url
stringclasses
147 values
commit
stringclasses
147 values
file_path
stringlengths
7
101
full_name
stringlengths
1
94
start
stringlengths
6
10
end
stringlengths
6
11
tactic
stringlengths
1
11.2k
state_before
stringlengths
3
2.09M
state_after
stringlengths
6
2.09M
input
stringlengths
73
2.09M
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
simp only [fastAdmitsAux] at h1
case def_ v u : VarName T : Finset VarName a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : fastAdmitsAux v u (S βˆͺ T) (def_ a✝¹ a✝) ⊒ fastAdmitsAux v u S (def_ a✝¹ a✝)
case def_ v u : VarName T : Finset VarName a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ S βˆͺ T ⊒ fastAdmitsAux v u S (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName T : Finset VarName a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : fastAdmitsAux v u (S βˆͺ T) (def_ a✝¹ a✝) ⊒ fastAdmitsAux v u S (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
simp only [fastAdmitsAux]
case def_ v u : VarName T : Finset VarName a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ S βˆͺ T ⊒ fastAdmitsAux v u S (def_ a✝¹ a✝)
case def_ v u : VarName T : Finset VarName a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ S βˆͺ T ⊒ v ∈ a✝ β†’ u βˆ‰ S
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName T : Finset VarName a✝¹ : DefName a✝ : List VarName S : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ S βˆͺ T ⊒ fastAdmitsAux v u S (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
simp at h1
v u : VarName T : Finset VarName X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs β†’ u βˆ‰ S βˆͺ T ⊒ v ∈ xs β†’ u βˆ‰ S
v u : VarName T : Finset VarName X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs β†’ u βˆ‰ S ∧ u βˆ‰ T ⊒ v ∈ xs β†’ u βˆ‰ S
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName T : Finset VarName X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs β†’ u βˆ‰ S βˆͺ T ⊒ v ∈ xs β†’ u βˆ‰ S TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
tauto
v u : VarName T : Finset VarName X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs β†’ u βˆ‰ S ∧ u βˆ‰ T ⊒ v ∈ xs β†’ u βˆ‰ S
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName T : Finset VarName X : DefName xs : List VarName S : Finset VarName h1 : v ∈ xs β†’ u βˆ‰ S ∧ u βˆ‰ T ⊒ v ∈ xs β†’ u βˆ‰ S TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
simp at h1
v u : VarName T : Finset VarName x y : VarName S : Finset VarName h1 : v = x ∨ v = y β†’ u βˆ‰ S βˆͺ T ⊒ v = x ∨ v = y β†’ u βˆ‰ S
v u : VarName T : Finset VarName x y : VarName S : Finset VarName h1 : v = x ∨ v = y β†’ u βˆ‰ S ∧ u βˆ‰ T ⊒ v = x ∨ v = y β†’ u βˆ‰ S
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName T : Finset VarName x y : VarName S : Finset VarName h1 : v = x ∨ v = y β†’ u βˆ‰ S βˆͺ T ⊒ v = x ∨ v = y β†’ u βˆ‰ S TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
tauto
v u : VarName T : Finset VarName x y : VarName S : Finset VarName h1 : v = x ∨ v = y β†’ u βˆ‰ S ∧ u βˆ‰ T ⊒ v = x ∨ v = y β†’ u βˆ‰ S
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName T : Finset VarName x y : VarName S : Finset VarName h1 : v = x ∨ v = y β†’ u βˆ‰ S ∧ u βˆ‰ T ⊒ v = x ∨ v = y β†’ u βˆ‰ S TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
tauto
v u : VarName T : Finset VarName phi : Formula phi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) phi β†’ fastAdmitsAux v u S phi S : Finset VarName h1 : fastAdmitsAux v u (S βˆͺ T) phi ⊒ fastAdmitsAux v u S phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName T : Finset VarName phi : Formula phi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) phi β†’ fastAdmitsAux v u S phi S : Finset VarName h1 : fastAdmitsAux v u (S βˆͺ T) phi ⊒ fastAdmitsAux v u S phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
tauto
v u : VarName T : Finset VarName phi psi : Formula phi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) phi β†’ fastAdmitsAux v u S phi psi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) psi β†’ fastAdmitsAux v u S psi S : Finset VarName h1 : fastAdmitsAux v u (S βˆͺ T) phi ∧ fastAdmitsAux v u (S βˆͺ T) psi ⊒ fastAdmitsAux v u S phi ∧ fastAdmitsAux v u S psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName T : Finset VarName phi psi : Formula phi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) phi β†’ fastAdmitsAux v u S phi psi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) psi β†’ fastAdmitsAux v u S psi S : Finset VarName h1 : fastAdmitsAux v u (S βˆͺ T) phi ∧ fastAdmitsAux v u (S βˆͺ T) psi ⊒ fastAdmitsAux v u S phi ∧ fastAdmitsAux v u S psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
simp only [Finset.union_right_comm S T {x}] at h1
v u : VarName T : Finset VarName x : VarName phi : Formula phi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) phi β†’ fastAdmitsAux v u S phi S : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (S βˆͺ T βˆͺ {x}) phi ⊒ v = x ∨ fastAdmitsAux v u (S βˆͺ {x}) phi
v u : VarName T : Finset VarName x : VarName phi : Formula phi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) phi β†’ fastAdmitsAux v u S phi S : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (S βˆͺ {x} βˆͺ T) phi ⊒ v = x ∨ fastAdmitsAux v u (S βˆͺ {x}) phi
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName T : Finset VarName x : VarName phi : Formula phi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) phi β†’ fastAdmitsAux v u S phi S : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (S βˆͺ T βˆͺ {x}) phi ⊒ v = x ∨ fastAdmitsAux v u (S βˆͺ {x}) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
[544, 1]
[575, 10]
tauto
v u : VarName T : Finset VarName x : VarName phi : Formula phi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) phi β†’ fastAdmitsAux v u S phi S : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (S βˆͺ {x} βˆͺ T) phi ⊒ v = x ∨ fastAdmitsAux v u (S βˆͺ {x}) phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName T : Finset VarName x : VarName phi : Formula phi_ih : βˆ€ (S : Finset VarName), fastAdmitsAux v u (S βˆͺ T) phi β†’ fastAdmitsAux v u S phi S : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (S βˆͺ {x} βˆͺ T) phi ⊒ v = x ∨ fastAdmitsAux v u (S βˆͺ {x}) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders F h2 : isFreeIn v F ⊒ u βˆ‰ binders
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) h2 : isFreeIn v (pred_const_ a✝¹ a✝) ⊒ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) h2 : isFreeIn v (pred_var_ a✝¹ a✝) ⊒ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (eq_ a✝¹ a✝) h2 : isFreeIn v (eq_ a✝¹ a✝) ⊒ u βˆ‰ binders case true_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders true_ h2 : isFreeIn v true_ ⊒ u βˆ‰ binders case false_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders false_ h2 : isFreeIn v false_ ⊒ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝.not_ h2 : isFreeIn v a✝.not_ ⊒ u βˆ‰ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.imp_ a✝) h2 : isFreeIn v (a✝¹.imp_ a✝) ⊒ u βˆ‰ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.and_ a✝) h2 : isFreeIn v (a✝¹.and_ a✝) ⊒ u βˆ‰ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.or_ a✝) h2 : isFreeIn v (a✝¹.or_ a✝) ⊒ u βˆ‰ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.iff_ a✝) h2 : isFreeIn v (a✝¹.iff_ a✝) ⊒ u βˆ‰ binders case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (forall_ a✝¹ a✝) h2 : isFreeIn v (forall_ a✝¹ a✝) ⊒ u βˆ‰ binders case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (exists_ a✝¹ a✝) h2 : isFreeIn v (exists_ a✝¹ a✝) ⊒ u βˆ‰ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝) h2 : isFreeIn v (def_ a✝¹ a✝) ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders F h2 : isFreeIn v F ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
all_goals simp only [fastAdmitsAux] at h1 simp only [isFreeIn] at h2
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) h2 : isFreeIn v (pred_const_ a✝¹ a✝) ⊒ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) h2 : isFreeIn v (pred_var_ a✝¹ a✝) ⊒ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (eq_ a✝¹ a✝) h2 : isFreeIn v (eq_ a✝¹ a✝) ⊒ u βˆ‰ binders case true_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders true_ h2 : isFreeIn v true_ ⊒ u βˆ‰ binders case false_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders false_ h2 : isFreeIn v false_ ⊒ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝.not_ h2 : isFreeIn v a✝.not_ ⊒ u βˆ‰ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.imp_ a✝) h2 : isFreeIn v (a✝¹.imp_ a✝) ⊒ u βˆ‰ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.and_ a✝) h2 : isFreeIn v (a✝¹.and_ a✝) ⊒ u βˆ‰ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.or_ a✝) h2 : isFreeIn v (a✝¹.or_ a✝) ⊒ u βˆ‰ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.iff_ a✝) h2 : isFreeIn v (a✝¹.iff_ a✝) ⊒ u βˆ‰ binders case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (forall_ a✝¹ a✝) h2 : isFreeIn v (forall_ a✝¹ a✝) ⊒ u βˆ‰ binders case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (exists_ a✝¹ a✝) h2 : isFreeIn v (exists_ a✝¹ a✝) ⊒ u βˆ‰ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝) h2 : isFreeIn v (def_ a✝¹ a✝) ⊒ u βˆ‰ binders
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders h2 : v = a✝¹ ∨ v = a✝ ⊒ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝ ⊒ u βˆ‰ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ h2 : Β¬v = a✝¹ ∧ isFreeIn v a✝ ⊒ u βˆ‰ binders case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ h2 : Β¬v = a✝¹ ∧ isFreeIn v a✝ ⊒ u βˆ‰ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) h2 : isFreeIn v (pred_const_ a✝¹ a✝) ⊒ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) h2 : isFreeIn v (pred_var_ a✝¹ a✝) ⊒ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (eq_ a✝¹ a✝) h2 : isFreeIn v (eq_ a✝¹ a✝) ⊒ u βˆ‰ binders case true_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders true_ h2 : isFreeIn v true_ ⊒ u βˆ‰ binders case false_ v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders false_ h2 : isFreeIn v false_ ⊒ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝.not_ h2 : isFreeIn v a✝.not_ ⊒ u βˆ‰ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.imp_ a✝) h2 : isFreeIn v (a✝¹.imp_ a✝) ⊒ u βˆ‰ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.and_ a✝) h2 : isFreeIn v (a✝¹.and_ a✝) ⊒ u βˆ‰ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.or_ a✝) h2 : isFreeIn v (a✝¹.or_ a✝) ⊒ u βˆ‰ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (a✝¹.iff_ a✝) h2 : isFreeIn v (a✝¹.iff_ a✝) ⊒ u βˆ‰ binders case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (forall_ a✝¹ a✝) h2 : isFreeIn v (forall_ a✝¹ a✝) ⊒ u βˆ‰ binders case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders (exists_ a✝¹ a✝) h2 : isFreeIn v (exists_ a✝¹ a✝) ⊒ u βˆ‰ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝) h2 : isFreeIn v (def_ a✝¹ a✝) ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
all_goals tauto
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders h2 : v = a✝¹ ∨ v = a✝ ⊒ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝ ⊒ u βˆ‰ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders h2 : v = a✝¹ ∨ v = a✝ ⊒ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝ ⊒ u βˆ‰ binders case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝¹ β†’ isFreeIn v a✝¹ β†’ u βˆ‰ binders a_ih✝ : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders a✝ β†’ isFreeIn v a✝ β†’ u βˆ‰ binders binders : Finset VarName h1 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ h2 : isFreeIn v a✝¹ ∨ isFreeIn v a✝ ⊒ u βˆ‰ binders case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
simp only [fastAdmitsAux] at h1
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝) h2 : isFreeIn v (def_ a✝¹ a✝) ⊒ u βˆ‰ binders
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : isFreeIn v (def_ a✝¹ a✝) ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : fastAdmitsAux v u binders (def_ a✝¹ a✝) h2 : isFreeIn v (def_ a✝¹ a✝) ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
simp only [isFreeIn] at h2
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : isFreeIn v (def_ a✝¹ a✝) ⊒ u βˆ‰ binders
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : isFreeIn v (def_ a✝¹ a✝) ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
cases h2
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi h2 : Β¬v = x ∧ isFreeIn v phi ⊒ u βˆ‰ binders
case intro v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi left✝ : Β¬v = x right✝ : isFreeIn v phi ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi h2 : Β¬v = x ∧ isFreeIn v phi ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
cases h1
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi h2_left : Β¬v = x h2_right : isFreeIn v phi ⊒ u βˆ‰ binders
case inl v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h✝ : v = x ⊒ u βˆ‰ binders case inr v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h✝ : fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h1 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi h2_left : Β¬v = x h2_right : isFreeIn v phi ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
case inl h1 => contradiction
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : v = x ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : v = x ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
contradiction
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : v = x ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : v = x ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
apply phi_ih
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ u βˆ‰ binders
case h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ fastAdmitsAux v u binders phi case h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ isFreeIn v phi
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
exact fastAdmitsAux_del_binders phi v u binders {x} h1
case h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ fastAdmitsAux v u binders phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ fastAdmitsAux v u binders phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
exact h2_right
case h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ isFreeIn v phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), fastAdmitsAux v u binders phi β†’ isFreeIn v phi β†’ u βˆ‰ binders binders : Finset VarName h2_left : Β¬v = x h2_right : isFreeIn v phi h1 : fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ isFreeIn v phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
[579, 1]
[603, 10]
tauto
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v ∈ a✝ β†’ u βˆ‰ binders h2 : v ∈ a✝ ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_mem_binders
[606, 1]
[615, 51]
contrapose! h2
F : Formula v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders F h2 : u ∈ binders ⊒ ¬isFreeIn v F
F : Formula v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders F h2 : isFreeIn v F ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders F h2 : u ∈ binders ⊒ ¬isFreeIn v F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_mem_binders
[606, 1]
[615, 51]
exact fastAdmitsAux_isFreeIn F v u binders h1 h2
F : Formula v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders F h2 : isFreeIn v F ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v u : VarName binders : Finset VarName h1 : fastAdmitsAux v u binders F h2 : isFreeIn v F ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders F ⊒ toIsBoundAux binders F = toIsBoundAux binders (fastReplaceFree v u F)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊒ toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ a✝¹ a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊒ toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ a✝¹ a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊒ toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (eq_ a✝¹ a✝)) case true_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders true_ ⊒ toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_) case false_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders false_ ⊒ toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_) case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝.not_ ⊒ toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝.not_) case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊒ toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.imp_ a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊒ toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.and_ a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊒ toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.or_ a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊒ toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.iff_ a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊒ toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (forall_ a✝¹ a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊒ toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (exists_ a✝¹ a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝))
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders F ⊒ toIsBoundAux binders F = toIsBoundAux binders (fastReplaceFree v u F) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
all_goals simp only [fastAdmitsAux] at h2 simp only [fastReplaceFree]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊒ toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ a✝¹ a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊒ toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ a✝¹ a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊒ toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (eq_ a✝¹ a✝)) case true_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders true_ ⊒ toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_) case false_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders false_ ⊒ toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_) case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝.not_ ⊒ toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝.not_) case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊒ toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.imp_ a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊒ toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.and_ a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊒ toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.or_ a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊒ toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.iff_ a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊒ toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (forall_ a✝¹ a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊒ toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (exists_ a✝¹ a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝))
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (pred_const_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (pred_var_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (eq_ (if v = a✝¹ then u else a✝¹) (if v = a✝ then u else a✝)) case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝).not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).imp_ (fastReplaceFree v u a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).and_ (fastReplaceFree v u a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).or_ (fastReplaceFree v u a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).iff_ (fastReplaceFree v u a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v u a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v u a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝))
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) ⊒ toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ a✝¹ a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) ⊒ toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ a✝¹ a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (eq_ a✝¹ a✝) ⊒ toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (eq_ a✝¹ a✝)) case true_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders true_ ⊒ toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_) case false_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders false_ ⊒ toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_) case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝.not_ ⊒ toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝.not_) case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.imp_ a✝) ⊒ toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.imp_ a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.and_ a✝) ⊒ toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.and_ a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.or_ a✝) ⊒ toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.or_ a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (a✝¹.iff_ a✝) ⊒ toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.iff_ a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (forall_ a✝¹ a✝) ⊒ toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (forall_ a✝¹ a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (exists_ a✝¹ a✝) ⊒ toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (exists_ a✝¹ a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
any_goals simp only [toIsBoundAux]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (pred_const_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (pred_var_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (eq_ (if v = a✝¹ then u else a✝¹) (if v = a✝ then u else a✝)) case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝).not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).imp_ (fastReplaceFree v u a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).and_ (fastReplaceFree v u a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).or_ (fastReplaceFree v u a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).iff_ (fastReplaceFree v u a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v u a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v u a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝))
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ BoolFormula.pred_const_ a✝¹ (List.map (fun v => decide (v ∈ binders)) a✝) = BoolFormula.pred_const_ a✝¹ (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ BoolFormula.pred_var_ a✝¹ (List.map (fun v => decide (v ∈ binders)) a✝) = BoolFormula.pred_var_ a✝¹ (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders ⊒ BoolFormula.eq_ (decide (a✝¹ ∈ binders)) (decide (a✝ ∈ binders)) = BoolFormula.eq_ (decide ((if v = a✝¹ then u else a✝¹) ∈ binders)) (decide ((if v = a✝ then u else a✝) ∈ binders)) case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝ ⊒ (toIsBoundAux binders a✝).not_ = (toIsBoundAux binders (fastReplaceFree v u a✝)).not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ (toIsBoundAux binders a✝¹).imp_ (toIsBoundAux binders a✝) = (toIsBoundAux binders (fastReplaceFree v u a✝¹)).imp_ (toIsBoundAux binders (fastReplaceFree v u a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ (toIsBoundAux binders a✝¹).and_ (toIsBoundAux binders a✝) = (toIsBoundAux binders (fastReplaceFree v u a✝¹)).and_ (toIsBoundAux binders (fastReplaceFree v u a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ (toIsBoundAux binders a✝¹).or_ (toIsBoundAux binders a✝) = (toIsBoundAux binders (fastReplaceFree v u a✝¹)).or_ (toIsBoundAux binders (fastReplaceFree v u a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ (toIsBoundAux binders a✝¹).iff_ (toIsBoundAux binders a✝) = (toIsBoundAux binders (fastReplaceFree v u a✝¹)).iff_ (toIsBoundAux binders (fastReplaceFree v u a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {a✝¹}) a✝) = toIsBoundAux binders (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v u a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {a✝¹}) a✝) = toIsBoundAux binders (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v u a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ BoolFormula.def_ a✝¹ (List.map (fun v => decide (v ∈ binders)) a✝) = BoolFormula.def_ a✝¹ (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) a✝))
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (pred_const_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (pred_var_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (eq_ (if v = a✝¹ then u else a✝¹) (if v = a✝ then u else a✝)) case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝).not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).imp_ (fastReplaceFree v u a✝)) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).and_ (fastReplaceFree v u a✝)) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).or_ (fastReplaceFree v u a✝)) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝¹ β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ ⊒ toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).iff_ (fastReplaceFree v u a✝)) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v u a✝)) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders a✝ β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ ⊒ toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v u a✝)) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
case eq_ x y => simp constructor case left | right => split_ifs case pos c1 => subst c1 tauto case neg c1 => rfl
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ BoolFormula.eq_ (decide (x ∈ binders)) (decide (y ∈ binders)) = BoolFormula.eq_ (decide ((if v = x then u else x) ∈ binders)) (decide ((if v = y then u else y) ∈ binders))
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ BoolFormula.eq_ (decide (x ∈ binders)) (decide (y ∈ binders)) = BoolFormula.eq_ (decide ((if v = x then u else x) ∈ binders)) (decide ((if v = y then u else y) ∈ binders)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
case not_ phi phi_ih => tauto
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ⊒ (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ⊒ (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => simp tauto
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders psi β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi ⊒ (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) = (toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders psi β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi ⊒ (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) = (toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp only [fastAdmitsAux] at h2
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝))
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝))
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders (def_ a✝¹ a✝) ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp only [fastReplaceFree]
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝))
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝))
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp only [toIsBoundAux]
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝))
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ BoolFormula.def_ a✝¹ (List.map (fun v => decide (v ∈ binders)) a✝) = BoolFormula.def_ a✝¹ (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) a✝))
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ a✝ β†’ u βˆ‰ binders ⊒ toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders ⊒ BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) xs) = BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) xs))
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders ⊒ List.map (fun v => decide (v ∈ binders)) xs = List.map ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) xs
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders ⊒ BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) xs) = BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) xs)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp only [List.map_eq_map_iff]
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders ⊒ List.map (fun v => decide (v ∈ binders)) xs = List.map ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) xs
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders ⊒ βˆ€ x ∈ xs, decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders ⊒ List.map (fun v => decide (v ∈ binders)) xs = List.map ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) xs TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
intro x a1
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders ⊒ βˆ€ x ∈ xs, decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs ⊒ decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders ⊒ βˆ€ x ∈ xs, decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs ⊒ decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs ⊒ decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
by_cases c1 : v = x
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders
case pos v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs c1 : v = x ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders case neg v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs c1 : Β¬v = x ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
subst c1
case pos v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs c1 : v = x ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders
case pos v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders a1 : v ∈ xs ⊒ v ∈ binders ↔ (if v = v then u else v) ∈ binders
Please generate a tactic in lean4 to solve the state. STATE: case pos v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs c1 : v = x ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp
case pos v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders a1 : v ∈ xs ⊒ v ∈ binders ↔ (if v = v then u else v) ∈ binders
case pos v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders a1 : v ∈ xs ⊒ v ∈ binders ↔ u ∈ binders
Please generate a tactic in lean4 to solve the state. STATE: case pos v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders a1 : v ∈ xs ⊒ v ∈ binders ↔ (if v = v then u else v) ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
tauto
case pos v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders a1 : v ∈ xs ⊒ v ∈ binders ↔ u ∈ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: case pos v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders a1 : v ∈ xs ⊒ v ∈ binders ↔ u ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp only [if_neg c1]
case neg v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs c1 : Β¬v = x ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: case neg v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v ∈ xs β†’ u βˆ‰ binders x : VarName a1 : x ∈ xs c1 : Β¬v = x ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ BoolFormula.eq_ (decide (x ∈ binders)) (decide (y ∈ binders)) = BoolFormula.eq_ (decide ((if v = x then u else x) ∈ binders)) (decide ((if v = y then u else y) ∈ binders))
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ (x ∈ binders ↔ (if v = x then u else x) ∈ binders) ∧ (y ∈ binders ↔ (if v = y then u else y) ∈ binders)
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ BoolFormula.eq_ (decide (x ∈ binders)) (decide (y ∈ binders)) = BoolFormula.eq_ (decide ((if v = x then u else x) ∈ binders)) (decide ((if v = y then u else y) ∈ binders)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
constructor
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ (x ∈ binders ↔ (if v = x then u else x) ∈ binders) ∧ (y ∈ binders ↔ (if v = y then u else y) ∈ binders)
case left v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ x ∈ binders ↔ (if v = x then u else x) ∈ binders case right v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ y ∈ binders ↔ (if v = y then u else y) ∈ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ (x ∈ binders ↔ (if v = x then u else x) ∈ binders) ∧ (y ∈ binders ↔ (if v = y then u else y) ∈ binders) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
case left | right => split_ifs case pos c1 => subst c1 tauto case neg c1 => rfl
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ y ∈ binders ↔ (if v = y then u else y) ∈ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ y ∈ binders ↔ (if v = y then u else y) ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
split_ifs
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ y ∈ binders ↔ (if v = y then u else y) ∈ binders
case pos v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders h✝ : v = y ⊒ y ∈ binders ↔ u ∈ binders case neg v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders h✝ : Β¬v = y ⊒ y ∈ binders ↔ y ∈ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders ⊒ y ∈ binders ↔ (if v = y then u else y) ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
case pos c1 => subst c1 tauto
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders c1 : v = y ⊒ y ∈ binders ↔ u ∈ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders c1 : v = y ⊒ y ∈ binders ↔ u ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
case neg c1 => rfl
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders c1 : Β¬v = y ⊒ y ∈ binders ↔ y ∈ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders c1 : Β¬v = y ⊒ y ∈ binders ↔ y ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
subst c1
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders c1 : v = y ⊒ y ∈ binders ↔ u ∈ binders
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = v β†’ u βˆ‰ binders ⊒ v ∈ binders ↔ u ∈ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders c1 : v = y ⊒ y ∈ binders ↔ u ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
tauto
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = v β†’ u βˆ‰ binders ⊒ v ∈ binders ↔ u ∈ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = v β†’ u βˆ‰ binders ⊒ v ∈ binders ↔ u ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
rfl
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders c1 : Β¬v = y ⊒ y ∈ binders ↔ y ∈ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ v = y β†’ u βˆ‰ binders c1 : Β¬v = y ⊒ y ∈ binders ↔ y ∈ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
tauto
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ⊒ (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ⊒ (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_ TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders psi β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi ⊒ (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) = (toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders psi β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi ⊒ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ∧ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders psi β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi ⊒ (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) = (toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
tauto
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders psi β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi ⊒ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ∧ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders psi β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) binders : Finset VarName h1 : v βˆ‰ binders h2 : fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi ⊒ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ∧ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
split_ifs
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi))
case pos v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi h✝ : v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) case neg v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi h✝ : Β¬v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
case pos c1 => rfl
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
rfl
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp only [toIsBoundAux]
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi))
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi))
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
apply phi_ih
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi)
case h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ v βˆ‰ binders βˆͺ {x} case h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ fastAdmitsAux v u (binders βˆͺ {x}) phi
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ toIsBoundAux (binders βˆͺ {x}) phi = toIsBoundAux (binders βˆͺ {x}) (fastReplaceFree v u phi) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
simp
case h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ v βˆ‰ binders βˆͺ {x}
case h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ v βˆ‰ binders ∧ Β¬v = x
Please generate a tactic in lean4 to solve the state. STATE: case h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ v βˆ‰ binders βˆͺ {x} TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
tauto
case h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ v βˆ‰ binders ∧ Β¬v = x
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h1 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ v βˆ‰ binders ∧ Β¬v = x TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
[619, 1]
[674, 14]
tauto
case h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ fastAdmitsAux v u (binders βˆͺ {x}) phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: case h2 v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ fastAdmitsAux v u binders phi β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) binders : Finset VarName h1 : v βˆ‰ binders h2 : v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi c1 : Β¬v = x ⊒ fastAdmitsAux v u (binders βˆͺ {x}) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
induction F generalizing binders
F : Formula v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders F = toIsBoundAux binders (fastReplaceFree v u F) ⊒ fastAdmitsAux v u binders F
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (eq_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_) ⊒ fastAdmitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_) ⊒ fastAdmitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝.not_) ⊒ fastAdmitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.imp_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.and_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.or_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.iff_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (forall_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (exists_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: F : Formula v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders F = toIsBoundAux binders (fastReplaceFree v u F) ⊒ fastAdmitsAux v u binders F TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
all_goals simp only [fastReplaceFree] at h2 simp only [fastAdmitsAux]
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (eq_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_) ⊒ fastAdmitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_) ⊒ fastAdmitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝.not_) ⊒ fastAdmitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.imp_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.and_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.or_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.iff_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (forall_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (exists_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (def_ a✝¹ a✝)
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (pred_const_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (pred_var_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (eq_ (if v = a✝¹ then u else a✝¹) (if v = a✝ then u else a✝)) ⊒ v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝).not_ ⊒ fastAdmitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).imp_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).and_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).or_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).iff_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v u a✝)) ⊒ v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v u a✝)) ⊒ v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (pred_const_ a✝¹ a✝) case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (pred_var_ a✝¹ a✝) case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (eq_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (eq_ a✝¹ a✝) case true_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_) ⊒ fastAdmitsAux v u binders true_ case false_ v u : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_) ⊒ fastAdmitsAux v u binders false_ case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝.not_) ⊒ fastAdmitsAux v u binders a✝.not_ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.imp_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.imp_ a✝) case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.and_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.and_ a✝) case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.or_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.or_ a✝) case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders (fastReplaceFree v u (a✝¹.iff_ a✝)) ⊒ fastAdmitsAux v u binders (a✝¹.iff_ a✝) case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (forall_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (forall_ a✝¹ a✝) case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (exists_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (exists_ a✝¹ a✝) case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
any_goals simp only [toIsBoundAux] at h2
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (pred_const_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (pred_var_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (eq_ (if v = a✝¹ then u else a✝¹) (if v = a✝ then u else a✝)) ⊒ v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝).not_ ⊒ fastAdmitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).imp_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).and_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).or_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).iff_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v u a✝)) ⊒ v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v u a✝)) ⊒ v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders
case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.pred_const_ a✝¹ (List.map (fun v => decide (v ∈ binders)) a✝) = BoolFormula.pred_const_ a✝¹ (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.pred_var_ a✝¹ (List.map (fun v => decide (v ∈ binders)) a✝) = BoolFormula.pred_var_ a✝¹ (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.eq_ (decide (a✝¹ ∈ binders)) (decide (a✝ ∈ binders)) = BoolFormula.eq_ (decide ((if v = a✝¹ then u else a✝¹) ∈ binders)) (decide ((if v = a✝ then u else a✝) ∈ binders)) ⊒ v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders a✝).not_ = (toIsBoundAux binders (fastReplaceFree v u a✝)).not_ ⊒ fastAdmitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders a✝¹).imp_ (toIsBoundAux binders a✝) = (toIsBoundAux binders (fastReplaceFree v u a✝¹)).imp_ (toIsBoundAux binders (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders a✝¹).and_ (toIsBoundAux binders a✝) = (toIsBoundAux binders (fastReplaceFree v u a✝¹)).and_ (toIsBoundAux binders (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders a✝¹).or_ (toIsBoundAux binders a✝) = (toIsBoundAux binders (fastReplaceFree v u a✝¹)).or_ (toIsBoundAux binders (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders a✝¹).iff_ (toIsBoundAux binders a✝) = (toIsBoundAux binders (fastReplaceFree v u a✝¹)).iff_ (toIsBoundAux binders (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {a✝¹}) a✝) = toIsBoundAux binders (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v u a✝)) ⊒ v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {a✝¹}) a✝) = toIsBoundAux binders (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v u a✝)) ⊒ v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.def_ a✝¹ (List.map (fun v => decide (v ∈ binders)) a✝) = BoolFormula.def_ a✝¹ (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: case pred_const_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_const_ a✝¹ a✝) = toIsBoundAux binders (pred_const_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders case pred_var_ v u : VarName a✝¹ : PredName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (pred_var_ a✝¹ a✝) = toIsBoundAux binders (pred_var_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders case eq_ v u a✝¹ a✝ : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (eq_ a✝¹ a✝) = toIsBoundAux binders (eq_ (if v = a✝¹ then u else a✝¹) (if v = a✝ then u else a✝)) ⊒ v = a✝¹ ∨ v = a✝ β†’ u βˆ‰ binders case not_ v u : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders a✝.not_ = toIsBoundAux binders (fastReplaceFree v u a✝).not_ ⊒ fastAdmitsAux v u binders a✝ case imp_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.imp_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).imp_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case and_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.and_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).and_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case or_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.or_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).or_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case iff_ v u : VarName a✝¹ a✝ : Formula a_ih✝¹ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝¹ = toIsBoundAux binders (fastReplaceFree v u a✝¹) β†’ fastAdmitsAux v u binders a✝¹ a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (a✝¹.iff_ a✝) = toIsBoundAux binders ((fastReplaceFree v u a✝¹).iff_ (fastReplaceFree v u a✝)) ⊒ fastAdmitsAux v u binders a✝¹ ∧ fastAdmitsAux v u binders a✝ case forall_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (forall_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then forall_ a✝¹ a✝ else forall_ a✝¹ (fastReplaceFree v u a✝)) ⊒ v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ case exists_ v u a✝¹ : VarName a✝ : Formula a_ih✝ : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders a✝ = toIsBoundAux binders (fastReplaceFree v u a✝) β†’ fastAdmitsAux v u binders a✝ binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (exists_ a✝¹ a✝) = toIsBoundAux binders (if v = a✝¹ then exists_ a✝¹ a✝ else exists_ a✝¹ (fastReplaceFree v u a✝)) ⊒ v = a✝¹ ∨ fastAdmitsAux v u (binders βˆͺ {a✝¹}) a✝ case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
case pred_const_ X xs | pred_var_ X xs | def_ X xs => simp at h2 simp only [List.map_eq_map_iff] at h2 intro a1 specialize h2 v a1 simp at h2 tauto
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) xs) = BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) xs)) ⊒ v ∈ xs β†’ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) xs) = BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) xs)) ⊒ v ∈ xs β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
case eq_ x y => simp at h2 cases h2 case intro h2_left h2_right => intros a1 cases a1 case inl a1 => subst a1 simp at h2_left tauto case inr a1 => subst a1 simp at h2_right tauto
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.eq_ (decide (x ∈ binders)) (decide (y ∈ binders)) = BoolFormula.eq_ (decide ((if v = x then u else x) ∈ binders)) (decide ((if v = y then u else y) ∈ binders)) ⊒ v = x ∨ v = y β†’ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.eq_ (decide (x ∈ binders)) (decide (y ∈ binders)) = BoolFormula.eq_ (decide ((if v = x then u else x) ∈ binders)) (decide ((if v = y then u else y) ∈ binders)) ⊒ v = x ∨ v = y β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
case not_ phi phi_ih => simp at h2 exact phi_ih binders h1 h2
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_ ⊒ fastAdmitsAux v u binders phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_ ⊒ fastAdmitsAux v u binders phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
case imp_ phi psi phi_ih psi_ih | and_ phi psi phi_ih psi_ih | or_ phi psi phi_ih psi_ih | iff_ phi psi phi_ih psi_ih => simp at h2 tauto
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) = (toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi)) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) = (toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi)) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp only [fastReplaceFree] at h2
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ fastAdmitsAux v u binders (def_ a✝¹ a✝)
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (fastReplaceFree v u (def_ a✝¹ a✝)) ⊒ fastAdmitsAux v u binders (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp only [fastAdmitsAux]
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ fastAdmitsAux v u binders (def_ a✝¹ a✝)
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ fastAdmitsAux v u binders (def_ a✝¹ a✝) TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp only [toIsBoundAux] at h2
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders
case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.def_ a✝¹ (List.map (fun v => decide (v ∈ binders)) a✝) = BoolFormula.def_ a✝¹ (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: case def_ v u : VarName a✝¹ : DefName a✝ : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders (def_ a✝¹ a✝) = toIsBoundAux binders (def_ a✝¹ (List.map (fun x => if v = x then u else x) a✝)) ⊒ v ∈ a✝ β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) xs) = BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) xs)) ⊒ v ∈ xs β†’ u βˆ‰ binders
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : List.map (fun v => decide (v ∈ binders)) xs = List.map ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) xs ⊒ v ∈ xs β†’ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) xs) = BoolFormula.def_ X (List.map (fun v => decide (v ∈ binders)) (List.map (fun x => if v = x then u else x) xs)) ⊒ v ∈ xs β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp only [List.map_eq_map_iff] at h2
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : List.map (fun v => decide (v ∈ binders)) xs = List.map ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) xs ⊒ v ∈ xs β†’ u βˆ‰ binders
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : βˆ€ x ∈ xs, decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x ⊒ v ∈ xs β†’ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : List.map (fun v => decide (v ∈ binders)) xs = List.map ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) xs ⊒ v ∈ xs β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
intro a1
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : βˆ€ x ∈ xs, decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x ⊒ v ∈ xs β†’ u βˆ‰ binders
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : βˆ€ x ∈ xs, decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x a1 : v ∈ xs ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : βˆ€ x ∈ xs, decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x ⊒ v ∈ xs β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
specialize h2 v a1
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : βˆ€ x ∈ xs, decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x a1 : v ∈ xs ⊒ u βˆ‰ binders
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders a1 : v ∈ xs h2 : decide (v ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) v ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : βˆ€ x ∈ xs, decide (x ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) x a1 : v ∈ xs ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders a1 : v ∈ xs h2 : decide (v ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) v ⊒ u βˆ‰ binders
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders a1 : v ∈ xs h2 : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders a1 : v ∈ xs h2 : decide (v ∈ binders) = ((fun v => decide (v ∈ binders)) ∘ fun x => if v = x then u else x) v ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
tauto
v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders a1 : v ∈ xs h2 : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName X : DefName xs : List VarName binders : Finset VarName h1 : v βˆ‰ binders a1 : v ∈ xs h2 : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.eq_ (decide (x ∈ binders)) (decide (y ∈ binders)) = BoolFormula.eq_ (decide ((if v = x then u else x) ∈ binders)) (decide ((if v = y then u else y) ∈ binders)) ⊒ v = x ∨ v = y β†’ u βˆ‰ binders
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : (x ∈ binders ↔ (if v = x then u else x) ∈ binders) ∧ (y ∈ binders ↔ (if v = y then u else y) ∈ binders) ⊒ v = x ∨ v = y β†’ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.eq_ (decide (x ∈ binders)) (decide (y ∈ binders)) = BoolFormula.eq_ (decide ((if v = x then u else x) ∈ binders)) (decide ((if v = y then u else y) ∈ binders)) ⊒ v = x ∨ v = y β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
cases h2
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : (x ∈ binders ↔ (if v = x then u else x) ∈ binders) ∧ (y ∈ binders ↔ (if v = y then u else y) ∈ binders) ⊒ v = x ∨ v = y β†’ u βˆ‰ binders
case intro v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders left✝ : x ∈ binders ↔ (if v = x then u else x) ∈ binders right✝ : y ∈ binders ↔ (if v = y then u else y) ∈ binders ⊒ v = x ∨ v = y β†’ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2 : (x ∈ binders ↔ (if v = x then u else x) ∈ binders) ∧ (y ∈ binders ↔ (if v = y then u else y) ∈ binders) ⊒ v = x ∨ v = y β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
case intro h2_left h2_right => intros a1 cases a1 case inl a1 => subst a1 simp at h2_left tauto case inr a1 => subst a1 simp at h2_right tauto
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders ⊒ v = x ∨ v = y β†’ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders ⊒ v = x ∨ v = y β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
intros a1
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders ⊒ v = x ∨ v = y β†’ u βˆ‰ binders
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = x ∨ v = y ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders ⊒ v = x ∨ v = y β†’ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
cases a1
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = x ∨ v = y ⊒ u βˆ‰ binders
case inl v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h✝ : v = x ⊒ u βˆ‰ binders case inr v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h✝ : v = y ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = x ∨ v = y ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
case inl a1 => subst a1 simp at h2_left tauto
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = x ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = x ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
case inr a1 => subst a1 simp at h2_right tauto
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = y ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = y ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
subst a1
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = x ⊒ u βˆ‰ binders
v u y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h2_left : v ∈ binders ↔ (if v = v then u else v) ∈ binders ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = x ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2_left
v u y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h2_left : v ∈ binders ↔ (if v = v then u else v) ∈ binders ⊒ u βˆ‰ binders
v u y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h2_left : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h2_left : v ∈ binders ↔ (if v = v then u else v) ∈ binders ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
tauto
v u y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h2_left : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders h2_left : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
subst a1
v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = y ⊒ u βˆ‰ binders
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ (if v = v then u else v) ∈ binders ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x y : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : y ∈ binders ↔ (if v = y then u else y) ∈ binders a1 : v = y ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2_right
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ (if v = v then u else v) ∈ binders ⊒ u βˆ‰ binders
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ (if v = v then u else v) ∈ binders ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
tauto
v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName binders : Finset VarName h1 : v βˆ‰ binders h2_left : x ∈ binders ↔ (if v = x then u else x) ∈ binders h2_right : v ∈ binders ↔ u ∈ binders ⊒ u βˆ‰ binders TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_ ⊒ fastAdmitsAux v u binders phi
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ⊒ fastAdmitsAux v u binders phi
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_ ⊒ fastAdmitsAux v u binders phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
exact phi_ih binders h1 h2
v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ⊒ fastAdmitsAux v u binders phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ⊒ fastAdmitsAux v u binders phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
simp at h2
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) = (toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi)) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ∧ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) = (toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi)) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
tauto
v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ∧ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u : VarName phi psi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi psi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β†’ fastAdmitsAux v u binders psi binders : Finset VarName h1 : v βˆ‰ binders h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) ∧ toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) ⊒ fastAdmitsAux v u binders phi ∧ fastAdmitsAux v u binders psi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
split_ifs at h2
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi)) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi
case pos v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h✝ : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi case neg v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h✝ : Β¬v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x (fastReplaceFree v u phi)) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi)) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
case pos c1 => left exact c1
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi
no goals
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi TACTIC:
https://github.com/pthomas505/FOL.git
097a4abea51b641d144539b9a0f7516f3b9d818c
FOL/NV/Sub/Var/One/Rec/Admits.lean
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
[677, 1]
[740, 17]
left
v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi
case h v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x
Please generate a tactic in lean4 to solve the state. STATE: v u x : VarName phi : Formula phi_ih : βˆ€ (binders : Finset VarName), v βˆ‰ binders β†’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β†’ fastAdmitsAux v u binders phi binders : Finset VarName h1 : v βˆ‰ binders c1 : v = x h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βˆͺ {x}) phi) = toIsBoundAux binders (exists_ x phi) ⊒ v = x ∨ fastAdmitsAux v u (binders βˆͺ {x}) phi TACTIC: