:0.3333333333333333 226:1.0 259:0.25 282:1.0 373:0.2 492:0.058823529411764705 709:0.5 731:0.3333333333333333 798:1.0 1121:1.0 1470:1.0 3569:1.0 3783:1.0 4315:1.0 4487:0.5 4791:1.0 4793:1.0
12 24:0.5 77:1.0 167:0.1111111111111111 525:1.0 1061:1.0 1082:1.0 1565:2.0 2394:1.0
12 25:0.0625 32:0.3333333333333333 34:0.2 90:0.2857142857142857 124:1.0 127:0.5 154:1.0 447:0.3333333333333333 608:1.0 692:0.25 832:1.0 1061:1.0 1473:1.0 3356:1.0 4531:1.0 4861:1.0 5351:1.0 7263:1.0
12 32:0.6666666666666666 62:1.0 73:1.0 88:0.08333333333333333 179:0.3333333333333333 259:0.25 293:1.0 426:0.5 460:0.3333333333333333 608:1.0 798:1.0 1082:1.0 1121:1.0 2568:1.0 3268:1.0 4627:1.0 5277:1.0
12 14:0.2 25:0.0625 31:0.14285714285714285 34:0.2 49:1.0 73:1.0 119:1.0 123:0.015625 128:1.0 177:0.5 239:0.16666666666666666 420:2.0 443:0.3333333333333333 473:1.0 1080:1.0 2568:1.0 2866:1.0 3648:1.0 4623:1.0 5171:1.0 5255:1.0 5378:1.0 5417:1.0 5855:1.0 6556:1.0 6771:1.0 7347:1.0
12 7:0.25 20:0.2857142857142857 24:0.5 25:0.0625 31:0.14285714285714285 34:0.2 49:1.0 76:0.5 88:0.08333333333333333 123:0.015625 127:1.5 186:1.0 224:1.0 247:1.0 299:1.0 308:0.5 310:1.0 351:1.0 443:0.3333333333333333 492:0.058823529411764705 799:0.5 915:1.0 931:1.0 1326:0.5 2035:1.0 2942:1.0 3520:1.0 5437:1.0 5453:1.0
12 49:1.0 88:0.16666666666666666 91:0.5 203:0.3333333333333333 226:1.0 259:0.25 274:1.0 310:1.0 373:0.2 428:1.0 472:0.09090909090909091 492:0.058823529411764705 639:0.5 1022:1.0 1848:1.0 2702:0.5 3075:1.0 3267:0.5
12 24:0.5 25:0.0625 32:0.3333333333333333 49:3.0 75:1.0 76:0.5 123:0.015625 130:1.0 226:1.0 259:0.25 329:0.5 358:1.0 492:0.058823529411764705 619:1.0 702:1.0 788:1.0 1587:0.5 2733:1.0 3179:1.0 4459:0.5 5203:0.5 5255:1.0 5429:0.3333333333333333 5972:1.0
12 24:0.5 40:0.2 49:1.0 88:0.08333333333333333 90:0.2857142857142857 103:0.25 123:0.015625 139:1.0 167:0.1111111111111111 385:1.0 388:1.0 460:0.3333333333333333 525:1.0 709:0.5 809:0.5 1082:1.0 1406:1.0 1653:1.0 1973:1.0 2405:1.0 2926:1.0 4121:1.0 5188:1.0 5896:1.0 6063:1.0
12 25:0.03125 40:0.2 80:0.5 274:1.0 329:0.5 537:1.0 1787:0.5 2278:1.0 3179:1.0 5158:1.0 5305:1.0 5627:1.0
12 25:0.03125 32:0.3333333333333333 49:1.0 80:0.5 88:0.08333333333333333 234:0.07142857142857142 525:1.0 700:0.5 980:0.5 1082:1.0 1186:1.0 1615:1.0 1892:0.5 3119:1.0 4512:1.0 4587:0.5 4984:1.0 5039:1.0 5526:1.0 6881:1.0
12 23:1.0 32:0.3333333333333333 396:1.0 447:0.3333333333333333 659:0.5 945:1.0 1061:1.0 1372:0.5 2445:1.0 4507:1.0 7105:1.0
12 24:0.5 25:0.03125 34:0.2 40:0.2 44:1.0 103:0.25 107:0.5 159:0.6666666666666666 163:0.5 259:0.25 260:1.0 382:1.0 447:0.3333333333333333 492:0.058823529411764705 1848:1.0 2307:1.0 3968:1.0 4507:1.0 4512:1.0 4824:1.0 5829:1.0 7251:1.0
12 7:0.125 14:0.2 23:1.0 24:0.5 25:0.0625 40:0.4 49:2.0 80:0.5 88:0.08333333333333333 103:0.25 159:0.3333333333333333 175:1.0 234:0.07142857142857142 259:0.25 659:0.5 813:1.0 1141:1.0 1264:1.0 1265:1.0 1689:1.0 2369:1.0 2473:1.0 2942:1.0 3632:1.0 4507:1.0 4567:1.0 4591:1.0 6456:1.0 7074:1.0
12 7:0.125 20:0.14285714285714285 32:0.3333333333333333 51:2.0 73:1.0 90:0.14285714285714285 137:0.25 179:0.6666666666666666 203:0.3333333333333333 220:0.3333333333333333 259:0.75 306:0.25 459:0.1 659:0.5 714:1.0 1090:1.0 1304:0.3333333333333333 1611:1.0 1898:1.0 3820:1.0 4487:0.5 4507:1.0 5651:1.0 5824:1.0 7188:1.0 7401:1.0
12 23:1.0 24:0.5 25:0.0625 31:0.14285714285714285 32:0.3333333333333333 40:0.4 44:1.0 49:1.0 88:0.16666666666666666 159:0.3333333333333333 234:0.07142857142857142 307:1.0 335:1.0 459:0.1 460:0.3333333333333333 521:1.0 824:0.5 955:1.0 1304:0.3333333333333333 1406:1.0 1473:1.0 4624:0.5 7135:1.0
12 24:1.0 25:0.0625 49:2.0 62:1.0 88:0.08333333333333333 90:0.14285714285714285 91:0.5 396:1.0 447:0.3333333333333333 525:1.0 529:1.0 720:1.0 1082:1.0 1284:1.0 1380:1.0 2458:0.14285714285714285 2653:0.5 3675:1.0 5232:1.0 5359:1.0 5907:1.0 7399:1.0
12 6:0.5 24:0.5 25:0.0625 32:0.3333333333333333 73:1.0 80:0.5 123:0.015625 167:0.1111111111111111 225:0.25 535:1.0 686:1.0 980:0.5 1121:1.0 2055:1.0 3325:1.0 4512:1.0 5086:1.0 5808:1.0 7178:1.0 7188:1.0
12 25:0.03125 34:0.2 49:1.0 88:0.08333333333333333 128:1.0 287:0.5 507:0.25 521:1.0 692:0.25 1150:0.16666666666666666 1358:1.0 1804:0.3333333333333333 1840:1.0 3882:1.0 4687:1.0
12 31:0.14285714285714285 49:1.0 88:0.08333333333333333 388:1.0 472:0.09090909090909091 980:0.5 4595:2.0 5429:0.3333333333333333 7251:1.0
12 15:0.5 25:0.03125 32:0.6666666666666666 49:1.0 144:0.3333333333333333 222:1.0 231:1.0 459:0.2 509:1.0 1304:0.3333333333333333 1380:1.0 2573:0.5 4998:1.0 5652:1.0 5851:1.0
12 7:0.125 40:0.2 49:1.0 76:0.5 88:0.08333333333333333 103:0.25 106:0.1 179:0.3333333333333333 389:1.0 931:1.0 1265:1.0 1591:1.0 4494:1.0 4688:1.0 4791:1.0 4862:1.0 6173:1.0
12 6:0.5 7:0.125 8:1.0 20:0.14285714285714285 24:1.0 25:0.03125 31:0.14285714285714285 49:1.0 88:0.16666666666666666 90:0.14285714285714285 178:1.0 259:0.25 306:0.25 393:1.0 426:0.5 459:0.1 460:0.3333333333333333 473:1.0 508:1.0 525:1.0 813:1.0 844:1.0 946:1.0 990:1.0 1082:1.0 1286:0.5 1315:1.0 1408:1.0 1929:1.0 4146:1.0 4434:1.0 5255:1.0 6438:1.0 6595:1.0 7034:1.0
12 7:0.125 25:0.03125 32:0.3333333333333333 46:0.5 167:0.1111111111111111 175:1.0 212:1.0 406:1.0 1140:1.0 1304:0.3333333333333333 1307:0.5 1591:1.0 1973:1.0 2573:0.5 4686:1.0 5110:0.5 5820:1.0 6661:1.0
12 25:0.03125 40:0.2 510:1.0 720:1.0 2141:0.5 2584:1.0 4492:0.3333333333333333 4532:1.0 5823:1.0
12 14:0.2 18:0.5 20:0.14285714285714285 40:0.2 49:4.0 90:0.2857142857142857 92:0.5 103:0.25 123:0.015625 459:0.2 460:0.3333333333333333 492:0.058823529411764705 567:0.3333333333333333 1167:1.0 1275:0.5 2043:1.0 4505:1.0 4558:1.0 4567:1.0 5354:1.0 5371:1.0 5954:1.0 6858:1.0 7401:1.0
12 25:0.03125 32:0.3333333333333333 49:1.0 73:1.0 88:0.16666666666666666 179:0.3333333333333333 225:0.25 460:0.3333333333333333 1326:0.5 1435:1.0 2375:1.0 2726:1.0 4088:1.0 4232:1.0 4639:1.0 7105:1.0
12 14:0.2 31:0.14285714285714285 32:0.3333333333333333 40:0.2 44:3.0 88:0.25 177:0.5 195:1.0 259:0.25 273:1.0 308:0.5 348:1.0 426:1.0 428:1.0 839:1.0 1264:1.0 1303:1.0 2758:1.0 2986:0.5 4459:0.5 5038:1.0 5340:1.0 5574:1.0
12 7:0.125 20:0.14285714285714285 25:0.0625 46:0.5 90:0.14285714285714285 133:0.14285714285714285 179:0.3333333333333333 203:0.3333333333333333 393:1.0 624:1.0 824:0.5 1210:1.0 1348:0.25 1408:1.0 1903:1.0 2094:1.0 2890:1.0 4325:1.0 4619:1.0 4728:1.0 4803:1.0 5181:1.0 5537:1.0 5741:1.0 6661:1.0
12 7:0.125 14:0.2 16:0.5 24:0.5 25:0.03125 27:1.0 49:1.0 90:0.14285714285714285 106:0.1 123:0.015625 143:1.0 159:0.3333333333333333 224:2.0 259:0.25 274:1.0 293:1.0 393:1.0 492:0.17647058823529413 552:1.0 714:1.0 820:1.0 824:0.5 931:1.0 2458:0.14285714285714285 2890:1.0 4487:0.5 4619:1.0 5177:1.0 5537:1.0
12 7:0.25 16:0.5 103:0.25 138:0.5 373:0.2 492:0.058823529411764705 692:0.25 1196:1.0 1348:0.25 1840:1.0 1882:1.0 2167:1.0 2293:1.0 2458:0.14285714285714285 2835:0.2 5009:2.0 5820:1.0
12 20:0.14285714285714285 88:0.08333333333333333 179:0.3333333333333333 212:1.0 241:1.0 305:1.0 308:0.5 447:0.3333333333333333 473:1.0 485:1.0 722:1.0 847:1.0 1348:0.25 1936:1.0 4631:1.0 6638:1.0
12 25:0.03125 73:1.0 179:0.3333333333333333 533:1.0 1348:0.25 2948:1.0 4631:1.0 6638:1.0
12 18:0.5 49:1.0 88:0.16666666666666666 90:0.14285714285714285 106:0.1 133:0.14285714285714285 909:0.5 1144:1.0 1615:1.0 2394:1.0 2458:0.14285714285714285 5811:1.0
12 769:1.0 1061:1.0 2433:1.0
12 20:0.14285714285714285 25:0.03125 49:2.0 92:0.5 373:0.2 426:0.5 587:1.0 608:1.0 809:0.5 990:1.0 1150:0.16666666666666666 1406:1.0 2458:0.14285714285714285 4136:1.0 4434:1.0 4950:0.3333333333333333 5009:1.0
12 16:0.5 25:0.03125 31:0.14285714285714285 32:0.6666666666666666 49:3.0 90:0.14285714285714285 103:0.25 133:0.14285714285714285 162:0.5 163:0.25 720:1.0 833:0.3333333333333333 996:1.0 1702:1.0 1909:1.0 2458:0.14285714285714285 3570:1.0 3751:1.0 3754:1.0 3936:1.0 4526:1.0 5660:1.0 5690:1.0
12 20:0.14285714285714285 24:0.5 25:0.0625 40:0.2 49:1.0 51:1.0 88:0.08333333333333333 90:0.14285714285714285 103:0.25 123:0.015625 124:1.0 163:0.25 245:0.3333333333333333 282:1.0 430:1.0 459:0.1 720:1.0 836:1.0 882:1.0 938:1.0 958:1.0 1473:1.0 1587:0.5 2058:1.0 2458:0.14285714285714285 2468:1.0 2844:1.0 3754:1.0 3959:1.0 5203:0.5 5846:1.0 7318:1.0
12 7:0.125 20:0.14285714285714285 25:0.03125 88:0.08333333333333333 195:1.0 259:0.25 310:1.0 334:1.0 535:1.0 981:1.0 1145:0.3333333333333333 1381:1.0 1411:0.3333333333333333 1832:1.0 4459:0.5 4773:1.0 5332:1.0
12 7:0.25 20:0.2857142857142857 23:1.0 25:0.03125 31:0.14285714285714285 234:0.07142857142857142 293:1.0 371:0.3333333333333333 372:1.0 426:0.5 473:1.0 714:1.0 731:0.3333333333333333 788:1.0 1061:2.0 1106:0.5 1145:0.3333333333333333 3325:1.0 3752:1.0 5180:1.0 5820:1.0
12 7:0.125 13:0.25 25:0.0625 26:1.0 31:0.14285714285714285 49:1.0 68:0.25 88:0.08333333333333333 123:0.015625 224:1.0 274:1.0 374:1.0 453:1.0 473:1.0 552:1.0 639:0.5 645:0.3333333333333333 720:1.0 722:1.0 909:0.5 1275:0.5 1909:1.0 1910:1.0 2144:1.0 2714:0.5 2907:0.2 3360:1.0 4487:0.5 4492:0.6666666666666666
12 7:0.125 24:1.5 25:0.03125 62:1.0 123:0.03125 137:0.25 310:1.0 388:1.0 460:0.3333333333333333 735:1.0 771:1.0 1214:1.0 1586:1.0 1975:2.0 2058:1.0 3764:1.0 4437:0.5 4487:0.5 4707:1.0 5087:1.0 6866:1.0 7038:1.0 7433:1.0
12 8:1.0 25:0.03125 40:0.2 90:0.42857142857142855 179:0.3333333333333333 328:0.5 373:0.2 443:0.3333333333333333 492:0.058823529411764705 963:0.3333333333333333 1304:0.3333333333333333 1348:0.25 1381:1.0 1723:1.0 1934:0.5 2516:2.0 3197:1.0 4437:0.5 4626:1.0 4803:1.0 4855:1.0 4998:1.0 5351:1.0 5537:1.0 6226:1.0
12 20:0.14285714285714285 25:0.03125 40:0.2 49:1.0 88:0.08333333333333333 107:0.5 123:0.015625 133:0.14285714285714285 155:1.0 272:1.0 274:1.0 330:1.0 382:1.0 492:0.058823529411764705 506:0.3333333333333333 531:0.25 1145:0.3333333333333333 1150:0.16666666666666666 2394:1.0 3580:1.0 4558:1.0 4829:1.0 5087:1.0
12 7:0.125 20:0.14285714285714285 24:0.5 62:2.0 88:0.16666666666666666 90:0.14285714285714285 123:0.015625 130:1.0 337:1.0 398:0.07692307692307693 460:0.3333333333333333 492:0.058823529411764705 695:1.0 1592:1.0 1903:1.0 2080:0.5 2439:1.0 3148:0.5 3754:1.0 4459:0.5 5548:1.0 6909:1.0 7002:1.0
12 8:1.0 11:0.16666666666666666 20:0.14285714285714285 25:0.0625 37:0.5 49:1.0 76:0.5 88:0.08333333333333333 128:1.0 175:1.0 274:1.0 308:0.5 310:1.0 492:0.058823529411764705 510:1.0 631:1.0 1406:1.0 1408:1.0 1804:0.3333333333333333 3518:1.0 3633:1.0 4434:1.0 4678:1.0 5760:1.0 6992:1.0
12 23:1.0 24:0.5 88:0.08333333333333333 90:0.14285714285714285 274:1.0 492:0.058823529411764705 861:1.0 1061:1.0 2890:1.0 5354:1.0
12 7:0.125 20:0.14285714285714285 24:0.5 25:0.03125 73:1.0 167:0.1111111111111111 177:0.5 259:0.25 506:0.3333333333333333 980:0.5 2458:0.14285714285714285 4434:1.0 4459:0.5 4777:1.0 5650:1.0 5816:1.0 5881:1.0 6028:1.0 6575:1.0
12 7:0.125 16:1.0 24:0.5 25:0.03125 31:0.14285714285714285 32:0.3333333333333333 33:1.0 90:0.14285714285714285 98:0.3333333333333333 133:0.14285714285714285 177:0.5 234:0.07142857142857142 1061:1.0 1087:1.0 1686:1.0 5255:1.0 6446:1.0
12 34:0.2 40:0.4 88:0.08333333333333333 128:1.0 293:2.0 329:0.5 485:1.0 492:0.058823529411764705 506:0.3333333333333333 3498:1.0 3590:1.0 5510:1.0 5824:1.0 6462:1.0 7347:1.0
12 25:0.03125 32:0.3333333333333333 37:0.5 93:1.0 459:0.1 492:0.058823529411764705 527:1.0 544:1.0 1061:1.0 1804:0.3333333333333333 2458:0.14285714285714285 4492:0.3333333333333333
12 25:0.0625 31:0.14285714285714285 34:0.2 49:4.0 76:0.5 88:0.08333333333333333 133:0.14285714285714285 218:2.0 222:1.0 239:0.16666666666666666 310:1.0 398:0.07692307692307693 447:0.3333333333333333 492:0.058823529411764705 670:0.5 692:0.25 813:1.0 909:0.5 932:1.0 1104:1.0 1150:0.16666666666666666 1303:1.0 1368:1.0 1435:1.0 2889:1.0 3267:0.5 3415:1.0 5143:1.0 5594:1.0 5829:1.0
12 7:0.125 14:0.2 15:0.5 23:1.0 34:0.4 48:0.5 49:1.0 88:0.16666666666666666 224:1.0 239:0.16666666666666666 259:0.75 447:0.3333333333333333 492:0.058823529411764705 670:0.5 731:0.3333333333333333 797:0.5 909:0.5 1061:1.0 1150:0.16666666666666666 1303:1.0 1368:1.0 1615:1.0 3075:1.0 4073:1.0 4695:1.0 4968:1.0 5164:1.0 6062:1.0
12 25:0.03125 32:0.3333333333333333 49:1.0 178:1.0 259:0.5 492:0.058823529411764705 619:1.0 1061:1.0 2911:1.0 2950:1.0 4469:1.0 7452:1.0
12 6:0.5 7:0.25 25:0.03125 49:3.0 72:1.0 90:0.2857142857142857 91:0.5 103:0.5 133:0.14285714285714285 163:0.75 306:0.25 310:1.0 388:1.0 398:0.07692307692307693 460:0.3333333333333333 592:0.6666666666666666 608:1.0 639:0.5 645:0.3333333333333333 1104:1.0 1216:1.0 1303:1.0 1348:0.25 1901:1.0 6273:1.0
12 24:0.5 25:0.0625 90:0.14285714285714285 121:1.0 163:0.25 179:0.3333333333333333 720:1.0 824:0.5 980:0.5 1061:1.0 1315:1.0 1380:1.0 2458:0.14285714285714285 4001:1.0 4512:1.0 4874:1.0 5396:1.0
12 6:0.5 7:0.375 14:0.2 20:0.14285714285714285 23:1.0 34:0.2 49:3.0 75:1.0 179:0.3333333333333333 234:0.07142857142857142 293:1.0 372:1.0 398:0.07692307692307693 426:0.5 645:0.3333333333333333 714:1.0 1150:0.16666666666666666 1411:0.3333333333333333 1934:0.5 2056:1.0 4998:1.0
12 25:0.03125 308:0.5 510:1.0 631:1.0 978:1.0 1901:1.0 2141:0.5 4587:0.5 5175:1.0
12 7:0.125 20:0.14285714285714285 25:0.03125 32:0.3333333333333333 40:0.2 49:2.0 51:1.0 88:0.08333333333333333 90:0.14285714285714285 103:0.25 239:0.16666666666666666 281:1.0 454:1.0 619:1.0 631:1.0 1295:1.0 1334:1.0 1476:1.0 1788:1.0 1867:0.5 2115:0.5 4357:1.0 4687:1.0 5293:1.0 5798:1.0 6096:1.0
12 7:0.25 25:0.03125 34:0.2 40:0.2 49:1.0 90:0.14285714285714285 123:0.03125 133:0.14285714285714285 138:1.0 162:0.5 492:0.058823529411764705 2589:1.0 4586:1.0 7285:1.0 7287:1.0
12 7:0.125 20:0.14285714285714285 507:0.25 710:1.0 1348:0.25 2080:0.5 4586:1.0
12 7:0.125 34:0.2 90:0.14285714285714285 373:0.2 720:1.0 1348:0.25 1505:1.0 2458:0.14285714285714285 2830:1.0 3267:0.5 3977:1.0 4487:0.5 6115:1.0 6156:1.0
12 7:0.125 103:0.25 163:0.25 798:1.0 1348:0.25 1473:1.0 1798:1.0 2458:0.14285714285714285 2907:0.2 3267:0.5 6287:1.0
12 7:0.125 48:0.5 49:1.0 88:0.08333333333333333 90:0.2857142857142857 157:0.5 159:0.3333333333333333 163:0.5 220:0.3333333333333333 260:1.0 306:0.25 310:1.0 426:0.5 447:0.3333333333333333 508:1.0 908:0.5 1167:1.0 1348:0.25 1591:1.0 2141:0.5 3197:1.0 6553:1.0
12 6:0.5 7:0.125 20:0.14285714285714285 88:0.08333333333333333 90:0.14285714285714285 139:1.0 179:0.3333333333333333 396:1.0 587:2.0 741:1.0 1333:1.0 1348:0.25 1489:0.5 2458:0.14285714285714285
12 6:0.5 7:0.375 25:0.03125 88:0.08333333333333333 103:0.25 234:0.07142857142857142 388:1.0 659:0.5 692:0.25 709:0.5 834:1.0 980:0.5 1348:0.25 3197:1.0 4001:1.0
12 7:0.125 25:0.03125 76:0.5 107:0.5 133:0.14285714285714285 234:0.07142857142857142 1797:1.0 2035:1.0 4645:1.0
12 15:0.5 23:1.0 24:0.5 25:0.03125 32:0.3333333333333333 34:0.2 44:1.0 51:1.0 62:1.0 138:0.5 245:0.3333333333333333 259:0.25 306:0.25 308:0.5 457:0.5 459:0.1 780:1.0 2058:1.0 2458:0.14285714285714285 2742:1.0 2904:1.0 3006:1.0 3197:1.0 4255:1.0 4487:0.5 4774:1.0 7038:1.0
12 6:0.5 123:0.015625 274:1.0 1144:1.0 1304:0.3333333333333333 2458:0.14285714285714285 2687:1.0 4912:1.0 5621:1.0 6572:1.0
12 90:0.14285714285714285 310:1.0 492:0.058823529411764705 552:1.0 597:0.5 1082:1.0 1348:0.25 2458:0.14285714285714285 4357:1.0
12 20:0.14285714285714285 25:0.09375 32:0.6666666666666666 68:0.25 72:1.0 88:0.16666666666666666 90:0.14285714285714285 137:0.25 259:0.25 459:0.1 659:0.5 720:1.0 958:2.0 1061:1.0 1082:1.0 1150:0.3333333333333333 2458:0.14285714285714285 2890:1.0 3197:1.0 4469:1.0 4790:1.0 4791:1.0 4813:1.0 5364:1.0 5693:1.0 5822:1.0 6295:1.0 7452:1.0
12 7:0.125 25:0.03125 88:0.08333333333333333 123:0.015625 373:0.2 388:1.0 393:1.0 459:0.1 659:0.5 720:1.0 771:1.0 799:0.5 2458:0.14285714285714285 3197:1.0 3536:1.0 4598:1.0 5364:1.0 5693:1.0 6197:1.0
12 8:1.0 20:0.2857142857142857 25:0.0625 31:0.14285714285714285 76:0.5 88:0.08333333333333333 90:0.42857142857142855 167:0.1111111111111111 179:0.3333333333333333 212:1.0 510:1.0 618:1.0 631:1.0 659:0.5 709:0.5 901:0.5 1061:1.0 1586:1.0 1611:1.0 2035:1.0 4487:0.5 4798:1.0 4808:1.0 5594:1.0 5758:1.0 6304:1.0 6305:1.0 6446:1.0
12 7:0.125 31:0.14285714285714285 68:0.25 88:0.08333333333333333 90:0.14285714285714285 123:0.015625 204:1.0 259:0.25 328:0.5 351:1.0 492:0.058823529411764705 525:1.0 530:0.5 686:1.0 1061:1.0 1082:2.0 1376:1.0 4056:1.0 4487:0.5 4526:1.0 4541:1.0 4598:1.0 4690:1.0 5033:1.0
12 25:0.0625 40:0.2 68:0.25 88:0.08333333333333333 90:0.14285714285714285 187:1.0 485:1.0 492:0.058823529411764705 506:0.3333333333333333 619:1.0 697:1.0 1186:1.0 1190:1.0 2458:0.14285714285714285 3071:1.0 4512:1.0 4739:1.0 6299:1.0
12 7:0.125 14:0.2 31:0.14285714285714285 49:1.0 88:0.08333333333333333 90:0.14285714285714285 103:0.25 117:1.0 159:0.3333333333333333 179:0.3333333333333333 697:1.0 1323:1.0 1782:1.0 1840:1.0 2286:0.5 2458:0.14285714285714285 4434:2.0 4505:1.0 4690:1.0 5086:1.0 7251:1.0
12 6:0.5 7:0.25 24:1.0 25:0.03125 32:0.6666666666666666 88:0.08333333333333333 90:0.2857142857142857 123:0.015625 128:1.0 159:0.3333333333333333 167:0.1111111111111111 179:0.3333333333333333 388:1.0 492:0.11764705882352941 506:0.3333333333333333 720:1.0 1029:0.3333333333333333 1082:1.0 1303:1.0 1348:0.25 1380:1.0 1653:1.0 2187:0.5 2293:1.0 5556:1.0
12 7:0.125 25:0.03125 90:0.14285714285714285 163:0.25 492:0.058823529411764705 506:0.3333333333333333 1348:0.25 1606:1.0 2015:1.0 2038:1.0 3835:1.0
12 25:0.03125 31:0.14285714285714285 90:0.2857142857142857 123:0.015625 167:0.1111111111111111 579:1.0 1371:0.5 1381:1.0 2458:0.14285714285714285 3197:1.0 5159:1.0 6046:1.0 6446:1.0
12 6:0.5 7:0.125 8:1.0 16:0.5 24:0.5 32:0.3333333333333333 49:2.0 88:0.16666666666666666 90:0.2857142857142857 179:0.3333333333333333 195:1.0 328:0.5 443:0.3333333333333333 473:1.0 618:1.0 715:1.0 1061:1.0 1406:1.0 1545:1.0 1796:1.0 2065:1.0 3095:1.0 3616:1.0 4434:1.0 6849:1.0
12 25:0.03125 40:0.2 88:0.08333333333333333 90:0.14285714285714285 156:0.5 472:0.09090909090909091 697:1.0 908:0.5 1879:1.0 2458:0.14285714285714285 4512:1.0 4739:1.0
12 32:0.3333333333333333 34:0.2 40:0.2 159:0.3333333333333333 167:0.1111111111111111 372:1.0 587:1.0 631:1.0 2254:1.0 4668:1.0
12 24:0.5 25:0.03125 32:0.3333333333333333 34:0.2 167:0.1111111111111111 187:1.0 372:1.0 587:1.0 631:1.0 1082:1.0 1913:1.0 3772:1.0 4668:1.0
12 14:0.2 16:0.5 25:0.03125 31:0.14285714285714285 32:0.3333333333333333 34:0.2 62:1.0 88:0.16666666666666666 90:0.14285714285714285 123:0.015625 159:0.3333333333333333 163:0.25 178:1.0 179:0.3333333333333333 308:0.5 393:1.0 486:0.2 608:1.0 618:1.0 631:1.0 686:1.0 1061:1.0 1376:1.0 1591:1.0 1797:1.0 2647:1.0 2687:1.0 4434:1.0 4513:1.0 5837:1.0
12 14:0.2 34:0.2 90:0.14285714285714285 103:0.25 171:0.3333333333333333 234:0.07142857142857142 472:0.09090909090909091 2653:0.5 2687:1.0 6426:1.0
12 16:0.5 20:0.14285714285714285 24:0.5 25:0.03125 32:0.3333333333333333 40:0.2 88:0.08333333333333333 103:0.25 179:0.3333333333333333 618:1.0 659:0.5 727:1.0 1145:0.3333333333333333 1798:1.0 1879:1.0 2051:1.0 2141:0.5 2687:1.0 4434:1.0 4512:1.0
12 25:0.03125 32:0.3333333333333333 123:0.015625 124:1.0 133:0.14285714285714285 334:1.0 428:1.0 473:1.0 492:0.11764705882352941 517:1.0 1061:1.0 1186:1.0 2411:1.0 4232:1.0 4434:1.0 4492:0.3333333333333333 4512:1.0 4638:1.0 5660:1.0 7269:1.0
12 7:0.125 18:0.5 20:0.2857142857142857 24:1.0 25:0.09375 42:1.0 68:0.25 88:0.16666666666666666 91:0.5 107:0.5 115:1.0 123:0.046875 138:0.5 159:0.3333333333333333 177:0.5 259:0.25 274:1.0 334:1.0 388:1.0 447:0.3333333333333333 457:0.5 638:1.0 662:1.0 731:0.3333333333333333 958:2.0 1879:1.0 4073:1.0 4315:1.0 4459:0.5 5407:1.0 5986:1.0
12 13:0.25 24:0.5 25:0.03125 32:0.3333333333333333 34:0.2 49:3.0 76:0.5 88:0.16666666666666666 97:1.0 121:1.0 124:1.0 159:0.3333333333333333 163:0.75 220:0.3333333333333333 259:0.25 287:0.5 306:0.25 310:1.0 492:0.058823529411764705 619:1.0 709:0.5 731:0.3333333333333333 742:1.0 797:0.5 958:1.0 1226:1.0 1264:1.0 1265:1.0 1407:1.0 1828:0.5 2238:1.0 2890:1.0 2893:1.0 3312:1.0 4587:0.5 4645:1.0 7188:1.0
12 7:0.125 23:1.0 25:0.03125 49:2.0 51:2.0 62:2.0 73:1.0 80:0.5 88:0.16666666666666666 163:0.25 220:0.3333333333333333 234:0.07142857142857142 358:1.0 372:1.0 388:1.0 398:0.07692307692307693 456:1.0 506:0.6666666666666666 552:1.0 608:2.0 657:1.0 720:1.0 756:1.0 788:1.0 799:0.5 1090:1.0 1150:0.16666666666666666 1265:1.0 1381:2.0 1532:0.5 1804:0.3333333333333333 1901:1.0 2276:0.5 2325:1.0 2604:1.0 2908:1.0 3114:0.5 5453:1.0 5742:1.0 7246:1.0
12 20:0.14285714285714285 24:1.0 25:0.03125 31:0.2857142857142857 32:0.6666666666666666 62:1.0 73:1.0 76:0.5 88:0.16666666666666666 106:0.1 133:0.14285714285714285 234:0.07142857142857142 459:0.1 531:0.25 663:1.0 1061:1.0 1264:1.0 1265:1.0 2035:1.0 2830:1.0 2890:2.0 3006:1.0 3418:1.0 5045:1.0 5537:1.0 5824:2.0 5941:1.0 7026:1.0
|
f6670385026383cef24dfc97ebb2affebb823a10
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/587/CH3/EX3.15/example3_15.sce
|
ca05c81084d1e686ed4708da8bee52c10c75c68f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,515
|
sce
|
example3_15.sce
|
clear;
clc;
//Example3.15[Cost of Heat Loss through walls in winter]
//Given:-
R_va_insu=2.3;//thickness to thermal conductivity ratio[m^2.degreeCelcius/W]
L1=12;//length of first wall of house[m]
L2=12;//length of second wall of house[m]
L3=9;//length of third wall of house[m]
L4=9;//length of fourth wall of house[m]
H=3;//height of all the walls[m]
T_in=25;//Temperature inside house[degree Celcius]
T_out=7;;//average temperature of outdoors on a certain day[degree Celcius]
ucost=0.075;//Unit Cost of elctricity[$/kWh]
h_in=8.29,h_out=34.0;//Heat transfer coefficients for inner and outer surface of the walls respectively[W/m^2.degree Celcius]
v=24*(3600/1000);//velocity of wind[m/s]
//Solution:-
//Heat transfer Area of walls=(Perimeter*Height)
A=(L1+L2+L3+L4)*H;//[m^2]
//Individual Resistances
R_conv_in=1/(h_in*A);//Convection Resistance on inner surface of wall[degree Celcius/W]
R_conv_out=1/(h_out*A);//Convection Resistance on outer surface of wall[degree Celcius/W]
R_wall=R_va_insu/A;//Conduction resistance to wall[degree Celcius/W]
//All resistances are in series
R_total=R_conv_in+R_wall+R_conv_out;//[degree Celcius/W]
Q_=(T_in-T_out)/R_total;//[W]
disp("W",Q_,"The steady rate of heat transfer through the walls of the house is")
delta_t=24;//Time period[h]
Q=(Q_/1000)*delta_t;//[kWh/day]
disp("kWh/day",Q,"The total amount of heat lost through the walss during a 24 hour period ")
cost=Q*ucost;//[$/day]
disp("per day",cost,"Cost of heat consumption is $")
|
fcba1e73fa8a319292cf0d2b5df1fa1ee95f8c6f
|
ca55b804a0c5d64e5638ec29fae1bcd3b421fe7b
|
/code.sce
|
6cefe87fa4a97a009c206894b2937f6c56fed430
|
[] |
no_license
|
ShreyaSomkuwar/Data-transfer-simulation-with-security
|
02570e85278bf2fb1e8351087d3756d11d3616a1
|
c82a34b758ae5a24d3df580e847ae3339840577c
|
refs/heads/master
| 2020-03-29T20:27:52.810883
| 2018-09-25T19:17:43
| 2018-09-25T19:17:43
| 150,313,540
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 3,942
|
sce
|
code.sce
|
//NETWORK PROJECT
//IMPLEMENT NETWOK TOPOLOGY WITH DATA TRANSFER INCLUDING SECURITY STANDARDS
// BY SHREYA SOMKUWAR
name='TOPOLOGY';// graph name
n=7;//graph parameters
tail=[1 1 1 2 2 3 3 4 4 4 5 6];
head=[2 3 4 4 5 4 6 5 6 7 7 7];
node_x=[100 275 275 500 750 750 900];
node_y=[500 200 800 500 200 800 500];
[g]=NL_G_MakeGraph(name,n,tail,head,node_x,node_y)//application of NL_G_MakeGraph
windowIndex=1;
f=NL_G_ShowGraphN(g,windowIndex);
[rt]=NL_R_DijkstraRT(g)//application of NL_R_DijkstraRT
//application of presence table
[l c]=size(rt);
[pp]=NL_R_RTPathPresence(rt,l);
//implementation of data transfer
n=7;
bs=15;//constant buffer size
[nd,nf]=NL_F_RandIntNiNj(n);//generation of connection extreme nodes
L=1000;//network square area side
t=1;//current time
[probroute]=NL_I_RouteManagerInit(rt,rt,rt,rt,rt,pp,n,L);//initialization of the route manager
//Generation network matrix
network=NL_I_NetworkMatrixInit(n,bs);//initialization of the reception network matrix
networks=NL_I_NetworkMatrixInit(n,bs);//initialization of the emission network matrix
tpmax=n*bs;//maximal quantity of packets simultaneously supported by each network matrix
rp=NL_I_PacketManagerInit(tpmax);//initialization of the packet manager
cpmax=10;//maximal quantity of packets per connection
ct=1;//connection type selection index: creation of Tcp connections
swmin=1;
rtmin=1;
rtmax=50;
pr=0.90;//probability threshold
[swi,rti]=NL_I_TCPNetworkInit(n,swmin,rtmin);//initialization of the TCP parameters for each node
[networks,rp]=NL_I_ConnectionManager(nd,n,bs,cpmax,networks,rp,ct,pr);//generation of connections
[swi,rti,network,networks,rp]=NL_I_Emission2Reception(swi,rti,rtmax,network,networks,n,bs,rp,t,probroute);//emission of packets on the reception network
//selection of source nodes
ind=find(network(:,$) <> 0);//TCP packets present on the network
disp(network,"Network matrix before any transmission:");
disp(ind,"Nodes in which packets are available:");
[ind_r,ind_size]=size(ind);
w=2;
//select destination nodes
for b=1:ind_size
i=ind(b);//selection of the first one
p=network(i,1);//first TCP packet
//j=7;//Destination node
disp(i,"Source node:");
disp(network(i,:),':',i,'Network buffer of source node,');//buffer of the node i
mod=33;//modulus
pu=3;//public exponent
pr=7;//private exponent
disp(p,'Original packet:');
p1=p+15;
//encryption of data
[en]=NL_S_RSAEncryption(mod,pu,p1);//application of NL_S_RSAEncryption
disp(en,'After encryption:');
for j=1:7
if(j~=i) then
disp(j,"Destination node:");
[path]=NL_R_DijkstraNiNj(g,i,j);//application of NL_R_DijkstraNiNj
cack=0.8;
closs=0.8;
[n1,n2]=size(path);
disp(path,'Path to be followed by the packet:');
i1=i;
for k=1:(n2-1)
[j,ack]=NL_I_PathNextNode(i1,path);
if(j==path(n2)) then
//decryption of data
[de]=NL_S_RSADecryption(mod,pr,en)//application of NL_S_RSADecryption
de=de-15;
disp(network(j,:),'before transmission:',j,'Network buffer of ');
[network,rp,swi,rti]=NL_I_PacketTCPIntraNet(j,de,network,rp,t,swi,rti,rtmax);
disp(network(j,:),'after transmission:',j,'Network buffer of ');
disp(en,'Recieved Packet:')
disp(de,'After decryption:');
else
disp(network(j,:),'before transmission:',j,'Network buffer of ');
[network,rp,swi,rti]=NL_I_PacketTCPIntraNet(j,en,network,rp,t,swi,rti,rtmax);
disp(network(j,:),'after transmission:',j,'Network buffer of ');
end
i1=j;
end
[g] = NL_G_HighlightPath(path,g,2,3,3,10,w);
w=w+1;
end
end
end
|
64285550d9b237d9f6c71a83b67ab0f0f9d629d2
|
01ecab2f6eeeff384acae2c4861aa9ad1b3f6861
|
/sci2blif/rasp_design_added_blocks/vmm_offc.sce
|
0815737b2ca62a05a4b737e79f7e95e2389a681a
|
[] |
no_license
|
jhasler/rasp30
|
9a7c2431d56c879a18b50c2d43e487d413ceccb0
|
3612de44eaa10babd7298d2e0a7cddf4a4b761f6
|
refs/heads/master
| 2023-05-25T08:21:31.003675
| 2023-05-11T16:19:59
| 2023-05-11T16:19:59
| 62,917,238
| 3
| 3
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 104
|
sce
|
vmm_offc.sce
|
style.fontSize=12;
style.displayedLabel="vmm_offc";
pal1_1=xcosPalAddBlock(pal1_1,"vmm_offc",[],style);
|
be61877207ef7dbf298758892153336c2a211c32
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3710/CH10/EX10.2/Ex10_2.sce
|
0541ff2a52e32b42f43748ac2fac9f9008bf4820
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 738
|
sce
|
Ex10_2.sce
|
//Example 10.2, Page Number 498
//Sensitivity Calculation
clc;
a=5*(10**-7) //Thermal expansion Coefficient per Kelvin
b=6.8*(10**-6) //Thermal Expansion Coefficient per Kelvin
l=1.55*(10**-6) //Wavelength in meter
p11=0.126 //Constant Coeffiecient
p12=0.274 //Constant Coeffiecient
u=0.17
n=1.46//cladding refractive index
dl=l*(a+b); // dl is the wavelength sensitivity to temp. changes
disp(dl,"The Wavelength Sensitivity to temperature changes of the filter structure in nm/K is:");
pe=((n**2)/2)*(((1-u)*p12)-(u*p11)); //pe is the effective photoelastic coefficient
disp(pe," The Effective Photoelastic Coefficient is:");
dl=l*(1-pe)
disp(dl," As far as Strain is concerned the Sensitivity in m/ε is:");
|
9e95d14727add8945e1199bca663a3750acc4430
|
a62e0da056102916ac0fe63d8475e3c4114f86b1
|
/set6/s_Electrical_Power_Systems_A._Husain_1118.zip/Electrical_Power_Systems_A._Husain_1118/CH24/EX24.1/eg24_1.sce
|
814780221195a9969bd1548af2d5ffa992fcba00
|
[] |
no_license
|
hohiroki/Scilab_TBC
|
cb11e171e47a6cf15dad6594726c14443b23d512
|
98e421ab71b2e8be0c70d67cca3ecb53eeef1df6
|
refs/heads/master
| 2021-01-18T02:07:29.200029
| 2016-04-29T07:01:39
| 2016-04-29T07:01:39
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 418
|
sce
|
eg24_1.sce
|
errcatch(-1,"stop");mode(2);;
//;
f=50;
cap=1.2*10^(-6);
xl=1/(3*2*(%pi)*cap*f);
printf("The inductive reactance to neutralize 100 percent of the capacitance is:%.2f Ohm\n",xl);
xl1=xl/0.9;
printf("The inductive reactance to neutralize 90 percent of the capacitance is:%.2f Ohm\n",xl1);
xl2=xl/0.8;
printf("The inductive reactance to neutralize 80 percent of the capacitance is:%.2f Ohm",xl2)
exit();
|
54f65f59756a65e4cc92b0975e61da33b7b918fb
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1523/CH6/EX6.31/ex6_31.sce
|
b4a80b0b63736a84780d3a7cc3e4ff88c1f52fbd
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 475
|
sce
|
ex6_31.sce
|
// Three-Phase Circuits :example 6.31 :(pg 6.32)
VL=220;
Po=11.2*10^3;
N=0.88;//efficiency
IL=38;
Pi=(Po/N);
x=(Pi/(sqrt(3)*VL*IL));
phi=acosd(x);
W1=(VL*IL*cosd(30-phi));
W2=(VL*IL*cosd(30+phi));
printf("\nVL=220 V \nPo=11.2kW \nN=0.88 \nIL=38A \N=(Po/Pi)= %.2f W",Pi);
printf("\nPi=sqrt(3)*VL*IL*cos(phi) \ncos(phi)=%.2f lagging",x);
printf("\nphi=%.2f degrees",phi);
printf("\nW1 =VL*IL*cos(30-phi) =%.2f W",W1);
printf("\nW2 =VL*IL*cos(30+phi) =%.2f W",W2);
|
4de4478f97b549d8719bbfdda06b19c5c70a5ccf
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/1703/CH1/EX1.8/1_8.sce
|
542c5a013eac9eafe9d42029d4f2271f4c6a6b8d
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 256
|
sce
|
1_8.sce
|
clc
//initialisation of variables
clear
r= 96
T= 10.5 //C
K1= 288 //C
K2= 0.0015 //C^-1
h= 3000 //ft
P1= 14.69
//CALCULATIONS
P2= P1*10^(((1/(r*K2))*log10((K1-K2*h)/K1)))
w= P2*144/(r*(273+T))
//RESULTS
printf ('Density = %.4f lb/ft^3 ',w)
|
cd64a9cbb68d82d661c60f4e253c0d93e5c96867
|
9cbb0181f0213b9ba6012353a85b932a35f875d8
|
/Data_Processing/plot-3.sce
|
e3ca70c30f5001577cf62bd7254a308b94409f29
|
[] |
no_license
|
bozhink/sandpile-pi4
|
dfcd24c19f59c6170aef4ff2eeb298411b80518e
|
bd5f158ec9cb8cac2d4f7d66cdc661b672241c6b
|
refs/heads/master
| 2021-01-10T14:21:27.477065
| 2014-03-01T17:05:47
| 2014-03-01T17:05:47
| null | 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,868
|
sce
|
plot-3.sce
|
// Graphics of some histograms
// Nonlinear initial regions
// Z=1, 3, 4, 10 model
scf(0);clf();
a = get("current_axes");
a.x_label.font_size=4;
a.x_label.text="$\log_{10}t$";
a.y_label.font_size=4;
a.y_label.text="$\log_{10}P(t)$";
a.title.foreground=9;
a.title.font_size=4;
a.title.text="$\textrm{Time distribution probability}$";
DIR='th/z01/';
t = read(DIR+'1000',-1,3); nt=max(size(t));
plot2d(log10(t(2:nt,1)), log10(t(2:nt,3)),[1]);
DIR='th/z03/';
t = read(DIR+'1000n1',-1,3); nt=max(size(t));
plot2d(log10(t(2:nt,1)), log10(t(2:nt,3)),[3]);
DIR='th/z04/';
t = read(DIR+'1000n1',-1,3); nt=max(size(t));
plot2d(log10(t(2:nt,1)), log10(t(2:nt,3)),[5]);
DIR='th/z10/';
t = read(DIR+'1000n1',-1,3); nt=max(size(t));
plot2d(log10(t(2:nt,1)), log10(t(2:nt,3)),[6]);
a.data_bounds=[0,-4;2.5,0];
ht = legend(['$Z=1$','$Z=3$', '$Z=4$', '$Z=10$']);
ht.font_size=3;
ht.visible='on';
tname = "graphics/histograms/tt.eps";
unix('rm '+tname);
xs2eps(gcf(), tname);
scf(1);clf();
a = get("current_axes");
a.x_label.font_size=4;
a.x_label.text="$\log_{10}s$";
a.y_label.font_size=4;
a.y_label.text="$\log_{10}P(s)$";
a.title.foreground=9;
a.title.font_size=4;
a.title.text="$\textrm{Size distribution probability}$";
DIR='sh/z01/';
t = read(DIR+'1000',-1,3); nt=max(size(t));
plot2d(log10(t(2:nt,1)), log10(t(2:nt,3)),[1]);
DIR='sh/z03/';
t = read(DIR+'1000n1',-1,3); nt=max(size(t));
plot2d(log10(t(2:nt,1)), log10(t(2:nt,3)),[3]);
DIR='sh/z04/';
t = read(DIR+'1000n1',-1,3); nt=max(size(t));
plot2d(log10(t(2:nt,1)), log10(t(2:nt,3)),[5]);
DIR='sh/z10/';
t = read(DIR+'1000n1',-1,3); nt=max(size(t));
plot2d(log10(t(2:nt,1)), log10(t(2:nt,3)),[6]);
a.data_bounds=[0,-4;2.5,0];
hs = legend(['$Z=1$','$Z=3$', '$Z=4$', '$Z=10$']);
hs.font_size=3;
hs.visible='on';
sname = "graphics/histograms/ss.eps";
unix('rm '+sname);
xs2eps(gcf(), sname);
|
50552c9175a39153bd9f412908e1f29c6b3b8084
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/278/CH27/EX27.4/ex_27_4.sce
|
9e6cc209974f1bd87346aef01c6df67ab56f49d1
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 258
|
sce
|
ex_27_4.sce
|
//find
clc
//solution
//given
Wr=2500//N
Wa=1500//N
//Wa/Wr=0.6
//refer table 27.4
X=1
V=1
Y=0
W=X*V*Wr + Y*Wa//N
//from table 27.5,Ks=1.5...
Ks=1.5
W1=W*Ks//N
//ref table 27.6
C=53000//N
L=(C/W)^(3)*10^6
printf("rating life is,%f rev\n",L)
|
48cf53bc992c539bf38d9b0239ec693c6523bdad
|
4d6665df181a576d17b4899b006151b1e6d54804
|
/unit-2/gauss.sce
|
f84d928ad494365852773279bdc2345e0f0fdf44
|
[] |
no_license
|
Udbhavps/La-Scilab-Assignment
|
b3a7a9c31e07e1abc83685c74d93dc2d8fa681b2
|
8deb5fe83fca574dbb6fc7ee96b417bcec9d91c4
|
refs/heads/master
| 2022-09-21T15:31:29.258278
| 2020-06-03T18:11:42
| 2020-06-03T18:11:42
| 239,132,393
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,215
|
sce
|
gauss.sce
|
clc;clear;close;
function[x,a]=gaussElimination(A,b)
A_aug=[A b]
a=A_aug
n=3;
for i=2:n
for j=2:n+1
a(i,j)=a(i,j)-a(1,j)*a(i,1)/a(1,1);
end
a(i,1)=0;
end
for i=3:n
for j=3:n+1
a(i,j)=a(i,j)-a(2,j)*a(i,2)/a(2,2);
end
a(i,2)=0;
end
x(n)=a(n,n+1)/a(n,n);
for i=n-1:-1:1
sumk=0;
for k=i+1:n
sumk=sumk+a(i,k)*x(k);
end
x(i)=(a(i,n+1)-sumk)/a(i,i);
end
endfunction
function main()
A=[0,0,0;0,0,0;0,0,0]
A(1,1)=input("enter a11: ")
A(1,2)=input("enter a12: ")
A(1,3)=input("enter a13: ")
A(2,1)=input("enter a21: ")
A(2,2)=input("enter a22: ")
A(2,3)=input("enter a23: ")
A(3,1)=input("enter a31: ")
A(3,2)=input("enter a32: ")
A(3,3)=input("enter a33: ")
disp('1.Gaussian Elimination\n')
b=[0;0;0]
b(1,1)=input("enter b1: ")
b(2,1)=input("enter b2: ")
b(3,1)=input("enter b3: ")
[x,a]=gaussElimination(A,b)
disp(x(3),x(2),x(1),'The values of x,y,z are ');
disp(a(1,1),a(2,2),a(3,3),'The pivots are');
endfunction
main();
|
d05a8c492232088fe648eaed2263166483aa97fe
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2699/CH12/EX12.22/Ex12_22.sce
|
18dc78316ebcedbf6572a9e1ccf5cb72a6424c90
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 306
|
sce
|
Ex12_22.sce
|
//EX12_22 Pg-41
clc
clear
R=5;//frequency deviation constant in KHz/V
fm=10;//modulation frequency in kHz
V=15;//amplitude of the modulating signal
fd=R*V;//frequency deviation
printf("\n maximum frequency deviation fd=%.0f KHz/V \n",fd)
mf=fd/fm;
printf(" \n modulation index mf=%.1f",mf)
|
a4a0e9348e4c4414815858e1f9ca8acab28e046a
|
bf63c70e054c641e89a6f7a4623a7634ce9a8a9d
|
/test/PP1.prev.tst
|
c8ec37490baadaa93fed191f86a91656b9b89cad
|
[
"LicenseRef-scancode-unknown-license-reference",
"Apache-2.0"
] |
permissive
|
gfis/jextra
|
9c8c030faf35f0834843ed8f07cc061ca9d65a64
|
bdad8fd33fdf633cf2ff4c1879e1f61935c3d636
|
refs/heads/master
| 2022-03-13T21:31:56.132450
| 2022-02-12T21:27:40
| 2022-02-12T21:27:40
| 30,127,957
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 21,144
|
tst
|
PP1.prev.tst
|
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<ProtoParser>
<scan finState="FINISH"><sym id="30" cat="24">/*------------------------------------------------------*/</sym></scan>
<scan finState="FINISH"><sym id="31" cat="22">\n</sym></scan>
<scan finState="FINISH"><sym id="32" cat="26">EOF</sym></scan>
<scan finState="FINISH"><sym id="33" cat="23"> </sym></scan>
<scan finState="FINISH"><sym id="34" cat="26">IDENTIFIER</sym></scan>
<scan finState="FINISH"><sym id="33" cat="23"> </sym></scan>
<scan finState="FINISH"><sym id="35" cat="26">NUMBER</sym></scan>
<scan finState="FINISH"><sym id="33" cat="23"> </sym></scan>
<scan finState="FINISH"><sym id="36" cat="26">STRING</sym></scan>
<scan finState="FINISH"><sym id="33" cat="23"> </sym></scan>
<scan finState="FINISH"><sym id="14" cat="14">;</sym></scan>
<scan finState="FINISH"><sym id="31" cat="22">\n</sym></scan>
<scan finState="FINISH"><sym id="37" cat="24">/* Meta Grammar for Parsing of Transformation Grammars \n Georg Fischer 1980-08-01 */</sym></scan>
<scan finState="FINISH"><sym id="31" cat="22">\n</sym></scan>
<scan finState="FINISH"><sym id="38" cat="24">/*------------------------------------------------------*/</sym></scan>
<scan finState="FINISH"><sym id="31" cat="22">\n</sym></scan>
<store>AXIOM = EXTRA_INPUT</store>
<store>EXTRA_INPUT = '[' GRAMMAR ']'</store>
<store>GRAMMAR = RULES</store>
<store>RULES = RULE</store>
<store>RULES = RULES '.' RULE</store>
<store>RULE = LEFT_SIDE '=' RIGHT_SIDES</store>
<store>LEFT_SIDE = IDENTIFIER</store>
<store>RIGHT_SIDES = RIGHT_SIDE</store>
<store>RIGHT_SIDES = RIGHT_SIDES '|' RIGHT_SIDE</store>
<store>RIGHT_SIDE = SYNTAX_PART SEMANTIC_PART</store>
<store>SYNTAX_PART = MEMBERETIES</store>
<store>MEMBERETIES =</store>
<store>MEMBERETIES = MEMBERETIES MEMBER</store>
<store>MEMBER = PRIMARY</store>
<store>PRIMARY = IDENTIFIER</store>
<store>PRIMARY = STRING</store>
<store>PRIMARY = NUMBER</store>
<store>SEMANTIC_PART = TRANSFORMATIONS</store>
<store>TRANSFORMATIONS =</store>
<store>TRANSFORMATIONS = '=>' TRANSFORMATION</store>
<store>TRANSFORMATIONS = TRANSFORMATIONS '-' TRANSFORMATION</store>
<store>TRANSFORMATION = DESTINATION</store>
<store>TRANSFORMATION = TRANSFORMATION ELEMENT</store>
<store>DESTINATION = '='</store>
<store>DESTINATION = ELEMENT</store>
<store>DESTINATION = SYMBOL '='</store>
<store>ELEMENT = SYMBOL</store>
<store>ELEMENT = '#' NUMBER</store>
<store>ELEMENT = NUMBER</store>
<store>ELEMENT = STRING</store>
<store>ELEMENT = '@'</store>
<store>ELEMENT = SYMBOL '(' COMBINED_LIST ')'</store>
<store>SYMBOL = INCARNATION</store>
<store>SYMBOL = INCARNATION '$' IDENTIFIER</store>
<store>INCARNATION = IDENTIFIER</store>
<store>INCARNATION = IDENTIFIER ':' NUMBER</store>
<store>COMBINED_LIST =</store>
<store>COMBINED_LIST = COMBINED_LIST SYMBOL</store>
<store>COMBINED_LIST = COMBINED_LIST NUMBER</store>
<store>COMBINED_LIST = COMBINED_LIST STRING</store>
<store>COMBINED_LIST = COMBINED_LIST '#' NUMBER</store>
<grammar axiom="AXIOM">
<symbolList>
<sym id="0" cat="0" type="EOP">EOP</sym>
<sym id="1" cat="1">=></sym>
<sym id="2" cat="2">|</sym>
<sym id="3" cat="3">=</sym>
<sym id="4" cat="4">-</sym>
<sym id="5" cat="5">.</sym>
<sym id="6" cat="6">[</sym>
<sym id="7" cat="7">]</sym>
<sym id="8" cat="8">#</sym>
<sym id="9" cat="9">(</sym>
<sym id="10" cat="10">)</sym>
<sym id="11" cat="11">+</sym>
<sym id="12" cat="12">*</sym>
<sym id="13" cat="13">/</sym>
<sym id="14" cat="14">;</sym>
<sym id="15" cat="15">@</sym>
<sym id="16" cat="16">:</sym>
<sym id="17" cat="17">$</sym>
<sym id="18" cat="18">/*</sym>
<sym id="19" cat="19">*/</sym>
<sym id="20" cat="20">//</sym>
<sym id="21" cat="21" type="EOF">EOF</sym>
<sym id="22" cat="22" type="EOL">EOL</sym>
<sym id="23" cat="23" type="SPACE">SPACE</sym>
<sym id="24" cat="24" type="NESTCOM">NESTCOM</sym>
<sym id="25" cat="25" type="EOLCOM">EOLCOM</sym>
<sym id="26" cat="26" type="IDENTIFIER">IDENTIFIER</sym>
<sym id="27" cat="27" type="NUMBER">NUMBER</sym>
<sym id="28" cat="28" type="STRING">STRING</sym>
<sym id="29" cat="29" type="axiom">axiom</sym>
<sym id="30" cat="24" type="NESTCOM">/*------------------------------------------------------*/</sym>
<sym id="31" cat="22" type="EOL">\n</sym>
<sym id="32" cat="26" type="IDENTIFIER">EOF</sym>
<sym id="33" cat="23" type="SPACE"> </sym>
<sym id="34" cat="26" type="IDENTIFIER">IDENTIFIER</sym>
<sym id="35" cat="26" type="IDENTIFIER">NUMBER</sym>
<sym id="36" cat="26" type="IDENTIFIER">STRING</sym>
<sym id="37" cat="24" type="NESTCOM">/* Meta Grammar for Parsing of Transformation Grammars \n Georg Fischer 1980-08-01 */</sym>
<sym id="38" cat="24" type="NESTCOM">/*------------------------------------------------------*/</sym>
<sym id="39" cat="26" type="IDENTIFIER">AXIOM</sym>
<sym id="40" cat="26" type="IDENTIFIER">EXTRA_INPUT</sym>
<sym id="41" cat="23" type="SPACE"> </sym>
<sym id="42" cat="28" type="STRING">[</sym>
<sym id="43" cat="26" type="IDENTIFIER">GRAMMAR</sym>
<sym id="44" cat="28" type="STRING">]</sym>
<sym id="45" cat="23" type="SPACE"> </sym>
<sym id="46" cat="26" type="IDENTIFIER">RULES</sym>
<sym id="47" cat="23" type="SPACE"> </sym>
<sym id="48" cat="27" type="NUMBER">2</sym>
<sym id="49" cat="23" type="SPACE"> </sym>
<sym id="50" cat="26" type="IDENTIFIER">RULE</sym>
<sym id="51" cat="23" type="SPACE"> </sym>
<sym id="52" cat="28" type="STRING">.</sym>
<sym id="53" cat="23" type="SPACE"> </sym>
<sym id="54" cat="26" type="IDENTIFIER">LEFT_SIDE</sym>
<sym id="55" cat="28" type="STRING">=</sym>
<sym id="56" cat="26" type="IDENTIFIER">RIGHT_SIDES</sym>
<sym id="57" cat="23" type="SPACE"> </sym>
<sym id="58" cat="23" type="SPACE"> </sym>
<sym id="59" cat="27" type="NUMBER">3</sym>
<sym id="60" cat="26" type="IDENTIFIER">RIGHT_SIDE</sym>
<sym id="61" cat="28" type="STRING">|</sym>
<sym id="62" cat="23" type="SPACE"> </sym>
<sym id="63" cat="26" type="IDENTIFIER">SYNTAX_PART</sym>
<sym id="64" cat="26" type="IDENTIFIER">SEMANTIC_PART</sym>
<sym id="65" cat="26" type="IDENTIFIER">MEMBERETIES</sym>
<sym id="66" cat="23" type="SPACE"> </sym>
<sym id="67" cat="27" type="NUMBER">6</sym>
<sym id="68" cat="23" type="SPACE"> </sym>
<sym id="69" cat="27" type="NUMBER">7</sym>
<sym id="70" cat="26" type="IDENTIFIER">MEMBER</sym>
<sym id="71" cat="23" type="SPACE"> </sym>
<sym id="72" cat="26" type="IDENTIFIER">PRIMARY</sym>
<sym id="73" cat="27" type="NUMBER">8</sym>
<sym id="74" cat="23" type="SPACE"> </sym>
<sym id="75" cat="27" type="NUMBER">9</sym>
<sym id="76" cat="23" type="SPACE"> </sym>
<sym id="77" cat="26" type="IDENTIFIER">TRANSFORMATIONS</sym>
<sym id="78" cat="23" type="SPACE"> </sym>
<sym id="79" cat="27" type="NUMBER">11</sym>
<sym id="80" cat="27" type="NUMBER">12</sym>
<sym id="81" cat="28" type="STRING">=></sym>
<sym id="82" cat="26" type="IDENTIFIER">TRANSFORMATION</sym>
<sym id="83" cat="27" type="NUMBER">13</sym>
<sym id="84" cat="28" type="STRING">-></sym>
<sym id="85" cat="23" type="SPACE"> </sym>
<sym id="86" cat="27" type="NUMBER">14</sym>
<sym id="87" cat="26" type="IDENTIFIER">DESTINATION</sym>
<sym id="88" cat="26" type="IDENTIFIER">ELEMENT</sym>
<sym id="89" cat="27" type="NUMBER">16</sym>
<sym id="90" cat="23" type="SPACE"> </sym>
<sym id="91" cat="27" type="NUMBER">17</sym>
<sym id="92" cat="23" type="SPACE"> </sym>
<sym id="93" cat="27" type="NUMBER">18</sym>
<sym id="94" cat="26" type="IDENTIFIER">SYMBOL</sym>
<sym id="95" cat="27" type="NUMBER">19</sym>
<sym id="96" cat="27" type="NUMBER">20</sym>
<sym id="97" cat="28" type="STRING">#</sym>
<sym id="98" cat="27" type="NUMBER">21</sym>
<sym id="99" cat="27" type="NUMBER">22</sym>
<sym id="100" cat="27" type="NUMBER">23</sym>
<sym id="101" cat="28" type="STRING">@</sym>
<sym id="102" cat="27" type="NUMBER">24</sym>
<sym id="103" cat="28" type="STRING">(</sym>
<sym id="104" cat="26" type="IDENTIFIER">COMBINED_LIST</sym>
<sym id="105" cat="28" type="STRING">)</sym>
<sym id="106" cat="27" type="NUMBER">25</sym>
<sym id="107" cat="26" type="IDENTIFIER">INCARNATION</sym>
<sym id="108" cat="28" type="STRING">$</sym>
<sym id="109" cat="27" type="NUMBER">27</sym>
<sym id="110" cat="27" type="NUMBER">28</sym>
<sym id="111" cat="28" type="STRING">:</sym>
<sym id="112" cat="27" type="NUMBER">29</sym>
<sym id="113" cat="27" type="NUMBER">30</sym>
<sym id="114" cat="27" type="NUMBER">32</sym>
<sym id="115" cat="27" type="NUMBER">33</sym>
<sym id="116" cat="27" type="NUMBER">34</sym>
</symbolList>
<rules>
<rule left="AXIOM">
<prod left="AXIOM" size="1">
<sym id="40" cat="26">EXTRA_INPUT</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="COMBINED_LIST">
<prod left="COMBINED_LIST" size="0">
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="30" />
<sema act="20" inf="0" />
</prod>
<prod left="COMBINED_LIST" size="2">
<sym id="104" cat="26">COMBINED_LIST</sym>
<sym id="94" cat="26">SYMBOL</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
<prod left="COMBINED_LIST" size="2">
<sym id="104" cat="26">COMBINED_LIST</sym>
<sym id="35" cat="26">NUMBER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="32" />
<sema act="20" inf="0" />
</prod>
<prod left="COMBINED_LIST" size="2">
<sym id="104" cat="26">COMBINED_LIST</sym>
<sym id="36" cat="26">STRING</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="33" />
<sema act="20" inf="0" />
</prod>
<prod left="COMBINED_LIST" size="3">
<sym id="104" cat="26">COMBINED_LIST</sym>
<sym id="8" cat="8">#</sym>
<sym id="35" cat="26">NUMBER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="34" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="DESTINATION">
<prod left="DESTINATION" size="1">
<sym id="3" cat="3">=</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="17" />
<sema act="20" inf="0" />
</prod>
<prod left="DESTINATION" size="1">
<sym id="88" cat="26">ELEMENT</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="18" />
<sema act="20" inf="0" />
</prod>
<prod left="DESTINATION" size="2">
<sym id="94" cat="26">SYMBOL</sym>
<sym id="3" cat="3">=</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="19" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="ELEMENT">
<prod left="ELEMENT" size="1">
<sym id="94" cat="26">SYMBOL</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="20" />
<sema act="20" inf="0" />
</prod>
<prod left="ELEMENT" size="2">
<sym id="8" cat="8">#</sym>
<sym id="35" cat="26">NUMBER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="21" />
<sema act="20" inf="0" />
</prod>
<prod left="ELEMENT" size="1">
<sym id="35" cat="26">NUMBER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="22" />
<sema act="20" inf="0" />
</prod>
<prod left="ELEMENT" size="1">
<sym id="36" cat="26">STRING</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="23" />
<sema act="20" inf="0" />
</prod>
<prod left="ELEMENT" size="1">
<sym id="15" cat="15">@</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="24" />
<sema act="20" inf="0" />
</prod>
<prod left="ELEMENT" size="4">
<sym id="94" cat="26">SYMBOL</sym>
<sym id="9" cat="9">(</sym>
<sym id="104" cat="26">COMBINED_LIST</sym>
<sym id="10" cat="10">)</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="25" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="EXTRA_INPUT">
<prod left="EXTRA_INPUT" size="3">
<sym id="6" cat="6">[</sym>
<sym id="43" cat="26">GRAMMAR</sym>
<sym id="7" cat="7">]</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="GRAMMAR">
<prod left="GRAMMAR" size="1">
<sym id="46" cat="26">RULES</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="2" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="INCARNATION">
<prod left="INCARNATION" size="1">
<sym id="34" cat="26">IDENTIFIER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="28" />
<sema act="20" inf="0" />
</prod>
<prod left="INCARNATION" size="3">
<sym id="34" cat="26">IDENTIFIER</sym>
<sym id="16" cat="16">:</sym>
<sym id="35" cat="26">NUMBER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="29" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="LEFT_SIDE">
<prod left="LEFT_SIDE" size="1">
<sym id="34" cat="26">IDENTIFIER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="3" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="MEMBER">
<prod left="MEMBER" size="1">
<sym id="72" cat="26">PRIMARY</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="MEMBERETIES">
<prod left="MEMBERETIES" size="0">
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="7" />
<sema act="20" inf="0" />
</prod>
<prod left="MEMBERETIES" size="2">
<sym id="65" cat="26">MEMBERETIES</sym>
<sym id="70" cat="26">MEMBER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="PRIMARY">
<prod left="PRIMARY" size="1">
<sym id="34" cat="26">IDENTIFIER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="8" />
<sema act="20" inf="0" />
</prod>
<prod left="PRIMARY" size="1">
<sym id="36" cat="26">STRING</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="9" />
<sema act="20" inf="0" />
</prod>
<prod left="PRIMARY" size="1">
<sym id="35" cat="26">NUMBER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="8" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="RIGHT_SIDE">
<prod left="RIGHT_SIDE" size="2">
<sym id="63" cat="26">SYNTAX_PART</sym>
<sym id="64" cat="26">SEMANTIC_PART</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="RIGHT_SIDES">
<prod left="RIGHT_SIDES" size="1">
<sym id="60" cat="26">RIGHT_SIDE</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
<prod left="RIGHT_SIDES" size="3">
<sym id="56" cat="26">RIGHT_SIDES</sym>
<sym id="2" cat="2">|</sym>
<sym id="60" cat="26">RIGHT_SIDE</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="RULE">
<prod left="RULE" size="3">
<sym id="54" cat="26">LEFT_SIDE</sym>
<sym id="3" cat="3">=</sym>
<sym id="56" cat="26">RIGHT_SIDES</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="RULES">
<prod left="RULES" size="1">
<sym id="50" cat="26">RULE</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
<prod left="RULES" size="3">
<sym id="46" cat="26">RULES</sym>
<sym id="5" cat="5">.</sym>
<sym id="50" cat="26">RULE</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="SEMANTIC_PART">
<prod left="SEMANTIC_PART" size="1">
<sym id="77" cat="26">TRANSFORMATIONS</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="11" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="SYMBOL">
<prod left="SYMBOL" size="1">
<sym id="107" cat="26">INCARNATION</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
<prod left="SYMBOL" size="3">
<sym id="107" cat="26">INCARNATION</sym>
<sym id="17" cat="17">$</sym>
<sym id="34" cat="26">IDENTIFIER</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="27" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="SYNTAX_PART">
<prod left="SYNTAX_PART" size="1">
<sym id="65" cat="26">MEMBERETIES</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="6" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="TRANSFORMATION">
<prod left="TRANSFORMATION" size="1">
<sym id="87" cat="26">DESTINATION</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="20" inf="0" />
</prod>
<prod left="TRANSFORMATION" size="2">
<sym id="82" cat="26">TRANSFORMATION</sym>
<sym id="88" cat="26">ELEMENT</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="16" />
<sema act="20" inf="0" />
</prod>
</rule>
<rule left="TRANSFORMATIONS">
<prod left="TRANSFORMATIONS" size="0">
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="12" />
<sema act="20" inf="0" />
</prod>
<prod left="TRANSFORMATIONS" size="2">
<sym id="1" cat="1">=></sym>
<sym id="82" cat="26">TRANSFORMATION</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="13" />
<sema act="20" inf="0" />
</prod>
<prod left="TRANSFORMATIONS" size="3">
<sym id="77" cat="26">TRANSFORMATIONS</sym>
<sym id="4" cat="4">-</sym>
<sym id="82" cat="26">TRANSFORMATION</sym>
<sym id="0" cat="0">EOP</sym>
<sema act="16" inf="14" />
<sema act="20" inf="0" />
</prod>
</rule>
</rules>
</grammar>
<legibleGrammar>
[AXIOM = EXTRA_INPUT
.EXTRA_INPUT = '[' GRAMMAR ']'
.GRAMMAR = RULES
.RULES = RULE
| RULES '.' RULE
.RULE = LEFT_SIDE '=' RIGHT_SIDES
.LEFT_SIDE = IDENTIFIER
.RIGHT_SIDES = RIGHT_SIDE
| RIGHT_SIDES '|' RIGHT_SIDE
.RIGHT_SIDE = SYNTAX_PART SEMANTIC_PART
.SYNTAX_PART = MEMBERETIES
.SEMANTIC_PART = TRANSFORMATIONS
.MEMBERETIES =
| MEMBERETIES MEMBER
.MEMBER = PRIMARY
.PRIMARY = IDENTIFIER
| STRING
| NUMBER
.TRANSFORMATIONS =
| '=>' TRANSFORMATION
| TRANSFORMATIONS '-' TRANSFORMATION
.TRANSFORMATION = DESTINATION
| TRANSFORMATION ELEMENT
.DESTINATION = '='
| ELEMENT
| SYMBOL '='
.ELEMENT = SYMBOL
| '#' NUMBER
| NUMBER
| STRING
| '@'
| SYMBOL '(' COMBINED_LIST ')'
.SYMBOL = INCARNATION
| INCARNATION '$' IDENTIFIER
.COMBINED_LIST =
| COMBINED_LIST SYMBOL
| COMBINED_LIST NUMBER
| COMBINED_LIST STRING
| COMBINED_LIST '#' NUMBER
.INCARNATION = IDENTIFIER
| IDENTIFIER ':' NUMBER
]
</legibleGrammar>
<legibleTable>
</legibleTable>
</ProtoParser>
|
e6b9b447fa740b4b2bf7bf333e2787b4c0b93a5a
|
8217f7986187902617ad1bf89cb789618a90dd0a
|
/source/2.3/macros/percent/%rs.sci
|
421126ea1366762bf8085598f4af82f9f51f9a97
|
[
"MIT",
"LicenseRef-scancode-warranty-disclaimer",
"LicenseRef-scancode-public-domain"
] |
permissive
|
clg55/Scilab-Workbench
|
4ebc01d2daea5026ad07fbfc53e16d4b29179502
|
9f8fd29c7f2a98100fa9aed8b58f6768d24a1875
|
refs/heads/master
| 2023-05-31T04:06:22.931111
| 2022-09-13T14:41:51
| 2022-09-13T14:41:51
| 258,270,193
| 0
| 1
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 63
|
sci
|
%rs.sci
|
function f=%rs(f)
// %rs(f) -f, f rational
//!
f(2)=-f(2)
|
1d3cb22433ab52afe3b44155361784d29e962c08
|
d0ae33963d74821bd5431610a631245d4d389c10
|
/lab02/lab02.sci
|
11a8fb1b0b94141711319ef618c5d5215f0e0885
|
[] |
no_license
|
alexandrempierre/ala
|
09de761c6a7e84445fb28e1eae06f3911dfa3284
|
2f9b6e9f57954d29a670167aadd8baa63796be09
|
refs/heads/master
| 2016-08-12T06:39:39.116391
| 2016-01-29T14:31:21
| 2016-01-29T14:31:21
| 49,913,312
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 6,255
|
sci
|
lab02.sci
|
// O ponto do quadrado correspondente à extremidade de um vetor w do plano
// será desenhado como a extremidade do vetor u0+M*w
function [] = desenhaQuad (M, u0)
a = gca() //obtem posição dos eixos
a.isoview = "on" //usa a mesma escala nos dois eixos
// a.axes_visible = "on"
//defina o vetor w0 da translação que centra os eixos
w0 = [1,1]'
//defina a matriz V dos vértices
V = [ [0,0]',[1,0]',[0,1]',[1,1]' ]
//defina a matriz U0 = [u0-w0, u0-w0, u0-w0, u0-w0]
U0 = [u0-w0, u0-w0, u0-w0, u0-w0]
//defina o escalar b
b = 2
//calcule C=(M*V+U0)/b
C = (M*V + U0)/b
// 0 1 0 1
// 0 0 1 1
// xsegs([V(1,1), V(1,2)], [V(2,1), V(2,2)]) // x0 = 0, x1 = 1, y0 = 0, y1 = 0
// xsegs([V(1,1), V(1,3)], [V(2,1), V(2,3)]) // x0 = 0, x1 = 0, y0 = 0, y1 = 1
//
// xsegs([V(1,2), V(1,4)], [V(2,2), V(2,4)]) // x0 = 1, x1 = 1, y0 = 0, y1 = 1
// xsegs([V(1,3), V(1,4)], [V(2,3), V(2,4)]) // x0 = 0, x1 = 1, y0 = 1, y1 = 1
//
// xsegs([V(1,4), V(1,2)], [V(2,4), V(2,2)])
// xsegs([V(1,4), V(1,3)], [V(2,4), V(2,3)])
for i=1:2
//plote dois lados do quadrilátero
xsegs([C(1,i^2), C(1,2)], [C(2,i^2), C(2,2)])
//plote os outros dois lados do quadrilátero
xsegs([C(1,i^2), C(1,3)], [C(2,i^2), C(2,3)])
end
endfunction
function [] = I ()
// segmento vertical
M = [0, 0;
1, 0] // zera o tamanho dos segmentos horizontais
U = [.25,0]' // desloca o segmento 0.5 unidade para a direita
desenhaQuad(M, U)
// segmento horizontal inferior
M = [.5, 0; // deixa o segmento horizontal inferior com 0.5 unidade de comprimento
0, 0] // zera o tamanho dos segmentos verticais
U = [0,0]' // não desloca o segmento
desenhaQuad(M, U)
// segmento horizontal superior
M = M
U = [0,1]' // desloca o segmento 1 unidade para cima
desenhaQuad(M, U)
endfunction
function [] = I_italico ()
// segmento vertical
M = [0, sin(%pi/10); // zera o tamanho dos segmentos horizontais
0, 1] // e inclina o segmento vertical em 18 graus no sentido horario
U = [0,0]' // não desloca o segmento
desenhaQuad(M, U)
// segmento horizontal inferior
M = [.6, 0; // deixa o segmento horizontal inferior com 0.5 unidade de comprimento
0, 0] // zera o tamanho dos segmentos verticais
U = [-.3,0]' // desloca o segmento 0.3 unidade para a esquerda
desenhaQuad(M, U)
// segmento horizontal superior
M = M
U = [0,1]' // desloca o segmento 1 unidade para cima
desenhaQuad(M, U)
endfunction
function [] = L ()
// segmento vertical
M = [0, 0;
1, 0] // zera o tamanho dos segmentos horizontais
U = [,0]' // desloca o segmento 0.5 unidade para a direita
desenhaQuad(M, U)
// segmento horizontal inferior
M = [.6, 0; // deixa o segmento horizontal inferior com 0.5 unidade de comprimento
0, 0] // zera o tamanho dos segmentos verticais
U = [0,0]' // não desloca o segmento
desenhaQuad(M, U)
endfunction
function [] = F ()
// segmento vertical
M = [0, 0;
1, 0] // zera o tamanho dos segmentos horizontais
U = [0,0]' // desloca o segmento 0.5 unidade para a direita
desenhaQuad(M, U)
// segmento horizontal maior
M = [.6, 0; // deixa o segmento horizontal maior com 0.5 unidade de comprimento
0, 0] // zera o tamanho dos segmentos verticais
U = [0,1]' // desloca o segmento 1 unidade para cima
desenhaQuad(M, U)
// segmento horizontal menor
M = [.4, 0; // deixa o segmento horizontal menor com 0.25 unidade de comprimento
0, 0] // zera o tamanho dos segmentos verticais
U = [0,.5]' //não desloca o segmento 0.5 unidade para cima
desenhaQuad(M, U)
endfunction
function [] = H ()
M = [0, 0;
1, 0]
U = [0,0]'
desenhaQuad(M, U)
M = [.5, 0;
0, 0]
U = [0,.5]'
desenhaQuad(M, U)
M = [0, 0;
1, 0]
U = [.5,0]'
desenhaQuad(M, U)
endfunction
function [] = V ()
M = [0, sin(%pi/10);
0, 1]
U = [0,0]'
desenhaQuad(M, U)
M = [0, -sin(%pi/10);
0, 1]
U = [0,0]'
desenhaQuad(M, U)
endfunction
function [] = Y ()
M=[0,0;
0,.5]
U=[.5,0]'
desenhaQuad(M,U)
M=[0,-sin(%pi/10);
0,.5]
U=[.5,.5]'
desenhaQuad(M,U)
M=[0,sin(%pi/10);
0,.5]
U=[.5,.5]'
desenhaQuad(M,U)
endfunction
function [] = Y_italico ()
ita = sin(%pi/20)
mat_ita = [0,ita;
0,0]
M=[0,0;
0,.5]
U=[.5-ita,0]'
desenhaQuad(M+mat_ita,U)
M=[0,-sin(%pi/10);
0,.5]
U=[.5,.5]'
desenhaQuad(M+mat_ita,U)
M=[0,sin(%pi/10);
0,.5]
U=[.5,.5]'
desenhaQuad(M+mat_ita,U)
endfunction
function [] = W ()
M = [0,-sin(%pi/12);
0,1]
U = [0,0]'
desenhaQuad(M,U)
M = [0,sin(%pi/12);
0,1]
U = [.5,0]'
desenhaQuad(M,U)
M = [0,sin(%pi/12);
0,.5]
U = [0,0]'
desenhaQuad(M,U)
M = [0,-sin(%pi/12);
0,.5]
U = [.5,0]'
desenhaQuad(M,U)
endfunction
function [] = S ()
M=[0,sin(%pi/6);
0,.5]
U=[0,.5]'
desenhaQuad(M,U)
M=[0,-sin(%pi/6);
0,.5]
U=[0,.5]'
desenhaQuad(M,U)
M=[0,-2*sin(%pi/6);
0,1]
U=[.5,1]'
desenhaQuad(M,U)
M=[0,sin(%pi/6);
0,.5]
U=[-.5,2]'
desenhaQuad(M,U)
M=[0,-sin(%pi/6);
0,.5]
U=[.5,2]'
desenhaQuad(M,U)
endfunction
function letras()
titlepage(["Letras";"Alexandre Pierre"])
sleep(1000)
clf()
I()
sleep(500)
clf()
I_italico()
sleep(500)
clf()
L()
sleep(500)
clf()
F()
sleep(500)
clf()
H()
sleep(500)
clf()
V()
sleep(500)
clf()
Y()
sleep(500)
clf()
Y_italico()
sleep(500)
clf()
W()
sleep(500)
clf()
S()
sleep(500)
clf()
// exit(0)
endfunction
|
ad4e50bc93c762fd4075c4f02e85c40fa76675d1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3710/CH2/EX2.1/Ex2_1.sce
|
bfb5fcbbcabf78ddba778bbf1d7a83f8114a6073
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,047
|
sce
|
Ex2_1.sce
|
//Example 2.1, Page Number 51
//Conductivity Calculation
clc;
dc=8.93*(10**3) //Density of Copper in Kg/meter cube
N=63.54 //Atomic Mass Number of Copper in amu
t=2.6*(10**-14)//Mean free time between collision (in seconds)
m=9.1*(10**-31) //Mass of electron in kilogram
em=0.135 //Electron Mobility in meter square per volt second
hm=0.048 //Hole Mobility in meter square per volt second
n=1.6*(10**16) //Concentration per meter cube
an=6*(10**26) //Avogadro's number per mole
e=1.6*(10**-19) //Charge of an electron in Coulombs
n1=(an*dc)/N //Free electron concentration/No. of atoms per unit volume
rhoc=(n1*e*em)/3 //Conductivity of Copper in per ohm m
//From equation 2.24
rhos=n*e*(em+hm) //Conductivity of Copperintrinsic silicon in per ohm m
mprintf("Free Electron Concentration is: %.2e per meter cube\n",n1);
mprintf(" Conductivity of copper is:%.2e per ohm meter\n",rhoc)//The answer provided for rhoc in the textbook is wrong
mprintf(" Conductivity of intrinsic silicon is:%.2e per ohm meter\n",rhos)
|
7a04626a8f1d23d996ad5dd0785e038ca3a68347
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/389/CH12/EX12.9/Example12_9.sce
|
75351ac4beba48c5b6e8a80dffda80d30fbc6d7a
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 1,682
|
sce
|
Example12_9.sce
|
clear;
clc;
// Illustration 12.9
// Page: 709
printf('Illustration 12.9 - Page: 709\n\n');
// Solution
//***Data***//
x1 = 0.46;// [fraction moisture]
x2 = 0.085;// [fraction moisture]
Y1 = 0.08;// [kg water/kg dry solid]
Y2 = 0.03;// [kg water/kg dry solid]
G = 1.36;// [kg/square m.s]
//**********//
X1 = x1/(1-x1);// [kg water/kg dry solid]
X2 = x2/(1-x2);// [kg water/kg dry solid]
// By water balance:
SsByGs = (Y1-Y2)/(X1-X2);// [kg dry solid/kg air]
// Since the initial moisture content of the rayon is less than the critical, drying takes place entirely within zone III.
// Comparing with Eqn. 12.22:
// (kY*A/(Ss(Xc-X*)))=0.0137*G^1.47
// thetha=integrate('(1/(0.0137*G^1.47))*(1/((X-X_star)*(Yw-Y)))','X',X2,X1) // [s]
X = [X1 0.80 0.60 0.40 0.20 X2];// [kg water/kg dry solid]
Y = zeros(6);
for i = 1:6
// From Eqn. 12.54:
Y(i) = Y2+((X(i)-X2)*SsByGs);// [kg water/kg dry gas]
end
// From Fig. 7.5 (Pg 232):
Yw = [0.0950 0.0920 0.0790 0.0680 0.0550 0.0490];// [kg water/kg dry gas]
X_star = zeros(6);
Val = zeros(6);
P = 51780;// [vapour pressure, kN/square m]
for i = 1:6
// From Eqn 7.8:
deff('[y]=f(p)','y=Y(i)-((p/(101330-p))*(18/29))');
p = fsolve(7,f);// [kN/square m]
RH(i) = (p/P)*100;
X_star(i) = (RH(i)/4)/(100-(RH(i)/4));// [kg water/kg dry solid]
Val(i) = 1/((X(i)-X_star(i))*(Yw(i)-Y(i)));
end
scf(41);
plot(X,Val);
xgrid();
xlabel("X kg water/kg dry solid");
ylabel("1/((X-X*)*(Yw-Y))");
title("Graphical Integration");
// Area Under the curve:
Area = 151.6;
// From Eqn. 12.59:
thetha = Area/(0.0137*G^1.47);
printf("Time required for drying: %f h\n",thetha/3600);
|
0853c99e91032decc81974a23c4fb333499e5fd2
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/2126/CH1/EX1.30/30.sce
|
cb84655d307eb2718ba43d317dbc17f1eef9fbe9
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 692
|
sce
|
30.sce
|
clc
clear
//Input data
To=27+273 //Stagnation temperature in K
Po=8 //Stagnation Pressure in bar
P=5.6 //Static pressure in bar, taken from diagram given
m=2 //Mass flow rate in kg/s
k=1.4 //Adiabaatic constant
Cp=1005 //Specific heat capacity at constant pressure in J/kg-K
R=287 //Specific gas constant in J/kg-k
//Calculation
T=To*(P/Po)^((k-1)/k) //Static temperature in K
a=sqrt(k*R*T) //Sound velocity in m/s
C=sqrt(2*Cp*(To-T)) //Velocity in m/s
M=C/a //Mach number
A=((m*R*T)/(P*10^5*C))*10^4 //Area at a point in the channal in cm^2
//Output
printf('(A)Mach number is %3.4f\n (B)Velocity is %3.1f m/s\n (C)Area at a point in the channal is %3.3f cm^2',M,C,A)
|
01ad5f36e4efaa286c7c2e271216ceae0bb7bce1
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3516/CH7/EX7.7/Ex7_7.sce
|
f56c20bcd26c428d236d24c55fa9237d935ff84b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 692
|
sce
|
Ex7_7.sce
|
printf("\t example 7.7 \n");
printf("\t approximate values are mentioned in the book \n");
U=50; // Btu/(hr)*(ft^2)*(F)
TP=328; // F
TE=228; // F
CP=(0.30/(888.8*1000));
CE=(0.05/(960*1000));
CF=1.20;
theta=8000; // annual hours
X=((CF*(TP-TE))/((CP-CE)*U*theta)); // from eq 7.53
printf("\t X is : %.9f \n",X);
a=(1); // coefficient of t^2
b=(-556); // coefficient of t
c=(74784-X); // constant
printf("\t coefficient of t^2 is : %.2f \n",a);
printf("\t coefficient of t is : %.2f \n",b);
printf("\t constant term is : %.9f \n",c);
P=poly([c b a], 't','c');
t=roots(P);
printf("\t t is :%.0f \n",t);
printf("\t t cannot be greater than 328F \n \t t is 218F \n");
//end
|
67bef220ec2e82b0562037f047b33301f340485d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3681/CH3/EX3.12/Ex3_12.sce
|
8d64df9fa1f785ac213d2ed5a1a1379f96eccf5c
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 995
|
sce
|
Ex3_12.sce
|
// Calculating the specific iron loss
clc;
disp('Example 3.12, Page No. = 3.35')
// Given Data
Bm = 1.0;// Maximum flux density in Wb per meter square
f = 100;// Frequency in Hz
t = 0.3*10^(-3);// Thickness of sheet in mm
p = .5*10^(-6);// Resistivity of alloy steel in ohm*meter
D = 7650;// Density in kg per meter cube
pi_quoted = 1.2;// Quoted iron loss in W per Kg
// Calculation of total iron loss
S1 = 2*12;// Sides of hysteresis loop in A/m
S2 = 2*1;// Sides of hysteresis loop in Wb per meter square
A = S1*S2;// Area of hysteresis loop in W-s per meter cube
ph_each = A;// Hysteresis loss in each cycle in Joule per meter cube
ph = ph_each*f/D;// Hysterseis loss in W per Kg
pe = %pi*%pi*f*f*Bm*Bm*t*t/(6*p*D);// Eddy current loss in W per Kg
pi = pe+ph;// Total iron loss in W per Kg
disp(pi,'Specific iron loss(W per Kg)=');
disp('The calculated iron loss is smaller than the quoted.')
//in book answer is 1.014 W per Kg. The answers vary due to round off error
|
49c962e37e936731c4dd7bfe995c5c6a3f8d122d
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/62/CH2/EX2.36/ex_2_36.sce
|
9fe7a5993412c618f2569f7be3bb110b3f44982b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 282
|
sce
|
ex_2_36.sce
|
clear;
clc;
n=-5:5;
for i=1:length(n)
if(n(i)>=-1)
h(i)=2^-(n(i)+1);
else
h(i)=0;
end
end
causal=%t;
for i=1:length(n)
if n(i)<0 & h(i)~=0 then
causal=%f;
end
end
disp(causal,"the statement that the system is causal is");
|
c6299054c26ad354372285dfaa474dd929fecf31
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3557/CH9/EX9.9/Ex9_9.sce
|
54b75db5011cd3687c118d70767f921f43fc506b
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 830
|
sce
|
Ex9_9.sce
|
//Example 9.9//
xl=12.6;//wt % //liquid solution composition
xa=1.6;//wt %// composition of two phases
x1=10;//wt % //x1 is the overall composition
xb=100;//wt %//composition of two phases
a=1;//kg
ma=((xl-x1)/(xl-xa))*a
mprintf("ma = %f kg ",ma)
b=10^3;//g //As 1kg = 10^3grams
ma2=ma*b
mprintf("\nma2= %i g",ma2)
//At 576degree C, the overall microstructure is alpha+beta, the amount of each are
ma1=((xb-x1)/(xb-xa))*a
mprintf("\nma1 = %f kg ",ma1)
ma3=ma1*b
mprintf("\nma3= %i g",ma3)
mb=((x1-xa)/(xb-xa))*a
mprintf("\nmb = %f kg ",mb)
mb1=mb*b
mprintf("\nmb1= %i g",mb1)
ae= ma3-ma2
mprintf("\nae = %i g",ae)
a1=0.016;//wieght fraction
a2=1.000;//wieght fraction
si1=(a1)*(ma2)
mprintf("\nsi1 = %f g",si1)
si2=(a1)*(ae)
mprintf("\nsi2 = %f g",si2)
si3=(a2)*(mb1)
mprintf("\nsi3 = %i g",si3)
|
3a702a3215f8fc99a0b158a2c41003257169a959
|
e657bbadea88191ece0e48eb447173a4c5f816f6
|
/tasks/cw6/naive.sci
|
129ff88a020e8f0c17316c1ef1a711ebae2946f2
|
[] |
no_license
|
vainia/Learning-SCILAB
|
c37d6071907ea4fad811071a3164454a927602d8
|
d77877b1316b8b3546cb32cb9e29e7ad70d25280
|
refs/heads/master
| 2020-03-10T09:51:08.444686
| 2018-04-12T23:13:06
| 2018-04-12T23:13:06
| 129,320,183
| 0
| 0
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 343
|
sci
|
naive.sci
|
function [x0,f0,iter]=naive(x0,maxiter,krok)
exec('cel.sci');
clf
exec('mapa.sci',0);
[f0,df0]=cel(x0);
iter=0;
kryt=norm(df0);
g=df0;
while(kryt>0.0001)&(iter<maxiter) do
x1=x0-krok*g;
[f1,df1]=cel(x1);
iter=iter+1;
xsegs([x0(1);x1(1)]',[x0(2);x1(2)]');
x0=x1;
f0=f1;
kryt=norm(df1);
g=df1;
end
endfunction
|
d2ff300df2190cfc8e545c0eba6e9b1a3ab2631c
|
449d555969bfd7befe906877abab098c6e63a0e8
|
/3440/CH14/EX14.1/Ex14_1.sce
|
5b078342abb1e94ff925701abcb848c84c2f6f5f
|
[] |
no_license
|
FOSSEE/Scilab-TBC-Uploads
|
948e5d1126d46bdd2f89a44c54ba62b0f0a1f5e1
|
7bc77cb1ed33745c720952c92b3b2747c5cbf2df
|
refs/heads/master
| 2020-04-09T02:43:26.499817
| 2018-02-03T05:31:52
| 2018-02-03T05:31:52
| 37,975,407
| 3
| 12
| null | null | null | null |
UTF-8
|
Scilab
| false
| false
| 322
|
sce
|
Ex14_1.sce
|
clc
D=2*10^-14//cm^2/sec
t=3600//K
Cx=10^19
A=sqrt(D*t)
disp(A,"A in cm is= ")
Qt=1.13*Cx*A
disp(Qt,"Q(t) in atoms/cm^3")
//dC/dx=b
b=-(Cx/sqrt(%pi*D*t))
disp(b,"dC/dx in cm^-4 is= ")
xj=2*sqrt(D*t)*2.75
disp(xj,"xj in meter is= ")
b=-(Cx/sqrt(%pi*D*t))*exp(-xj^2/(4*D*t))
disp(b,"dC/dx in cm^-4 is= ")
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.