url
stringclasses 147
values | commit
stringclasses 147
values | file_path
stringlengths 7
101
| full_name
stringlengths 1
94
| start
stringlengths 6
10
| end
stringlengths 6
11
| tactic
stringlengths 1
11.2k
| state_before
stringlengths 3
2.09M
| state_after
stringlengths 6
2.09M
| input
stringlengths 73
2.09M
|
|---|---|---|---|---|---|---|---|---|---|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
simp only [fastAdmitsAux] at h1
|
case def_
v u : VarName
T : Finset VarName
aβΒΉ : DefName
aβ : List VarName
S : Finset VarName
h1 : fastAdmitsAux v u (S βͺ T) (def_ aβΒΉ aβ)
β’ fastAdmitsAux v u S (def_ aβΒΉ aβ)
|
case def_
v u : VarName
T : Finset VarName
aβΒΉ : DefName
aβ : List VarName
S : Finset VarName
h1 : v β aβ β u β S βͺ T
β’ fastAdmitsAux v u S (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
T : Finset VarName
aβΒΉ : DefName
aβ : List VarName
S : Finset VarName
h1 : fastAdmitsAux v u (S βͺ T) (def_ aβΒΉ aβ)
β’ fastAdmitsAux v u S (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
simp only [fastAdmitsAux]
|
case def_
v u : VarName
T : Finset VarName
aβΒΉ : DefName
aβ : List VarName
S : Finset VarName
h1 : v β aβ β u β S βͺ T
β’ fastAdmitsAux v u S (def_ aβΒΉ aβ)
|
case def_
v u : VarName
T : Finset VarName
aβΒΉ : DefName
aβ : List VarName
S : Finset VarName
h1 : v β aβ β u β S βͺ T
β’ v β aβ β u β S
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
T : Finset VarName
aβΒΉ : DefName
aβ : List VarName
S : Finset VarName
h1 : v β aβ β u β S βͺ T
β’ fastAdmitsAux v u S (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
simp at h1
|
v u : VarName
T : Finset VarName
X : DefName
xs : List VarName
S : Finset VarName
h1 : v β xs β u β S βͺ T
β’ v β xs β u β S
|
v u : VarName
T : Finset VarName
X : DefName
xs : List VarName
S : Finset VarName
h1 : v β xs β u β S β§ u β T
β’ v β xs β u β S
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
T : Finset VarName
X : DefName
xs : List VarName
S : Finset VarName
h1 : v β xs β u β S βͺ T
β’ v β xs β u β S
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
tauto
|
v u : VarName
T : Finset VarName
X : DefName
xs : List VarName
S : Finset VarName
h1 : v β xs β u β S β§ u β T
β’ v β xs β u β S
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
T : Finset VarName
X : DefName
xs : List VarName
S : Finset VarName
h1 : v β xs β u β S β§ u β T
β’ v β xs β u β S
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
simp at h1
|
v u : VarName
T : Finset VarName
x y : VarName
S : Finset VarName
h1 : v = x β¨ v = y β u β S βͺ T
β’ v = x β¨ v = y β u β S
|
v u : VarName
T : Finset VarName
x y : VarName
S : Finset VarName
h1 : v = x β¨ v = y β u β S β§ u β T
β’ v = x β¨ v = y β u β S
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
T : Finset VarName
x y : VarName
S : Finset VarName
h1 : v = x β¨ v = y β u β S βͺ T
β’ v = x β¨ v = y β u β S
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
tauto
|
v u : VarName
T : Finset VarName
x y : VarName
S : Finset VarName
h1 : v = x β¨ v = y β u β S β§ u β T
β’ v = x β¨ v = y β u β S
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
T : Finset VarName
x y : VarName
S : Finset VarName
h1 : v = x β¨ v = y β u β S β§ u β T
β’ v = x β¨ v = y β u β S
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
tauto
|
v u : VarName
T : Finset VarName
phi : Formula
phi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) phi β fastAdmitsAux v u S phi
S : Finset VarName
h1 : fastAdmitsAux v u (S βͺ T) phi
β’ fastAdmitsAux v u S phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
T : Finset VarName
phi : Formula
phi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) phi β fastAdmitsAux v u S phi
S : Finset VarName
h1 : fastAdmitsAux v u (S βͺ T) phi
β’ fastAdmitsAux v u S phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
tauto
|
v u : VarName
T : Finset VarName
phi psi : Formula
phi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) phi β fastAdmitsAux v u S phi
psi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) psi β fastAdmitsAux v u S psi
S : Finset VarName
h1 : fastAdmitsAux v u (S βͺ T) phi β§ fastAdmitsAux v u (S βͺ T) psi
β’ fastAdmitsAux v u S phi β§ fastAdmitsAux v u S psi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
T : Finset VarName
phi psi : Formula
phi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) phi β fastAdmitsAux v u S phi
psi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) psi β fastAdmitsAux v u S psi
S : Finset VarName
h1 : fastAdmitsAux v u (S βͺ T) phi β§ fastAdmitsAux v u (S βͺ T) psi
β’ fastAdmitsAux v u S phi β§ fastAdmitsAux v u S psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
simp only [Finset.union_right_comm S T {x}] at h1
|
v u : VarName
T : Finset VarName
x : VarName
phi : Formula
phi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) phi β fastAdmitsAux v u S phi
S : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (S βͺ T βͺ {x}) phi
β’ v = x β¨ fastAdmitsAux v u (S βͺ {x}) phi
|
v u : VarName
T : Finset VarName
x : VarName
phi : Formula
phi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) phi β fastAdmitsAux v u S phi
S : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (S βͺ {x} βͺ T) phi
β’ v = x β¨ fastAdmitsAux v u (S βͺ {x}) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
T : Finset VarName
x : VarName
phi : Formula
phi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) phi β fastAdmitsAux v u S phi
S : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (S βͺ T βͺ {x}) phi
β’ v = x β¨ fastAdmitsAux v u (S βͺ {x}) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_del_binders
|
[544, 1]
|
[575, 10]
|
tauto
|
v u : VarName
T : Finset VarName
x : VarName
phi : Formula
phi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) phi β fastAdmitsAux v u S phi
S : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (S βͺ {x} βͺ T) phi
β’ v = x β¨ fastAdmitsAux v u (S βͺ {x}) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
T : Finset VarName
x : VarName
phi : Formula
phi_ih : β (S : Finset VarName), fastAdmitsAux v u (S βͺ T) phi β fastAdmitsAux v u S phi
S : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (S βͺ {x} βͺ T) phi
β’ v = x β¨ fastAdmitsAux v u (S βͺ {x}) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
induction F generalizing binders
|
F : Formula
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders F
h2 : isFreeIn v F
β’ u β binders
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_const_ aβΒΉ aβ)
h2 : isFreeIn v (pred_const_ aβΒΉ aβ)
β’ u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_var_ aβΒΉ aβ)
h2 : isFreeIn v (pred_var_ aβΒΉ aβ)
β’ u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (eq_ aβΒΉ aβ)
h2 : isFreeIn v (eq_ aβΒΉ aβ)
β’ u β binders
case true_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders true_
h2 : isFreeIn v true_
β’ u β binders
case false_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders false_
h2 : isFreeIn v false_
β’ u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβ.not_
h2 : isFreeIn v aβ.not_
β’ u β binders
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.imp_ aβ)
h2 : isFreeIn v (aβΒΉ.imp_ aβ)
β’ u β binders
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.and_ aβ)
h2 : isFreeIn v (aβΒΉ.and_ aβ)
β’ u β binders
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.or_ aβ)
h2 : isFreeIn v (aβΒΉ.or_ aβ)
β’ u β binders
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.iff_ aβ)
h2 : isFreeIn v (aβΒΉ.iff_ aβ)
β’ u β binders
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (forall_ aβΒΉ aβ)
h2 : isFreeIn v (forall_ aβΒΉ aβ)
β’ u β binders
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (exists_ aβΒΉ aβ)
h2 : isFreeIn v (exists_ aβΒΉ aβ)
β’ u β binders
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
h2 : isFreeIn v (def_ aβΒΉ aβ)
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders F
h2 : isFreeIn v F
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
all_goals
simp only [fastAdmitsAux] at h1
simp only [isFreeIn] at h2
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_const_ aβΒΉ aβ)
h2 : isFreeIn v (pred_const_ aβΒΉ aβ)
β’ u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_var_ aβΒΉ aβ)
h2 : isFreeIn v (pred_var_ aβΒΉ aβ)
β’ u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (eq_ aβΒΉ aβ)
h2 : isFreeIn v (eq_ aβΒΉ aβ)
β’ u β binders
case true_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders true_
h2 : isFreeIn v true_
β’ u β binders
case false_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders false_
h2 : isFreeIn v false_
β’ u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβ.not_
h2 : isFreeIn v aβ.not_
β’ u β binders
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.imp_ aβ)
h2 : isFreeIn v (aβΒΉ.imp_ aβ)
β’ u β binders
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.and_ aβ)
h2 : isFreeIn v (aβΒΉ.and_ aβ)
β’ u β binders
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.or_ aβ)
h2 : isFreeIn v (aβΒΉ.or_ aβ)
β’ u β binders
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.iff_ aβ)
h2 : isFreeIn v (aβΒΉ.iff_ aβ)
β’ u β binders
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (forall_ aβΒΉ aβ)
h2 : isFreeIn v (forall_ aβΒΉ aβ)
β’ u β binders
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (exists_ aβΒΉ aβ)
h2 : isFreeIn v (exists_ aβΒΉ aβ)
β’ u β binders
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
h2 : isFreeIn v (def_ aβΒΉ aβ)
β’ u β binders
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v = aβΒΉ β¨ v = aβ β u β binders
h2 : v = aβΒΉ β¨ v = aβ
β’ u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβ
β’ u β binders
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
h2 : Β¬v = aβΒΉ β§ isFreeIn v aβ
β’ u β binders
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
h2 : Β¬v = aβΒΉ β§ isFreeIn v aβ
β’ u β binders
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_const_ aβΒΉ aβ)
h2 : isFreeIn v (pred_const_ aβΒΉ aβ)
β’ u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (pred_var_ aβΒΉ aβ)
h2 : isFreeIn v (pred_var_ aβΒΉ aβ)
β’ u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (eq_ aβΒΉ aβ)
h2 : isFreeIn v (eq_ aβΒΉ aβ)
β’ u β binders
case true_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders true_
h2 : isFreeIn v true_
β’ u β binders
case false_
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders false_
h2 : isFreeIn v false_
β’ u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβ.not_
h2 : isFreeIn v aβ.not_
β’ u β binders
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.imp_ aβ)
h2 : isFreeIn v (aβΒΉ.imp_ aβ)
β’ u β binders
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.and_ aβ)
h2 : isFreeIn v (aβΒΉ.and_ aβ)
β’ u β binders
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.or_ aβ)
h2 : isFreeIn v (aβΒΉ.or_ aβ)
β’ u β binders
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (aβΒΉ.iff_ aβ)
h2 : isFreeIn v (aβΒΉ.iff_ aβ)
β’ u β binders
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (forall_ aβΒΉ aβ)
h2 : isFreeIn v (forall_ aβΒΉ aβ)
β’ u β binders
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders (exists_ aβΒΉ aβ)
h2 : isFreeIn v (exists_ aβΒΉ aβ)
β’ u β binders
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
h2 : isFreeIn v (def_ aβΒΉ aβ)
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
all_goals
tauto
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v = aβΒΉ β¨ v = aβ β u β binders
h2 : v = aβΒΉ β¨ v = aβ
β’ u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβ
β’ u β binders
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v = aβΒΉ β¨ v = aβ β u β binders
h2 : v = aβΒΉ β¨ v = aβ
β’ u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβ
β’ u β binders
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ : β (binders : Finset VarName), fastAdmitsAux v u binders aβΒΉ β isFreeIn v aβΒΉ β u β binders
a_ihβ : β (binders : Finset VarName), fastAdmitsAux v u binders aβ β isFreeIn v aβ β u β binders
binders : Finset VarName
h1 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
h2 : isFreeIn v aβΒΉ β¨ isFreeIn v aβ
β’ u β binders
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
simp only [fastAdmitsAux] at h1
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
h2 : isFreeIn v (def_ aβΒΉ aβ)
β’ u β binders
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : isFreeIn v (def_ aβΒΉ aβ)
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
h2 : isFreeIn v (def_ aβΒΉ aβ)
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
simp only [isFreeIn] at h2
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : isFreeIn v (def_ aβΒΉ aβ)
β’ u β binders
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : isFreeIn v (def_ aβΒΉ aβ)
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
cases h2
|
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
h2 : Β¬v = x β§ isFreeIn v phi
β’ u β binders
|
case intro
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
leftβ : Β¬v = x
rightβ : isFreeIn v phi
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
h2 : Β¬v = x β§ isFreeIn v phi
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
cases h1
|
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
h2_left : Β¬v = x
h2_right : isFreeIn v phi
β’ u β binders
|
case inl
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
hβ : v = x
β’ u β binders
case inr
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
hβ : fastAdmitsAux v u (binders βͺ {x}) phi
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h1 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
h2_left : Β¬v = x
h2_right : isFreeIn v phi
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
case inl h1 =>
contradiction
|
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : v = x
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : v = x
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
contradiction
|
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : v = x
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : v = x
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
apply phi_ih
|
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : fastAdmitsAux v u (binders βͺ {x}) phi
β’ u β binders
|
case h1
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : fastAdmitsAux v u (binders βͺ {x}) phi
β’ fastAdmitsAux v u binders phi
case h2
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : fastAdmitsAux v u (binders βͺ {x}) phi
β’ isFreeIn v phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : fastAdmitsAux v u (binders βͺ {x}) phi
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
exact fastAdmitsAux_del_binders phi v u binders {x} h1
|
case h1
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : fastAdmitsAux v u (binders βͺ {x}) phi
β’ fastAdmitsAux v u binders phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : fastAdmitsAux v u (binders βͺ {x}) phi
β’ fastAdmitsAux v u binders phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
exact h2_right
|
case h2
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : fastAdmitsAux v u (binders βͺ {x}) phi
β’ isFreeIn v phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
v u x : VarName
phi : Formula
phi_ih : β (binders : Finset VarName), fastAdmitsAux v u binders phi β isFreeIn v phi β u β binders
binders : Finset VarName
h2_left : Β¬v = x
h2_right : isFreeIn v phi
h1 : fastAdmitsAux v u (binders βͺ {x}) phi
β’ isFreeIn v phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_isFreeIn
|
[579, 1]
|
[603, 10]
|
tauto
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β aβ β u β binders
h2 : v β aβ
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_mem_binders
|
[606, 1]
|
[615, 51]
|
contrapose! h2
|
F : Formula
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders F
h2 : u β binders
β’ Β¬isFreeIn v F
|
F : Formula
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders F
h2 : isFreeIn v F
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders F
h2 : u β binders
β’ Β¬isFreeIn v F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_mem_binders
|
[606, 1]
|
[615, 51]
|
exact fastAdmitsAux_isFreeIn F v u binders h1 h2
|
F : Formula
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders F
h2 : isFreeIn v F
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
v u : VarName
binders : Finset VarName
h1 : fastAdmitsAux v u binders F
h2 : isFreeIn v F
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
induction F generalizing binders
|
F : Formula
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders F
β’ toIsBoundAux binders F = toIsBoundAux binders (fastReplaceFree v u F)
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (pred_const_ aβΒΉ aβ)
β’ toIsBoundAux binders (pred_const_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ aβΒΉ aβ))
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (pred_var_ aβΒΉ aβ)
β’ toIsBoundAux binders (pred_var_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ aβΒΉ aβ))
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (eq_ aβΒΉ aβ)
β’ toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (eq_ aβΒΉ aβ))
case true_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders true_
β’ toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_)
case false_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders false_
β’ toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_)
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβ.not_
β’ toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ.not_)
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.imp_ aβ)
β’ toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.imp_ aβ))
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.and_ aβ)
β’ toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.and_ aβ))
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.or_ aβ)
β’ toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.or_ aβ))
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.iff_ aβ)
β’ toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.iff_ aβ))
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (forall_ aβΒΉ aβ)
β’ toIsBoundAux binders (forall_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (forall_ aβΒΉ aβ))
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (exists_ aβΒΉ aβ)
β’ toIsBoundAux binders (exists_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (exists_ aβΒΉ aβ))
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders F
β’ toIsBoundAux binders F = toIsBoundAux binders (fastReplaceFree v u F)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
all_goals
simp only [fastAdmitsAux] at h2
simp only [fastReplaceFree]
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (pred_const_ aβΒΉ aβ)
β’ toIsBoundAux binders (pred_const_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ aβΒΉ aβ))
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (pred_var_ aβΒΉ aβ)
β’ toIsBoundAux binders (pred_var_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ aβΒΉ aβ))
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (eq_ aβΒΉ aβ)
β’ toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (eq_ aβΒΉ aβ))
case true_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders true_
β’ toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_)
case false_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders false_
β’ toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_)
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβ.not_
β’ toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ.not_)
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.imp_ aβ)
β’ toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.imp_ aβ))
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.and_ aβ)
β’ toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.and_ aβ))
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.or_ aβ)
β’ toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.or_ aβ))
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.iff_ aβ)
β’ toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.iff_ aβ))
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (forall_ aβΒΉ aβ)
β’ toIsBoundAux binders (forall_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (forall_ aβΒΉ aβ))
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (exists_ aβΒΉ aβ)
β’ toIsBoundAux binders (exists_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (exists_ aβΒΉ aβ))
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (pred_const_ aβΒΉ aβ) =
toIsBoundAux binders (pred_const_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (pred_var_ aβΒΉ aβ) =
toIsBoundAux binders (pred_var_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ v = aβ β u β binders
β’ toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (eq_ (if v = aβΒΉ then u else aβΒΉ) (if v = aβ then u else aβ))
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ).not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).imp_ (fastReplaceFree v u aβ))
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).and_ (fastReplaceFree v u aβ))
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).or_ (fastReplaceFree v u aβ))
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).iff_ (fastReplaceFree v u aβ))
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
β’ toIsBoundAux binders (forall_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then forall_ aβΒΉ aβ else forall_ aβΒΉ (fastReplaceFree v u aβ))
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
β’ toIsBoundAux binders (exists_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then exists_ aβΒΉ aβ else exists_ aβΒΉ (fastReplaceFree v u aβ))
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (pred_const_ aβΒΉ aβ)
β’ toIsBoundAux binders (pred_const_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ aβΒΉ aβ))
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (pred_var_ aβΒΉ aβ)
β’ toIsBoundAux binders (pred_var_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ aβΒΉ aβ))
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (eq_ aβΒΉ aβ)
β’ toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (eq_ aβΒΉ aβ))
case true_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders true_
β’ toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_)
case false_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders false_
β’ toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_)
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβ.not_
β’ toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ.not_)
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.imp_ aβ)
β’ toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.imp_ aβ))
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.and_ aβ)
β’ toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.and_ aβ))
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.or_ aβ)
β’ toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.or_ aβ))
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (aβΒΉ.iff_ aβ)
β’ toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.iff_ aβ))
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (forall_ aβΒΉ aβ)
β’ toIsBoundAux binders (forall_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (forall_ aβΒΉ aβ))
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (exists_ aβΒΉ aβ)
β’ toIsBoundAux binders (exists_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (exists_ aβΒΉ aβ))
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
any_goals
simp only [toIsBoundAux]
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (pred_const_ aβΒΉ aβ) =
toIsBoundAux binders (pred_const_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (pred_var_ aβΒΉ aβ) =
toIsBoundAux binders (pred_var_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ v = aβ β u β binders
β’ toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (eq_ (if v = aβΒΉ then u else aβΒΉ) (if v = aβ then u else aβ))
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ).not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).imp_ (fastReplaceFree v u aβ))
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).and_ (fastReplaceFree v u aβ))
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).or_ (fastReplaceFree v u aβ))
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).iff_ (fastReplaceFree v u aβ))
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
β’ toIsBoundAux binders (forall_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then forall_ aβΒΉ aβ else forall_ aβΒΉ (fastReplaceFree v u aβ))
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
β’ toIsBoundAux binders (exists_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then exists_ aβΒΉ aβ else exists_ aβΒΉ (fastReplaceFree v u aβ))
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ BoolFormula.pred_const_ aβΒΉ (List.map (fun v => decide (v β binders)) aβ) =
BoolFormula.pred_const_ aβΒΉ
(List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) aβ))
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ BoolFormula.pred_var_ aβΒΉ (List.map (fun v => decide (v β binders)) aβ) =
BoolFormula.pred_var_ aβΒΉ (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) aβ))
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ v = aβ β u β binders
β’ BoolFormula.eq_ (decide (aβΒΉ β binders)) (decide (aβ β binders)) =
BoolFormula.eq_ (decide ((if v = aβΒΉ then u else aβΒΉ) β binders)) (decide ((if v = aβ then u else aβ) β binders))
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβ
β’ (toIsBoundAux binders aβ).not_ = (toIsBoundAux binders (fastReplaceFree v u aβ)).not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ (toIsBoundAux binders aβΒΉ).imp_ (toIsBoundAux binders aβ) =
(toIsBoundAux binders (fastReplaceFree v u aβΒΉ)).imp_ (toIsBoundAux binders (fastReplaceFree v u aβ))
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ (toIsBoundAux binders aβΒΉ).and_ (toIsBoundAux binders aβ) =
(toIsBoundAux binders (fastReplaceFree v u aβΒΉ)).and_ (toIsBoundAux binders (fastReplaceFree v u aβ))
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ (toIsBoundAux binders aβΒΉ).or_ (toIsBoundAux binders aβ) =
(toIsBoundAux binders (fastReplaceFree v u aβΒΉ)).or_ (toIsBoundAux binders (fastReplaceFree v u aβ))
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ (toIsBoundAux binders aβΒΉ).iff_ (toIsBoundAux binders aβ) =
(toIsBoundAux binders (fastReplaceFree v u aβΒΉ)).iff_ (toIsBoundAux binders (fastReplaceFree v u aβ))
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {aβΒΉ}) aβ) =
toIsBoundAux binders (if v = aβΒΉ then forall_ aβΒΉ aβ else forall_ aβΒΉ (fastReplaceFree v u aβ))
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {aβΒΉ}) aβ) =
toIsBoundAux binders (if v = aβΒΉ then exists_ aβΒΉ aβ else exists_ aβΒΉ (fastReplaceFree v u aβ))
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ BoolFormula.def_ aβΒΉ (List.map (fun v => decide (v β binders)) aβ) =
BoolFormula.def_ aβΒΉ (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) aβ))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (pred_const_ aβΒΉ aβ) =
toIsBoundAux binders (pred_const_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (pred_var_ aβΒΉ aβ) =
toIsBoundAux binders (pred_var_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ v = aβ β u β binders
β’ toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (eq_ (if v = aβΒΉ then u else aβΒΉ) (if v = aβ then u else aβ))
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ).not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).imp_ (fastReplaceFree v u aβ))
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).and_ (fastReplaceFree v u aβ))
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).or_ (fastReplaceFree v u aβ))
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders aβΒΉ β toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ)
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
β’ toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).iff_ (fastReplaceFree v u aβ))
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
β’ toIsBoundAux binders (forall_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then forall_ aβΒΉ aβ else forall_ aβΒΉ (fastReplaceFree v u aβ))
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β fastAdmitsAux v u binders aβ β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ)
binders : Finset VarName
h1 : v β binders
h2 : v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
β’ toIsBoundAux binders (exists_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then exists_ aβΒΉ aβ else exists_ aβΒΉ (fastReplaceFree v u aβ))
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
case eq_ x y =>
simp
constructor
case left | right =>
split_ifs
case pos c1 =>
subst c1
tauto
case neg c1 =>
rfl
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ BoolFormula.eq_ (decide (x β binders)) (decide (y β binders)) =
BoolFormula.eq_ (decide ((if v = x then u else x) β binders)) (decide ((if v = y then u else y) β binders))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ BoolFormula.eq_ (decide (x β binders)) (decide (y β binders)) =
BoolFormula.eq_ (decide ((if v = x then u else x) β binders)) (decide ((if v = y then u else y) β binders))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
case not_ phi phi_ih =>
tauto
|
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi
β’ (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi
β’ (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
case
imp_ phi psi phi_ih psi_ih
| and_ phi psi phi_ih psi_ih
| or_ phi psi phi_ih psi_ih
| iff_ phi psi phi_ih psi_ih =>
simp
tauto
|
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
psi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders psi β toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
β’ (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) =
(toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
psi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders psi β toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
β’ (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) =
(toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp only [fastAdmitsAux] at h2
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders (def_ aβΒΉ aβ)
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp only [fastReplaceFree]
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp only [toIsBoundAux]
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ BoolFormula.def_ aβΒΉ (List.map (fun v => decide (v β binders)) aβ) =
BoolFormula.def_ aβΒΉ (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) aβ))
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β aβ β u β binders
β’ toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
β’ BoolFormula.def_ X (List.map (fun v => decide (v β binders)) xs) =
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) xs))
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
β’ List.map (fun v => decide (v β binders)) xs =
List.map ((fun v => decide (v β binders)) β fun x => if v = x then u else x) xs
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
β’ BoolFormula.def_ X (List.map (fun v => decide (v β binders)) xs) =
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) xs))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp only [List.map_eq_map_iff]
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
β’ List.map (fun v => decide (v β binders)) xs =
List.map ((fun v => decide (v β binders)) β fun x => if v = x then u else x) xs
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
β’ β x β xs, decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
β’ List.map (fun v => decide (v β binders)) xs =
List.map ((fun v => decide (v β binders)) β fun x => if v = x then u else x) xs
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
intro x a1
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
β’ β x β xs, decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
β’ decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
β’ β x β xs, decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
β’ decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
β’ x β binders β (if v = x then u else x) β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
β’ decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
by_cases c1 : v = x
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
β’ x β binders β (if v = x then u else x) β binders
|
case pos
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
c1 : v = x
β’ x β binders β (if v = x then u else x) β binders
case neg
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
c1 : Β¬v = x
β’ x β binders β (if v = x then u else x) β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
β’ x β binders β (if v = x then u else x) β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
subst c1
|
case pos
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
c1 : v = x
β’ x β binders β (if v = x then u else x) β binders
|
case pos
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
a1 : v β xs
β’ v β binders β (if v = v then u else v) β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
c1 : v = x
β’ x β binders β (if v = x then u else x) β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp
|
case pos
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
a1 : v β xs
β’ v β binders β (if v = v then u else v) β binders
|
case pos
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
a1 : v β xs
β’ v β binders β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
a1 : v β xs
β’ v β binders β (if v = v then u else v) β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
tauto
|
case pos
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
a1 : v β xs
β’ v β binders β u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pos
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
a1 : v β xs
β’ v β binders β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp only [if_neg c1]
|
case neg
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
c1 : Β¬v = x
β’ x β binders β (if v = x then u else x) β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case neg
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : v β xs β u β binders
x : VarName
a1 : x β xs
c1 : Β¬v = x
β’ x β binders β (if v = x then u else x) β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ BoolFormula.eq_ (decide (x β binders)) (decide (y β binders)) =
BoolFormula.eq_ (decide ((if v = x then u else x) β binders)) (decide ((if v = y then u else y) β binders))
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ (x β binders β (if v = x then u else x) β binders) β§ (y β binders β (if v = y then u else y) β binders)
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ BoolFormula.eq_ (decide (x β binders)) (decide (y β binders)) =
BoolFormula.eq_ (decide ((if v = x then u else x) β binders)) (decide ((if v = y then u else y) β binders))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
constructor
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ (x β binders β (if v = x then u else x) β binders) β§ (y β binders β (if v = y then u else y) β binders)
|
case left
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ x β binders β (if v = x then u else x) β binders
case right
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ y β binders β (if v = y then u else y) β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ (x β binders β (if v = x then u else x) β binders) β§ (y β binders β (if v = y then u else y) β binders)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
case left | right =>
split_ifs
case pos c1 =>
subst c1
tauto
case neg c1 =>
rfl
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ y β binders β (if v = y then u else y) β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ y β binders β (if v = y then u else y) β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
split_ifs
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ y β binders β (if v = y then u else y) β binders
|
case pos
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
hβ : v = y
β’ y β binders β u β binders
case neg
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
hβ : Β¬v = y
β’ y β binders β y β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
β’ y β binders β (if v = y then u else y) β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
case pos c1 =>
subst c1
tauto
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
c1 : v = y
β’ y β binders β u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
c1 : v = y
β’ y β binders β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
case neg c1 =>
rfl
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
c1 : Β¬v = y
β’ y β binders β y β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
c1 : Β¬v = y
β’ y β binders β y β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
subst c1
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
c1 : v = y
β’ y β binders β u β binders
|
v u x : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = v β u β binders
β’ v β binders β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
c1 : v = y
β’ y β binders β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
tauto
|
v u x : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = v β u β binders
β’ v β binders β u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = v β u β binders
β’ v β binders β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
rfl
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
c1 : Β¬v = y
β’ y β binders β y β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ v = y β u β binders
c1 : Β¬v = y
β’ y β binders β y β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
tauto
|
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi
β’ (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi
β’ (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp
|
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
psi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders psi β toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
β’ (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) =
(toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
|
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
psi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders psi β toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
β’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β§
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
psi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders psi β toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
β’ (toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) =
(toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
tauto
|
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
psi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders psi β toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
β’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β§
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
psi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders psi β toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
binders : Finset VarName
h1 : v β binders
h2 : fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
β’ toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β§
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
split_ifs
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi))
|
case pos
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
hβ : v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
case neg
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
hβ : Β¬v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
case pos c1 =>
rfl
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
rfl
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp only [toIsBoundAux]
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi))
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi))
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi)
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi))
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
apply phi_ih
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi)
|
case h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ v β binders βͺ {x}
case h2
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ fastAdmitsAux v u (binders βͺ {x}) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ toIsBoundAux (binders βͺ {x}) phi = toIsBoundAux (binders βͺ {x}) (fastReplaceFree v u phi)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
simp
|
case h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ v β binders βͺ {x}
|
case h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ v β binders β§ Β¬v = x
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ v β binders βͺ {x}
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
tauto
|
case h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ v β binders β§ Β¬v = x
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h1
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ v β binders β§ Β¬v = x
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.fastAdmitsAux_imp_free_and_bound_unchanged
|
[619, 1]
|
[674, 14]
|
tauto
|
case h2
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ fastAdmitsAux v u (binders βͺ {x}) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
case h2
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
fastAdmitsAux v u binders phi β toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
binders : Finset VarName
h1 : v β binders
h2 : v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
c1 : Β¬v = x
β’ fastAdmitsAux v u (binders βͺ {x}) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
induction F generalizing binders
|
F : Formula
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders F = toIsBoundAux binders (fastReplaceFree v u F)
β’ fastAdmitsAux v u binders F
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (pred_const_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (pred_const_ aβΒΉ aβ)
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (pred_var_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (pred_var_ aβΒΉ aβ)
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (eq_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (eq_ aβΒΉ aβ)
case true_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_)
β’ fastAdmitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_)
β’ fastAdmitsAux v u binders false_
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ.not_)
β’ fastAdmitsAux v u binders aβ.not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.imp_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.imp_ aβ)
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.and_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.and_ aβ)
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.or_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.or_ aβ)
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.iff_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.iff_ aβ)
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (forall_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (forall_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (forall_ aβΒΉ aβ)
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (exists_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (exists_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (exists_ aβΒΉ aβ)
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
F : Formula
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders F = toIsBoundAux binders (fastReplaceFree v u F)
β’ fastAdmitsAux v u binders F
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
all_goals
simp only [fastReplaceFree] at h2
simp only [fastAdmitsAux]
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (pred_const_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (pred_const_ aβΒΉ aβ)
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (pred_var_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (pred_var_ aβΒΉ aβ)
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (eq_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (eq_ aβΒΉ aβ)
case true_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_)
β’ fastAdmitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_)
β’ fastAdmitsAux v u binders false_
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ.not_)
β’ fastAdmitsAux v u binders aβ.not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.imp_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.imp_ aβ)
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.and_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.and_ aβ)
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.or_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.or_ aβ)
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.iff_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.iff_ aβ)
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (forall_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (forall_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (forall_ aβΒΉ aβ)
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (exists_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (exists_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (exists_ aβΒΉ aβ)
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (def_ aβΒΉ aβ)
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (pred_const_ aβΒΉ aβ) =
toIsBoundAux binders (pred_const_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (pred_var_ aβΒΉ aβ) =
toIsBoundAux binders (pred_var_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (eq_ (if v = aβΒΉ then u else aβΒΉ) (if v = aβ then u else aβ))
β’ v = aβΒΉ β¨ v = aβ β u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ).not_
β’ fastAdmitsAux v u binders aβ
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).imp_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).and_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).or_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).iff_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (forall_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then forall_ aβΒΉ aβ else forall_ aβΒΉ (fastReplaceFree v u aβ))
β’ v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (exists_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then exists_ aβΒΉ aβ else exists_ aβΒΉ (fastReplaceFree v u aβ))
β’ v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (pred_const_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_const_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (pred_const_ aβΒΉ aβ)
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (pred_var_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (pred_var_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (pred_var_ aβΒΉ aβ)
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (eq_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (eq_ aβΒΉ aβ)
case true_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders true_ = toIsBoundAux binders (fastReplaceFree v u true_)
β’ fastAdmitsAux v u binders true_
case false_
v u : VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders false_ = toIsBoundAux binders (fastReplaceFree v u false_)
β’ fastAdmitsAux v u binders false_
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ.not_)
β’ fastAdmitsAux v u binders aβ.not_
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.imp_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.imp_ aβ)
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.and_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.and_ aβ)
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.or_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.or_ aβ)
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders (fastReplaceFree v u (aβΒΉ.iff_ aβ))
β’ fastAdmitsAux v u binders (aβΒΉ.iff_ aβ)
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (forall_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (forall_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (forall_ aβΒΉ aβ)
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (exists_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (exists_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (exists_ aβΒΉ aβ)
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
any_goals
simp only [toIsBoundAux] at h2
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (pred_const_ aβΒΉ aβ) =
toIsBoundAux binders (pred_const_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (pred_var_ aβΒΉ aβ) =
toIsBoundAux binders (pred_var_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (eq_ (if v = aβΒΉ then u else aβΒΉ) (if v = aβ then u else aβ))
β’ v = aβΒΉ β¨ v = aβ β u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ).not_
β’ fastAdmitsAux v u binders aβ
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).imp_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).and_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).or_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).iff_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (forall_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then forall_ aβΒΉ aβ else forall_ aβΒΉ (fastReplaceFree v u aβ))
β’ v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (exists_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then exists_ aβΒΉ aβ else exists_ aβΒΉ (fastReplaceFree v u aβ))
β’ v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
|
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.pred_const_ aβΒΉ (List.map (fun v => decide (v β binders)) aβ) =
BoolFormula.pred_const_ aβΒΉ
(List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.pred_var_ aβΒΉ (List.map (fun v => decide (v β binders)) aβ) =
BoolFormula.pred_var_ aβΒΉ (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.eq_ (decide (aβΒΉ β binders)) (decide (aβ β binders)) =
BoolFormula.eq_ (decide ((if v = aβΒΉ then u else aβΒΉ) β binders)) (decide ((if v = aβ then u else aβ) β binders))
β’ v = aβΒΉ β¨ v = aβ β u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : (toIsBoundAux binders aβ).not_ = (toIsBoundAux binders (fastReplaceFree v u aβ)).not_
β’ fastAdmitsAux v u binders aβ
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
(toIsBoundAux binders aβΒΉ).imp_ (toIsBoundAux binders aβ) =
(toIsBoundAux binders (fastReplaceFree v u aβΒΉ)).imp_ (toIsBoundAux binders (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
(toIsBoundAux binders aβΒΉ).and_ (toIsBoundAux binders aβ) =
(toIsBoundAux binders (fastReplaceFree v u aβΒΉ)).and_ (toIsBoundAux binders (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
(toIsBoundAux binders aβΒΉ).or_ (toIsBoundAux binders aβ) =
(toIsBoundAux binders (fastReplaceFree v u aβΒΉ)).or_ (toIsBoundAux binders (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
(toIsBoundAux binders aβΒΉ).iff_ (toIsBoundAux binders aβ) =
(toIsBoundAux binders (fastReplaceFree v u aβΒΉ)).iff_ (toIsBoundAux binders (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {aβΒΉ}) aβ) =
toIsBoundAux binders (if v = aβΒΉ then forall_ aβΒΉ aβ else forall_ aβΒΉ (fastReplaceFree v u aβ))
β’ v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {aβΒΉ}) aβ) =
toIsBoundAux binders (if v = aβΒΉ then exists_ aβΒΉ aβ else exists_ aβΒΉ (fastReplaceFree v u aβ))
β’ v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.def_ aβΒΉ (List.map (fun v => decide (v β binders)) aβ) =
BoolFormula.def_ aβΒΉ (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
case pred_const_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (pred_const_ aβΒΉ aβ) =
toIsBoundAux binders (pred_const_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
case pred_var_
v u : VarName
aβΒΉ : PredName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (pred_var_ aβΒΉ aβ) =
toIsBoundAux binders (pred_var_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
case eq_
v u aβΒΉ aβ : VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (eq_ aβΒΉ aβ) = toIsBoundAux binders (eq_ (if v = aβΒΉ then u else aβΒΉ) (if v = aβ then u else aβ))
β’ v = aβΒΉ β¨ v = aβ β u β binders
case not_
v u : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders aβ.not_ = toIsBoundAux binders (fastReplaceFree v u aβ).not_
β’ fastAdmitsAux v u binders aβ
case imp_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.imp_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).imp_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case and_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.and_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).and_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case or_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.or_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).or_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case iff_
v u : VarName
aβΒΉ aβ : Formula
a_ihβΒΉ :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders aβΒΉ = toIsBoundAux binders (fastReplaceFree v u aβΒΉ) β fastAdmitsAux v u binders aβΒΉ
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (aβΒΉ.iff_ aβ) = toIsBoundAux binders ((fastReplaceFree v u aβΒΉ).iff_ (fastReplaceFree v u aβ))
β’ fastAdmitsAux v u binders aβΒΉ β§ fastAdmitsAux v u binders aβ
case forall_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (forall_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then forall_ aβΒΉ aβ else forall_ aβΒΉ (fastReplaceFree v u aβ))
β’ v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
case exists_
v u aβΒΉ : VarName
aβ : Formula
a_ihβ :
β (binders : Finset VarName),
v β binders β toIsBoundAux binders aβ = toIsBoundAux binders (fastReplaceFree v u aβ) β fastAdmitsAux v u binders aβ
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (exists_ aβΒΉ aβ) =
toIsBoundAux binders (if v = aβΒΉ then exists_ aβΒΉ aβ else exists_ aβΒΉ (fastReplaceFree v u aβ))
β’ v = aβΒΉ β¨ fastAdmitsAux v u (binders βͺ {aβΒΉ}) aβ
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
case pred_const_ X xs | pred_var_ X xs | def_ X xs =>
simp at h2
simp only [List.map_eq_map_iff] at h2
intro a1
specialize h2 v a1
simp at h2
tauto
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) xs) =
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) xs))
β’ v β xs β u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) xs) =
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) xs))
β’ v β xs β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
case eq_ x y =>
simp at h2
cases h2
case intro h2_left h2_right =>
intros a1
cases a1
case inl a1 =>
subst a1
simp at h2_left
tauto
case inr a1 =>
subst a1
simp at h2_right
tauto
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.eq_ (decide (x β binders)) (decide (y β binders)) =
BoolFormula.eq_ (decide ((if v = x then u else x) β binders)) (decide ((if v = y then u else y) β binders))
β’ v = x β¨ v = y β u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.eq_ (decide (x β binders)) (decide (y β binders)) =
BoolFormula.eq_ (decide ((if v = x then u else x) β binders)) (decide ((if v = y then u else y) β binders))
β’ v = x β¨ v = y β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
case not_ phi phi_ih =>
simp at h2
exact phi_ih binders h1 h2
|
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
β’ fastAdmitsAux v u binders phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
β’ fastAdmitsAux v u binders phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
case
imp_ phi psi phi_ih psi_ih
| and_ phi psi phi_ih psi_ih
| or_ phi psi phi_ih psi_ih
| iff_ phi psi phi_ih psi_ih =>
simp at h2
tauto
|
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
(toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) =
(toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
(toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) =
(toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp only [fastReplaceFree] at h2
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (def_ aβΒΉ aβ)
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ fastAdmitsAux v u binders (def_ aβΒΉ aβ)
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (fastReplaceFree v u (def_ aβΒΉ aβ))
β’ fastAdmitsAux v u binders (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp only [fastAdmitsAux]
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ fastAdmitsAux v u binders (def_ aβΒΉ aβ)
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ fastAdmitsAux v u binders (def_ aβΒΉ aβ)
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp only [toIsBoundAux] at h2
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
|
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.def_ aβΒΉ (List.map (fun v => decide (v β binders)) aβ) =
BoolFormula.def_ aβΒΉ (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
case def_
v u : VarName
aβΒΉ : DefName
aβ : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders (def_ aβΒΉ aβ) = toIsBoundAux binders (def_ aβΒΉ (List.map (fun x => if v = x then u else x) aβ))
β’ v β aβ β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp at h2
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) xs) =
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) xs))
β’ v β xs β u β binders
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
List.map (fun v => decide (v β binders)) xs =
List.map ((fun v => decide (v β binders)) β fun x => if v = x then u else x) xs
β’ v β xs β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) xs) =
BoolFormula.def_ X (List.map (fun v => decide (v β binders)) (List.map (fun x => if v = x then u else x) xs))
β’ v β xs β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp only [List.map_eq_map_iff] at h2
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
List.map (fun v => decide (v β binders)) xs =
List.map ((fun v => decide (v β binders)) β fun x => if v = x then u else x) xs
β’ v β xs β u β binders
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : β x β xs, decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
β’ v β xs β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 :
List.map (fun v => decide (v β binders)) xs =
List.map ((fun v => decide (v β binders)) β fun x => if v = x then u else x) xs
β’ v β xs β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
intro a1
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : β x β xs, decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
β’ v β xs β u β binders
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : β x β xs, decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
a1 : v β xs
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : β x β xs, decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
β’ v β xs β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
specialize h2 v a1
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : β x β xs, decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
a1 : v β xs
β’ u β binders
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
a1 : v β xs
h2 : decide (v β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) v
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
h2 : β x β xs, decide (x β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) x
a1 : v β xs
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp at h2
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
a1 : v β xs
h2 : decide (v β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) v
β’ u β binders
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
a1 : v β xs
h2 : v β binders β u β binders
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
a1 : v β xs
h2 : decide (v β binders) = ((fun v => decide (v β binders)) β fun x => if v = x then u else x) v
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
tauto
|
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
a1 : v β xs
h2 : v β binders β u β binders
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
X : DefName
xs : List VarName
binders : Finset VarName
h1 : v β binders
a1 : v β xs
h2 : v β binders β u β binders
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp at h2
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.eq_ (decide (x β binders)) (decide (y β binders)) =
BoolFormula.eq_ (decide ((if v = x then u else x) β binders)) (decide ((if v = y then u else y) β binders))
β’ v = x β¨ v = y β u β binders
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : (x β binders β (if v = x then u else x) β binders) β§ (y β binders β (if v = y then u else y) β binders)
β’ v = x β¨ v = y β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.eq_ (decide (x β binders)) (decide (y β binders)) =
BoolFormula.eq_ (decide ((if v = x then u else x) β binders)) (decide ((if v = y then u else y) β binders))
β’ v = x β¨ v = y β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
cases h2
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : (x β binders β (if v = x then u else x) β binders) β§ (y β binders β (if v = y then u else y) β binders)
β’ v = x β¨ v = y β u β binders
|
case intro
v u x y : VarName
binders : Finset VarName
h1 : v β binders
leftβ : x β binders β (if v = x then u else x) β binders
rightβ : y β binders β (if v = y then u else y) β binders
β’ v = x β¨ v = y β u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2 : (x β binders β (if v = x then u else x) β binders) β§ (y β binders β (if v = y then u else y) β binders)
β’ v = x β¨ v = y β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
case intro h2_left h2_right =>
intros a1
cases a1
case inl a1 =>
subst a1
simp at h2_left
tauto
case inr a1 =>
subst a1
simp at h2_right
tauto
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
β’ v = x β¨ v = y β u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
β’ v = x β¨ v = y β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
intros a1
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
β’ v = x β¨ v = y β u β binders
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = x β¨ v = y
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
β’ v = x β¨ v = y β u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
cases a1
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = x β¨ v = y
β’ u β binders
|
case inl
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
hβ : v = x
β’ u β binders
case inr
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
hβ : v = y
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = x β¨ v = y
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
case inl a1 =>
subst a1
simp at h2_left
tauto
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = x
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = x
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
case inr a1 =>
subst a1
simp at h2_right
tauto
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = y
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = y
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
subst a1
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = x
β’ u β binders
|
v u y : VarName
binders : Finset VarName
h1 : v β binders
h2_right : y β binders β (if v = y then u else y) β binders
h2_left : v β binders β (if v = v then u else v) β binders
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = x
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp at h2_left
|
v u y : VarName
binders : Finset VarName
h1 : v β binders
h2_right : y β binders β (if v = y then u else y) β binders
h2_left : v β binders β (if v = v then u else v) β binders
β’ u β binders
|
v u y : VarName
binders : Finset VarName
h1 : v β binders
h2_right : y β binders β (if v = y then u else y) β binders
h2_left : v β binders β u β binders
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u y : VarName
binders : Finset VarName
h1 : v β binders
h2_right : y β binders β (if v = y then u else y) β binders
h2_left : v β binders β (if v = v then u else v) β binders
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
tauto
|
v u y : VarName
binders : Finset VarName
h1 : v β binders
h2_right : y β binders β (if v = y then u else y) β binders
h2_left : v β binders β u β binders
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u y : VarName
binders : Finset VarName
h1 : v β binders
h2_right : y β binders β (if v = y then u else y) β binders
h2_left : v β binders β u β binders
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
subst a1
|
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = y
β’ u β binders
|
v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β (if v = v then u else v) β binders
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x y : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : y β binders β (if v = y then u else y) β binders
a1 : v = y
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp at h2_right
|
v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β (if v = v then u else v) β binders
β’ u β binders
|
v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β u β binders
β’ u β binders
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β (if v = v then u else v) β binders
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
tauto
|
v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β u β binders
β’ u β binders
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
binders : Finset VarName
h1 : v β binders
h2_left : x β binders β (if v = x then u else x) β binders
h2_right : v β binders β u β binders
β’ u β binders
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp at h2
|
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
β’ fastAdmitsAux v u binders phi
|
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
β’ fastAdmitsAux v u binders phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : (toIsBoundAux binders phi).not_ = (toIsBoundAux binders (fastReplaceFree v u phi)).not_
β’ fastAdmitsAux v u binders phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
exact phi_ih binders h1 h2
|
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
β’ fastAdmitsAux v u binders phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 : toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi)
β’ fastAdmitsAux v u binders phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
simp at h2
|
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
(toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) =
(toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
|
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β§
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
(toIsBoundAux binders phi).iff_ (toIsBoundAux binders psi) =
(toIsBoundAux binders (fastReplaceFree v u phi)).iff_ (toIsBoundAux binders (fastReplaceFree v u psi))
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
tauto
|
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β§
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u : VarName
phi psi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
psi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi) β fastAdmitsAux v u binders psi
binders : Finset VarName
h1 : v β binders
h2 :
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β§
toIsBoundAux binders psi = toIsBoundAux binders (fastReplaceFree v u psi)
β’ fastAdmitsAux v u binders phi β§ fastAdmitsAux v u binders psi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
split_ifs at h2
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi))
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
|
case pos
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
hβ : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
case neg
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
hβ : Β¬v = x
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (exists_ x (fastReplaceFree v u phi))
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
h2 :
BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) =
toIsBoundAux binders (if v = x then exists_ x phi else exists_ x (fastReplaceFree v u phi))
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
case pos c1 =>
left
exact c1
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
|
no goals
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
TACTIC:
|
https://github.com/pthomas505/FOL.git
|
097a4abea51b641d144539b9a0f7516f3b9d818c
|
FOL/NV/Sub/Var/One/Rec/Admits.lean
|
FOL.NV.Sub.Var.One.Rec.free_and_bound_unchanged_imp_fastAdmitsAux
|
[677, 1]
|
[740, 17]
|
left
|
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
|
case h
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x
|
Please generate a tactic in lean4 to solve the state.
STATE:
v u x : VarName
phi : Formula
phi_ih :
β (binders : Finset VarName),
v β binders β
toIsBoundAux binders phi = toIsBoundAux binders (fastReplaceFree v u phi) β fastAdmitsAux v u binders phi
binders : Finset VarName
h1 : v β binders
c1 : v = x
h2 : BoolFormula.forall_ (decide True) (toIsBoundAux (binders βͺ {x}) phi) = toIsBoundAux binders (exists_ x phi)
β’ v = x β¨ fastAdmitsAux v u (binders βͺ {x}) phi
TACTIC:
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.