url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.specId
[259, 1]
[271, 13]
exact fastReplaceFree_self P v
case a.a.a v : VarName P : Formula Δ : Set Formula h1 : IsDeduct Δ (forall_ v P) ⊢ fastReplaceFree v v P = P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a v : VarName P : Formula Δ : Set Formula h1 : IsDeduct Δ (forall_ v P) ⊢ fastReplaceFree v v P = P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.specId
[259, 1]
[271, 13]
exact h1
case a v : VarName P : Formula Δ : Set Formula h1 : IsDeduct Δ (forall_ v P) ⊢ IsDeduct Δ (forall_ v P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a v : VarName P : Formula Δ : Set Formula h1 : IsDeduct Δ (forall_ v P) ⊢ IsDeduct Δ (forall_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
simp only [fastAdmits] at h1
P : Formula v t : VarName h1 : fastAdmits v t P ⊢ IsProof ((fastReplaceFree v t P).imp_ (exists_ v P))
P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsProof ((fastReplaceFree v t P).imp_ (exists_ v P))
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v t : VarName h1 : fastAdmits v t P ⊢ IsProof ((fastReplaceFree v t P).imp_ (exists_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
simp only [def_exists_]
P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsProof ((fastReplaceFree v t P).imp_ (exists_ v P))
P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsProof ((fastReplaceFree v t P).imp_ (forall_ v P.not_).not_)
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsProof ((fastReplaceFree v t P).imp_ (exists_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
simp only [IsProof]
P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsProof ((fastReplaceFree v t P).imp_ (forall_ v P.not_).not_)
P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsDeduct ∅ ((fastReplaceFree v t P).imp_ (forall_ v P.not_).not_)
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsProof ((fastReplaceFree v t P).imp_ (forall_ v P.not_).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
apply IsDeduct.mp_ ((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_)
P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsDeduct ∅ ((fastReplaceFree v t P).imp_ (forall_ v P.not_).not_)
case a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsDeduct ∅ (((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_).imp_ ((fastReplaceFree v t P).imp_ (forall_ v P.not_).not_)) case a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsDeduct ∅ ((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_)
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsDeduct ∅ ((fastReplaceFree v t P).imp_ (forall_ v P.not_).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
SC
case a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsDeduct ∅ (((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_).imp_ ((fastReplaceFree v t P).imp_ (forall_ v P.not_).not_))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsDeduct ∅ (((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_).imp_ ((fastReplaceFree v t P).imp_ (forall_ v P.not_).not_)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
apply IsDeduct.axiom_
case a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsDeduct ∅ ((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_)
case a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsAxiom ((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_)
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsDeduct ∅ ((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
apply IsAxiom.pred_2_ v t
case a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsAxiom ((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_)
case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastAdmits v t P.not_ case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastReplaceFree v t P.not_ = (fastReplaceFree v t P).not_
Please generate a tactic in lean4 to solve the state. STATE: case a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ IsAxiom ((forall_ v P.not_).imp_ (fastReplaceFree v t P).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
simp only [fastAdmits]
case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastAdmits v t P.not_
case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastAdmitsAux v t ∅ P.not_
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastAdmits v t P.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
simp only [fastAdmitsAux]
case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastAdmitsAux v t ∅ P.not_
case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastAdmitsAux v t ∅ P
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastAdmitsAux v t ∅ P.not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
exact h1
case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastAdmitsAux v t ∅ P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastAdmitsAux v t ∅ P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_3
[276, 1]
[295, 10]
rfl
case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastReplaceFree v t P.not_ = (fastReplaceFree v t P).not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a P : Formula v t : VarName h1 : fastAdmitsAux v t ∅ P ⊢ fastReplaceFree v t P.not_ = (fastReplaceFree v t P).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_4
[299, 1]
[311, 13]
apply IsDeduct.mp_ (fastReplaceFree v t P)
P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsDeduct Δ (exists_ v P)
case a P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsDeduct Δ ((fastReplaceFree v t P).imp_ (exists_ v P)) case a P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsDeduct Δ (fastReplaceFree v t P)
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsDeduct Δ (exists_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_4
[299, 1]
[311, 13]
apply proof_imp_deduct
case a P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsDeduct Δ ((fastReplaceFree v t P).imp_ (exists_ v P))
case a.h1 P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsProof ((fastReplaceFree v t P).imp_ (exists_ v P))
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsDeduct Δ ((fastReplaceFree v t P).imp_ (exists_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_4
[299, 1]
[311, 13]
apply T_17_3
case a.h1 P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsProof ((fastReplaceFree v t P).imp_ (exists_ v P))
case a.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ fastAdmits v t P
Please generate a tactic in lean4 to solve the state. STATE: case a.h1 P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsProof ((fastReplaceFree v t P).imp_ (exists_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_4
[299, 1]
[311, 13]
exact h1
case a.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ fastAdmits v t P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ fastAdmits v t P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_4
[299, 1]
[311, 13]
exact h2
case a P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsDeduct Δ (fastReplaceFree v t P)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula v t : VarName Δ : Set Formula h1 : fastAdmits v t P h2 : IsDeduct Δ (fastReplaceFree v t P) ⊢ IsDeduct Δ (fastReplaceFree v t P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.existsIntroId
[316, 1]
[326, 13]
apply T_17_4 P v v Δ
P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ IsDeduct Δ (exists_ v P)
case h1 P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ fastAdmits v v P case h2 P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ IsDeduct Δ (fastReplaceFree v v P)
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ IsDeduct Δ (exists_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.existsIntroId
[316, 1]
[326, 13]
exact fastAdmits_self P v
case h1 P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ fastAdmits v v P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1 P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ fastAdmits v v P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.existsIntroId
[316, 1]
[326, 13]
simp only [fastReplaceFree_self]
case h2 P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ IsDeduct Δ (fastReplaceFree v v P)
case h2 P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ IsDeduct Δ P
Please generate a tactic in lean4 to solve the state. STATE: case h2 P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ IsDeduct Δ (fastReplaceFree v v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.existsIntroId
[316, 1]
[326, 13]
exact h1
case h2 P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ IsDeduct Δ P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 P : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ P ⊢ IsDeduct Δ P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_6
[329, 1]
[339, 7]
apply deduction_theorem
P : Formula v : VarName ⊢ IsProof ((forall_ v P).imp_ (exists_ v P))
case h1 P : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v P}) (exists_ v P)
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v : VarName ⊢ IsProof ((forall_ v P).imp_ (exists_ v P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_6
[329, 1]
[339, 7]
simp
case h1 P : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v P}) (exists_ v P)
case h1 P : Formula v : VarName ⊢ IsDeduct {forall_ v P} (exists_ v P)
Please generate a tactic in lean4 to solve the state. STATE: case h1 P : Formula v : VarName ⊢ IsDeduct (∅ ∪ {forall_ v P}) (exists_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_6
[329, 1]
[339, 7]
apply existsIntroId
case h1 P : Formula v : VarName ⊢ IsDeduct {forall_ v P} (exists_ v P)
case h1.h1 P : Formula v : VarName ⊢ IsDeduct {forall_ v P} P
Please generate a tactic in lean4 to solve the state. STATE: case h1 P : Formula v : VarName ⊢ IsDeduct {forall_ v P} (exists_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_6
[329, 1]
[339, 7]
apply specId v
case h1.h1 P : Formula v : VarName ⊢ IsDeduct {forall_ v P} P
case h1.h1.h1 P : Formula v : VarName ⊢ IsDeduct {forall_ v P} (forall_ v P)
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1 P : Formula v : VarName ⊢ IsDeduct {forall_ v P} P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_6
[329, 1]
[339, 7]
apply IsDeduct.assume_
case h1.h1.h1 P : Formula v : VarName ⊢ IsDeduct {forall_ v P} (forall_ v P)
case h1.h1.h1.a P : Formula v : VarName ⊢ forall_ v P ∈ {forall_ v P}
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1 P : Formula v : VarName ⊢ IsDeduct {forall_ v P} (forall_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_6
[329, 1]
[339, 7]
simp
case h1.h1.h1.a P : Formula v : VarName ⊢ forall_ v P ∈ {forall_ v P}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1.h1.h1.a P : Formula v : VarName ⊢ forall_ v P ∈ {forall_ v P} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
induction h1
F : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ F h2 : ∀ H ∈ Δ, ¬isFreeIn v H ⊢ IsDeduct Δ (forall_ v F)
case axiom_ F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H phi✝ : Formula a✝ : IsAxiom phi✝ ⊢ IsDeduct Δ (forall_ v phi✝) case assume_ F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H phi✝ : Formula a✝ : phi✝ ∈ Δ ⊢ IsDeduct Δ (forall_ v phi✝) case mp_ F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H phi✝ psi✝ : Formula a✝¹ : IsDeduct Δ (phi✝.imp_ psi✝) a✝ : IsDeduct Δ phi✝ a_ih✝¹ : IsDeduct Δ (forall_ v (phi✝.imp_ psi✝)) a_ih✝ : IsDeduct Δ (forall_ v phi✝) ⊢ IsDeduct Δ (forall_ v psi✝)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v : VarName Δ : Set Formula h1 : IsDeduct Δ F h2 : ∀ H ∈ Δ, ¬isFreeIn v H ⊢ IsDeduct Δ (forall_ v F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
case axiom_ h1_phi h1_1 => apply IsDeduct.axiom_ apply IsAxiom.gen_ exact h1_1
F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ (forall_ v h1_phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ (forall_ v h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsDeduct.axiom_
F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ (forall_ v h1_phi)
case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom (forall_ v h1_phi)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsDeduct Δ (forall_ v h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsAxiom.gen_
case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom (forall_ v h1_phi)
case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom (forall_ v h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
exact h1_1
case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : IsAxiom h1_phi ⊢ IsAxiom h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsDeduct.mp_ h1_phi
F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ (forall_ v h1_phi)
case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ (h1_phi.imp_ (forall_ v h1_phi)) case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ h1_phi
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ (forall_ v h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsDeduct.axiom_
case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ (h1_phi.imp_ (forall_ v h1_phi))
case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsAxiom (h1_phi.imp_ (forall_ v h1_phi))
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ (h1_phi.imp_ (forall_ v h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsAxiom.pred_3_
case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsAxiom (h1_phi.imp_ (forall_ v h1_phi))
case a.a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ ¬isFreeIn v h1_phi
Please generate a tactic in lean4 to solve the state. STATE: case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsAxiom (h1_phi.imp_ (forall_ v h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
exact h2 h1_phi h1_1
case a.a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ ¬isFreeIn v h1_phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ ¬isFreeIn v h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsDeduct.assume_
case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ h1_phi
case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ IsDeduct Δ h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
exact h1_1
case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi : Formula h1_1 : h1_phi ∈ Δ ⊢ h1_phi ∈ Δ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsDeduct.mp_ (forall_ v h1_phi)
F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ (forall_ v h1_psi)
case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ ((forall_ v h1_phi).imp_ (forall_ v h1_psi)) case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ (forall_ v h1_phi)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ (forall_ v h1_psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsDeduct.mp_ (forall_ v (h1_phi.imp_ h1_psi))
case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ ((forall_ v h1_phi).imp_ (forall_ v h1_psi))
case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ ((forall_ v (h1_phi.imp_ h1_psi)).imp_ ((forall_ v h1_phi).imp_ (forall_ v h1_psi))) case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi))
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ ((forall_ v h1_phi).imp_ (forall_ v h1_psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsDeduct.axiom_
case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ ((forall_ v (h1_phi.imp_ h1_psi)).imp_ ((forall_ v h1_phi).imp_ (forall_ v h1_psi)))
case a.a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsAxiom ((forall_ v (h1_phi.imp_ h1_psi)).imp_ ((forall_ v h1_phi).imp_ (forall_ v h1_psi)))
Please generate a tactic in lean4 to solve the state. STATE: case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ ((forall_ v (h1_phi.imp_ h1_psi)).imp_ ((forall_ v h1_phi).imp_ (forall_ v h1_psi))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
apply IsAxiom.pred_1_
case a.a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsAxiom ((forall_ v (h1_phi.imp_ h1_psi)).imp_ ((forall_ v h1_phi).imp_ (forall_ v h1_psi)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsAxiom ((forall_ v (h1_phi.imp_ h1_psi)).imp_ ((forall_ v h1_phi).imp_ (forall_ v h1_psi))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
exact h1_ih_1
case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.T_17_7
[342, 1]
[368, 20]
exact h1_ih_2
case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ (forall_ v h1_phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula v : VarName Δ : Set Formula h2 : ∀ H ∈ Δ, ¬isFreeIn v H h1_phi h1_psi : Formula a✝¹ : IsDeduct Δ (h1_phi.imp_ h1_psi) a✝ : IsDeduct Δ h1_phi h1_ih_1 : IsDeduct Δ (forall_ v (h1_phi.imp_ h1_psi)) h1_ih_2 : IsDeduct Δ (forall_ v h1_phi) ⊢ IsDeduct Δ (forall_ v h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
rw [← fastReplaceFree_inverse P v t h1]
P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ (forall_ v P)
P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ (forall_ v (fastReplaceFree t v (fastReplaceFree v t P)))
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ (forall_ v P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
apply IsDeduct.mp_ (forall_ t (fastReplaceFree v t P))
P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ (forall_ v (fastReplaceFree t v (fastReplaceFree v t P)))
case a P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ ((forall_ t (fastReplaceFree v t P)).imp_ (forall_ v (fastReplaceFree t v (fastReplaceFree v t P)))) case a P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ (forall_ t (fastReplaceFree v t P))
Please generate a tactic in lean4 to solve the state. STATE: P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ (forall_ v (fastReplaceFree t v (fastReplaceFree v t P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
apply proof_imp_deduct
case a P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ ((forall_ t (fastReplaceFree v t P)).imp_ (forall_ v (fastReplaceFree t v (fastReplaceFree v t P))))
case a.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsProof ((forall_ t (fastReplaceFree v t P)).imp_ (forall_ v (fastReplaceFree t v (fastReplaceFree v t P))))
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ ((forall_ t (fastReplaceFree v t P)).imp_ (forall_ v (fastReplaceFree t v (fastReplaceFree v t P)))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
apply deduction_theorem
case a.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsProof ((forall_ t (fastReplaceFree v t P)).imp_ (forall_ v (fastReplaceFree t v (fastReplaceFree v t P))))
case a.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct (∅ ∪ {forall_ t (fastReplaceFree v t P)}) (forall_ v (fastReplaceFree t v (fastReplaceFree v t P)))
Please generate a tactic in lean4 to solve the state. STATE: case a.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsProof ((forall_ t (fastReplaceFree v t P)).imp_ (forall_ v (fastReplaceFree t v (fastReplaceFree v t P)))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
simp
case a.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct (∅ ∪ {forall_ t (fastReplaceFree v t P)}) (forall_ v (fastReplaceFree t v (fastReplaceFree v t P)))
case a.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct {forall_ t (fastReplaceFree v t P)} (forall_ v (fastReplaceFree t v (fastReplaceFree v t P)))
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct (∅ ∪ {forall_ t (fastReplaceFree v t P)}) (forall_ v (fastReplaceFree t v (fastReplaceFree v t P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
apply generalization
case a.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct {forall_ t (fastReplaceFree v t P)} (forall_ v (fastReplaceFree t v (fastReplaceFree v t P)))
case a.h1.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct {forall_ t (fastReplaceFree v t P)} (fastReplaceFree t v (fastReplaceFree v t P)) case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ∀ H ∈ {forall_ t (fastReplaceFree v t P)}, ¬isFreeIn v H
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct {forall_ t (fastReplaceFree v t P)} (forall_ v (fastReplaceFree t v (fastReplaceFree v t P))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
apply spec
case a.h1.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct {forall_ t (fastReplaceFree v t P)} (fastReplaceFree t v (fastReplaceFree v t P))
case a.h1.h1.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct {forall_ t (fastReplaceFree v t P)} (forall_ t (fastReplaceFree v t P)) case a.h1.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ fastAdmits t v (fastReplaceFree v t P)
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct {forall_ t (fastReplaceFree v t P)} (fastReplaceFree t v (fastReplaceFree v t P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
apply IsDeduct.assume_
case a.h1.h1.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct {forall_ t (fastReplaceFree v t P)} (forall_ t (fastReplaceFree v t P))
case a.h1.h1.h1.h1.a P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ forall_ t (fastReplaceFree v t P) ∈ {forall_ t (fastReplaceFree v t P)}
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h1.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct {forall_ t (fastReplaceFree v t P)} (forall_ t (fastReplaceFree v t P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
simp
case a.h1.h1.h1.h1.a P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ forall_ t (fastReplaceFree v t P) ∈ {forall_ t (fastReplaceFree v t P)}
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h1.h1.a P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ forall_ t (fastReplaceFree v t P) ∈ {forall_ t (fastReplaceFree v t P)} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
apply fastReplaceFree_fastAdmits
case a.h1.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ fastAdmits t v (fastReplaceFree v t P)
case a.h1.h1.h1.h2.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬occursIn t P
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ fastAdmits t v (fastReplaceFree v t P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
exact h1
case a.h1.h1.h1.h2.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬occursIn t P
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h1.h2.h1 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬occursIn t P TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
simp
case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ∀ H ∈ {forall_ t (fastReplaceFree v t P)}, ¬isFreeIn v H
case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬isFreeIn v (forall_ t (fastReplaceFree v t P))
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ∀ H ∈ {forall_ t (fastReplaceFree v t P)}, ¬isFreeIn v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
simp only [isFreeIn]
case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬isFreeIn v (forall_ t (fastReplaceFree v t P))
case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬(¬v = t ∧ isFreeIn v (fastReplaceFree v t P))
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬isFreeIn v (forall_ t (fastReplaceFree v t P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
simp
case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬(¬v = t ∧ isFreeIn v (fastReplaceFree v t P))
case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬v = t → ¬isFreeIn v (fastReplaceFree v t P)
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬(¬v = t ∧ isFreeIn v (fastReplaceFree v t P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
intro a1 contra
case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬v = t → ¬isFreeIn v (fastReplaceFree v t P)
case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H a1 : ¬v = t contra : isFreeIn v (fastReplaceFree v t P) ⊢ False
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ ¬v = t → ¬isFreeIn v (fastReplaceFree v t P) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
exact not_isFreeIn_fastReplaceFree P v t a1 contra
case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H a1 : ¬v = t contra : isFreeIn v (fastReplaceFree v t P) ⊢ False
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.h1.h1.h2 P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H a1 : ¬v = t contra : isFreeIn v (fastReplaceFree v t P) ⊢ False TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.univIntro
[374, 1]
[399, 59]
exact generalization (fastReplaceFree v t P) t Δ h2 h3
case a P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ (forall_ t (fastReplaceFree v t P))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a P : Formula v t : VarName Δ : Set Formula h1 : ¬occursIn t P h2 : IsDeduct Δ (fastReplaceFree v t P) h3 : ∀ H ∈ Δ, ¬isFreeIn t H ⊢ IsDeduct Δ (forall_ t (fastReplaceFree v t P)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
induction h1
F : Formula h1 : IsProofAlt F ⊢ IsDeduct ∅ F
case prop_true_ F : Formula ⊢ IsDeduct ∅ true_ case prop_1_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ (phi✝.imp_ (psi✝.imp_ phi✝)) case prop_2_ F phi✝ psi✝ chi✝ : Formula ⊢ IsDeduct ∅ ((phi✝.imp_ (psi✝.imp_ chi✝)).imp_ ((phi✝.imp_ psi✝).imp_ (phi✝.imp_ chi✝))) case prop_3_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ ((phi✝.not_.imp_ psi✝.not_).imp_ (psi✝.imp_ phi✝)) case pred_1_ F : Formula v✝ : VarName phi✝ psi✝ : Formula ⊢ IsDeduct ∅ ((forall_ v✝ (phi✝.imp_ psi✝)).imp_ ((forall_ v✝ phi✝).imp_ (forall_ v✝ psi✝))) case pred_2_ F : Formula v✝ t✝ : VarName phi✝ phi'✝ : Formula a✝¹ : fastAdmits v✝ t✝ phi✝ a✝ : fastReplaceFree v✝ t✝ phi✝ = phi'✝ ⊢ IsDeduct ∅ ((forall_ v✝ phi✝).imp_ phi'✝) case pred_3_ F : Formula v✝ : VarName phi✝ : Formula a✝ : ¬isFreeIn v✝ phi✝ ⊢ IsDeduct ∅ (phi✝.imp_ (forall_ v✝ phi✝)) case eq_1_ F : Formula v✝ : VarName ⊢ IsDeduct ∅ (forall_ v✝ (eq_ v✝ v✝)) case eq_2_pred_const_ F : Formula name✝ : PredName n✝ : ℕ xs✝ ys✝ : Fin n✝ → VarName ⊢ IsDeduct ∅ (Forall_ (List.ofFn xs✝) (Forall_ (List.ofFn ys✝) ((And_ (List.ofFn fun i => eq_ (xs✝ i) (ys✝ i))).imp_ ((pred_const_ name✝ (List.ofFn xs✝)).iff_ (pred_const_ name✝ (List.ofFn ys✝)))))) case eq_2_eq_ F : Formula x_0✝ x_1✝ y_0✝ y_1✝ : VarName ⊢ IsDeduct ∅ (forall_ x_0✝ (forall_ x_1✝ (forall_ y_0✝ (forall_ y_1✝ (((eq_ x_0✝ y_0✝).and_ (eq_ x_1✝ y_1✝)).imp_ ((eq_ x_0✝ x_1✝).iff_ (eq_ y_0✝ y_1✝))))))) case gen_ F : Formula v✝ : VarName phi✝ : Formula a✝ : IsProofAlt phi✝ a_ih✝ : IsDeduct ∅ phi✝ ⊢ IsDeduct ∅ (forall_ v✝ phi✝) case mp_ F phi✝ psi✝ : Formula a✝¹ : IsProofAlt (phi✝.imp_ psi✝) a✝ : IsProofAlt phi✝ a_ih✝¹ : IsDeduct ∅ (phi✝.imp_ psi✝) a_ih✝ : IsDeduct ∅ phi✝ ⊢ IsDeduct ∅ psi✝ case def_false_ F : Formula ⊢ IsDeduct ∅ (false_.iff_ true_.not_) case def_and_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ ((phi✝.and_ psi✝).iff_ (phi✝.imp_ psi✝.not_).not_) case def_or_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ ((phi✝.or_ psi✝).iff_ (phi✝.not_.imp_ psi✝)) case def_iff_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ (((phi✝.iff_ psi✝).imp_ ((phi✝.imp_ psi✝).imp_ (psi✝.imp_ phi✝).not_).not_).imp_ (((phi✝.imp_ psi✝).imp_ (psi✝.imp_ phi✝).not_).not_.imp_ (phi✝.iff_ psi✝)).not_).not_ case def_exists_ F : Formula v✝ : VarName phi✝ : Formula ⊢ IsDeduct ∅ ((exists_ v✝ phi✝).iff_ (forall_ v✝ phi✝.not_).not_)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1 : IsProofAlt F ⊢ IsDeduct ∅ F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case prop_true_ => apply IsDeduct.axiom_ apply IsAxiom.prop_true_
F : Formula ⊢ IsDeduct ∅ true_
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula ⊢ IsDeduct ∅ true_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case prop_1_ h1_phi h1_psi => apply IsDeduct.axiom_ apply IsAxiom.prop_1_
F h1_phi h1_psi : Formula ⊢ IsDeduct ∅ (h1_phi.imp_ (h1_psi.imp_ h1_phi))
no goals
Please generate a tactic in lean4 to solve the state. STATE: F h1_phi h1_psi : Formula ⊢ IsDeduct ∅ (h1_phi.imp_ (h1_psi.imp_ h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case prop_2_ h1_phi h1_psi h1_chi => apply IsDeduct.axiom_ apply IsAxiom.prop_2_
F h1_phi h1_psi h1_chi : Formula ⊢ IsDeduct ∅ ((h1_phi.imp_ (h1_psi.imp_ h1_chi)).imp_ ((h1_phi.imp_ h1_psi).imp_ (h1_phi.imp_ h1_chi)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: F h1_phi h1_psi h1_chi : Formula ⊢ IsDeduct ∅ ((h1_phi.imp_ (h1_psi.imp_ h1_chi)).imp_ ((h1_phi.imp_ h1_psi).imp_ (h1_phi.imp_ h1_chi))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case prop_3_ h1_phi h1_psi => apply IsDeduct.axiom_ apply IsAxiom.prop_3_
F h1_phi h1_psi : Formula ⊢ IsDeduct ∅ ((h1_phi.not_.imp_ h1_psi.not_).imp_ (h1_psi.imp_ h1_phi))
no goals
Please generate a tactic in lean4 to solve the state. STATE: F h1_phi h1_psi : Formula ⊢ IsDeduct ∅ ((h1_phi.not_.imp_ h1_psi.not_).imp_ (h1_psi.imp_ h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case pred_1_ h1_v h1_phi h1_psi => apply IsDeduct.axiom_ apply IsAxiom.pred_1_
F : Formula h1_v : VarName h1_phi h1_psi : Formula ⊢ IsDeduct ∅ ((forall_ h1_v (h1_phi.imp_ h1_psi)).imp_ ((forall_ h1_v h1_phi).imp_ (forall_ h1_v h1_psi)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_v : VarName h1_phi h1_psi : Formula ⊢ IsDeduct ∅ ((forall_ h1_v (h1_phi.imp_ h1_psi)).imp_ ((forall_ h1_v h1_phi).imp_ (forall_ h1_v h1_psi))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case pred_2_ h1_v h1_t h1_phi h1_phi' h1_1 h1_ih_1 => apply IsDeduct.axiom_ exact IsAxiom.pred_2_ h1_v h1_t h1_phi h1_phi' h1_1 h1_ih_1
F : Formula h1_v h1_t : VarName h1_phi h1_phi' : Formula h1_1 : fastAdmits h1_v h1_t h1_phi h1_ih_1 : fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ IsDeduct ∅ ((forall_ h1_v h1_phi).imp_ h1_phi')
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_v h1_t : VarName h1_phi h1_phi' : Formula h1_1 : fastAdmits h1_v h1_t h1_phi h1_ih_1 : fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ IsDeduct ∅ ((forall_ h1_v h1_phi).imp_ h1_phi') TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case pred_3_ h1_v h1_phi h1_1 => apply IsDeduct.axiom_ apply IsAxiom.pred_3_ exact h1_1
F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ IsDeduct ∅ (h1_phi.imp_ (forall_ h1_v h1_phi))
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ IsDeduct ∅ (h1_phi.imp_ (forall_ h1_v h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case eq_1_ h1 => apply IsDeduct.axiom_ apply IsAxiom.eq_1_
F : Formula h1 : VarName ⊢ IsDeduct ∅ (forall_ h1 (eq_ h1 h1))
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1 : VarName ⊢ IsDeduct ∅ (forall_ h1 (eq_ h1 h1)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case eq_2_pred_const_ h1_name h1_n h1_xs h1_ys => apply IsDeduct.axiom_ apply IsAxiom.eq_2_pred_const_
F : Formula h1_name : PredName h1_n : ℕ h1_xs h1_ys : Fin h1_n → VarName ⊢ IsDeduct ∅ (Forall_ (List.ofFn h1_xs) (Forall_ (List.ofFn h1_ys) ((And_ (List.ofFn fun i => eq_ (h1_xs i) (h1_ys i))).imp_ ((pred_const_ h1_name (List.ofFn h1_xs)).iff_ (pred_const_ h1_name (List.ofFn h1_ys))))))
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_name : PredName h1_n : ℕ h1_xs h1_ys : Fin h1_n → VarName ⊢ IsDeduct ∅ (Forall_ (List.ofFn h1_xs) (Forall_ (List.ofFn h1_ys) ((And_ (List.ofFn fun i => eq_ (h1_xs i) (h1_ys i))).imp_ ((pred_const_ h1_name (List.ofFn h1_xs)).iff_ (pred_const_ h1_name (List.ofFn h1_ys)))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case eq_2_eq_ h1_x_0 h1_y_0 h1_x_1 h1_y_1 => apply IsDeduct.axiom_ apply IsAxiom.eq_2_eq_
F : Formula h1_x_0 h1_y_0 h1_x_1 h1_y_1 : VarName ⊢ IsDeduct ∅ (forall_ h1_x_0 (forall_ h1_y_0 (forall_ h1_x_1 (forall_ h1_y_1 (((eq_ h1_x_0 h1_x_1).and_ (eq_ h1_y_0 h1_y_1)).imp_ ((eq_ h1_x_0 h1_y_0).iff_ (eq_ h1_x_1 h1_y_1)))))))
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_x_0 h1_y_0 h1_x_1 h1_y_1 : VarName ⊢ IsDeduct ∅ (forall_ h1_x_0 (forall_ h1_y_0 (forall_ h1_x_1 (forall_ h1_y_1 (((eq_ h1_x_0 h1_x_1).and_ (eq_ h1_y_0 h1_y_1)).imp_ ((eq_ h1_x_0 h1_y_0).iff_ (eq_ h1_x_1 h1_y_1))))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
case mp_ h1_phi h1_psi h1_1 h1_2 h1_ih_1 h1_ih_2 => exact IsDeduct.mp_ h1_phi h1_psi h1_ih_1 h1_ih_2
F h1_phi h1_psi : Formula h1_1 : IsProofAlt (h1_phi.imp_ h1_psi) h1_2 : IsProofAlt h1_phi h1_ih_1 : IsDeduct ∅ (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct ∅ h1_phi ⊢ IsDeduct ∅ h1_psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: F h1_phi h1_psi : Formula h1_1 : IsProofAlt (h1_phi.imp_ h1_psi) h1_2 : IsProofAlt h1_phi h1_ih_1 : IsDeduct ∅ (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct ∅ h1_phi ⊢ IsDeduct ∅ h1_psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
all_goals sorry
case def_false_ F : Formula ⊢ IsDeduct ∅ (false_.iff_ true_.not_) case def_and_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ ((phi✝.and_ psi✝).iff_ (phi✝.imp_ psi✝.not_).not_) case def_or_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ ((phi✝.or_ psi✝).iff_ (phi✝.not_.imp_ psi✝)) case def_iff_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ (((phi✝.iff_ psi✝).imp_ ((phi✝.imp_ psi✝).imp_ (psi✝.imp_ phi✝).not_).not_).imp_ (((phi✝.imp_ psi✝).imp_ (psi✝.imp_ phi✝).not_).not_.imp_ (phi✝.iff_ psi✝)).not_).not_ case def_exists_ F : Formula v✝ : VarName phi✝ : Formula ⊢ IsDeduct ∅ ((exists_ v✝ phi✝).iff_ (forall_ v✝ phi✝.not_).not_)
no goals
Please generate a tactic in lean4 to solve the state. STATE: case def_false_ F : Formula ⊢ IsDeduct ∅ (false_.iff_ true_.not_) case def_and_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ ((phi✝.and_ psi✝).iff_ (phi✝.imp_ psi✝.not_).not_) case def_or_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ ((phi✝.or_ psi✝).iff_ (phi✝.not_.imp_ psi✝)) case def_iff_ F phi✝ psi✝ : Formula ⊢ IsDeduct ∅ (((phi✝.iff_ psi✝).imp_ ((phi✝.imp_ psi✝).imp_ (psi✝.imp_ phi✝).not_).not_).imp_ (((phi✝.imp_ psi✝).imp_ (psi✝.imp_ phi✝).not_).not_.imp_ (phi✝.iff_ psi✝)).not_).not_ case def_exists_ F : Formula v✝ : VarName phi✝ : Formula ⊢ IsDeduct ∅ ((exists_ v✝ phi✝).iff_ (forall_ v✝ phi✝.not_).not_) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F : Formula ⊢ IsDeduct ∅ true_
case a F : Formula ⊢ IsAxiom true_
Please generate a tactic in lean4 to solve the state. STATE: F : Formula ⊢ IsDeduct ∅ true_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsAxiom.prop_true_
case a F : Formula ⊢ IsAxiom true_
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula ⊢ IsAxiom true_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F h1_phi h1_psi : Formula ⊢ IsDeduct ∅ (h1_phi.imp_ (h1_psi.imp_ h1_phi))
case a F h1_phi h1_psi : Formula ⊢ IsAxiom (h1_phi.imp_ (h1_psi.imp_ h1_phi))
Please generate a tactic in lean4 to solve the state. STATE: F h1_phi h1_psi : Formula ⊢ IsDeduct ∅ (h1_phi.imp_ (h1_psi.imp_ h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsAxiom.prop_1_
case a F h1_phi h1_psi : Formula ⊢ IsAxiom (h1_phi.imp_ (h1_psi.imp_ h1_phi))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F h1_phi h1_psi : Formula ⊢ IsAxiom (h1_phi.imp_ (h1_psi.imp_ h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F h1_phi h1_psi h1_chi : Formula ⊢ IsDeduct ∅ ((h1_phi.imp_ (h1_psi.imp_ h1_chi)).imp_ ((h1_phi.imp_ h1_psi).imp_ (h1_phi.imp_ h1_chi)))
case a F h1_phi h1_psi h1_chi : Formula ⊢ IsAxiom ((h1_phi.imp_ (h1_psi.imp_ h1_chi)).imp_ ((h1_phi.imp_ h1_psi).imp_ (h1_phi.imp_ h1_chi)))
Please generate a tactic in lean4 to solve the state. STATE: F h1_phi h1_psi h1_chi : Formula ⊢ IsDeduct ∅ ((h1_phi.imp_ (h1_psi.imp_ h1_chi)).imp_ ((h1_phi.imp_ h1_psi).imp_ (h1_phi.imp_ h1_chi))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsAxiom.prop_2_
case a F h1_phi h1_psi h1_chi : Formula ⊢ IsAxiom ((h1_phi.imp_ (h1_psi.imp_ h1_chi)).imp_ ((h1_phi.imp_ h1_psi).imp_ (h1_phi.imp_ h1_chi)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F h1_phi h1_psi h1_chi : Formula ⊢ IsAxiom ((h1_phi.imp_ (h1_psi.imp_ h1_chi)).imp_ ((h1_phi.imp_ h1_psi).imp_ (h1_phi.imp_ h1_chi))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F h1_phi h1_psi : Formula ⊢ IsDeduct ∅ ((h1_phi.not_.imp_ h1_psi.not_).imp_ (h1_psi.imp_ h1_phi))
case a F h1_phi h1_psi : Formula ⊢ IsAxiom ((h1_phi.not_.imp_ h1_psi.not_).imp_ (h1_psi.imp_ h1_phi))
Please generate a tactic in lean4 to solve the state. STATE: F h1_phi h1_psi : Formula ⊢ IsDeduct ∅ ((h1_phi.not_.imp_ h1_psi.not_).imp_ (h1_psi.imp_ h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsAxiom.prop_3_
case a F h1_phi h1_psi : Formula ⊢ IsAxiom ((h1_phi.not_.imp_ h1_psi.not_).imp_ (h1_psi.imp_ h1_phi))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F h1_phi h1_psi : Formula ⊢ IsAxiom ((h1_phi.not_.imp_ h1_psi.not_).imp_ (h1_psi.imp_ h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F : Formula h1_v : VarName h1_phi h1_psi : Formula ⊢ IsDeduct ∅ ((forall_ h1_v (h1_phi.imp_ h1_psi)).imp_ ((forall_ h1_v h1_phi).imp_ (forall_ h1_v h1_psi)))
case a F : Formula h1_v : VarName h1_phi h1_psi : Formula ⊢ IsAxiom ((forall_ h1_v (h1_phi.imp_ h1_psi)).imp_ ((forall_ h1_v h1_phi).imp_ (forall_ h1_v h1_psi)))
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_v : VarName h1_phi h1_psi : Formula ⊢ IsDeduct ∅ ((forall_ h1_v (h1_phi.imp_ h1_psi)).imp_ ((forall_ h1_v h1_phi).imp_ (forall_ h1_v h1_psi))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsAxiom.pred_1_
case a F : Formula h1_v : VarName h1_phi h1_psi : Formula ⊢ IsAxiom ((forall_ h1_v (h1_phi.imp_ h1_psi)).imp_ ((forall_ h1_v h1_phi).imp_ (forall_ h1_v h1_psi)))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula h1_v : VarName h1_phi h1_psi : Formula ⊢ IsAxiom ((forall_ h1_v (h1_phi.imp_ h1_psi)).imp_ ((forall_ h1_v h1_phi).imp_ (forall_ h1_v h1_psi))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F : Formula h1_v h1_t : VarName h1_phi h1_phi' : Formula h1_1 : fastAdmits h1_v h1_t h1_phi h1_ih_1 : fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ IsDeduct ∅ ((forall_ h1_v h1_phi).imp_ h1_phi')
case a F : Formula h1_v h1_t : VarName h1_phi h1_phi' : Formula h1_1 : fastAdmits h1_v h1_t h1_phi h1_ih_1 : fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ IsAxiom ((forall_ h1_v h1_phi).imp_ h1_phi')
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_v h1_t : VarName h1_phi h1_phi' : Formula h1_1 : fastAdmits h1_v h1_t h1_phi h1_ih_1 : fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ IsDeduct ∅ ((forall_ h1_v h1_phi).imp_ h1_phi') TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
exact IsAxiom.pred_2_ h1_v h1_t h1_phi h1_phi' h1_1 h1_ih_1
case a F : Formula h1_v h1_t : VarName h1_phi h1_phi' : Formula h1_1 : fastAdmits h1_v h1_t h1_phi h1_ih_1 : fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ IsAxiom ((forall_ h1_v h1_phi).imp_ h1_phi')
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula h1_v h1_t : VarName h1_phi h1_phi' : Formula h1_1 : fastAdmits h1_v h1_t h1_phi h1_ih_1 : fastReplaceFree h1_v h1_t h1_phi = h1_phi' ⊢ IsAxiom ((forall_ h1_v h1_phi).imp_ h1_phi') TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ IsDeduct ∅ (h1_phi.imp_ (forall_ h1_v h1_phi))
case a F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ IsAxiom (h1_phi.imp_ (forall_ h1_v h1_phi))
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ IsDeduct ∅ (h1_phi.imp_ (forall_ h1_v h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsAxiom.pred_3_
case a F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ IsAxiom (h1_phi.imp_ (forall_ h1_v h1_phi))
case a.a F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ ¬isFreeIn h1_v h1_phi
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ IsAxiom (h1_phi.imp_ (forall_ h1_v h1_phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
exact h1_1
case a.a F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ ¬isFreeIn h1_v h1_phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a.a F : Formula h1_v : VarName h1_phi : Formula h1_1 : ¬isFreeIn h1_v h1_phi ⊢ ¬isFreeIn h1_v h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F : Formula h1 : VarName ⊢ IsDeduct ∅ (forall_ h1 (eq_ h1 h1))
case a F : Formula h1 : VarName ⊢ IsAxiom (forall_ h1 (eq_ h1 h1))
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1 : VarName ⊢ IsDeduct ∅ (forall_ h1 (eq_ h1 h1)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsAxiom.eq_1_
case a F : Formula h1 : VarName ⊢ IsAxiom (forall_ h1 (eq_ h1 h1))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula h1 : VarName ⊢ IsAxiom (forall_ h1 (eq_ h1 h1)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F : Formula h1_name : PredName h1_n : ℕ h1_xs h1_ys : Fin h1_n → VarName ⊢ IsDeduct ∅ (Forall_ (List.ofFn h1_xs) (Forall_ (List.ofFn h1_ys) ((And_ (List.ofFn fun i => eq_ (h1_xs i) (h1_ys i))).imp_ ((pred_const_ h1_name (List.ofFn h1_xs)).iff_ (pred_const_ h1_name (List.ofFn h1_ys))))))
case a F : Formula h1_name : PredName h1_n : ℕ h1_xs h1_ys : Fin h1_n → VarName ⊢ IsAxiom (Forall_ (List.ofFn h1_xs) (Forall_ (List.ofFn h1_ys) ((And_ (List.ofFn fun i => eq_ (h1_xs i) (h1_ys i))).imp_ ((pred_const_ h1_name (List.ofFn h1_xs)).iff_ (pred_const_ h1_name (List.ofFn h1_ys))))))
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_name : PredName h1_n : ℕ h1_xs h1_ys : Fin h1_n → VarName ⊢ IsDeduct ∅ (Forall_ (List.ofFn h1_xs) (Forall_ (List.ofFn h1_ys) ((And_ (List.ofFn fun i => eq_ (h1_xs i) (h1_ys i))).imp_ ((pred_const_ h1_name (List.ofFn h1_xs)).iff_ (pred_const_ h1_name (List.ofFn h1_ys)))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsAxiom.eq_2_pred_const_
case a F : Formula h1_name : PredName h1_n : ℕ h1_xs h1_ys : Fin h1_n → VarName ⊢ IsAxiom (Forall_ (List.ofFn h1_xs) (Forall_ (List.ofFn h1_ys) ((And_ (List.ofFn fun i => eq_ (h1_xs i) (h1_ys i))).imp_ ((pred_const_ h1_name (List.ofFn h1_xs)).iff_ (pred_const_ h1_name (List.ofFn h1_ys))))))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula h1_name : PredName h1_n : ℕ h1_xs h1_ys : Fin h1_n → VarName ⊢ IsAxiom (Forall_ (List.ofFn h1_xs) (Forall_ (List.ofFn h1_ys) ((And_ (List.ofFn fun i => eq_ (h1_xs i) (h1_ys i))).imp_ ((pred_const_ h1_name (List.ofFn h1_xs)).iff_ (pred_const_ h1_name (List.ofFn h1_ys)))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsDeduct.axiom_
F : Formula h1_x_0 h1_y_0 h1_x_1 h1_y_1 : VarName ⊢ IsDeduct ∅ (forall_ h1_x_0 (forall_ h1_y_0 (forall_ h1_x_1 (forall_ h1_y_1 (((eq_ h1_x_0 h1_x_1).and_ (eq_ h1_y_0 h1_y_1)).imp_ ((eq_ h1_x_0 h1_y_0).iff_ (eq_ h1_x_1 h1_y_1)))))))
case a F : Formula h1_x_0 h1_y_0 h1_x_1 h1_y_1 : VarName ⊢ IsAxiom (forall_ h1_x_0 (forall_ h1_y_0 (forall_ h1_x_1 (forall_ h1_y_1 (((eq_ h1_x_0 h1_x_1).and_ (eq_ h1_y_0 h1_y_1)).imp_ ((eq_ h1_x_0 h1_y_0).iff_ (eq_ h1_x_1 h1_y_1)))))))
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_x_0 h1_y_0 h1_x_1 h1_y_1 : VarName ⊢ IsDeduct ∅ (forall_ h1_x_0 (forall_ h1_y_0 (forall_ h1_x_1 (forall_ h1_y_1 (((eq_ h1_x_0 h1_x_1).and_ (eq_ h1_y_0 h1_y_1)).imp_ ((eq_ h1_x_0 h1_y_0).iff_ (eq_ h1_x_1 h1_y_1))))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply IsAxiom.eq_2_eq_
case a F : Formula h1_x_0 h1_y_0 h1_x_1 h1_y_1 : VarName ⊢ IsAxiom (forall_ h1_x_0 (forall_ h1_y_0 (forall_ h1_x_1 (forall_ h1_y_1 (((eq_ h1_x_0 h1_x_1).and_ (eq_ h1_y_0 h1_y_1)).imp_ ((eq_ h1_x_0 h1_y_0).iff_ (eq_ h1_x_1 h1_y_1)))))))
no goals
Please generate a tactic in lean4 to solve the state. STATE: case a F : Formula h1_x_0 h1_y_0 h1_x_1 h1_y_1 : VarName ⊢ IsAxiom (forall_ h1_x_0 (forall_ h1_y_0 (forall_ h1_x_1 (forall_ h1_y_1 (((eq_ h1_x_0 h1_x_1).and_ (eq_ h1_y_0 h1_y_1)).imp_ ((eq_ h1_x_0 h1_y_0).iff_ (eq_ h1_x_1 h1_y_1))))))) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
apply generalization
F : Formula h1_v : VarName h1_phi : Formula h1_1 : IsProofAlt h1_phi h1_ih : IsDeduct ∅ h1_phi ⊢ IsDeduct ∅ (forall_ h1_v h1_phi)
case h1 F : Formula h1_v : VarName h1_phi : Formula h1_1 : IsProofAlt h1_phi h1_ih : IsDeduct ∅ h1_phi ⊢ IsDeduct ∅ h1_phi case h2 F : Formula h1_v : VarName h1_phi : Formula h1_1 : IsProofAlt h1_phi h1_ih : IsDeduct ∅ h1_phi ⊢ ∀ H ∈ ∅, ¬isFreeIn h1_v H
Please generate a tactic in lean4 to solve the state. STATE: F : Formula h1_v : VarName h1_phi : Formula h1_1 : IsProofAlt h1_phi h1_ih : IsDeduct ∅ h1_phi ⊢ IsDeduct ∅ (forall_ h1_v h1_phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
exact h1_ih
case h1 F : Formula h1_v : VarName h1_phi : Formula h1_1 : IsProofAlt h1_phi h1_ih : IsDeduct ∅ h1_phi ⊢ IsDeduct ∅ h1_phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1 F : Formula h1_v : VarName h1_phi : Formula h1_1 : IsProofAlt h1_phi h1_ih : IsDeduct ∅ h1_phi ⊢ IsDeduct ∅ h1_phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
simp
case h2 F : Formula h1_v : VarName h1_phi : Formula h1_1 : IsProofAlt h1_phi h1_ih : IsDeduct ∅ h1_phi ⊢ ∀ H ∈ ∅, ¬isFreeIn h1_v H
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 F : Formula h1_v : VarName h1_phi : Formula h1_1 : IsProofAlt h1_phi h1_ih : IsDeduct ∅ h1_phi ⊢ ∀ H ∈ ∅, ¬isFreeIn h1_v H TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Margaris/Fol.lean
FOL.NV.isProofAltImpIsDeduct
[402, 1]
[446, 10]
exact IsDeduct.mp_ h1_phi h1_psi h1_ih_1 h1_ih_2
F h1_phi h1_psi : Formula h1_1 : IsProofAlt (h1_phi.imp_ h1_psi) h1_2 : IsProofAlt h1_phi h1_ih_1 : IsDeduct ∅ (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct ∅ h1_phi ⊢ IsDeduct ∅ h1_psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: F h1_phi h1_psi : Formula h1_1 : IsProofAlt (h1_phi.imp_ h1_psi) h1_2 : IsProofAlt h1_phi h1_ih_1 : IsDeduct ∅ (h1_phi.imp_ h1_psi) h1_ih_2 : IsDeduct ∅ h1_phi ⊢ IsDeduct ∅ h1_psi TACTIC: